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INVASION PERCOLATION ON THE POISSON-WEIGHTED
INFINITE TREE

BY LOUIGI ADDARIO-BERRY1, SIMON GRIFFITHS AND ROSS J. KANG2

McGill University, IMPA and Durham University

We study invasion percolation on Aldous’ Poisson-weighted infinite tree,
and derive two distinct Markovian representations of the resulting process.
One of these is the σ → ∞ limit of a representation discovered by Angel et
al. [Ann. Appl. Probab. 36 (2008) 420–466]. We also introduce an exploration
process of a randomly weighted Poisson incipient infinite cluster. The dynam-
ics of the new process are much more straightforward to describe than those
of invasion percolation, but it turns out that the two processes have extremely
similar behavior. Finally, we introduce two new “stationary” representations
of the Poisson incipient infinite cluster as random graphs on Z which are,
in particular, factors of a homogeneous Poisson point process on the upper
half-plane R × [0,∞).

1. Introduction. Invasion percolation (or Prim’s algorithm [20]) was first in-
troduced by Jarńik [14] as a procedure for constructing the minimum weight span-
ning tree of a connected, weighted, finite graph. The procedure, however, may be
applied to many infinite graphs without modification. Given a connected graph
G = (V ,E), a starting node v0 ∈ V and an injective weight function w :E → R,
the algorithm grows a component from the root inductively, adding at each step
the lowest weight edge leaving the current component.

For each i = 0,1, . . . :
1. If {v0, . . . , vi} = V , then stop.
2. Otherwise, let e = uv ∈ E be the smallest weight edge for which

u ∈ {v0, . . . , vi}, v /∈ {v0, . . . , vi}.
3. Let vi+1 = v, and let ei+1 = uv.

(Throughout the paper, the graphs and weight functions we consider will be
such that step 2, above, is well defined; i.e., the infimum of the weights of all edges
from {v0, . . . , vi} to the rest of the graph is attained.) If |V | < ∞, the resulting
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graph with vertex set {v0, . . . , v|V |−1} and edge set {e1, . . . , e|V |−1} is the unique
minimum weight spanning tree of G. However, in general, for an infinite graph,
this procedure does not necessarily build a spanning subgraph of G. In particular,
if there is an infinite path leaving v0 and containing only edges of weight at most h,
for some h ∈ R, then no vertex v for which infe�v w(e) > h will ever be explored.

Prim’s algorithm was rediscovered under the name of invasion percolation in
the 1980s [5, 16]. The strong connection between invasion percolation and criti-
cal percolation was immediately recognized—a particularly nice example of this
connection is contained in the fact that invasion percolation on Z

d occupies an
asymptotically zero proportion of the vertices of Z

d if and only if the percolation
probability at the critical point pc(Z

d) is zero (see Newman [19], page 24).
The well-known heuristic that percolation-style processes on Z

d should behave
like percolation on a regular tree when d is large led Angel, Goodman, den Hol-
lander and Slade [3] to study invasion percolation on regular trees. Angel et al.
prove far too many results for us to summarize here. Among other topics, they
study volume growth and boundary growth, spectral and Hausdorff dimensions
for the set of vertices explored by invasion percolation. We hereafter refer to this
set—and to the subgraph induced by this set, which will cause no confusion—as
the invasion percolation cluster. Their results all stem from a Markovian represen-
tation of the invasion percolation cluster as—informally—a single infinite path,
at each point of which is attached an independent random tree. (These trees are
“subcritical Bernoulli percolation clusters” with a parameter which becomes in-
creasingly close to critical the further along the backbone they are attached.) One
of the major purposes of our paper is to explore a new approach to this structural
representation which applies in some generality, so we take a moment to explain
the representation itself in more detail.

For the duration of the introduction, for integers σ ≥ 2, let Tσ denote the in-
finite rooted σ -regular tree (each node except the root has degree σ + 1), with
each edge e labeled by Ue ∼ Uniform[0, σ ] independently of all other edges.
In general, for a weighted rooted graph G, let G(p) be the connected subgraph
of G containing the root when all edges of weight greater than p are discarded.
Let p1 = inf{p : Tσ (p) is infinite}. Then with probability one, 1 < p1 < σ , and

Tσ (p1) is infinite and contains precisely one edge e1 of weight p1 (this is not hard,
and in particular follows from Corollary 22 in Section 2.3). The component of
Tσ (p1) containing the root when e1 is removed is finite (or else we never would
have explored edge e1). Let Tσ,1 be the component of Tσ (p1) not containing the
root when e1 is removed; then Tσ,1, which we view as rooted at its unique ver-
tex which is an endpoint of e1, is infinite and contains only edges of weight less
than p1. Supposing we have defined p1, . . . , pi , e1, . . . , ei , and Tσ,1, . . . , Tσ,i , let
pi+1 = inf{p : Tσ,i(p) is infinite}. Then with probability one, 1 < pi+1 < pi , and
Tσ,i(pi+1) is infinite and contains precisely one edge ei+1 of weight pi+1, which
separates the root of Tσ,i from infinity. We define Tσ,i+1 to be the component of
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Tσ,i(pi+1) not containing the root when ei+1 is removed, and root this tree at its
unique vertex which is an endpoint of ei+1.

Now let P = {fi}∞i=1 be the unique path starting from the root of Tσ and passing
through all of {ej }∞j=1 (so P is only a.s. defined). This path is called the back-
bone of the invasion percolation cluster. The components of the invasion per-
colation cluster when all edges in {ej }∞j=1 are removed are called ponds; An-
gel et al. also study the sizes of these ponds. There is further interesting recent
work on invasion percolation: on the sizes of ponds for invasion percolation in
Z

2 [6, 7] and on rescaled invasion percolation on trees [2]. For integers n ≥ 1, let
Wn = Wn(Tσ ) = supj≥n Ufj

. Angel et al. term the process {Wn}∞n=1 the backbone
forward maximal process of Tσ . Wn is nonincreasing and has limn→∞ Wn = 1.
Note that Wn > Wn+1 only when fn is one of the edges ej , in which case
Wn = Ufn = pj . Angel et al. prove that {Wn}∞n=1 is a Markov process and specify
both its transition probabilities and its large-n rescaled behavior.

The removal of the vertices and edges of P separates the cluster into compo-
nents of finite size. Suppose T is one such cluster and that its neighbor on the
path P has distance n from the root. Then Angel et al. show that T is distributed
as Tσ (Wn) conditioned to stay finite, independently of all other components. This
fact and the results about the backbone forward maximal process mentioned in the
preceding paragraph form the heart of their structural results.

In this paper we introduce a new mechanism for studying invasion percolation
on randomly weighted trees, which can in particular give a new perspective on the
structural results of Angel et al. The methodology works in some generality—in
fact, parts of it are most easily formulated as statements about invasion percola-
tion on graphs with deterministic weights. To apply such results, one then needs
to check that the hypotheses hold a.s. in a randomly weighted tree under consider-
ation (which in practice is always a trivial matter). We have chosen to present our
results in the setting where they are the most simple and striking, which is that of
the Poisson-weighted infinite tree, or PWIT.

Informally, the PWIT can be described as follows. The root r has a countably in-
finite number of children v1, v2, . . . . The edges rv1, rv2, . . . are assigned weights:
for each i ≥ 1 the edge rvi is weighted with the position of the ith point of a ho-
mogeneous Poisson process of rate 1 on [0,∞). [Equivalently, starting from an
infinite sequence of independent Exponential(1) random variables E1,E2, . . . , for
each i the edge rvi is given weight E1 + · · · + Ei .] This construction is repeated
independently and recursively at each child of the root. We may view the nodes of
the PWIT as labeled by

⋃∞
i=0 N

i , so that the root has label ∅ and in general, node
n1n2 · · ·nk has parent n1n2 · · ·nk−1 and children {n1n2 · · ·nkn}n∈N; however, this
labeling will not play a major role in the paper.

The PWIT shows up as a standard large-n limit for combinatorial optimization
problems on the complete graph Kn; see the excellent survey paper by Aldous and
Steele [1] for details of how. Our case is no exception; as one consequence of our
study, we obtain novel proofs of the main results of [17], about the early behavior
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of Prim’s algorithm on Kn with i.i.d. uniform weights. Our main results, however,
link invasion percolation on the PWIT with the Poisson incipient infinite cluster—
IIC, for short—constructed for general critical branching processes by Kesten [15],
but earlier in the Poisson case by Grimmett [10]. The Poisson IIC is, informally,
a critical Poisson Galton–Watson tree—PGW(1), for short—conditioned to be in-
finite. There are at least two natural ways to formalize this statement, but they both
yield the same limiting construction, which we now describe. Start with a single,
one-way infinite path, and then make each node of the path the root of an inde-
pendent copy of PGW(1). The resulting infinite tree is the Poisson IIC, which we
denote by TIIC.

For the remainder of the introduction, let T0 be a random weighted tree with the
distribution of the subgraph of the PWIT explored by invasion percolation, with
vertices {v0, v1, . . .} in order of exploration, and let {Wi}∞i=1 be its forward max-
imal process. (We have not yet proved that T0 has a forward maximal process,
although the proof is straightforward—in particular, this fact follows from Corol-
lary 22 in Section 2.3.) Also, for any tree T and vertex v of T , let T (v) denote T

re-rooted at v. For two rooted random graphs G,H , we write G
d= H to mean G

and H have the same distribution in the local weak sense (i.e., neighborhoods of
finite order of the root have the same distribution in both graphs; see [1], Section 2,
for more details). Similarly, we write Gn

d→ G to denote local weak convergence
of a sequence {Gn} of rooted random graphs to a limiting random graph G. (This
notion of convergence in distribution deals only with the topological structure of
the graph, so in particular ignores any edge weights of the graphs under consider-
ation.)

Let P be a homogeneous Poisson process of rate 1 in the upper half-plane R ×
[0,∞). Given two random variables X and Y , we say a random variable X is a
factor of Y if almost surely X = f (Y ) for some deterministic function f . (Usage
of this term has not been fully standardized; ours agrees with that of [13].) The
first main theorem of our paper is the following.

THEOREM 1. There exist two P -a.s. distinct random trees T = T (P), T ′ =
T ′(P) with vertex set Z such that:

(a) in T there is a unique infinite rightward path from each vertex P -a.s.;
(b) in T ′ there is a unique infinite leftward path from each vertex P -a.s.;
(c) neither T nor T ′ is a factor of the other.

Furthermore, setting U = T or U = T ′, we have:

(d) for any n ∈ Z, U(P + n) = U(P) + n;
(e) for any n ∈ Z, U(n) is distributed as TIIC.

This theorem seems very similar in spirit to results of Ferrari, Landim and Tho-
risson [9], on tree and forest factors of Poisson processes in R

d × R, d ≥ 1 (with
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the final copy of R viewed as a time dimension). The graph they define is a tree
when d = 1,2 and a forest when d ≥ 3. Some particular similarities of note: Fer-
rari et al. explain how to use a preorder traversal (or depth-first search, a procedure
quite similar to invasion percolation) of the points of the Poisson process in order
to view their trees as having vertex set Z; their graphs also have only one end (only
one infinite path leaving any vertex); their graphs are built by joining each point
to its first time-successor within R

d -distance one, yielding a “coalescing random
walk” interpretation of the construction, that is, reminiscent of our random-walk
description of the forward maximal process in Section 2.3. Ferrari et al. do not
explicitly identify the distribution of the graph they define, but it would be very
interesting to know if it can be meaningfully interpreted as a higher-dimensional
analog of the Poisson IIC. Holroyd and Peres [12] have also studied tree and forest
factors of Poisson point processes in R

d , and Holroyd and Peres [12], Timár [23]
have studied tree and forest factors of general point process in R

d . Also, factors
of one-dimensional Poisson processes that commute with discrete shifts [i.e., as in
Theorem 1(d), above] are one of the subjects studied in [11].

As a byproduct of the proof of Theorem 1, we will also obtain the following
theorem, which is a “PWIT analog” of [3], Theorem 1.2.

THEOREM 2. T (vn)
0

d→ TIIC as n → ∞.

Before stating our third theorem (in fact, the first two theorems lean heavily on
tools introduced in proving the third), we have a few more concepts to introduce.
For each edge e of TIIC, let Xe ∼ Uniform[0,1), independently of all other edges.
Let e0 = v0v1, e1 = v1v2, . . . be the edges of the unique infinite path (the back-
bone) in TIIC, let M0 = 0, and for integers i ≥ 1, let Mi = max0≤j<i Xei

. Now let
T ∗

IIC be the subtree of TIIC obtained as follows. Let v be a vertex of TIIC, and let
vi be the nearest vertex of the backbone to v. If any edge of the path from v to vi

has weight greater than Mi , then remove v from the tree. Do this for each v ∈ TIIC.
Finally, remove v0 and root at v1. The resulting subtree of TIIC is T ∗

IIC.

THEOREM 3. There is a continuous, strictly decreasing bijective map q :

[1,∞) → (0,1] such that (q(W1), q(W2), . . .)
d= (M1,M2, . . .), in the sense of

finite-dimensional distributions. Furthermore, T0 conditional on (W1,W2, . . .) is
distributed as T ∗

IIC conditional on (M1,M2, . . .) = (q(W1), q(W2), . . .), in the lo-
cal weak sense.

It is worth mentioning that the Markovian nature of (W1,W2, . . .) can be imme-
diately deduced from this theorem. Given Mi , Mi+1 is greater than Mi precisely if
Xei+1 ∈ (Mi,1], in which case Mi+1 = Xei+1 . Thus, given Mi , Mi+1 is equal to Mi

with probability (1 − Mi), and otherwise is uniform on (Mi,1]. Translating this
to Wi immediately yields the “PWIT analog” of the Markov process construction
([3], Proposition 3.1).
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1.1. The PWIT as a σ → ∞ limit of Kσ+1 or of Tσ . We mention in passing
that with not much effort, it is possible to prove convergence of invasion percola-
tion on Tσ or on Kσ+1 to invasion percolation on the PWIT, in a stronger sense
than the local weak sense. Let U = (U∗

1 ,U∗
2 , . . . ,U∗

σ ) be the order statistics of σ

independent Uniform[0, σ ] random variables. Then U tends weakly to the vec-
tor of points of a homogeneous rate one Poisson process P on [0,∞). More im-
portantly for our current purpose, the vector (U1, . . . ,U�√σ
) has total variation

distance O(σ−1/2) from the vector of the first �√σ
 points of P . It follows, in a
sense that can easily be made precise, that the first o(

√
σ) steps of invasion perco-

lation on Tσ together have total variation distance o(1) from the same number of
steps of invasion percolation on the PWIT. A similar statement holds for the first
o(

√
σ) steps of invasion percolation on Kσ+1. This in particular yields new proofs

of the explicit error bounds derived in [17] for the behavior of the early stages of
Prim’s algorithm on Kσ+1. The details are straightforward, and we leave them to
the interested reader.

1.2. Outline. In Section 2 we construct the building blocks on which the re-
mainder of the article rests. In particular, we describe a different way to view in-
vasion percolation, in terms of a “note-taking” procedure that accompanies the
invasion percolation procedure, and in the special case of invasion percolation on
trees contains all the information required to reconstruct the original procedure. To
best understand this note-taking procedure we introduce the “box process” (Defi-
nition 6), which gives us a clear picture of the connection mechanism of invasion
percolation. The box process also allows for an understanding of a related “two-
way infinite” invasion percolation process, which can be seen as describing the
behavior of invasion percolation far from the root. Furthermore, with the introduc-
tion of the “box graph” in Section 2.2, the box process itself becomes an interest-
ing object of study, and we derive some of its fundamental properties. Throughout
Section 2, our studies are in the deterministic setting.

In Section 3 we apply our tools to study T0. In particular, we prove the PWIT
analog of the forward maximal representation of T0 in more detail. Section 3 also
contains some results concerning ballot style theorems, queueing processes and
Poisson Galton–Watson duality that are of use in proving Theorems 1–3.

Finally, in Section 4 we prove a number of results concerning the box graph and
the stationary process. In particular, we find that these graphs resemble the Poisson
IIC locally. Using these results, we deduce Theorems 1–3.

2. Redrawing invasion percolation. In this section we describe a different
way to view invasion percolation which is at the heart of most of the results of
this paper. First, imagine keeping notes of the local edge landscape we see as we
perform invasion percolation, as follows. At step i of invasion percolation, we
explore vertex vi and record the weights of all edges leaving vi and heading into
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new territory by putting marks on the vertical half-line {i}× [0,∞) whose heights
are the weights of these edges. (When performing invasion percolation on a rooted
tree T , the edges “heading into new territory” are precisely the edges from vi to
its children in T .) Running the invasion percolation process until it terminates (or
forever) then yields some set P of points in the positive quadrant.

Formally, suppose G = (V ,E) is a weighted graph with all edge weights dis-
tinct, and with distinguished vertex v0. Then the invasion percolation procedure
defines an infinite subtree T of G, with vertex set {v0, v1, . . .}. For each i ≥ 0, let
pi(1),pi(2), . . . , pi(ji) be the weights of the edges from vi to V \ {v0, . . . , vi},
in increasing order of weight. Let P i = P i(G) = {(i,pi(j))}ji

j=1, and let P =
P(G) = ⋃|V |−1

i=0 P i .
In general, it is not possible to reconstruct the steps taken by invasion percola-

tion by considering only the set P . However, this is possible for invasion percola-
tion on trees, and we now explain how. In order to do so, we introduce an inductive
procedure for building a tree, given a set of points P ⊂ R

2 and an interval I ⊂ Z of
consecutive integers. We write nI = inf{n ∈ I} ≥ −∞ and mI = sup{n ∈ I} ≤ ∞.

For notational convenience, given X ⊆ R
2, we write |X|P for |P ∩X|. Also, for

a point p ∈ R
2, we write x(p) for the x-coordinate and y(p) for the y-coordinate.

Let us assume the following:

1. All points of P lie in the upper half-plane. No bounded set contains un-
boundedly many points.

2. For any n ∈ I , there exists k > 0 with n− k > nI −1 for which |[n− k,n)×
[0,∞)|P ≥ k.

3. |P((−∞,∞) × {y})| ≤ 1 for any y ∈ R.

If P satisfies these three conditions, we say it is reasonable (or I -reasonable, if I
is not clear from context). (Here, as well as later, we state deterministic require-
ments for the point set P ; these requirements—and therefore, the results derived
from them—will hold almost surely for all the random point sets we consider. In
particular, the reader will always be safe thinking of P as a Poisson point set of
intensity one in the upper half-plane.) We start from an empty set PnI = ∅, from
which we will build an increasing sequence of subsets of N0. The following pro-
cedure requires nI > −∞.

For each i = nI , nI + 1, . . . ,mI :
1. Let pi+1 = pi+1(P, I) be the point of ([nI , i + 1) × [0,∞)) ∩ (P \ Pi)

minimizing y(pi+1).
2. Let Pi+1 = Pi+1(P, I) = Pi ∪ {pi+1}, and let ei+1 = ei+1(P, I) = (i + 1,

�x(pi+1)
).

We refer to this procedure as point set invasion percolation. Since P is reason-
able, the procedure is well defined. The resulting graph IPC(P, I) has vertex set I
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FIG. 1. Top, an I -reasonable set of points P , with I = {0, . . . ,13}, and the corresponding boxes
(defined in Definition 6). Middle, the tree IPC(P, I). Bottom, the forest BG(P, I), defined at the
start of Section 2.2. All arrows point from child to parent.

and edge set {ei :nI < i < mI + 1}. (We write i < mI + 1 instead of i ≤ mI since
we may have mI = ∞, but i is always finite.) An example is shown in Figure 1.
Note that IPC(P, I) is a tree, which we view as rooted at nI . We often also view
IPC(P, I) as a weighted tree in which edge ei has weight y(pi). In general in this
section we work in the deterministic setting. However, since our eventual aim is
to link this work to invasion percolation on randomly weighted trees we briefly
discuss how this can be done.

IPC of the PWIT. Now suppose that T is an instance of the PWIT, and let T0
be the subtree of T explored by invasion percolation. The following lemma is then
immediate.

LEMMA 4. IPC(P (T ),N) and T0 are identical, and for each i ∈ N, w(ei) =
y(pi).

When performing invasion percolation on T , for all i, P i(T ) is a Poisson point
process of rate 1 on the vertical half-line {i} × [0,∞), and P(T ) is the union of
these point processes.

We remark that since all points in P have integer x-coordinates, the floor in
step 2, above, has no effect. The use of the floor is to ensure that if a point p =
(x, y) ∈ P is replaced by a point p′ = (x′, y), as long as �x
 = �x′
, the resulting
graph IPC(P, I) will be unchanged. As a result we obtain the following corollary.

COROLLARY 5. Let P be a Poisson point process of rate 1 on [0,∞) ×
[0,∞). Then IPC(P,N) and T0 are identically distributed.

PROOF. Associate to each point p = (x(p), y(p)) of P(T ) an independent
uniform Up , and let p′ be the point (x(p)+Up,y(p)). Then P ′ = {p′ :p ∈ P } is a
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Poisson point process of rate 1 on [0,∞)×[0,∞), and IPC(P ′,N) and IPC(P,N)

are identical. The result follows. �

This corollary reduces the study of the distributional properties of T0 to that of
the distributional properties of IPC(P,N), where P is a Poisson point process of
rate 1 on [0,∞) × [0,∞).

We also demonstrate how the two examples of invasion percolation described
in Section 1 can be encoded by suitable point processes.

IPC of an infinite randomly weighted σ -regular tree. Let Tσ be the rooted
regular tree with forward degree σ ≥ 2. We can model invasion percolation on Tσ

as follows: for each n ∈ I = N, choose σ independent, uniformly random points
of [n,n + 1) × [0, σ ) (or of {n} × [0, σ )). Let P be the union of all these points.

The minimum spanning tree of the complete graph. Let Kσ+1 be the complete
graph on σ + 1 vertices. We may approximately model invasion percolation on a
randomly weighted Kσ+1 as follows: for each n ∈ I = {0, . . . , σ }, choose σ − n

independent, uniformly random points from the set [n,n + 1) × [0, σ ). Let P be
the union of all these points.

This representation is not exact due to the cycles in Kn. For example, it is possi-
ble that the second least weight leaving the starting vertex is on the edge between
the second and third vertices visited by Prim’s algorithm. However, the probability
of events of this type is asymptotically negligible for the first o(

√
σ) steps of the

algorithm.
The acyclicity of trees is what allows us to model them by a point process with-

out reference to the order of exploration of vertices. In general—for invasion per-
colation on Z

d , for example—it may still be possible to use some of the following
methodology while jointly constructing the point process P and the exploration
process “as we go.” However, we have not pursued this avenue of study.

For the remainder of the section, we explore what properties we can derive
about the point process invasion percolation procedure with as few restrictions on
the point set P as possible. The next definitions and lemma provide an alterna-
tive geometric characterization of the connection rule used in the above inductive
procedure, one that will be useful throughout the paper.

DEFINITION 6. Given an interval I , with nI > −∞, and an I -reasonable
point set P , for each i ∈ I with i > nI , let

hi(P, I) = inf{h :∃j ∈ I, nI ≤ j < i such that |[j, i) × [0, h]|P ≥ i − j}.
Let �i(P, I) be the minimum integer �i ∈ [nI , i) such that |[�i, i) × [0,

hP,I (i)]|P = i − �I , let Bi(P, I) = [�i, i) × [0, hi] and let ti(P , I) be the unique
point in Bi with y(ti) = hi .
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We often omit reference to the parameters P and I if the context is clear.
We take a moment to observe that these functions are well defined. It follows

from condition 2 that hi is finite, and from condition 1 that it is positive. The
minimality of hi then implies the existence of a point p ∈ P(Bi) such that y(p) =
hi . The fact there is a unique such point follows from condition 3.

LEMMA 7. If nI > −∞ and P is I -reasonable, then for all n ∈ I \ {nI }, we
have tn = pn.

PROOF. It suffices to show (by condition 3) that y(tn) = y(pn). We prove this
by induction on n. Clearly, the assertion holds for n = nI + 1. Assume n > nI + 1
and that ti = pi for all nI + 1 ≤ i < n. First, since |Bn|P = n− �n and

⋃n−1
i=nI +1 pi

contains at most n − �n − 1 points of P ∩ Bn, the set (P \ Pn−1) ∩ Bn contains at
least one point and so y(pn) ≤ y(tn).

To show that y(tn) ≤ y(pn), first note that if x(pn) ≥ n − 1, then |[n − 1, n) ×
[0, y(pn)]|P ≥ 1 and so certainly y(tn) ≤ y(pn). We thus assume that x(pn) <

n − 1 and construct a sequence {ai}ki=0 inductively as follows:

Let i = 0 and let a0 = n − 1.
1. If ai ≤ x(pn), set k = i and stop.
2. Otherwise, let ai+1 = �ai

, then let i = i + 1 and return to 1.

For each 0 ≤ i ≤ k for which ai is defined, if ai > x(pn), then y(pai
) < y(pn) or

else the point pn was a better choice for pai
. By the inductive hypothesis, pai

= tai
.

By construction, |Bai
|P = ai − �ai

= ai − ai+1 for all i < k. Since Bai
∩ Baj

= ∅

for all i �= j , we conclude that
⋃k−1

i=0 Bai
has n−1−ak points of P . Thus, |[ak, n)×

[0, y(pn)]|P ≥ |{pn} ∪ ⋃k−1
i=0 Bai

|P ≥ n − ak . By the choice of hn minimum, it
follows that hn = y(tn) ≤ y(pn) as required. �

The structure of the containment relations among the boxes Bi turns out to be
interesting in its own right, and we explore aspects of it here as well as later in the
paper.

LEMMA 8. If nI > −∞ and P is I -reasonable, then for n ∈ I \ {nI }, either
h�n > hn or �n = nI .

PROOF. Assume �n �= nI , suppose h�n ≤ hn and write m = �n. Then both Bm

and Bn are contained in [�m,n) × [0, hn], so |[�m,n) × [0, hn]|P ≥ n − �m. This
contradicts either the choice of hn or the choice of �n. �

LEMMA 9. If nI > −∞ and P is I -reasonable, then for any i, j ∈ I \ {nI }
with i < j , either Bi ∩ Bj = ∅ or Bi ⊆ Bj .
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PROOF. Suppose that Bi ∩Bj �= φ. In particular this implies �j < i. We prove
that Bi ⊆ Bj by proving that hi < hj and �j ≤ �i .

The minimality of hj implies that |[�j , j) × [0, hj )|P = j − �j − 1 and that
|[i, j)×[0, hj )|P ≤ j − i −1. Thus |[�j , i)×[0, hj )| ≥ i −�j , which immediately
implies that hi < hj .

We now prove �j ≤ �i . Suppose that �i < �j . Then, by reasoning as above,
and using the fact that hj > hi we have that |[�i, �j ) × [0, hj )|P ≥ |[�i, �j ) ×
[0, hi)|P ≥ �j − �i . This implies that |[�i, j) × [0, hj )|P ≥ j − �i , which contra-
dicts the definition of �j . �

LEMMA 10. If nI > −∞ and P is I -reasonable, then for any i, j ∈ I \ {nI }
such that �j < i ≤ j , there is a path in IPC(P, I) between i and �j .

PROOF. Observe that since �j < i, Bi ⊂ Bj by Lemma 9. We apply induction
on i − �j . If i − �j = 1, then we must have �x(pi)
 = �j , so ei = (i, �j ), verifying
the claim.

For larger values of i −�j , first note that since Bi ⊂ Bj , we must have �j ≤ �i ≤
�x(pi)
 < i. If �j = �x(pi)
, then ei is a path from i to �j . Otherwise, �x(pi)
 −
�j < i − �j , so by induction there is a path from �x(pi)
 to �j , which together
with edge ei yields a path from i to �j . �

2.1. Point process invasion percolation in the upper half-plane. For suitable
point sets P , we may hope to define a version of the invasion percolation procedure
in which I = Z (or more generally when nI = −∞). This is indeed possible,
and the resulting infinite graph can be said to capture the behavior of invasion
percolation “very far from the root.” A direct inductive description of the graph
seems difficult, and so we define the object IPC(P,Z) as the limit of IPC(P,Z ∩
[m,∞)) as m → −∞. Later, we shall also see how the alternative characterization
of the connection rule given by Definition 6 and Lemma 7 can be used to define
this extension of the invasion percolation procedure.

As before, we desire as few restrictions on P as possible. In this section, we
suppose we are given a set of points P ⊂ R

2 and an interval I with nI ≥ −∞ and
mI ≤ ∞. We say that P is seemly (or I -seemly, if I is not clear from context) if
P satisfies conditions 1–3 and additionally either (a) nI > −∞, or (b) nI = −∞
and P satisfies conditions 4 and 5, below.

4. For any n ∈ I , there are infinitely many m ∈ I ∩ (−∞, n) such that |[m,n)×
[0,1]|P > n − m.

5. If λ < 1, then for any n ∈ I there are at most finitely many m ∈ I ∩ (−∞, n)

such that |[m,n) × [0, λ]|P ≥ n − m.

The reader can verify that the following two examples almost surely produce
seemly point sets.
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Stationary limit of IPC on Tσ . Let P be defined by choosing σ independent,
uniformly random points in the set [n,n + 1) × [0, σ ) for each n ∈ I = Z.

Stationary limit of the Poisson IPC. Let P be a Poisson point process of inten-
sity 1 in the upper half plane, and let I = Z.

The following lemma essentially states that for I -seemly point sets with nI =
−∞, all edges have weight less than 1.

LEMMA 11. If nI = −∞ and P is I -seemly, then for any n ∈ I there exists
m0 ∈ I such that hn(P, I ∩ [m,∞)) < 1 for all integers m ≤ m0.

PROOF. By condition 4, |[m,n) × [0,1]|P > n − m for infinitely many inte-
gers m < n; therefore, hn(P, I ∩ [m,∞)) < 1 for infinitely many integers m < n.
But hn(P, I ∩ [m,∞)) = y(pn(P, I ∩ [m,∞))), and y(pn(P, I ∩ [m,∞))) is
nonincreasing as m decreases, so by condition 3 y(pn(P, I ∩ [m,∞))) < 1 for
all m small enough. �

We next consider the family of intervals I ∩ [m,∞) for m ∈ Z, and show that
as m → −∞, each vertex only changes its parent a finite number of times. This
allows us to consistently define the limiting object IPC(P, I).

LEMMA 12. If P is I -seemly, then for any n ∈ I , there exists m0 > −∞ such
that pn(P, I ∩ [m,∞)) = pn(P, I ∩ [m0,∞)) for all m ∈ I ∩ (−∞,m0].

PROOF. The lemma is obvious if nI > −∞ so assume nI = −∞. Fix n ∈ I
and suppose the assertion of the lemma fails for this n. Then there exists a strictly
decreasing integer sequence {mi}∞i=0 and a sequence {qi}∞i=0 of distinct points in P

such that pn(P, I ∩ [mi,∞)) = qi for all i ∈ N, whose y-coordinates decrease
strictly as i increases. By Lemma 11, there exists some i0 such that y(qi) < 1 for
all i ≥ i0. But then for all i ≥ i0, Bn(P, I ∩ [mi,∞)) ⊂ [�n(P, I ∩ [mi,∞)), n)×
[0, y(qi)], and so for such i,∣∣[�n

(
P, I ∩ [mi,∞)

)
, n

) × [0, y(qi)]
∣∣
P ≥ ∣∣Bn

(
P, I ∩ [mi,∞)

)∣∣
P

≥ n − �n

(
P,Z ∩ [mi,∞)

)
.

This is a contradiction to condition 5. �

For a seemly point set P , we now define IPC(P, I) to be the graph with vertex
set I and such that for each n ∈ I , en = en(P, I) = limm→−∞ en(P, I ∩ [m,∞)).
This limit is well defined by the preceding lemma. We likewise define pn(P, I),
�n(P, I), hn(P, I) and Bn(P, I). By a limiting argument Lemmas 8, 9 and 10
are also valid with respect to IPC(P, I) when nI = −∞. We therefore obtain the
following theorem.
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THEOREM 13. If P is I -seemly, then IPC(P, I) is a tree.

PROOF. Since it is clearly acyclic, we just need to show that IPC(P, I) is
connected. Suppose i, j ∈ I , i < j . Let �0

j = �j and for t ≥ 1, t ∈ N, let �t
j = �

�t−1
j

.

Then there must exist t ∈ N such that i ∈ B�t
j
. By Lemma 10, there is a path

between j and �t+1
j , and there is a path between i and �t+1

j . As i and j were
arbitrary, this completes the proof. �

An advantage of the current formulation of invasion percolation is that we can
equivalently define the limit process via conditions on the numbers of points in
boxes [m,n) × [0, h]. More precisely, the following lemma is easily verified.

LEMMA 14. Suppose P is I -reasonable. Fix k,n with nI < k < mI + 1 and
0 < n < (k − nI ) + 1, and y > 0. In order that �k = k − n and that h0 = y, it is
necessary and sufficient that the following three conditions hold:

• |[k − n, k) × [0, y]|P = n and |[k − n, k) × [0, y)|P = n − 1 [call this condition
E = E(k − n, k, y,P )].

• For all 0 < m ≤ n, |[k − m,k) × [0, y)|P < m [call this condition F = F(k −
n, k, y,P )].

• For all m ∈ N, |[k − n − m,k − n) × [0, y]|P < m [call this condition G =
G(k − n,y,P )].

In this case, Bk = [k − n, k] × [0, y], pn is the unique point p ∈ P with y(p) = y,
and en = (n, �x(pn)
).

We will sometimes have use for the condition G(k − n,y−), which is the same
as the condition G above but with [0, y] replaced by [0, y). The next lemma pro-
vides a condition under which we can determine the behavior to the right of a given
integer n without further reference to the behavior of P to the left of n. Its proof is
obvious and is omitted.

LEMMA 15. Suppose P is I -reasonable. Fix nI < n < mI + 1 and y > 0,
let Q = {p ∈ P :x(p) ≥ n,y(p) ≤ y} and let J = I ∩ {n, . . . ,∞}. If G(n,y−)

holds and Q is J -reasonable, then for all m with n < m < mI + 1, �m(P, I) =
�m(Q, J ), hm(P, I) = hm(Q, J ) and pn(P, I) = pn(Q, J ).

We will also have use of the following sufficient condition for Q to be reason-
able. (Again, the proof is straightforward and is omitted.)

LEMMA 16. Let I,P , k, n and y be as in Lemma 14, let J = {k − n, . . . , k}
and let Q = P ∩ ([k − n, k] × [0, y]). If E,F and G all hold, then Q = P ∩ Bk

and Q is J -reasonable.
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FIG. 2. The leftmost and middle sets of points have the same BG graphs but different IPC graphs.
The middle and rightmost sets of points have the same IPC graph but different BG graphs.

2.2. Box graphs. As we saw above, the boxes Bn play a useful role in our
study of invasion percolation. The boxes can also be seen to capture information
about the structure of the point process invasion percolation procedure itself. For
example, it is easily checked that if the procedure explores some edge e lying
within a box Bn, then it will explore all other edges lying within Bn before explor-
ing any edges with an endpoint outside of Bn. (Of course, the procedural interpre-
tation does not exist when I = Z, but in this case we can still think of the boxes as
capturing information about the process behavior “far from the root.”)

In this section, we introduce a graph which characterizes the containment rela-
tion among the boxes. Given an I -reasonable point set P , we define BG(P, I) to
be the graph with vertex set I \ {nI ,+∞} and such that, for i < j , i and j are
joined by an edge if and only if Bi(P, I) ⊆ Bj(P, I) and Bi(P, I) �⊆ Bj ′(P, I)

for any i < j ′ < j . Also, for i ∈ I \ {nI ,mI }, we write ai(P, I) for the parent of i

in BG(P, I).
The examples shown in Figure 2 demonstrate that between the graphs IPC(P, I)

and BG(P, I), neither is determined by the other. [Theorem 1(c) is essentially a
consequence of this fact.]

Clearly, BG(P, I) is acyclic for any I . We shall show that BG(P,Z) is a tree
(i.e., connected) under the additional assumption of the “rightward version” of
condition 5.

6. If λ < 1, then for any m ∈ I , there are at most finitely many n ∈ Z ∩ (m,∞)

such that |[m,n) × [0, λ]|P ≥ n − m.

If P satisfies conditions 1–6 with I = Z, we say that P is exemplary. Both
examples of the last subsection are almost surely exemplary point sets.

LEMMA 17. Suppose mI = ∞ and P is an I -reasonable point set that satis-
fies condition 6. Choose any m ∈ I \ {nI ,+∞} for which hm < 1 and for which
there is no m′ ∈ Z ∩ (m,∞) such that Bm ⊆ B ′

m and h′
m ≥ 1. Then there are in-

finitely many n ∈ Z ∩ (m,∞) such that Bm ⊆ Bn.

PROOF. Suppose m is as in the statement of the lemma but that there are only
finitely many n > m such that Bm ⊆ Bn. Then by replacing Bm with the tallest box



INVASION PERCOLATION ON THE PWIT 945

that contains it, we may assume that in fact there is no n > m such that Bm ⊆ Bn.
By condition 6, we may choose n > m for which |[m,n) × [0, hm]|P < n − m.
Thus, there must be i ∈ {m + 1, . . . , n} for which hi > hm, so take i minimum
such that this holds. By Lemma 8, we must then have �i < m, and so by Lemma 9
we must have Bm ⊂ Bi , a contradiction. �

Before showing that BG(P,Z) is a tree, let us first use the lemma to confirm the
basic property of exemplary point sets that every point of P under the line y = 1
lies along the top of some box Bn.

PROPOSITION 18. If P is exemplary, then for all p ∈ P ∩ [nI ,+∞) × [0,1),
we have p = pn for some n ∈ I .

PROOF. Let p ∈ P have y(p) < 1. We first note that if p ∈ Bm for some m,
then p = pn for some �x(p)� ≤ n ≤ m. Also, there must be some integer k ≤ x(p)

for which hk > y(p), or else |[�x(p)� − i, �x(p)�] × [0, y(p)]|P ≥ i for infinitely
many integers i > 0, which contradicts condition 5.

By Lemma 11, hm < 1 for all m ∈ Z, so by Lemma 17, there are infinitely many
m ∈ Z for which Bk ⊆ Bm. One of these boxes contains p, so p = pn for some n,
as claimed. �

THEOREM 19. If P is exemplary, then BG(P,Z) is a tree.

PROOF. It suffices to show that BG(P,Z) is connected. Recall that hn < 1 for
any n ∈ Z, by Lemma 11. Fix i < j , i, j ∈ Z. By Lemma 17 there are infinitely
many m such that Bi ⊂ Bm. Take the least such m for which m ≥ i—then also
Bj ⊆ Bm, and so by Lemma 10 there exist paths from i to m and from j to m. The
theorem follows. �

2.3. Random walks and the forward maximal process. Let P be a point set
satisfying condition 1. Given h > 0 and k ∈ I , we define random walks Sk,h =
Sk,h(P ) and Lk,h = Lk,h(P ) as follows. We set S

k,h
0 = L

k,h
0 = 0 and, for i ≥ 1, set

S
k,h
i = |[k, k + i] × [0, h]|P − i, and set L

k,h
i = |[k, k − i] × [0, h]|P − i. We also

define random walks Sk,h−
and Lk,h−

, by replacing [0, h] by [0, h) in the above
definitions. In other words, the random walks Sk,h−

and Lk,h−
ignore points on the

line y = h. (For fixed h, for any of the random point sets P we will consider, it

will be the case that with probability 1, S
k,h
i = S

k,h−
i for all i, but we will at times

work in conditional settings in which these two random walks are not identical.)
We say that Sk,h survives if for all i ≥ 0, S

k,h
i ≥ 0, and otherwise say that Sk,h

dies. Also, we say that Sk,h has a chance if S
k,h
i ≥ 0 for some i > 0, and otherwise

that Sk,h has no chance. We extend these definitions to Lk,h by symmetry.
We now establish two more basic properties of IPC(P, I), under the following

additional assumptions.
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7. If λ > 1, then for any m ∈ Z, Sm,λ
n ≤ n for at most finitely many n ∈ N.

8. Sk,1 dies for all k ∈ I .

Roughly speaking, condition 7 is a “rightward version” of condition 4. If P is
an I -reasonable point set that satisfies conditions 6, 7 and 8, we say that P is
distinguished (or I -distinguished, if I is not clear from context). The first two
examples given in the introduction to this section are almost surely distinguished
point sets.

We will see that for distinguished point sets P , when nI > −∞ and mI = ∞,
BG(P, I) is not connected—in this case we call the connected components the
ponds of BG(P, I). We will see later that this agrees with the normal use of this
term in the invasion percolation literature.

LEMMA 20. If nI > −∞, mI = ∞ and P is I -distinguished, then for any
m ∈ I \ {nI ,+∞}, if hm ≥ 1, then there are at most finitely many n ∈ Z, n > m,
such that Bm ⊆ Bn.

PROOF. Suppose otherwise. Without loss of generality, we may assume that
hm > 1. Consider the integer sequence {ni}∞i=0, which is defined as follows. Let
n0 = m. For i ∈ N, let ni+1 be the smallest integer greater than ni such that Bni

⊆
Bni+1 . Then for any i ∈ N and all ni < n < ni+1, we have Bn ⊆ [ni, ni+1)×[0, hni

]
for all ni < n < ni+1 by Lemmas 8 and 9. Furthermore, it follows from the defini-
tion of Bn and Lemma 9 that |([ni, ni+1) × [0, hni+1)) \ (

⋃
ni<n<ni+1

Bn)|P = 0
(or otherwise there would be a smaller choice for hni+1 ). Thus, |[ni, ni+1) ×
[0, hni

]|P = |⋃ni<n<ni+1
Bn|P = ni+1 − ni − 1. Since hn0 < hni

for all i > 0,
it follows that |[n0, ni+1) × [0, hn0]|P < ni+1 − n0 for all i > 0. Since hn0 > 1,
this is a contradiction to condition 7. �

THEOREM 21. If nI > −∞, mI = ∞ and P is I -distinguished, then
BG(P, I) contains infinitely many components, all of which are finite. Further-
more, for any given component, if n is the rightmost integer belonging to the com-
ponent, then hn > 1 and the set of vertices of the component is {�n + 1, . . . , n}.

PROOF. Let P satisfy the hypothesis of the theorem. We construct a sequence
of integers {ni}∞i=0 as follows. Let n0 = nI . For i ∈ N, let ni+1 be the largest
integer greater than ni such that Bni+1 contains the point (ni,0). We must now
show this sequence is well defined. Suppose not, and let i be minimum such that
there is no valid choice for ni+1. Then there are infinitely many integers n > ni

such that Bni
⊆ Bn. Since i was chosen minimum, for each such n we have �n =

ni . By Lemma 20, it must be that for each such n, hn < 1. But this implies that
|[ni, n) × [0,1]|P ≥ n − ni for all n ∈ Z ∩ [ni,∞), a contradiction to condition 8.
Thus the sequence {ni}∞i=0 is well defined.
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For all i ∈ N, it follows from the definition of ni+1 that �ni+1 = ni , and there
is no integer n > ni+1 for which Bni+1 ⊆ Bn; thus Bni+1 and Bni+2 are in sepa-
rate components of BG(P, I). By Lemma 9, all Bn such that ni < n ≤ ni+1 are
contained in Bni+1 and hence in the same component of BG(P, I).

If hni+1 < 1 for some i ∈ N, then by Lemma 17, there are infinitely many n ∈
Z ∩ (ni+1,∞) such that Bni+1 ⊆ Bn, but this is a contradiction to the choice of
ni+1. By Lemma 8, we have for all i ∈ N that hni+1 > hni+2 . We conclude that
hni+1 > 1 for all i ∈ N. �

Given an interval I , with nI > −∞ and mI = ∞, and an I -distinguished point
set P , define {ni}∞i=0 = {ni(P, I)}∞i=0 as in the proof of Theorem 21.

COROLLARY 22. If nI > −∞, mI = ∞ and P is I -distinguished, then
IPC(P, I) is a tree that consists of a unique infinite backbone (i.e., a unique,
infinite, self-avoiding path originating from the root) from which emerge finite
branches. Furthermore, the backbone contains the points {ni}∞i=0.

PROOF. Clearly, IPC(P, I) is acyclic, and is connected by Lemma 10, so is
a tree. For each integer i ≥ 1, let �i be the unique path from ni to n0 = nI in
IPC(P, I). By Lemma 10, it follows that for all i ≥ 1, �i is a sub-path of �i+1,
and so the limit � = limi→∞ �i is a well-defined infinite path starting from nI .
Furthermore, for any integer k, any path �′ starting from vk , that is, edge-disjoint
from � must have all its elements among ni, . . . , ni+1 − 1, where ni ≤ vk < ni+1.
Thus, all branches leaving � are finite. �

REMARK. In general, relaxing any of the conditions in the definition of dis-
tinguished point sets may cause the conclusions of Corollary 22 to fail. To provide
just one example, the following point set satisfies conditions 1–7, but not the con-
clusion of Corollary 22. The point set P contains no points except the following.
Place k points inside [0,1)×[0,1/3). Place each of the points (i+1,1−1/(i+2))

for i ∈ N. Then IPC(P,N) has k infinite backbones.

This completes our study of deterministic properties of the invasion percola-
tion procedure. In the next section we begin our study of what happens when the
underlying point set is random.

3. Invasion percolation on the PWIT. Throughout Section 3, P denotes a
Poisson process of constant intensity 1 in [0,∞) × [0,∞), so P is almost surely
N-distinguished. By Corollary 5, IPC(P,N) is distributed as the invasion percola-
tion cluster T0 of the PWIT, so results for IPC(P,N) apply to T0 mutatis mutandis.
Below, we will derive more precise statements about the structure of IPC(P,N)

than can be made under the assumptions of Section 2. First, however, we state two
“ballot-style” theorems for stochastic processes that we will use repeatedly.



948 L. ADDARIO-BERRY, S. GRIFFITHS AND R. J. KANG

3.1. Two ballot-style theorems. The following result was proved indepen-
dently by Tanner [22] and Dwass [8].

LEMMA 23 (Cycle lemma). Suppose that X1, . . . ,Xn are integer-valued,
cyclically interchangeable random variables with maximum value 1. Then for any
integer 0 ≤ k ≤ n,

P{Si > 0 ∀1 ≤ i ≤ n | Sn = k} = k

n
.

The next result was proved by Tákacs [21], page 12.

LEMMA 24 (Stationary ballot theorem). Let X1,X2, . . . be an infinite se-
quence of i.i.d. integer random variables with mean μ and maximum value 1, and
for any i ≥ 1, let Si = X1 + · · · + Xi . Then

P
{
Sn > 0 ∀n ∈ {1,2, . . .}} =

{
μ, if μ > 0,

0, if μ ≤ 0.

Now let P be a random point set in, say, [m,n] × [0,∞). We recall the def-
inition of the condition F(m,n, y) from Lemma 14, and will abuse notation by
also writing F(m,n, y,P ) for the event that the condition F(m,n, y,P ) holds.
[At times we write F(m,n, y) in place of F(m,n, y,P ), when P is clear from
context.] Notice that if P is a uniform set of n − 1 points in [0, n] × [0, λ), for
some λ > 0, then applying the cycle lemma with Xi = 1 − |[i − 1, i) × [0, λ)|P
(and so Si = i − |[0, i) × [0, λ)|P ) for i = 1, . . . , n, it follows that the probabil-
ity that F(0, n, λ,P ) occurs is precisely 1/n. By an argument of a similar nature,
we can straightforwardly derive the following lemma (which can also be deduced
from an existing result ([17], Theorem 4) for invasion percolation on Kn and a
limiting argument).

LEMMA 25. Fix an integer n ≥ 1, and list the n elements of P ∩ ([0, n] ×
[0,∞)) of lowest height as q1, . . . , qn, in increasing order of height. Then for each
i = 1, . . . , n, P{pn = qi} = 1/n.

We emphasize that the n elements of P ∩ ([0, n]×[0,∞)) of lowest height may
not all be elements of the set {p1, . . . , pn}, or indeed of the set {pi}∞i=1.

PROOF OF LEMMA 25. Fix n, and let λ = y(qn). Clearly, pn will be
among q1, . . . , qn. Also, let I = {0, . . . , n}, let P = {q1, . . . , qn} and for each
i ∈ {0, . . . , n − 1}, let P i = {qi

1, . . . , q
i
n} be the cyclic shift of P to the right

by distance i. Then for all i ∈ {1, . . . , n − 1}, P i is distributed as n − 1 uni-
form points in [0, n] × [0, λ), together with a single uniform point of height λ.
We claim that with probability 1, for each j = 1, . . . , n, there is exactly one
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FIG. 3. The region on the left maps onto the region on the right when P is sent to P i .

i = i(j,P ) ∈ {0, . . . , n − 1} for which pn(P
i, I) = qi

j . Since the P i are identi-
cally distributed it follows from this claim that

P{pn(P, I) = qj } = 1

n

n−1∑
i=0

P{pn(P
i, I) = qi

j } = 1

n
P

{
n−1⋃
i=0

{pn(P
i, I) = qi

j }
}

= 1

n
,

which proves the theorem. It thus remains to prove the above claim, which we
do by contradiction. Thus, suppose that for some j ∈ {1, . . . , n}, there are distinct
i, i ′ ∈ {0, . . . , n − 1} for which pn(P

i, I) = qi
j and pn(P

i′, I) = qi′
j . By replacing

P by either P n−i or P n−i′ if necessary, we may assume that i ′ = 0. Let qj = q0
j =

(xj , yj ). We must have |[n − i, n] × [0, yj )|P < i [or else pn(P, I) �= qj ]; on the
other hand, |[�n(P, I), n] × [0, yj ]|P = n − �n(P, I).

Let k = n − �n(P, I), the length of Bn(P, I). If k ≥ i, then we also have
|[�n, n− i]×[0, yj ]|P ≥ n−�n − i +1, so |[�n + i, n]×[0, yj ]|P i ≥ n−�n − i +1
and hn(P

i, I) < yj , contradicting the fact that pn(P
i, I) = qi

j . It follows that
k < i, that is, that i − (n − �n) ≥ 1. In this case, we have that for each m ∈
{1, . . . , i − (n − �n)}, [�n − m,�n] × [0, yj ] < m (or else we would have ei-
ther chosen hn lower or �n smaller). Translating the above information to P i ,
we see that |[i − k, i] × [0, yj ]|P i = k, that |[i − k, i] × [0, yj )|P i < k, and that
|[i − k′, i] × [0, yj ]|P i < k′ for each k′ ∈ {k + 1, . . . , i} (see Figure 3). Thus,
by Definition 6 and Lemma 7, pi(P

i, I) = qi
j , contradicting the assumption that

pn(P
i, I) = qi

j . �

We next elaborate on a connection between Poisson Galton–Watson trees and
queueing theory that will be useful for many subsequent calculations.

3.2. A fact from queuing theory and an aside on Poisson Galton–Watson du-
ality. The following basic result was first noted by Borel [4]. Consider a queue
with Poisson rate λ arrivals and constant, unit service time, started at time zero
with a single customer in the queue, and with any arbitrary servicing rule (i.e.,
not necessarily first-in first-out). We may form a rooted tree associated with the
queueing process run until the first time τ that there are no customers in the queue
(or forever, if the queue is never empty), in the following manner. If a new cus-
tomer joins the queue at time t , he is joined to the customer being served at time t .
We denote the resulting rooted tree by T . Then T is distributed as a Poisson(λ)
Galton–Watson tree [we write PGW(λ), for short] [4].
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If the arrival times are given by the x-coordinates of the points of Poisson pro-
cess Q = P ∩ ([0,∞) × [0, λ)), we may also associate an interpolated random
walk to the process, by setting St = |[0, t) × [0, λ)|Q − t for t ∈ R

+. Then |T |
is simply the first time t that St = −1, that is, that |[0, t) × [0, λ)|Q = t − 1.
Note that given that |T | = m < ∞, Q is distributed as m − 1 independent uni-
form points in [0, t) × [0, λ], conditioned on F(0, n, λ, Q) occurring. We also

observe that for all i ≤ |T |, Si = S
0,λ−
i , where S0,λ−

is the random walk de-
fined in Section 2.3. This has immediate implications for the events defined in
Section 2.3. In particular, the tree T is infinite if and only if S0,λ−

survives.
It follows that for all 0 ≤ h ≤ 1 we have P{Sk,λ−

survives} = 0, and for all
λ > 1 we have P{Sk,λ−

survives} = θ(λ), the probability of survival of a PGW(λ)

branching process. Similarly, by Lemma 24, we have that the probability that
there is ever a time t at which the total number of arrivals is at least t , is
min(λ,1). Thus, if 0 < λ ≤ 1, then P{Sk,λ−

has a chance} = λ, and if λ > 1 then
P{Sk,λ−

has a chance} = 1. Of course, the exact same identities hold with Sk,λ−

replaced by Sk,λ, Lk,λ−
or Lk,λ.

We continue to think of arrival times as given by points of Q. It will be useful
for us to view the above queuing procedure as creating a tree whose nodes are
labeled by integers rather than by elements of the queue. We do so by re-labeling
each node of T (i.e., each customer c) with the (integer) time at which c begins
being served. Furthermore, suppose that we take as our servicing rule the invasion
percolation rule—that is, the rule that prioritizes customers (points of Q) with
lower y-coordinate over those with higher y-coordinate—and call the resulting
tree Tλ. Then Tλ is precisely the subtree of IPC(P,N) containing the root and
all nodes joined to the root by paths all of whose edges have weight less than λ.
Of course, everything still holds if we take Q = P ∩ ([0,∞) × [0, λ])—that is, if
we include points at height precisely λ—as long as we replace S0,λ− by S0,λ and
replace the phrase “less than λ” by “at most λ.”

As a consequence of the above discussion we have the following important fact.

LEMMA 26. Fix any integer n ≥ 1, any λ > 0, and let P be a set of n − 1
independent uniform points in [0, n] × [0, λ). Given that F(0, n, λ,P ) occurs,
the tree IPC(P, {0, . . . , n − 1}) is distributed as PGW(λ) conditioned to have n

nodes. Furthermore, suppose that p is a uniformly random point on the line seg-
ment [0, n] × {λ}. Then under the same conditioning, IPC(P ∪ {p}, {0, . . . , n}) is
distributed as PGW(λ) conditioned to have n nodes, together with an additional
vertex (vertex n), joined to a uniformly random element of 0, . . . , n − 1.

We remark that for any fixed n, the distribution of PGW(λ) conditioned to
have n nodes does not depend on λ and is precisely that of a uniformly random
labelled rooted tree (or Cayley tree) on n nodes, after the labels but not the orders
of children have been discarded. It turns out that a version of Lemma 26 also holds
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for the box tree; see Lemma 37, below. As noted just after Lemma 24, the probabil-
ity that F(0, n, λ,P ) occurs is precisely 1/n. Thus, the distribution of |PGW(λ)|
is given by

P{|PGW(λ)| = n} = 1

n
P{Poisson(λn) = n − 1} = e−λn(λn)n−1

n! ,

for all positive integers n (a well-known fact which we record for later reference).
When λ = 1 this is called the Borel distribution.

We briefly explain a further basic fact about the function θ(λ) = P{|PGW(λ)| =
∞} and about Poisson Galton–Watson duality. By considering the number of chil-
dren in the first generation of PGW(λ), we see that 1 − θ(λ) = e−λθ(λ), and by
differentiating this identity, we see that

θ ′(λ)
(
1 − λ

(
1 − θ(λ)

)) = θ(λ)
(
1 − θ(λ)

)
,(1)

an equation we will have use of later. Next, given λ > 1, let m = m(λ) < 1 be such
that λe−λ = me−m (we call m the dual parameter for λ). Then m = λ(1 − θ(λ)),
from which it is easily seen that conditional on being finite, PGW(λ) is distributed
precisely as PGW(m).

3.3. IPC(P,N) and the forward maximal process. By Corollary 22, IPC(P,

N) consists of a unique infinite backbone which in particular passes through the
nodes {ni}∞i=0, and from all nodes of which emerge finite branches. Let the edges
of the backbone be e1, e2, . . . , and for each integer i ≥ 1 let Wi = supj≥i Wej

,
so {Wi}∞i=1 is the PWIT forward maximal process. From the perspective of the
PWIT, the nodes ni are the nodes at which the forward maximal weight along the
backbone decreases.

Lemma 26 allows us to provide another picture of the structure of IPC(P,N).
First, for each integer i ≥ 0, let Ti = Ti(P,N) be the subtree of IPC(P,N)

on nodes ni, . . . , ni+1 − 1 (these nodes induce a tree by Lemma 10). The set
P = P ∩ ([ni, ni+1) × [0, hni+1)) is distributed as (ni+1 − ni − 1) indepen-
dent uniform points, conditional on F(ni, ni+1, hni+1,P ) occurring. Furthermore,
P ∩ ([ni, ni+1)×{hni+1}) contains a single uniform point. Thus, by Lemma 26, we
obtain that Ti is distributed as PGW(hni+1) conditioned to have ni+1 − ni nodes,
and that ni+1 is joined to a uniformly random element of Ti . Applying this for
all i, we obtain the following theorem.

THEOREM 27. Given {ni}∞i=0, IPC(P,N), viewed as an unlabeled tree, can
be built as follows. For each integer i ≥ 0 let Ti be a uniformly random labeled
tree on ni −ni−1 vertices. For each integer i ≥ 1, join the root of Ti to a uniformly
random vertex of Ti−1. Finally, discard all labels.

REMARK. It also follows straightforwardly from Lemma 26 that given {ni}∞i=0
and {hni+1}∞i=0, IPC(P,N) viewed as a weighted unlabeled tree can be built from
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the tree described in Theorem 27 as follows. Independently for each integer i ≥ 0
and each edge e of Ti , assign e a random weight with Uniform[0, hni+1] distribu-
tion. Also, for each integer i ≥ 0, give the unique edge from Ti+1 to Ti the weight
hni+1 . We omit the details.

We next show that {(|Ti−1|, hni
)}∞i=1 = {(ni − ni−1, hni

)}∞i=1 is a Markov pro-
cess and specify the transition probabilities. First, for any i ≥ 1, given hni

, the
set Q = P ∩ ([ni,∞) × [0, hni

)) is precisely a Poisson point process of inten-

sity 1 conditioned on the event that S
ni,hn

−
i (Q) survives (which is precisely the

event that Q is {ni, ni+1, . . . , }-reasonable). Furthermore, given hni
, the condition

G(ni, h
−
ni

) holds for P . Thus, by Lemma 15, we can determine the structure of
IPC(P,N) restricted to {ni, . . . ,∞} by considering only the points in Q. It follows
that {(ni − ni−1, hni

)}∞i=1 is a Markov process, as claimed (and also that {hni
}∞i=1

is a Markov process). Next, for 1 < y < h, let

fh(y) = lim
dy→0

P{hni+1 ∈ dy | hni
= h}

dy
,

and for n > 0 let

fh(n, y) = lim
dy→0

P{hni+1 ∈ dy, (ni+1 − ni) = n | hni
= h}

dy
,

so fh(y) = ∑
n fh(n, y). By the above comments, fh(y) and fh(n, y) do not de-

pend on i.

LEMMA 28. For all i ≥ 1 and 1 < y < h,

fh(y) = θ ′(y)

θ(h)
and fh(n, y) = θ(y)

θ(h)

e−yn(yn)n−1

(n − 1)! .

Combining the two results in Lemma 28, the following corollary is immediate.

COROLLARY 29. For all integers n, i ≥ 1 and y > 1,

P{ni+1 − ni = n | hni+1 = y} = θ(y)

θ ′(y)

e−ny(ny)n−1

(n − 1)! .(2)

PROOF OF LEMMA 28. We have

P{hni+1 ≤ y | hni
= h} = P{Sni,y(P) survives | Sni,h

−
(P) survives}

= P{Sni,y(P) survives}
P{Sni,h

−
(P) survives}

= θ(y)

θ(h)
,
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and the first claim of the lemma follows by differentiation.
As mentioned, fh(y) and fh(n, y) do not depend on i, so we take i = 0 (and

thus ni = 0). In order to have n1 − n0 = n and hn1 ∈ dy, we need that |[0, n] ×
[0, y)|P = n−1, that |[0, n]×[y, y +dy)|P = 1, that F(0, n, y, P) occurs and that
Sn,y−

(P) survives. The probabilities of the first two events are easily bounded. The
probability of F(0, n, y, P) given that |[0, n]×[0, y)|P = n−1 is 1/n by the cycle
lemma. Finally, the event that Sn,y−

(P) survives is independent of the first three
events, and has probability θ(y). Thus,

P{hni+1 ∈ dy, (ni+1 − ni) = n | hni
= h}

= e−yn(yn)n−1

(n − 1)! · (
1 + o(dy)

)
ndy · 1

n
· θ(y) · 1

θ(h)
,

from which the second claim of the lemma follows. �

We next derive the distribution of the distance along the backbone between ni−1
and ni . For i ≥ 0 let di = di(P, I) = dIPC(ni, ni+1). As with the quantities studies
above, we have that given hni+1 , di is independent of the past. For 0 < x < 1 we

say X
d= Geometric(x) if P{X = k} = xk(1 − x).

THEOREM 30. For all i ≥ 0 and all y > 1, given that hni+1 = y, di
d= 1 +

Geometric(m(y)).

The following theorem derives the distributions of the trees hanging off the
backbone and within a given pond.

THEOREM 31. Fix i ≥ 0 and y > 1. Given that hni+1 = y, for all k with ni ≤
k < ni+1 and for which k is on the backbone, the subtree of IPC(P,N) containing
k and containing no other vertices of the backbone, is distributed as PGW(m(y)).

Together, Theorems 30 and 31 provide another Markovian characterization of
IPC(P,N): we may construct a tree with the distribution of IPC(P,N) by growing
the trees hanging off the backbone one-by-one, where the branching distribution of
the trees depends on the current forward maximal weight. (This characterization is
exactly that which is claimed in Theorem 3, which is proved below.) The forward
maximal weight process evolves according to the dynamics implied by Lemma 28
and Theorem 30: first stay constant for a geometric amount of time depending on
the current forward maximal weight, then decrease the maximal weight according
to Lemma 28. This characterization is essentially the σ → ∞ limit of results of
Angel et al. [3] described in the Introduction, for invasion percolation on the regu-
lar σ -ary tree. However, it does not seem trivial to derive these results from theirs
by a limiting argument and local weak convergence, since they depend not only on
the graph structure of the tree but also on the weights.
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If one wishes, at this point one can apply all the methodology of [3] to see that
corresponding results hold for invasion percolation on the PWIT: notably, conver-
gence to the Poisson lower envelope, mutual singularity of IPC and IIC measures
and spectral asymptotics all hold for invasion percolation on the PWIT. We have
not included the details as the development is essentially technical, requiring no
significant ideas not already found in [3].

Since m(λ) = λ(1 − θ(λ)), we also obtain the following corollary of Theo-
rems 27, 30 and 31 and Corollary 29, which is new as far as we know. For any
0 < p < 1, let D = Geometric(p), and let r = v0, v1, . . . , vD = v be a path of
length D. For each k ∈ {0, . . . ,D}e, starting from vk grow a PGW(p) tree with
root vk . This yields a triple (T , r, v)p .

COROLLARY 32. Fix any 0 < p < 1 and let (T , r, v)p have the distribution
described above. Then conditional on |T |, T is distributed as PGW(p) conditioned
to have size |T |, and v is distributed as a uniformly random node of T . Further-
more, let y = m−1(p). Then for all n ≥ 1, P{|T | = n} is given by the right-hand
side of (2).

We now turn to the proof of Theorem 30. Recall that for y > 1, m(y) is the dual
parameter for y. We will make use of the following easy (and known) lemma.

LEMMA 33. Let T be a Cayley tree of order n with root r , and let v be a
uniformly random node in T . Then

P{dT (r, v) = k − 1} = k(n)k

nk+1

where (n)k = n(n − 1) · · · (n − k + 1).

PROOF. We view T as a doubly-rooted tree with roots r and v. By removing
the edges on the path from r to v, we obtain a forest of dT (r, v) rooted trees,
whose roots are ordered (as r = v1, . . . , vk = v, say). The number of such forests
is (

n
k
)k! · (knn−k−1); see, for example, [18], Theorem 3.2. The result follows by

dividing by the total number of doubly-rooted trees on n labeled vertices, which
is nn by Cayley’s formula. �

PROOF OF THEOREM 30. As mentioned at the start of Section 3.3, for all i,
ni+1 is joined to a uniformly random element of Ti—say vi—and dIPC(ni, ni+1) =
1 + dTi

(ni, vi). By Corollary 29 and Lemma 33, it follows that

P{dIPC(ni, ni+1) = k | hni+1 = y}

=
∞∑

n=k

P{dTi
(ni, vi) = k − 1 | |Ti | = n}P{|Ti | = n | hni+1 = y}
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=
∞∑

n=k

k(n)k

nk+1 · θ(y)

θ ′(y)

e−ny(ny)n−1

(n − 1)!

= yk−1 θ(y)

θ ′(y)

∞∑
n=k

k

n
· e−ny(ny)n−k

(n − k)!

= yk−1 θ(y)

θ ′(y)

∞∑
n=k

k

n
P{Poisson(ny) = n − k}.

By the cycle lemma,

k

n
P{Poisson(ny) = n − k} = P{S0,y

n = −k, S
0,y
i > −k ∀0 ≤ i < n},

so

P{dIPC(ni, ni+1) = k | hni+1 = y} = yk−1 θ(y)

θ ′(y)
P{S0,y

n = −k for some n}.

But by the connection with queueing theory explained above, P{S0,y
n = −k for

some n} is precisely the probability that k independent PGW(y) all fail to survive,
which is (1 − θ(y))k . We complete the proof by applying the identity (1) from
page 951. �

PROOF OF THEOREM 31. For this theorem we revert to viewing IPC(P,N) as
a subtree of the PWIT T ; our proof is based on the proof of Proposition 2.3 of [3].
Given a node v ∈ T , write Tv [resp. Tv(λ)] for the subtree of T rooted at v (resp.
rooted at v and containing all edges of weight at most λ to descendants of v)—so

Tv(λ)
d= PGW(λ)—and write λ∗(v) = inf{λ : Tv(λ) is infinite}.

Let r be the root of T , and fix any node v ∈ T . Fix y > 1 and integers 1 ≤ j ≤ k.
Let Ev,j,k,dy be the event that v is on the backbone, has k children of whom the
backbone passes through the j th (in the left-to-right ordering of the PWIT) and
λ∗(v) ∈ dy. We split Ev,j,k,dy into four events depending on distinct edge sets of
the PWIT:

F1 Tr (y) − Tv(y) is finite. (This event depends only on edges of T − Tv .)
F2 v has precisely k children of weight at most y + dy—say v1, . . . , vk . (This

depends only on the weights of edges from v to its children.)
F3 For i ∈ {1, . . . , k}\{j}, Tvi

(y +dy) is finite. (This depends only on the weights
edges in the subtrees Tvi

for i �= j .)
F4 Tvj

(y) is finite, but Tvj
(y + dy) is infinite. (This depends only on the weights

of edges in Tvj
.)

Since the edge sets determining the events F1, . . . ,F4 are disjoint, if E occurs,
then the conditioning on subtrees Tvi

(y) for i ∈ {1, . . . , k} \ {j} is precisely that
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they are finite. Thus, given that E occurs, for each i ∈ {1, . . . , k} \ {j}, Tvi
(y) is

distributed as PGW(m(y)).
Now let Ev,dy = ⋃

i,j Ev,i,j,dy—so Ev,dy is the event that v is on the backbone
and that λ∗(v) ∈ dy. Given the observation at the end of the previous paragraph,
to prove the theorem it suffices to show that as dy → 0, given Ev,dy , the number
Nv(y +dy) of children of v in Tv(y +dy) approaches Poisson(m(y))+1 in distri-
bution [so that the number of children off the backbone approaches Poisson(m)].
To see this is an easy calculation. First,

P{Ev,dy} = P{F1} · P{Tv(y) is finite but Tv(y + dy) is infinite}
= P{F1} · (

1 + o(dy)
)
θ ′(y) dy.

Next, fixing k ≥ 1, by symmetry,

P{Nv(y + dy) = k,Ev,dy}
= (

1 + o(dy)
)
P{F1} · P{Poisson(y) = k} · k · (

1 − θ(y)
)k−1 · θ ′(y) dy.

The factor k above selects which of the k children of v is on the backbone. Since
m = y(1 − θ(y)), it follows that

lim
dy→0

P{Nv(y + dy) = k | Ev,dy} = P{Poisson(y) = k} · k · (
1 − θ(y)

)k−1

= P{Poisson(m) = k − 1},
which completes the proof. �

4. The stationary graph and box processes. Throughout this section, P de-
notes a Poisson point process of intensity 1 in the upper half-plane, so P is almost
surely exemplary and Z-distinguished.

4.1. Rooted subtrees in the box tree. Recall that BG = BG(P,Z) is the tree
with vertex set Z defined in Section 2. For n ∈ Z, we let BGn denote the subtree of
BG rooted at n, and write |BGn| for its size (number of vertices). By the definition
of BG, it is immediate that |BGn| = n−�n. Our main aim in this section is to prove
the following theorem.

THEOREM 34. BG(P,Z) is distributed as the Poisson IIC, in the local weak
sense.

A key step in proving Theorem 34, one that additionally introduces several of
the main ideas, is the following theorem.

THEOREM 35. For all n ∈ Z, conditional on �n(P,Z) and hn(P,Z), BGn(P,

Z) is distributed as PGW(hn) conditioned to have n − �n nodes. Furthermore,
unconditionally BGn is distributed as PGW(1).
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FIG. 4. The boxes for a random set of 256 points. The points themselves are omitted. The code for
generating this image was written by Omer Angel.

COROLLARY 36 ([17], Theorem 1). We have �x(p0)
 d= −�AV 
, where A is
Borel distributed, and V is Uniform[0,1] and independent of A.

PROOF. Given �0 and h0, the line segment [�0,0] × {h0} contains a single
uniformly random point, and this point is p0. The second assertion of the theorem
implies that �0 is Borel distributed, and the corollary follows. �

For the next several pages, we focus on developing the tools needed for the
proof of Theorem 35. By translation invariance, it suffices to prove Theorem 35
with n = 0. We prove the theorem by way of the following analog of Lemma 26
that holds for the box tree.

LEMMA 37. Let n, λ, P and p be as in Lemma 26. Given that F(0, n, λ,P )

occurs, BG(P ∪ {p}, {0, . . . , n}) is distributed as PGW(λ) conditioned to have n

nodes.

We remark that for any λ > 0, PGW(λ) conditioned to have k nodes and
PGW(1) conditioned to have k nodes are identically distributed. Thus, in prov-
ing Theorem 35 and Lemma 37 we may and shall at times assume without loss
of generality that λ = 1. Figure 4 contains an example of BG(P ∪ {p}, {0, . . . , n})
for P , p as in Lemma 37, with n = 256. (By the preceding comment, the value
of λ is not important.) In proving the lemma, it will be important to view PGW(1)

both as an ordered (plane) tree and as an unordered tree. The ordered perspective is
natural for PGW(1) when viewed as a subtree of the PWIT. Next, fix an unordered,
rooted tree U . We will abuse notation by writing PGW(1) = U if PGW(1) = T for
some ordered tree T with underlying unordered tree U . Fix one such tree T , and let
aut(U) be the number of rooted automorphisms of T . [Note: by this we mean the
number of distinct plane trees with underlying unrooted tree U ; e.g., for the tree U

in Figure 5, interchanging the pair of leaves x and y does not affect the plane tree,
and aut(U) = 12.] We then have P{PGW(1) = U} = aut(T ) · P{PGW(1) = T }.

We next turn our attention to BG0. There is again a natural ordering of children
in BG0—vertices are integers, and when we refer to a box tree as an ordered tree,
we are referring to the ordering inherited from the integers. However, unlike in
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FIG. 5. Viewed as an unordered tree, the above tree has aut(U) = 12.

PGW(1), we cannot expect the distributions of distinct subtrees to be identical
under this ordering. Given an unordered tree U , we will also abuse notation by
writing P{BG0 = U} if BG0 is unlabeled, rooted isomorphic to U .

Our proof of Lemma 37 makes use of the following easy fact.

LEMMA 38. Let r ≥ 2 and let s1, . . . , sr be natural numbers. Then

∑
π

r∏
j=2

sπ(j)∑j
i=1 sπ(i)

= 1,

where the summation is over all permutations π of {1, . . . , r}.

PROOF. We proceed by induction on r . For r = 2, the sum is over just two
permutations, and the result is

s1

s2 + s1
+ s2

s1 + s2
= 1,

as required. For general r , we partition the set of permutations π of {1, . . . , r}
depending on the value of π(r)—for each k = 1, . . . , r , let 
k be the set of per-
mutations π of {1, . . . , r} with π(r) = k. Since our aim is to prove that the sum

∑
π

r∏
j=2

sπ(j)∑j
i=1 sπ(i)

=
r∑

k=1

∑
π∈
k

r∏
j=2

sπ(j)∑j
i=1 sπ(i)

has the value one, it suffices to prove that for each k we have

∑
π∈
k

r∏
j=2

sπ(j)∑j
i=1 sπ(i)

= sk∑r
i=1 si

.

Since the expression on the right-hand side here is the j = r term of the product
for all π ∈ 
k , it suffices to show that

∑
π∈
k

r−1∏
j=2

sπ(j)∑j
i=1 sπ(i)

= 1.

By re-labeling if necessary, this may be deduced from the induction hypothesis.
�
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PROOF OF LEMMA 37. Fix an unordered tree U with n vertices and root r .
We will show that

n · P{BG(P, [n]) = U} = P{PGW(1) = U | |PGW(1)| = n}.(3)

Proving this equality will prove the lemma, since F(0, n, λ,P ) must occur in
order to have BG(P, [n]) = U , and P{F(0, n, λ,P )} = 1/n as noted just after
Lemma 24. The case n = 1 of (3) is trivial, so suppose that n > 1 and that the
proposition holds for all n′ with 1 ≤ n′ < n.

Order the children of the root r of U arbitrarily, and suppose that the subtrees
U1, . . . ,Uk of U rooted at the children of the root have sizes n1, . . . , nk with
respect to this order. Let aut(r) be the number of permutations of the children
of r which induce automorphisms of U . [For example, the tree in Figure 5 has
aut(r) = 2.]

We note that

P{PGW(1) = U | |PGW(1)| = n}
= P{PGW(1) = U}

P{|PGW 1| = n}

= n!
nn−1e−n

· e−1

k!
k!

aut(r)

k∏
i=1

P{PGW(1) = Ui}(4)

= 1

aut(r)

n!
nn−1

k∏
i=1

n
ni−1
i

ni ! P{PGW(1) = Ui | |PGW(1) = ni}

= n

aut(r)

(
n − 1

n1, . . . , nk

) k∏
i=1

(
ni

n

)ni 1

ni

P{PGW(1) = Ui | |PGW(1) = ni}.

Next, assume the points of P are listed in increasing order of height as {p1, . . . ,

pn}. We first consider the sizes of the subtrees of B0.
Let m0 = 0 and for i = 1, . . . , k, let mi = mi−1 + ni (so in particular mk =

n − 1). Also for i = 1, . . . , k, let Qi be the set of points p ∈ P \ {pn} satisfying
mi−1 ≤ x(p) < mi , and let pi be the point of Qi with greatest y-coordinate.

We recall the definitions of the events E,F and G from Lemma 14. In order
for n to have children with subtrees U1, . . . ,Uk in that order, it is necessary and
sufficient that the following events occur:

(I) E(mi−1,mi, y(pi),P ) occurs for each i ∈ {1, . . . , k};
(II) We have y(pi) > y(p2) > · · · > y(pk);

(III) F(mi−1,mi, y(pi),P ) and G(mi−1, y(pi),P ) occur for each i = {1,

. . . , k};
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(IV) BGmi = Ui for each i = {1, . . . , k}.
First, (I) is equivalent to the requirement that |Qi | = ni for each i = {1, . . . , k}.
The x-coordinates of points in P , are uniformly distributed on [−n,0] so

P{(I)} =
(

n − 1
n1, . . . , nk

) k∏
i=1

(
ni

n

)ni

.(5)

Given (I), for (II) to occur it suffices that for each i = {1, . . . , k}, the point of
(P \ {pn}) \ (Q1 ∪ · · · ∪ Qi−1) with the largest y-coordinate, is a member of Qi .
Thus,

P{(II) | (I)} =
k∏

i=1

ni

n − 1 − ∑i−1
j=1 nj

.(6)

Since y(pi) < y(pj ) for j < i, if (I), (II) and
⋂k−1

i=1 F(mi−1,mi, y(pi)) all hold
for some k ≥ 1, then it is immediate that G(mi−1, y(pi)) occurs for each i =
{1, . . . , k}. Thus,

P{(III) | (I), (II)} = P

{
k⋂

i=1

F(mi−1,mi, y
∗(i))

∣∣∣ (I), (II)

}
.

Furthermore, given (I) and (II), independently for each i = {1, . . . , k}, the points of
Qi \ {pi} are independently and uniformly distributed in [mi−1,mi) × [0, y(pi)).
Thus, by the cycle lemma,

P{(III) | (I), (II)} =
k∏

i=1

P{F(mi−1,mi, y(pi)) | (I), (II)} =
k∏

i=1

1

ni

.

Finally, given (I), (II) and (III) and independently for each i = {1, . . . , k}, Qi \{pi}
is precisely a uniform set of ni − 1 points, conditioned on F(mi−1,mi, y(pi),Qi)

holding, and pi is a uniform point on [mi − ni,mi] × {y(pi)}. Furthermore, by
Lemma 15, given E(mi−1,mi, y(pi)), F(mi−1,mi, y(pi)) and G(mi−1, y(pi)),
we have

BGmi (P, {0, . . . , n}) = BG(Qi, {mi−1, . . . ,mi}).
Thus, by the induction hypothesis,

P{(IV) | (I), (II), (III)}

=
k∏

i=1

P{BGmi (P, {0, . . . , n}) = Ui | E(mi−1,mi, y(pi)),

F (mi−1,mi, y(pi)),G(mi−1, y(pi))}(7)
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=
k∏

i=1

P
{
BG(Qi, {mi−1, . . . ,mi}) = Ui | F(mi−1,mi, y(pi))

}

=
k∏

i=1

P{PGW(1) = Ui | |PGW(1)| = ni}.

Combining (5)–(7), and rearranging, we obtain that

P
{
n has children U1, . . . ,Uk in that order in BG(P ∪ p, {0, . . . , n}}

=
(

n − 1
n1, . . . , nk

) k∏
i=1

ni

n − 1 − ∑i−1
j=1 nj

×
k∏

i=1

(
ni

n

)ni 1

ni

P{PGW(1) = Ui | |PGW(1)| = ni},

= aut(r)

n

k∏
i=1

ni

n − 1 − ∑i−1
j=1 nj

P{PGW(1) = U | |PGW(1)| = n},

the latter equality holding due to (4). To obtain P{BG(P ∪p, {0, . . . , n}) = U}, we
now must sum this bound over distinct orderings of U1, . . . ,Uk . We instead sum
over all permutations π : [k] → [k], and note that this counts each distinct ordering
aut(r) times. We thus obtain

P
{
BG(P ∪ p, {0, . . . , n}) = U

}

= 1

n
P{PGW(1) = U | |PGW(1)| = n} · ∑

π : [k]→[k]

k∏
i=1

nπ(i)

n − 1 − ∑i−1
j=1 nπ(j)

.

By Lemma 38, the above sum is 1, which establishes (3) by induction and so
completes the proof. �

In proving Theorem 35, we will use the following identity, which we quote in
advance.

LEMMA 39. For integers a ≥ 0, b > 0, let Ia,b := ∫ 1
0 xae−bx dx. Then

Ib−1,b − Ib,b = e−b/b for each b > 0.

PROOF. Integration by parts. �

The final step before proving Theorem 35 is to derive the conditional distribu-
tion of �0 = |BG0| given h0. As this will be useful later in the paper, we state it as
a separate lemma. Write

ϕy(n) = lim
dy→0

P{|�0| = n,h0 ∈ [y, y + dy)}
dy

.
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LEMMA 40. For all 0 < y < 1 and all n ≥ 1,

ϕy(n) = (1 − y) · e−ny(ny)n−1

(n − 1)! .(8)

PROOF. Fix n ∈ N and 0 < y < 1. In order to have �0 = −n and h0 = y,
it is necessary and sufficient that E = E(−n,0, y,P ),F = F(−n,0, y,P ) and
G = G(−n,y,P ), from Lemma 14 all occur. We first calculate the density of the
event E.

P{|[−n,0) × [0, y)|P = n − 1, |[−n,0) × [y, y + dy)|P = 1}
= (

1 + o(dy)
)
P{Poisson(ny) = n − 1} · ndy

= (
1 + o(dy)

)e−ny(ny)n−1

(n − 1)! · ndy.

Now let fE(y) = fE(0, n, y) = e−ny(ny)n−1

(n−1)! · n. Given that |[−n,0) × [0, y)|P =
n − 1 occurs, P([−n,0] × [0, y)) consists of n − 1 uniformly random points. In-
dependently of this, given that |[−n,0)×{y}|P = 1, the line segment [−n,0]×{y}
contains a single uniformly random point. By the first of the two preceding obser-
vations and by the cycle lemma, it follows that P{F | E} = 1

n
. Furthermore, G is

independent of E, and so by Lemma 24, P{G} = 1 − y. We thus have

ϕy(n) = P{F,G | E}fE(y) = P{G}P{F | E}fE(y),

from which the lemma follows. �

PROOF OF THEOREM 35. We assume without loss of generality that n = 0.
Let P = ([�0,0] × [0, h0]) ∩ P , and let p = ([�0,0] × {h0}) ∩ P . Then P is pre-
cisely distributed as a set of |�0| − 1 uniform points in ([�0,0] × [0, h0]), condi-
tional on F(�0,0, h0), and p has uniform distribution on ([�0,0] × {h0}). The first
claim of the theorem then follows from Lemma 37. Next, by Lemma 40, for any
positive integer m we have

P{|�0| = m} =
∫ 1

0
ϕy(m)dy

(9)

= mm−1

(m − 1)!(Im−1,m − Im,m),

where the notation Ia,b is that defined in Lemma 39. Applying that lemma, we
obtain that P{|BG0| = m} is mm−1e−m/m! [exactly the probability that a PGW(1)
has size m]. The second claim of the theorem then follows from the first and the
fact that the conditional distribution of PGW(λ) given its size, is independent of λ.

�

Before proving Theorem 34, we first state a consequence of the above develop-
ment.
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COROLLARY 41. For any positive integer n, any 0 < y < 1, and any un-
ordered rooted tree U with |U | = n,

lim
dy→0

P{BG0 = U,h0 ∈ dy}
dy

= (1 − y)nP{PGW(y) = U}.

PROOF. Immediate from (8) and Theorem 35. �

PROOF OF THEOREM 34. We will in fact prove that for any unordered rooted
tree U ′, conditional on BG0 = U ′, BGa0 \ BG0 is distributed as PGW(1), which
implies the statement of the theorem. Thus, let U and U ′ be unordered rooted trees
with roots r and r ′, and let U∗ be the unordered rooted tree with root r obtained
by adding an edge between r and r ′. We define

E = {BG0 = U ′,BGa0 \ BG0 = U}
= {BG0 = U ′,BGa0 = U∗}.

Next let k = k(U∗) be the number of children of r in U∗, and let j = j (U∗,U ′) ≥
1 be the number of children of r in U∗ whose subtree is isomorphic to U ′. Also, let
aut(r) [resp. aut∗(r)] be the number of permutations of the children of r in U (resp.
U∗) which induce automorphims of U (resp. U∗). Note that aut∗(r) = j · aut(r).

Given an ordering u = (U1, . . . ,Uk) of the children of r in U∗, let i1 =
i1(u), . . . , ij = ij (u) be the indices i for which Ui is isomorphic to U ′. For each
� ∈ {0, . . . , k}, let m� = m�(u) = 1 + ∑k

q=�+1 |Uq | (which is 1 when � = k). Let

Eu = E ∩ {a0 has children U1, . . . ,Uk in that order},
and for each p ∈ {1, . . . , j}, let

Eu,p = Eu ∩ {a0 = mip(u)} = {mip(u) has children U1, . . . ,Uk in that order}.
(The above definitions are depicted in Figure 6.) Then E = ⋃

u
⋃j

p=1 Eu,p , where
the first union is over all distinct orderings u [we say u = (U1, . . . ,Uk) and u′ =
(U ′

1, . . . ,U
′
k) are distinct if there is some i ∈ {1, . . . , k} for which Ui and U ′

i are
not isomorphic]. The double union is then over disjoint terms, and so

P{E} = ∑
u

j∑
p=1

P{Eu,p}.

Reversing the order of summation above, by translation invariance and Theo-
rem 35, we obtain

P{E} =
j∑

p=1

∑
u

P{Eu,p}

= j · P{BG0 = U∗}
= j · P{PGW(1) = U∗}.
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FIG. 6. In the above figure, an ordering u = (U1,U2,U3) of the children of U∗ is fixed. Dashed
edges lead from a0 to its three children. In this example, j (U∗,U ′) = 2 since U1 and U3 are (un-
ordered, rooted) isomorphic to U ′ but U2 is not, and i1(u) = 1, i2(u) = 3 for the same reason.
Finally, this example relates to the event Eu,p with p = 1, since a0 = mi1(u).

Now fix some ordering U1, . . . ,Uk of the children of r in U∗ with Uk = U ′. Then
by the definition of PGW(1) and the preceding equality, we have

P{E} = j · e−1

k!
k!

aut∗(r)

k∏
i=1

P{PGW(1) = Ui}

= P{PGW(1) = U ′} · e−1

(k − 1)!
(k − 1)!
aut(r)

k−1∏
i=1

P{PGW(1) = Ui}

= P{PGW(1) = U ′}P{PGW(1) = U}.
It follows by Theorem 35 that

P{BGa0 \ BG0 = U |BG0 = U ′} = P{E}
P{BG0 = U ′}

= P{PGW(1) = U},
proving the theorem. �

4.2. An ancestral process in IPC(P,Z). By the end of this section we will
have proved Theorems 1–3 from the Introduction. To warm up, we prove the fol-
lowing theorem.

THEOREM 42. The subtree of IPC(P,Z) rooted at zero and containing only
nodes with positive label, is distributed as PGW(1).

PROOF. By Proposition 18, each point of P in [0,1]×[0,1] yields a child of 0
in T0, so 0 has Poisson(1) children. Let r0 = 0, and let r1 = min(i > 0 : �x(pi)
 =
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0), so r1 is “the first integer with 0 as a parent.” For any i > 0, the event that r1 = i

is independent of P ∩ ([i,∞) × [0,∞)), so r1 also has Poisson(1) children. More
generally, let rk = min(i > rk−1 : �x(pi)
 ∈ {r0, . . . , rk−1}). Then for all k ≥ 1 and
all i > 0, the event that rk = i is independent of P ∩ ([i,∞) × [0,∞)), so rk has
Poisson(1) children. The nodes r0, r1, r2, . . . are precisely the descendants of 0,
and we have just seen that each has Poisson(1) children independently of all the
others. This proves the theorem. �

Heuristically, the fact that IPC(P,Z) is equal in distribution to the IIC can be
seen as follows. By symmetry, from Theorem 42, at each node of IPC(P,Z) is
rooted a copy of PGW(1). Also, by exploring the nodes of multiple trees in a left-
to-right fashion as in Theorem 42, we see that the offspring distribution for distinct
branches of IPC(P,Z) are independent. Furthermore, the parent of 0 in IPC(P,Z)

is more likely to be a node with many children than one with few children. This
should “size-bias” the number of children of the parent of zero, in such a way as to
precisely compensate for the edge from 0 to its parent, so that a Poisson(1) number
of children remain. The same argument should also hold for the parent of the parent
of zero, and so on ad infinitum. It is possible to make (parts of) this heuristic
argument rigorous; however, we obtain the result as a relatively direct byproduct
of our argument for Theorem 3, whose proof requires a different approach.

The key to the proof is the definition of a “backward maximum process” which
is extremely similar to the forward maximal process. We begin by listing 0 and
its ancestors in IPC(P,Z) in decreasing order as n0, n1, n2, et cetera, so in par-
ticular n0 = 0 and in general ni+1 = �x(pni

)
. For i ≥ 0 let wi = hni
, and let

mi = max0≤j≤i wj , the greatest weight of any of the first (i + 1) edges. In par-
ticular, m0 = w0 = h0. Finally, let i0 = 0 and, for k ≥ 1, let ik be the smallest
integer i > ik−1 for which mik > mik−1 . Then the following lemma is basic (but
important).

LEMMA 43. For all k ≥ 1, nik = �(nik−1), and so mik = hnik
.

PROOF. The fact that nik ≤ �(nik−1) is immediate from Lemma 9. But � =
�(nik−1) is an ancestor of nik−1 by Lemma 10, and h� > hnik−1

by Lemma 8. Thus,
�(nik−1) = nik as claimed. �

Above, we derived the joint distribution of the height and length of B0. We next
show that the sequence {mik }k∈N has a particularly simple and pleasing description.

LEMMA 44. The sequence {mik }k∈N is a homogeneous Markov chain, and for
all k, given mik , mik+1 has distribution Uniform[mik ,1].

PROOF. For all 0 < y < 1 and all k, hk ≤ y if and only if the random walk
Lk,y has a chance. As remarked in Section 3.2, the probability of this is precisely y.
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Given mik−1 and nik , by Lemmas 8 and 43, we know precisely that mik = hnik
>

hnik−1
= mik−1 . In other words, we know precisely that the random walk L

nik
,mik−1

has no chance. Thus, for 0 < m < y < 1,

P{mik ≤ y | mik−1 = m} = P{hnik
≤ y | mik−1 = m}

= P{Lnik
,y has a chance | Lnik

,m has no chance}
= 1 − P{Lnik

,y has no chance} − P{Lnik
,m has a chance}

P{Lnik
,m has no chance}

= y − m

1 − m
,

which proves the lemma. �

Note also, by the first remark in the proof of the lemma, we have the following
proposition.

PROPOSITION 45 ([17], Theorem 2). h0
d= Uniform[0,1].

We now prove a more substantial result, about the structure of the portion of
IPC(P,Z) that lives “under the backward maximum process.” It essentially states
that, like the forward maximal process, the portion of IPC(P,Z) that lives under
the backward maximum process looks like a single infinite backbone, to which
subcritical Poisson Galton–Watson trees are attached at each point. Also, these
subcritical trees become closer and closer to critical the further along the backbone
from 0 they are.

THEOREM 46. Let IPC−(P,Z) denote the restriction of IPC(P,Z) to the
nonpositive integers, and let 0 be its root. Then IPC−(P,Z) is distributed as T ∗

IIC.

We will prove this theorem at the end of the section. For each k ≥ 0, let Pk =
P ∩ ([nik+1, nik ]× [0,mik )) and let Ik = {nik+1, nik+1 + 1, . . . , nik }. By Lemma 26,
given (nik+1 − nik ), IPC(Pk, Ik) is distributed as PGW(mik ) conditioned to have
(nik+1 − nik ) nodes, together with a single additional node (the node nik ) attached
to a uniform vertex.

THEOREM 47. For all k ≥ 0 and 0 < m < 1, given that mik = m, IPC(Pk, Ik)

is distributed as a path with (1 + Geometric(m)) edges, from nik+1 to nik , with an
independent PGW(m) tree attached to each node of the path except nik .

PROOF. The proof uses a correspondence between IPC(Pk, Ik) and a pond of
IPC(P,N) of appropriate height. Let λ > 1 be such that me−m = λe−λ, so then
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m = λ(1 − θ(λ)). For all n ≥ 1, by Lemma 40 we have

P{nik+1 − nik = n | mik = m} = (1 − m) · (mn)n−1e−mn

(n − 1)!

= nn−1

(n − 1)!(me−m)n
1 − m

m

= nn−1

(n − 1)!(λe−λ)n
1 − λ(1 − θ(λ))

λ(1 − θ(λ))

= nn−1

(n − 1)!(λe−λ)n
θ(λ)

λθ ′(λ)

= θ(λ)

θ ′(λ)

(λn)n−1e−λn

(n − 1)! .

By Corollary 29, the latter is the probability that a pond of IPC(P,N), condi-
tioned to have height λ, has size n. Thus, IPC(Pk, Ik) is distributed as a pond
of IPC(P,N) conditioned to have height λ. By Theorem 30, it follows that the

length of the path from nik+1 to nik has distribution 1 + Geometric(λ(1 − θ(λ)))
d=

1 + Geometric(m). Furthermore, by Theorem 31, to each vertex of the path except
nik is attached an independent copy of PGW(m). This completes the proof. �

Having proved Theorem 47, we are now prepared for the last ingredient needed
for the proofs of Theorems 1 and 46.

THEOREM 48. IPC(P,Z) is distributed as the Poisson IIC, in the local weak
sense.

PROOF OF THEOREM 48. For each j ≥ 0, let Tj be the subtree of IPC(P,Z)

rooted at nj and containing all nodes reachable from nj without passing through
nj−1 or nj+1 (so Tj contains neither nj−1 nor nj+1). We show that independently
for each j , Tj is distributed as PGW(1), which proves the theorem.

For each j , let k = k(j) be the largest integer k for which ik ≤ j . Let Uj be the
subtree of Tj containing only nodes of index less than nk (in other words, Uj is
the subtree of Tj which lives under the backward maximum process). Also, let Vj

be the subtree containing nj and all nodes of Tj not in Uj . Then by Theorem 47,
Uj is distributed as PGW(mik(j)

), independently of {Uj ′ }j ′ �=j .
Next, for each node � ∈ Uj , the number of children of � in IPC(P,Z) that are

not in Uj is precisely the number of points of P in [� − 1, �) × (mik(j)
,1), and

therefore has Poisson(1 − mik(j)
) distribution. Furthermore, all such children have

strictly positive index by the definition of Uj .
Finally, as in Theorem 42, let r1 = min(i > 0 : �x(pi)
 ∈ Uj). Then r1 has a

Poisson(1) number of children, independently of Uj . More generally, exposing
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the descendants of Uj in a left-to-right fashion as in Theorem 42, we see that
each descendant of Uj with positive index has a Poisson(1) number of children,
independently of all the others.

To sum up: Uj is distributed as PGW(mik(j)
); each node of Uj independently

has Poisson(1 − mik(j)
) children in Tj \ Uj ; and each of these children is the root

of a PGW(1) tree, independently of each other and of Uj . It follows that Tj is
distributed as PGW(1), as claimed. �

PROOF OF THEOREM 1. The two graphs T and T ′ are BG(P,Z) and
IPC(P,Z). Part (a) follows from Lemma 17. Part (b) is trivial. Part (c) follows
from the example given in Figure 2. Part (d) is trivial. Part (e) follows from Theo-
rems 34 and 48. �

PROOF OF THEOREM 2. For each n, IPC(P, {−n,−n + 1, . . .}), viewed as
rooted at 0, is distributed as IPC(P,N), viewed as rooted at n. The theorem then
follows from the fact that IPC(P, {−n,−n + 1, . . .}) → IPC(P,Z) almost surely.

�

PROOF OF THEOREM 3. Let q : [1,∞) → (0,1] be the unique map satisfying
the implicit equation dθ(q(λ))

dλ
= −1 for all λ ∈ [0,∞). (It is possible to write down

a more detailed—though still implicit—formula for q , but this is unilluminating
and we omit it.) If W is a random variable satisfying P{W ≤ x} = θ(x) for all
x ≥ 1, then q(W)

d= Uniform[0,1], from which the first part of the theorem follows
immediately. The second part of Theorem 3 then follows from the first, together
with Theorems 30, and 31. �

PROOF OF THEOREM 46. Let U0,U1,U2, . . . be the subtrees of IPC(P,Z)

introduced in the proof of Theorem 48. IPC−(P,Z) consists exactly of an infinite
backbone path through vertices n0, n1, n2, . . . , with Uj attached at nj for each
j ≥ 0. Each Uj is distributed as PGW(mik(j)

). So all that remains to prove the the-
orem is to prove that the sequence (mik(j)

) is distributed as the sequence (Mj)j≥0
defined in the Introduction. This follows from Theorem 47 [which states that the
backward maximum process weights mik(j)

stay constant for one plus a geometric
number of values of j , with parameter dependent on the current weight mik(j)

, and
the fact that the sequence (mik )k≥0 is as described in Lemma 44]. �
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