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We study a maturity randomization technique for approximating optimal
control problems. The algorithm is based on a sequence of control problems
with random terminal horizon which converges to the original one. This is
a generalization of the so-called Canadization procedure suggested by Carr
[Review of Financial Studies II (1998) 597–626] for the fast computation
of American put option prices. In addition to the original application of this
technique to optimal stopping problems, we provide an application to another
problem in finance, namely the super-replication problem under stochastic
volatility, and we show that the approximating value functions can be com-
puted explicitly.

1. Introduction. It is well known that the arbitrage-free price of an American
put in a complete market is the value of an optimal stopping problem, which corre-
sponds in a Markov framework to a free boundary problem. For a finite horizon, no
explicit formula for this value is known in general. An explicit solution does exist
in the infinite-horizon case when the reward process is defined by a Lévy process;
see, for example, [10].

The maturity randomization technique introduced by Carr [2] provides an inter-
esting algorithm for the computation of a finite-horizon optimal stopping problem
by passing to a sequence of infinite-horizon stopping problems. This technique is
well established in the literature, and is referred to as the Canadization procedure;
see, for example, [9]. We shall review this technique in Section 2.

However, the original paper of Carr [2] does not report a proof of consistency
of this technique. Instead, there is an intuitive discussion of the theoretical foun-
dations of the algorithm through appeal to the dynamic programming principle.
Although this argument seems to be very intuitive, it does not apply to this par-
ticular context, as the random times introduced in the maturity randomization al-
gorithm are independent of the filtration relative to the class of stopping times.
The numerical evidence provided in [2] shows the excellent performance of this
method.

In this paper we extend this approach to general finite-horizon stochastic control
problems, including optimal stopping problems. The consistency of the algorithm
is proved in this general framework. These results are contained in Section 3, and
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the application to optimal stopping problems is reported in Section 4. We con-
clude the paper by studying an example of stochastic control problem from finance,
namely the problem of hedging in the uncertain volatility model. The value func-
tion of this problem can be characterized as the unique solution of a fully nonlinear
partial differential equation. Applying the maturity randomization technique in this
context, we are reduced to a sequence of nonlinear ordinary differential equations
that can be solved explicitly.

2. Solving the American put problem by maturity randomization. In this
section we review the numerical procedure suggested by Carr [2] for a fast numer-
ical computation of the American put price. Let (�,F ,P) be a complete prob-
ability space supporting a real-valued Brownian motion W = {W(t), t ≥ 0}. We
denote by F = {Ft , t ≥ 0} the P-completion of the canonical filtration of W .

For every t ≥ 0, the set Tt (F) is the collection of all F-stopping times τ ≥ t

P-a.s.

2.1. The American put problem. Let S be the process defined by

S(t) = S(0) exp
[(

r − σ 2

2

)
t + σW(t)

]
, t ≥ 0,

where S(0) is some given initial data, and r, σ > 0 are given parameters. The main
purpose of [2] is to compute the value of the following optimal stopping problem:

V0 := sup
τ∈T0(F)

E
[
e−r(τ∧T )g

(
S(τ ∧ T )

)]
,(2.1)

where T > 0 is some given finite horizon, and

g(x) := [K − x]+ for some positive constant K.

We introduce the so-called Snell envelope of the reward process {e−r(t∧T )g(S(t ∧
T )), t ≥ 0}:

V (t) := ess-sup
τ∈Tt (F)

E
[
e−r(τ∧T )g

(
S(τ ∧ T )

)|Ft

]
,

whose analysis provides a complete characterization of the solution of (2.1). From
the Markov property of the process S, the above Snell envelope can be written as

V (t) = v(t, S(t)) for all t ≥ 0,

where v is the value function of the dynamic version of the optimal stopping prob-
lem (2.1):

v(t, x) := sup
τ∈Tt (F)

E
[
e−r(τ∧T )g

(
S(τ ∧ T )

)|S(t) = x
]
.
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2.2. Maturity randomization. The main idea of [2] is to reduce the problem
of computation of V0 to a sequence of infinite-horizon optimal stopping problems,
which are well known to be easier to solve. Indeed when T = +∞, it follows from
the homogeneity of the process S that the dependence of the value function v on
the time variable is given by

v(t, x) = ertv(0, x) for all (t, x) ∈ R
2+,

and the problem reduces to finding the dependence of v on the x variable. In many
instances, this dependence can be found explicitly. We now describe Carr’s proce-
dure in different steps.

Step 1. A sequence of infinite-horizon optimal stopping problems is created by
approximating the fixed finite maturity T by a sequence of random variables. Let
(ξk)k≥0 be a sequence of random variables satisfying the following requirements:

ξk are i.i.d. nonnegative random variables with E[ξk] = 1,(2.2)

ξk is independent of F for every k ≥ 0.(2.3)

By the law of large numbers, it follows from (2.2) that

T n
n := T

n

n∑
j=1

ξj −→ T , P-a.s.

It is then natural to introduce the approximation

vn(x) := sup
τ∈T0(F)

E
[
e−r(τ∧T n

n )g
(
S(τ ∧ T n

n )
)|S(0) = x

]
.

In the sequel, we shall need the extended notation

vk
n(x) := sup

τ∈T0(F)

E
[
e−r(τ∧T k

n )g
(
S(τ ∧ T k

n )
)|S(0) = x

]
,

where

T k
n := T

n

k∑
j=1

ξj for k ≤ n,

and we observe that vn
n = vn.

Step 2. We next observe that

T k
n = T k−1

n + ζ k
n where ζ k

n := T

n
ξk,
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and we use property (2.3) of the random variables (ξ j ) to write

vk
n(x) = sup

τ∈T0(F)

E
[
e−r(τ∧T k

n )g
(
S(τ ∧ T k

n )
)
1{τ≤ζ k

n }

+ e−r(τ∧T k
n )g

(
S(τ ∧ T k

n )
)
1{τ>ζk

n }|S(0) = x
]

= sup
τ∈T0(F)

E
[
e−rτ g(S(τ ))Gk

n(τ )

+ e−r(τ∧T k
n )g

(
S(τ ∧ T k

n )
)
1{τ>ζk

n }|S(0) = x
]
,

where

Gk
n(t) := P[ζ k

n ≥ t].

Step 3. By a formal argument, Carr claims that the latter supremum can be
written as

vk
n(x) = sup

τ∈T0(F)

E
[
e−rτ g(S(τ ))Gk

n(τ )

(2.4)
+ e−rζ k

n vk−1
n (S(ζ k

n ))1{τ>ζk
n }|S(0) = x

]
.

Let us point out that Carr fully recognizes that he is not providing a rigorous proof
for the convergence of the scheme. We shall elaborate further on this point later on,
but let us only observe that, at a first glance, this equality seems to follows from

(i) the classical dynamic programming principle,
(ii) the homogeneous feature of the problem.

Step 4. Using again the fact that ζ k
n is independent of F, the above for-

mula (2.4) can be written as

vk
n(x) = sup

τ∈T0(F)

E

[
e−rτ g(S(τ ))Gk

n(τ ) −
∫ τ

0
e−rt vk−1

n (S(t)) dGk
n(t)

∣∣∣S(0) = x

]
.

Finally, fix the distribution of ξ i to be exponential with unit parameter. Then

Gk
n(t) = e−nt/T for all t ≥ 0,

and we obtain the following recursive formula:

vk
n(x) = sup

τ∈T0(F)

E

[
e−rnτ g(S(τ )) + n

T

∫ τ

0
e−rnt vk−1

n (S(t)) dt
∣∣∣S(0) = x

]
,(2.5)

where we defined the parameter

rn := r + n

T
.
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Step 5. In the case of the American put option, Carr was able to write a beau-
tiful explicit formula which relates vk

n to vk−1
n ; that is, given the function vk−1

n , the
optimal stopping problem (2.5) is solved explicitly. Together with the use of the
Richardson extrapolation technique, this produces a fast and accurate approxima-
tion of the American put option value.

2.3. Consistency and extension to general control problems. The first objec-
tive of this paper was to provide a rigorous proof of consistency for the scheme
described in the previous paragraph. This opened the door for a much larger gen-
erality of this technique.

Our first attempt for the proof of consistency is to justify the crucial equal-
ity (2.4). Unfortunately, the dynamic programming principle does not apply in this
context, as ζ k

n is independent of the filtration F. Our first main result is that, al-
though this equality may not hold, the scheme suggested by Carr by the recursive
formula (2.5) is consistent. The proof is provided in Section 4.2.

In Section 4 the above result is established for general optimal stopping prob-
lems, thus dropping the Markov and the homogeneity assumptions on the reward
process. The random variables ξk are also allowed to have different distributions.
This could be exploited as an error reduction factor. We leave this point for further
research.

In Section 3 we prove that the maturity randomization technique applies to gen-
eral stochastic control problems, and mixed stopping/control problems.

We conclude the paper by providing another interesting example where the ma-
turity randomization technique leads to an explicit recursive relation. The example
studied in Section 5 consists in the problem of hedging a European contingent
claim in the context of the uncertain volatility model, that is, the diffusion coeffi-
cient is only known to lie in between two bounds.

3. Approximating control problems by maturity randomization.

3.1. The control problems. We now consider a general probability space
(�,A,P) endowed with a filtration F = {Ft }t≥0 satisfying the usual conditions,
and we assume that F0 is trivial. Importantly, we do not assume that A = F∞ in
order to allow for other sources of randomness.

Given a set U of (deterministic) functions from R+ to R
d , d ≥ 1, we denote by

Ũ(F) the collection of all F-adapted processes ν such that

t �−→ ν(t,ω) ∈ U for almost every ω ∈ �.

The controlled state process is defined by a map

ν ∈ Ũ(F) �−→ Y ν ∈ L0
F
(R+ × �,R),

where L0
F
(R+ × �,R) is the set of all F-progressively measurable processes val-

ued in R, and

Y ν(0) =: Y(0) is independent of ν.(3.1)
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The set U(F) of F-admissible control processes is a subset of the collection of
elements ν ∈ Ũ(F). We assume that this set of controls is stable under bifurcation
at deterministic times, that is,

(HU) For all ν1, ν2 ∈ U(F), t ≥ 0 and A ∈ Ft ,

ν1 = ν2 on [0, t) P-a.s. �⇒ ν1|tA|ν2 := ν11A + ν21Ac ∈ U(F).

Notice that this condition is slightly weaker than the stability by bifurcation at
stopping times introduced in [5].

REMARK 3.1. Assumption (HU) is weaker than the usual stability under con-
catenation property:

(HU)′ For all ν1, ν2 ∈ U(F) and τ ∈ T0(F), ν11[0,τ ) + ν21[τ,∞) ∈ U(F),

which is not satisfied for the optimal stopping problems studied in Section 4. In
Section 3.3, we shall use a weak version of (HU)′:

(HU)′′ For all ν1, ν2 ∈ U(F) and t ≥ 0, ν11[0,t) + ν21[t,∞) ∈ U(F).

We are interested in computing

sup
ν∈U(F)

E[Y ν(T )].(3.2)

Following the maturity randomization technique of [2], we introduce a sequence of
approximating control problems. We denote by IF the collection of all nonnegative
random variables ξ which are independent of F∞, that is,

E[ξ1A] = P[A]E[ξ ] for any A ∈ F∞.

Given some integer n ≥ 1, we next consider a sequence (ζ j )1≤j≤n of independent
random variables in IF, and we set

T k :=
k∑

j=1

ζ j for 1 ≤ k ≤ n, T 0 := 0.

We denote by m the law of (ζ 1, . . . , ζ n) under P, that is,

m(A1 × · · · × An) = P[ζ 1 ∈ A1, . . . , ζ
n ∈ An]

=
n∏

j=1

mj(Aj ) for all A1, . . . ,An ∈ BR+,

where BR+ denotes the Borel tribe of R+, and mj denotes the law of ζ j .
The maturity randomization algorithm is defined as follows:

V ν
0 = Y ν, ν ∈ U(F),(3.3)



MATURITY RANDOMIZATION 2581

and for k = 0, . . . , n − 1

V ν
k+1(t) = ess-sup

µ∈U(F;t,ν)

E[V̄ µ
k (t + ζ n−k)|Ft ], t ≥ 0,(3.4)

where V̄
µ
k is an (�× R+,F ⊗BR+)-measurable aggregating process for V

µ
k [see

assumption (HV) below], and

U(F; t, ν) := {µ ∈ U(F) :µ = ν on [0, t) P-a.s.}.
In order to give a sense to the above expressions, we assume that

(HY) There is a uniformly integrable martingale MY such that, for each ν ∈ U(F),
|Y ν(t)| ≤ MY (t) for all t ≥ 0 P-a.s.

(HV) For each ν ∈ U(F) and 1 ≤ k ≤ n − 1, there is an (� × R+,F ⊗ BR+)-
measurable process V̄ ν

k such that V̄ ν
k (t) = V ν

k (t) P-a.s. for all t ≥ 0.

REMARK 3.2. Assumption (HY) implies that, for each ν ∈ U(F) and
0 ≤ k ≤ n, |V ν

k (t)| ≤ MY (t) P-a.s. for all t ≥ 0. Indeed, assume that the asser-
tion is true for some 0 ≤ k < n. Since ζ n−k is independent of F , using Fubini’s
lemma in (3.4) leads to

V̄ ν
k+1(t) ≤ ess-sup

µ∈U(F;t,ν)

E[|V̄ µ
k (t + ζ n−k)||Ft ]

= ess-sup
µ∈U(F;t,ν)

∫
E[|V̄ µ

k (t + zn−k)||Ft ]m(dz)

≤
∫

E[MY (t + zn−k)|Ft ]m(dz)

= MY (t), P-a.s.

The same argument also shows that the expectations in (3.4) are well defined.

REMARK 3.3. (i) Assumption (HV) is necessary since V
µ
k (t + ζ n−k) may not

be defined as a measurable map from � into R.
(ii) Observe that V̄ ν

0 = V ν
0 from the conditions on the controlled process Y ν .

(iii) In the usual literature on stochastic control (see, e.g., [5]), (3.4) is shown
to define a supermartingale family, as a consequence of the stability by bifurcation
property. This is the key point in order to prove the existence of a ladlag aggregat-
ing supermartingale. Unfortunately, these results do not apply in our framework.
Indeed, the time t appears on the right-hand side of (3.4) both in the controlled
process and in the conditioning, so that the problem (3.4) does not fit in the classi-
cal class of stochastic control problems.

(iv) In Sections 3.3 and 4.2 we shall provide sufficient conditions ensuring the
existence of a ladlag modification of V ν

k . This will be obtained by assuming an
exponential distribution for the maturity randomizing random variables ζ k , and
observing that (3.4) reduces, in this case, to a classical stochastic control problem.
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REMARK 3.4. For later use, notice that, under assumption (HU), for t2 ≥
t1 ≥ 0 and ν ∈ U(F)

U(F; t1, ν) ⊃ {ν2 ∈ U(F; t2, ν1), ν1 ∈ U(F; t1, ν)}.

Since U(F;0, ν) = U(F), we shall simply write

Vk(0) := V ν
k (0) for k ≤ n.(3.5)

3.2. The convergence result. We start with the following easy lemma which
will be used later to derive an upper bound for Vn(0).

LEMMA 3.1. Under assumptions (HY), (HV) and (HU), for all k ≥ 0, t ≥ 0,
ν ∈ U(F),

E

[
ess-sup

µ∈U(F;t;ν)

E[V̄ µ
k (t + ζ n−k)|Ft ]

]
= sup

µ∈U(F;t;ν)

E[V̄ µ
k (t + ζ n−k)].

In particular,

E[V̄ ν
k+1(t)] = sup

µ∈U(F;t;ν)

E[V̄ µ
k (t + ζ n−k)].

PROOF. Under assumption (HU), the family

{E[V̄ µ
k (t + ζ n−k)|Ft ],µ ∈ U(F; t;ν)}

is directed upward. We can then find a sequence µj ∈ U(F; t;ν) such that

ess-sup
µ∈U(F;t;ν)

E[V̄ µ
k (t + ζ n−k)|Ft ] = lim

j→∞ ↑ E[V̄ µj

k (t + ζ n−k)|Ft ], P-a.s.

By the monotone convergence theorem, this implies that

E

[
ess-sup

µ∈U(F;t;ν)

E[V̄ µ
k (t + ζ n−k)|Ft ]

]
≤ sup

µ∈U(F;t;ν)

E[V̄ µ
k (t + ζ n−k)].

The converse inequality is obviously satisfied. The second statement of the lemma
then follows from the definition of V ν

k+1 in (3.4). �

We are now ready for the main result of this section.

THEOREM 3.1. Let assumptions (HY), (HV) and (HU) hold. Then

sup
ν∈U(F)

E[Y ν(T n)] ≤ Vn(0) ≤
∫

sup
ν∈U(F)

E[Y ν(z1 + · · · + zn)]m(dz).(3.6)
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PROOF. 1. We first prove the upper bound. Fix 1 ≤ k ≤ n − 1, ν ∈ U(F) and
t ≥ 0. Since ζ n−k is independent of F∞, it follows from assumption (HY) and
Remark 3.2 that we can use Fubini’s lemma to get

E[V̄ ν
k (t + ζ n−k)] =

∫
E[V̄ ν

k (t + zn−k)]m(dz),

where we use the notation z = (z1, . . . , zn). By Lemma 3.1, this can be written as

E[V̄ ν
k (t + ζ n−k)] =

∫
sup

µ∈U(F;t+zn−k;ν)

E[V̄ µ
k−1(t + zn−k + ζ n−k+1)]m(dz).

In view of Remark 3.4, the upper bound of Theorem 3.1 then follows from an easy
induction.

2. In order to provide the lower bound, we first show that for all ν ∈ U(F):

E[V̄ ν
k (T n−k)] = E[V̄ ν

k (ζ n−k + T n−k−1)]
(3.7)

≤ E[V̄ ν
k+1(T

n−k−1)], k ≤ n − 1.

Indeed, since (ζ k)k≤n are independent random variables in IF, we have

E[V̄ ν
k (ζ n−k + T n−k−1)] = E

[∫ ∞
0

V̄ ν
k (ζ n−k + t) dF (t)

]
,

where F(t) := P[T n−k−1 ≤ t] is the cumulative probability distribution of
T n−k−1. We next use Fubini’s lemma together with the definition of V ν

k in (3.4) to
obtain

E[V̄ ν
k (ζ n−k + T n−k−1)] =

∫ ∞
0

E
[
E[V̄ ν

k (ζ n−k + t)|Ft ]]dF(t)

≤
∫ ∞

0
E[V ν

k+1(t)]dF(t)

=
∫ ∞

0
E[V̄ ν

k+1(t)]dF(t)

= E[V̄ ν
k+1(T

n−k−1)].
By (3.3), (3.5), it follows by using repeatedly (3.7) that

E[Y ν(T n)] = E[V̄ ν
0 (T n)] ≤ E[V ν

n (0)] = Vn(0).

Since ν is an arbitrary control in U(F), this provides the lower bound announced
in Theorem 3.1. �

We now consider sequences {(ζ k
n )k≤n}n≥1 of random variables in IF. We de-

fine the corresponding sequence {(V ν,n
k )k≤n}n≥1, where, for each n, (V

ν,n
k )k≤n is

defined as in (3.3), (3.4) with the sequence (ζ k
n )k≤n. For each n ≥ 1, we define

T n
n :=

n∑
j=1

ζ j
n ,
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and we denote by mn the law of (ζ 1
n , . . . , ζ n

n ). Using the bounds of Theorem 3.1,
we can provide conditions under which V n

n (0) = V ν,n
n (0) converges to the value of

the initial control problem (3.2).

COROLLARY 3.1. Let assumptions (HY), (HV) and (HU) hold, and suppose
that the triangular array (ζ k

n ) satisfies

T n
n −→ T ∈ (0,∞) in probability.

(i) Assume that

t > 0 �−→ E[Y ν(t)] is continuous at t = T for all ν ∈ U(F).(3.8)

Then lim infn→∞ E[Y ν(T n
n )] ≥ E[Y ν(T )] for all ν ∈ U(F).

(ii) Assume that

t > 0 �−→ sup
ν∈U(F)

E[Y ν(t)] is continuous at t = T .(3.9)

Then lim supn→∞
∫

supν∈U(F) E[Y ν(z1+· · ·+zn)]mn(dz) ≤ supν∈U(F) E[Y ν(T )].
(iii) Assume that (3.8) and (3.9) hold. Then

lim
n→∞V n

n (0) = sup
ν∈U(F)

E[Y ν(T )].

PROOF. In view of Theorem 3.1, statement (iii) is a direct consequence of
(i) and (ii). To see that (i) holds, we fix ν ∈ U(F) and let Fn denote the cumulative
distribution of T n

n . Let η > 0 be an arbitrary parameter. From the continuity condi-
tion (3.8), it follows that |E[Y ν(t)]−E[Y ν(T )]| ≤ η for |T − t | ≤ ε for sufficiently
small ε > 0. Then, using Fubini’s lemma together with the fact that the process Y ν

is bounded from below by a uniformly integrable martingale, it follows that

E[Y ν(T n
n )] ≥ −CP[|T n

n − T | > ε] +
∫ T +ε

T −ε
E[Y ν(t)]dFn(t)

≥ −CP[|T n
n − T | > ε] + (

E[Y ν(T )] − η
)
P[|T n

n − T | ≤ ε],
for some real constant C > 0. Since T n

n −→ T in probability, we deduce (i) by
sending n to ∞ and then η to zero. Statement (ii) is obtained by following the
lines of the above arguments, using the continuity condition (3.9). �

REMARK 3.5. (i) The continuity assumptions (3.8), (3.9) have to be checked
for each particular case; see, for example, Sections 4 and 5.

(ii) If there is some optimal control ν̂ ∈ U(F) for the problem supν∈U(F)

E[Y ν(T )], then it suffices to check condition (3.8) for ν̂.
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(iii) The above proof provides an upper bound for the rate of convergence
of V n

n . Given the uniform modulus of continuity at T :

ρ(ε) := sup
t∈[T −ε,T +ε]

sup
ν∈U(F)

|E[Y ν(t)] − E[Y ν(T )]|,

the above arguments indeed show that∣∣∣∣V n
n (0) − sup

ν∈U(F)

E[Y ν(T )]
∣∣∣∣ ≤ CP[|T n

n − T | > ε] + P[|T n
n − T | ≤ ε]ρ(ε)

for some real constant C > 0. Depending on ρ and T n
n , we can then choose ε

according to n so as to minimize the right-hand side quantity. In general, ρ is not
known precisely but it is often possible to provide an upper bound which can be
plugged in to the above inequality.

3.3. Exponential maturity randomization. In this section we assume that
(ζ

j
n )j≤n is a sequence of exponentially distributed random variables with para-

meter λn > 0, for each n. In this case, (3.4) can be written as

e−λntV ν
k+1(t) = ess-sup

µ∈U(F;t,ν)

E

[
λn

∫ ∞
t

V̄
µ
k (u)e−λnu du

∣∣∣Ft

]
, t ≥ 0,

so that the problem (3.4) is reduced to a classical stochastic control problem; see
Remark 3.3. In this context, it suffices to assume that the bifurcation property (HU)
holds at F-stopping times to obtain the existence of a measurable aggregating su-
permartingale; see [5].

For sake of completeness, we provide an easy proof of this result in the case
where assumptions (HY), (HU) and (HU)′′ are combined with a lower semicon-
tinuity condition on ν �→ E[Y ν(t)]. In this case, we can even find a cadlag aggre-
gating supermartingale.

LEMMA 3.2. Let assumptions (HY)–(HU) hold, and suppose that U(F) sat-
isfies assumption (HU)′′ of Remark 3.1. Assume further that Y ν is a cadlag process
for each ν ∈ U(F), and

lim inf
k→∞ E[Y νk (t)] ≥ E[Y ν(t)]

(3.10)
whenever P[νk(t) −→ ν(t),∀ t ≥ 0] = 1.

Then, for each k ≤ n and ν ∈ U(F), we can find a cadlag supermartingale which
aggregates V ν

k in the sense of assumption (HV).

PROOF. Since V
µ
k = V ν

k on [0, t) for each µ ∈ U(F; t, ν), we introduce the
process

Mν
k+1(t) := e−λntV ν

k+1(t) + λn

∫ t

0
V̄ ν

k (u)e−λnu du = ess-sup
µ∈U(F;t,ν)

J
µ
k+1(t),
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where

J
µ
k+1(t) := E

[
λn

∫ ∞
0

V̄
µ
k (u)e−λnu du

∣∣∣Ft

]
.

We first show that the process Mν
k+1 is a supermartingale for all ν ∈ U(F) and

k ≥ 0. Indeed, under assumption (HU), the family {Jµ
k+1, µ ∈ U(F; t, ν)} is di-

rected upward. Then Mν
k+1(t) = limn→∞ ↑ J

µn

k+1(t) for some sequence (µn)n≥1
⊂ U(F; t, ν), and it follows from the monotone convergence theorem that for all
s ≤ t ,

E[Mν
k+1(t)|Fs] = lim

n→∞ ↑ E[Jµn

k+1(t)|Fs] = lim
n→∞ ↑ J

µn

k+1(s)

≤ ess-sup
µ∈U(F;s,ν)

J
µ
k+1(s) = Mν

k+1(s).

We now turn to the proof of the statement of the lemma. We only show that Mν
1

admits a cadlag modification, and that, for each t ≥ 0,

lim inf
k→∞ E[Mνk

1 (t)] ≥ E[Mν
1 (t)]

(3.11)
whenever P[νk(t) −→ ν(t), t ≥ 0] = 1.

The required result will then be obtained by an induction argument.
We first prove that the mapping t �→ E[Mν

1 (t)] is right-continuous. Since Mν
1

is a supermartingale, this ensures that it admits a cadlag modification; see, for
example, [4]. First observe that, by the same argument as in Lemma 3.1, it follows
from Assumption (HU) that

E[Mν
1 (t)] = sup

µ∈U(F;t,ν)

E

[
λn

∫ ∞
0

Yµ(u)e−λnu du

]
.(3.12)

This implies that E[Mν
1 (t)] is nonincreasing in t . Hence, it suffices to show that

lim
s↘t

E[Mν
1 (s)] ≥ E[Mν

1 (t)].(3.13)

To see this, fix ε > 0 and let µε ∈ U(F; t, ν) be such that

sup
µ∈U(F;t,ν)

E

[
λn

∫ ∞
0

Yµ(u)e−λnu du

]
≤ E

[
λn

∫ ∞
0

Yµε(u)e−λnu du

]
+ ε.(3.14)

Let (tk)k≥1 be a sequence converging toward t , and such that tk > t , and define,
for each k ≥ 1,

µk
ε := ν1[0,tk) + µε1[tk,∞).

By assumption (HU)′′, µk
ε ∈ U(F; tk, ν), so that by (3.12)

E[Mν
1 (tk)] ≥ E

[
λn

∫ ∞
0

Yµk
ε (u)e−λnu du

]
.
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Since µk
ε −→ µε P-a.s., it follows from (3.10), (3.12), (3.14), Fatou’s lemma, Re-

mark 3.2 and Fubini’s lemma that

lim
k→∞E[Mν

1 (tk)] ≥ lim inf
k→∞

∫ ∞
0

λnE
[
Yµk

ε (u)
]
e−λnu du

≥
∫ ∞

0
λnE[Yµε(u)]e−λnu du

≥ E[Mν
1 (t)] − ε.

Sending ε to 0 then shows (3.13).
Property (3.11) is easily deduced from (3.10) and (3.12) by using Fatou’s and

Fubini’s lemmas as above. �

4. Application 1: optimal stopping.

4.1. The general case. We now show that the optimal stopping problem pre-
sented in Section 2 can be embedded in the framework studied in the previous
section. Let Z be an F-adapted process. We assume that Z is cadlag and bounded
by a uniformly integrable martingale. The main object of this section is the optimal
stopping problem:

sup
τ∈T0(F)

E[Z(τ ∧ T )].

In order to embed this problem in the general framework of the previous section,
we follow [5] and set

ντ (t) := 1τ<t for each τ ∈ T0(F).

This defines a one-to-one correspondence between the set of stopping times T0(F)

and the family

U(F) := {ντ : τ ∈ T0(F)}.
We shall denote by τν the stopping time associated to ν ∈ U(F). Observing that

Z(τ ∧ t) = Y ντ (t) :=
∫ t

0
Z(u)dντ (u) + Z(t)1ντ (t)=0,

we see that the optimal stopping problem can be rewritten as

sup
τ∈T0(F)

E[Z(τ ∧ T )] = sup
ν∈U(F)

E[Y ν(T )].(4.1)

REMARK 4.1. The set U(F) satisfies assumption (HU) of Section 3. Also,
for ν ∈ U(F), t ≥ 0 and µ ∈ U(F; t, ν), we have τµ = τν on {τν < t}. On {τν ≥ t},
τµ can be any stopping time τ ∈ T0(F). However, assumption (HU)′′ is clearly not
satisfied.
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Given a sequence (ζ k
n )k≤n, we let V

ν,n
k be the associated sequence of controlled

processes as defined in Section 3. Then, (3.3) reads as

V
ν,n
0 (t) = Z(τν ∧ t), t ≥ 0,(4.2)

and it follows from Remark 4.1 that

V
ν,n
1 (t) = ess-sup

µ∈U(F;t,ν)

E[V µ,n
0 (t + ζ n

n )|Ft ]

= ess-sup
µ∈U(F;t,ν)

E
[
Z

(
τµ ∧ (t + ζ n

n )
)|Ft

]
= Z(τν)1τν<t + Xn

1(t)1τν≥t ,

where

Xn
1(t) := ess-sup

τ∈Tt (F)

E
[
Z

(
τ ∧ (t + ζ n

n )
)|Ft

]
, t ≥ 0,

does not depend on τν . We next compute

V
ν,n
2 (t) = ess-sup

µ∈U(F;t,ν)

E[V̄ µ,n
1 (t + ζ n−1

n )|Ft ]

= ess-sup
µ∈U(F;t,ν)

E
[
Z(τν)1τν<t + X̄n

1(t + ζ n−1
n )1τν≥t |Ft

]
= Z(τν)1τν<t + Xn

2(t)1τν≥t ,

where

Xn
2(t) := ess-sup

τ∈Tt (F)

E
[
Z(τ)1

τ<t+ζ n−1
n

+ X̄n
1(t + ζ n−1

n )1
τ≥t+ζ n−1

n
|Ft

]
, t ≥ 0,

and X̄n
1 denotes a measurable aggregating process Xn

1 which we assume to exist.
More generally, given Xn

0 := Z and

Xn
k+1(t) := ess-sup

τ∈Tt (F)

E
[
Z(τ)1

τ<t+ζ n−k
n

+ X̄n
k (t + ζ n−k

n )1
τ≥t+ζ n−k

n
|Ft

]
,

(4.3)
t ≥ 0

for 0 ≤ k ≤ n − 1, we observe the following relation between V
ν,n
k and Xn

k :

V
ν,n
k (t) = Z(τν)1τν<t + Xn

k (t)1τν≥t , t ≥ 0.(4.4)

In particular,

V n
n (0) = Xn

n(0),(4.5)

and the sequence (Xn
k (0))k≤n corresponds to Carr’s algorithm as described in Sec-

tion 2, for a suitable choice of Z.
We conclude this section with the following result which provides sufficient

conditions for the convergence of the algorithm.
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PROPOSITION 4.1. Assume that Z is cadlag and that assumption (HY) holds.
Then,

lim sup
ε↘0

sup
τ∈T0(F)

E
[∣∣Z(τ ∧ T ) − Z

(
τ ∧ (T + ε)

)∣∣1T <τ

]= 0.(4.6)

In particular, if assumption (HV) holds and T n
n → T in probability, then

Xn
n(0) −→ sup

τ∈T0(F)

E[Z(τ ∧ T )] as n −→ ∞.

PROOF. In view of (4.1)–(4.5), the second assertion is equivalent to

V n
n (0) −→ sup

ν∈U(F)

E[Y ν(T )] as n −→ ∞.

Observe that (4.6) implies (3.8), (3.9) of Corollary 3.1, so that the latter conver-
gence result follows from Corollary 3.1(iii). It remains to show that (4.6) holds.
For ε > 0, let τ ε ∈ T0(F) be such that

sup
τ∈T0(F)

E
[∣∣Z(T ) − Z

(
τ ∧ (T + ε)

)∣∣1T <τ

]
≤ E

[∣∣Z(T ) − Z
(
τ ε ∧ (T + ε)

)∣∣1T <τε

] + ε.

Since Z is right-continuous,

lim sup
ε↘0

∣∣Z(T ) − Z
(
τ ε ∧ (T + ε)

)∣∣1T <τε = 0, P-a.s.

By the uniform integrability condition on Z, which is implied by assumption (HY),
we deduce that ∣∣Z(T ) − Z

(
τ ε ∧ (T + ε)

)∣∣ ≤ 2 sup
t≥0

|Z(t)| ∈ L1.

In view of the previous equality, the result follows from the dominated convergence
theorem. �

4.2. The case of exponentially distributed random variables. In this section
we discuss the case where, for each n, (ζ

j
n )j≤n is a sequence of exponentially

distributed random variables with parameter λn > 0. Then, (4.3) can be written as

ess-sup
τ∈Tt (F)

E

[
Z(τ)e−λnτ + λn

∫ τ

0
X̄n

k (u)e−λnu du
∣∣∣Ft

]
(4.7)

= e−λntXn
k+1(t) + λn

∫ t

0
X̄n

k (u)e−λnu du.

In the case where Z is cadlag and satisfies assumption (HY), we easily check
that (HV) holds. In view of (4.4), this is implied by the next result.
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LEMMA 4.1. Assume that Z is cadlag and that assumption (HY) holds. Then,
for each n ≥ k ≥ 1, Xn

k admits a cadlag aggregating supermartingale.

PROOF. Assuming that X̄n
k is of class (D), we deduce that the process

Jn
k (·) := Z(·)e−λn· + λn

∫ ·

0
X̄n

k (u)e−λnu du

is of class (D) too. By Propositions 2.26 and 2.29 in [5], we deduce that the family

Mn
k (t) := ess-sup

τ∈Tt (F)

E[J (τ)|Ft ]

can be aggregated by a supermartingale which is of class (D). The result then
follows from (4.7) by induction. �

In [2], the author considers the case where Z(t) = e−rtg(S(t)), t ≥ 0, for some
function g, and a lognormal process S defined by

S(t) = S(0) exp
[(

r − σ 2

2

)
t + σW(t)

]
, t ≥ 0,

for some real constants r , σ and a standard Brownian motion W . It is shown that
there is a sequence (vn

k )k≤n of bounded Lipschitz functions such that, for each
k ≤ n,

Xn
k = vn

k (S).

Here, Xn
k depends on time only through S. This is due to the time homogeneity of

the dynamics of S.
For g with polynomial growth and λn = n, it is clear that the conditions of

Proposition 4.1 are satisfied for this simple model. This shows the consistency of
Carr’s algorithm.

5. Application 2: hedging in the uncertain volatility model.

5.1. Problem formulation. Let W be a real-valued Brownian motion, on the
probability space (�,F ,P), and let F be the P-completion of the associated
canonical filtration.

Given two constants 0 < σ1 < σ2, we define U(F) as the collection of all
F-predictable processes ν with

σ1 ≤ ν(·) ≤ σ2, P-a.s.(5.1)

For each control process ν ∈ U, the controlled state process dynamics is defined
by

dXν(t) = Xν(t)ν(t) dW(t), t ≥ 0.(5.2)
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In this section we apply the maturity randomization technique to the stochastic
control problem

v(0, x) := sup
ν∈U(F)

E[h(Xν(T ))|Xν(0) = x] where h : R+ −→ R(5.3)

is some bounded function. Further conditions will be placed later on h in order to
obtain an explicit maturity randomization algorithm.

The financial motivation of this problem is the following. The process Xν rep-
resents the price of some given risky asset at each time t . ν is called the volatil-
ity process of Xν and is only known to be bounded by two constants σ1 and σ2.
The financial market also contains a nonrisky asset with price process normalized
to unity. The random variable h(Xν(T )) is an example of European contingent
claims. Then, v(0,Xν(0)) is the sharpest upper bound of all selling prices which
are consistent with the no-arbitrage condition. We refer the readers to [11] and [8]
for a deeper presentation of the theory of pricing contingent claims in general mod-
els. When h is replaced by some convex (resp. concave) function, it was shown by
El Karoui, Jeanblanc and Shreve [6] that the optimal control is ν∗ ≡ σ1 (resp.
ν∗ ≡ σ2), and the associated hedging strategy is defined by the classical Black–
Scholes strategy. The above simple model was studied by Avellaneda, Levy and
Paras [1]. The connection with the hedging problem was analyzed by Cvitanić,
Pham and Touzi [3] in the context of stochastic volatility models.

As usual, we introduce the dynamic version of the stochastic control prob-
lem (5.3):

v(t, x) := sup
ν∈U(F)

E[h(Xν(T ))|Xν(t) = x].(5.4)

Then, it follows from classical techniques that the function v is the unique bounded
C0([0, T ) × R+) viscosity solution of the nonlinear partial differential equation

−vt − 1
2x2σ 2

2 v+
xx + 1

2s2σ 2
1 v−

xx = 0 on [0, T ) × [0,∞), v(T , ·) = h;
see, for example, [12]. Here subscripts denote partial derivatives. In the present
context, we shall consider a function h which is neither convex nor concave, so
that no explicit solution for this PDE is known.

REMARK 5.1. Although more regularity should be expected for the value
function v because of the uniform parabolicity of the PDE, we do not enter this
discussion since we only need the continuity property.

5.2. Maturity randomization. Let (ξk)k≥0 be a sequence of independent ran-
dom variables in IF with exponential distribution

P[ξk ≤ t] = 1 − e−t for all k ≥ 1.
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Set

ζ k
n := T

n
ξk for every k ≤ n

so that
n∑

k=1

ζ k
n −→ T , P-a.s.

In the present context, the maturity randomization algorithm (3.3)–(3.4) translates
to the sequence of stochastic control problems

v0
n(x) = h(x)

and, for all k ≤ n − 1:

vk+1
n (x) := sup

ν∈U(F)

E[vk
n(X

ν(ζ n−k
n ))|Xν(t) = x]

= sup
ν∈U(F)

E

[∫ ∞
0

vk
n(X

ν(t))λne
−λnt dt

∣∣∣Xν(t) = x

]
,

where λn := n/T . The corresponding Hamilton–Jacobi–Bellman equation is given
by the ordinary differential equation (ODE)

−1
2x2σ 2

2 [(vk+1
n )xx]+ + 1

2x2σ 2
1 [(vk+1

n )xx]− + λn(v
k+1
n − vk

n) = 0.(5.5)

An immediate induction argument shows that for each 1 ≤ k ≤ n

vk
n is nonnegative, bounded, and satisfies vk

n(0) = 0,(5.6)

which provides the appropriate boundary condition for the above ODE.
We conclude this section by discussing the convergence of the maturity ran-

domizing algorithm in this context, that is,

lim
n→∞vn

n(X(0)) = v(0,X(0)).(5.7)

Let (V ν,k
n ) be defined as in Section 3:

V
ν,n
0 = h(Xν),

V
ν,n
k+1(t) = ess-sup

µ∈U(F;t,ν)

E[V̄ µ,n
k (t + ζ n−k

k )|Ft ]

= ess-sup
µ∈U(F;t,ν)

λnE

[∫ ∞
t

V̄
µ,n
k (u)e−λn(u−t) du

∣∣∣Ft

]
, t ≥ 0, k ≤ n − 1,

so that, by the Markov feature of Xν ,

V
ν,n
k = vk

n(X
ν), 1 ≤ k ≤ n.

Clearly, assumption (HY) holds since h is bounded. The above identity shows that
assumption (HV) holds too.

We finally discuss conditions (3.8) and (3.9):
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1. If h is continuous, one deduces the a.s. continuity of t �→ h(Xν(t)) by us-
ing the bounds (5.1). Since h is bounded, it follows that t �→ E[h(Xν(t))] is
continuous too, that is, (3.8) holds.

2a. In the case where h is Lipschitz continuous, (3.9) is deduced from the bounds
of (5.1) and standard L2 estimates on the diffusion process.

2b. In the case where h is not Lipschitz continuous, we can use the fact that, as
already noticed at the end of Section 5.1, the value function v defined in (5.4)
is continuous on [0, T ) × (0,∞). Since

v(ε, x) = sup
ν∈U(F)

E
[
h
(
Xν(T − ε)

)|Xν(0) = x
]

for 0 < ε < T,

it follows from the homogeneity of the process Xν that

t �→ sup
ν∈U(F)

E[h(Xν(t))|Xν(0) = x]

is continuous.

5.3. Explicit solution of the infinite horizon problems. In this section we fix
n ≥ 1 and derive an explicit formula for the value function vk+1

n in terms of vk
n

when the payoff function h satisfies the following conditions:

h is continuous,(5.8)

h(x) = 1 − h(x−1) = 0; 0 < x ≤ x0 for some x0 ∈ (0,1),(5.9)

and

h is convex on [0, b0], concave on [b0,∞)
(5.10)

for some x0 < b0 < x0
−1.

Notice that the above conditions imply that h is nondecreasing on R+.
In order to derive an explicit expression of vk+1

n in terms of vk
n, we shall exhibit

a smooth solution Uk+1 of (5.5) which satisfies the properties (5.6). We then show
that Uk+1 = vk+1

n by a classical verification argument.
In view of the particular form of the function h, a bounded solution Uk+1

of (5.5) satisfying Uk+1(0) = 0 will be obtained under the additional guess that

Uk+1
xx (x) ≥ 0 if and only if x ≤ bk+1,(5.11)

for some bk+1 > 0 to be determined. Then, the ODE (5.5) reduces to

−1

2
x2σ 2

2 Uk+1
xx + n

T
(Uk+1 − Uk) = 0 for x ≤ bk+1,(5.12)

−1

2
x2σ 2

1 Uk+1
xx + n

T
(Uk+1 − Uk) = 0 for x > bk+1.(5.13)
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The solutions of (5.12) and (5.13) can be characterized by solving the associ-
ated homogeneous equations, and then applying the constants variation technique.
Bounded solutions of (5.12) and (5.13) are then seen to be of the form

Uk+1(x) =
{

Ak+1
1 (x)xγ1, for x > bk+1,

Ak+1
2 (x)xγ2, for x ≤ bk+1,

(5.14)

where

γ1 := 1

2

(
1 −

√
1 + 8n

T σ 2
1

)
and γ2 := 1

2

(
1 +

√
1 + 8n

T σ 2
2

)
.

We now plug (5.14) into (5.12)–(5.13). After some calculations, this leads to

Ak+1
i (x) = γi(1 − γi)

∫ x

bk+1

r−2γi

∫ r

xi

Ak
i (s)s

2(γi−1) ds dr

+ αk+1
i x1−2γi + βk+1

i , i = 1,2,

where xi ≥ 0, αi, β
k+1
i , i = 1,2, are constants to be fixed later on. By (5.14), this

provides the candidate solution of (5.12)–(5.13):

Uk+1(x) =




(
x

bk+1

)γ1[
βk+1

1 + H 1
bk+1

[Uk]
(

x

bk+1

)]
+ αk+1

1

(
x

bk+1

)1−γ1

,

x > bk+1,(
x

bk+1

)γ2[
βk+1

2 + H 2
bk+1

[Uk]
(

x

bk+1

)]
+ αk+1

2

(
x

bk+1

)1−γ2

,

x ≤ bk+1,

where, for a function ϕ : R+ −→ R, we denote

Hi
b[ϕ](x) := γi(1 − γi)

∫ x

1
r−2γi

∫ r

xi

ϕ(bs)sγi−2 ds dr.(5.15)

In order to determine the constants xi, α
k+1
i , βk+1

i , i = 1,2, we now impose the
restrictions of boundedness and nullity at zero:

lim sup
x↗∞

Uk+1(x) = lim sup
x↗∞

H 1
bk+1

[Uk](x)xγ1 + αk+1
1 x1−γ1 < ∞,(5.16)

lim
s↘0

Uk+1(s) = lim
x↘0

H 2
bk+1

[Uk]xγ2 + αk+1
2 x1−γ2 = 0,(5.17)

the continuity condition at the point x = bk+1:

βk+1
1 + αk+1

1 = βk+1
2 + αk+1

2 ,(5.18)

and the smooth-fit condition at the point x = bk+1:

βk+1
1 γ1 + {

H 1
bk+1

[Uk]}′
(1) + αk+1

1 (1 − γ1)
(5.19)

= βk+1
2 γ2 + {

H 2
bk+1

[Uk]}′
(1) + αk+1

2 (1 − γ2).
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Since 1 − γ1 > 0 and 1 − γ2 < 0, it follows from the boundedness of Uk that
Hi

bk+1
[Uk] is well defined with

x1 = ∞ and x2 = 0.(5.20)

We then conclude from (5.16)–(5.17) that

αk+1
1 = αk+1

2 = 0.(5.21)

Using (5.18) and (5.19), it follows that

βk+1
1 = βk+1

2 = β[Uk](bk+1) where β[ϕ](b) :=
∫ ∞

0
ϕ(br)f (r) dr(5.22)

for any bounded function ϕ : R+ −→ R, and

f (r) = 1

γ2 − γ1
[γ2(γ2 − 1)rγ2−210≤r≤1 + γ1(γ1 − 1)rγ1−21r>1].

For later use, we observe that

f > 0 on (0,∞) and
∫ ∞

0
f (r) dr = 1,

so that f is a density function. In view of these results, we introduce the following
notation. For a function ϕ and some real constant b > 0, we set

Tb[ϕ](x) :=




(
x

b

)γ1[
β[ϕ](b) + H 1

b [ϕ]
(

x

b

)]
, for x > b,(

x

b

)γ2[
β[ϕ](b) + H 2

b [ϕ]
(

x

b

)]
, for x ≤ b,

(5.23)

so that our candidate solution can be written in the compact form

Uk+1 = Tbk+1[Uk] for some bk+1 > 0.(5.24)

REMARK 5.2. Let (Uk) be a sequence defined as above with U0 = h satisfy-
ing (5.8), (5.9) and (5.10). As already observed, U0 is nondecreasing and therefore
nonnegative. As it is positive on some open set, one easily checks that Uk(x) > 0
for all x > 0 and k ≥ 1 by using an inductive argument. Indeed, if Uk is non-
negative, then Hi

bk+1
[Uk] ≥ 0, i = 1,2. If it is also positive on an open set, then

β[Uk](bk+1) > 0 whenever bk+1 > 0.

In order to fix the parameters bk+1, we observe that if Uk+1 is convex on
[0, bk+1] and concave on [bk+1,∞), then it follows from (5.12)–(5.13) that
Uk+1(bk+1) = Uk(bk+1). In view of (5.22), this provides the additional equation:

β[Uk](bk+1) = Uk(bk+1).

Our next results show that this condition defines uniquely the sequence of positive
parameters bk .
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LEMMA 5.1. Let ϕ : R+ −→ [0,1] be a function satisfying

ϕ(x) ∼∞ 1 − a1x
γ1(lnx)δ1 and ϕ(x) ∼0 a2x

γ2(lnx)δ2,(5.25)

for some positive constants a1, a2 and some integer δ1, δ2. Then there is a positive
solution to the equation β[ϕ](b) = ϕ(b), and

Tb[ϕ](x) ∼∞ 1 − a′
1x

γ1(lnx)δ
′
1 and Tb[ϕ](x) ∼0 a′

2x
γ2(lnx)δ

′
2,

for some positive constants a′
1, a

′
2 and some integer δ′

1, δ
′
2.

PROOF. By the expression of the density f , it follows from a trivial change of
variable that

β[ϕ](b) = γ2(γ2 − 1)

γ2 − γ1
b1−γ2

∫ b

0
rγ2−2ϕ(r) dr

(5.26)

+ γ1(γ1 − 1)

γ2 − γ1
b1−γ1

∫ ∞
b

rγ1−2ϕ(r) dr.

Using the estimates of the lemma, we then compute that

β[ϕ](b) ∼0
γ2(γ2 − 1)

γ2 − γ1
b1−γ2

∫ b

0
rγ2−2a2r

γ2(ln r)δ2 dr

+ γ1(γ1 − 1)

γ2 − γ1
b1−γ1

∫ c

b
rγ1−2a2r

γ2(ln r)δ2 dr + O(b1−γ1)

∼0 a2b
γ2(lnb)δ2

[
γ2(γ2 − 1)

(γ2 − γ1)(2γ2 − 1)

− γ1(γ1 − 1)

(γ2 − γ1)(γ1 + γ2 − 1)

]
+ O(b1−γ1)

∼0 a2b
γ2(lnb)δ2

[
1 + γ2(γ2 − 1)

(2γ2 − 1)(1 − γ1 − γ2)

]
,

where the last equivalence follows from the fact that γ2 < 1 − γ1. From this, we
conclude that

lim
b↘0

β[ϕ](b)

ϕ(b)
= 1 + γ2(γ2 − 1)

(2γ2 − 1)(1 − γ1 − γ2)
> 1.(5.27)

Next, since f is a density, we have

1 − β[ϕ](b) = γ2(γ2 − 1)

γ2 − γ1
b1−γ2

∫ b

0
rγ2−2[1 − ϕ(r)]dr

+ γ1(γ1 − 1)

γ2 − γ1
b1−γ1

∫ ∞
b

rγ1−2[1 − ϕ(r)]dr.
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By similar calculations, it follows from the estimate of the lemma that

lim
b↗∞

1 − β[ϕ](b)

1 − ϕ(b)
= ∞.(5.28)

Now recall that ϕ is continuous and bounded. Then β[ϕ] is continuous, and the
existence of a positive solution to the equation β[ϕ](b) = ϕ(b) follows from (5.27)
and (5.28).

The estimates on Tb[ϕ] are deduced from (5.25) by similar arguments. �

REMARK 5.3. The statement of Lemma 5.1 is valid for ϕ = h. Indeed, one
can check that the above existence argument goes through under the condition (5.9)
instead of (5.25).

LEMMA 5.2. Let ϕ : R+ −→ [0,1] be a nondecreasing function satisfying

ϕ(0) = 1 − ϕ(∞) = 0(5.29)

such that

ϕ is convex on [0, b∗], concave on [b∗,∞) for some b∗ > 0(5.30)

and either:

(i) there is some ε > 0 such that ϕ(b) = 0 for all b ≤ ε, or
(ii) ϕ is strictly convex on a neighborhood of 0.

Then, there is at most one positive solution to the equation β[ϕ](b) = ϕ(b).

PROOF. Observe from (5.26) that the function β[ϕ] is differentiable. From the
convexity/concavity condition on ϕ, it follows that ϕ is differentiable a.e. on R+,
its subgradient ∂−ϕ is nonempty (resp. empty) in the domain of convexity (resp.
concavity), and its supergradient ∂+ϕ is empty (resp. nonempty) in the domain of
convexity (resp. concavity). Set ∂ϕ := ∂−ϕ ∪ ∂+ϕ.

In order to prove the required result, it suffices to show that

for all b > 0 :β[ϕ](b) = ϕ(b) �⇒ ∇β[ϕ](b) − p < 0
(5.31)

for any p ∈ ∂ϕ(b).

Recall that ϕ(0) = 1 − ϕ(∞) = 0 by (5.29), and that ϕ is nondecreasing, con-
tinuous on [b∗,∞). Since f is density, it follows from (5.22) that β[ϕ](b) > 0
whenever b > 0, and therefore

0 = ϕ(0) < ϕ(b) < ϕ(∞) = 1 whenever β[ϕ](b) = ϕ(b) with b > 0.(5.32)

With the help of (5.26), we next compute that

∇β[ϕ](b) = b−1γ1ϕ(b) + γ1(γ1 − 1)b−γ1

∫ ∞
b

ϕ(r)rγ1−2 dr

+ b−1(1 − γ2)(β[ϕ] − ϕ)(b).
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Integrating by parts the integral on the right-hand side, we see that

∇β[ϕ](b) = −γ1b
−γ1

∫ ∞
b

ϕ′(r)rγ1−1 dr + b−1(1 − γ2)(β[ϕ] − ϕ)(b),

so that

∇β[ϕ](b) = −γ1b
−γ1

∫ ∞
b

ϕ′(r)rγ1−1 dr whenever β[ϕ](b) = ϕ(b).(5.33)

Similar computations provide the following alternative expression of the gradient:

∇β[ϕ](b) = γ2b
−γ2

∫ b

0
ϕ′(r)rγ2−1 dr whenever β[ϕ](b) = ϕ(b).(5.34)

We now consider two cases:

1. Suppose that b ≥ b∗ and choose an arbitrary p ∈ ∂ϕ(b). The fact that ϕ is
concave nondecreasing on [b,∞) implies that 0 ≤ ϕ′(r) ≤ p for a.e. r ≥ b. If
ϕ′(r) = p for a.e. r ≥ b, we end up with a contradiction to (5.32). Hence, there
is a subset of [b,∞) of positive measure on which ϕ′(r) < p a.e. Together
with (5.33) and the fact that γ1 < 0, this implies that

∇β[ϕ](b) < −γ1b
−γ1p

∫ ∞
b

rγ1−1 dr = p for any p ∈ ∂ϕ(b).

Hence (5.31) holds in this case.
2. If b ≤ b∗, we repeat the same argument as in the first case using the representa-

tion (5.34), and we show that (5.31) also holds in this case. �

We are now in a position to define our candidate solution of the nonlinear ODE
(5.5).

PROPOSITION 5.1. There exists a sequence of functions (Uk)0≤k≤n defined
by

U0 = h and Uk+1 = Tbk+1[Uk],(5.35)

where the sequence (bk)k≥1 is uniquely defined by

β[Uk](bk+1) = Uk(bk+1),(5.36)

so that Uk+1 solves (5.12)–(5.13). Moreover, for all k ≥ 1:

(i) Uk is strictly convex (resp. strictly concave) on (0, bk) [resp. (bk,∞)],
(ii) (bk − x)(Uk − Uk−1)(x) > 0 for all x ∈ (0,∞) \ {bk},

(iii) Uk is a strictly increasing C2 function with values in [0,1),
(iv) Uk(x) ∼∞ 1 − ak

1xγ1(lnx)δ
k
1 and Uk(x) ∼0 ak

2xγ2(lnx)δ
k
2 , for some con-

stants ak
1, ak

2 and some integer δk
1, δk

2 .
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PROOF. 1. The existence and uniqueness of the sequence (Uk) associated to
the sequence (bk) follow from Lemmas 5.1 and 5.2, together with Remark 5.3,
by a direct induction argument. The fact that Uk+1 solves (5.12)–(5.13) has been
shown in the discussion preceding Lemma 5.1.

2. Item (iv) is then obtained by induction as a by-product of Lemma 5.1 and
Remark 5.3. In view of (5.12)–(5.13), item (i) is a direct consequence of (ii). Also,
Uk is C2 by construction, and the remaining part of item (iii) follows from (i), (iv)
and an induction.

3. It only remains to prove item (ii). Clearly, it is sufficent to show that, for any
x > 0,

{Uk}′(x) − p < 0 for all p ∈ ∂Uk−1(x)
(5.37)

whenever Uk(x) = Uk−1(x),

where we use the notation of Lemma 5.2. Indeed, this implies that Uk−1 and Uk

intersect at a unique point, which is already known to be bk , and the required
inequality follows. The reason for introducing the notation ∂Uk−1(x) comes from
the fact that, for k = 1, U0 = h may be nonsmooth although h′ is defined a.e. by
(5.10). Let x > 0 be such that Uk(x) = Uk−1(x) and set i := 2 if x ≤ bk and i := 1
otherwise. From the expression of Uk in terms of Uk−1, we directly compute that

{Uk}′(x) = γi

x
Uk−1(x) + x−γi γi(1 − γi)

∫ x

xi

Uk−1(r)rγi−2 dr

= γi

x
[Uk(x) − Uk−1(x)] + x−γi γi

∫ x

xi

{Uk−1}′(r)rγi−1 dr

= x−γi γi

∫ x

xi

{Uk−1}′(r)rγi−1 dr

by first integrating by parts and then using the assumption Uk(x) = Uk−1(x).
3a. We first assume that x ≤ bk , so that the above identity reads

{Uk}′(x) = x−γ2γ2

∫ x

0
{Uk−1}′(r)rγ2−1 dr.(5.38)

Fix p ∈ ∂Uk−1(x). If x ≤ bk−1, we deduce from the convexity of Uk−1 on
[0, bk−1] that (Uk−1)′(r) ≤ p for a.e. r ≤ x. Since Uk−1(0) = 0 and x > 0 implies
Uk(x) > 0 by Remark 5.2, it follows from the nondecreasing feature of Uk−1,
see (iii) and the remark just after (5.10), that {Uk−1}′(r) < p a.e. on a subset of
[0, x] of positive measure. As γ2 > 0, we deduce from (5.38) that

{Uk}′(x) < p

which is the required result.
If x ∈ (bk−1, bk], then (5.38) can be written as

{Uk}′(x) = x−γ2γ2

∫ bk

0
{Uk−1}′(r)rγ2−1 dr − x−γ2γ2

∫ bk

x
{Uk−1}′(r)rγ2−1 dr.
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By (5.36) and the identity (5.34) derived in the proof of Lemma 5.2, we obtain

{Uk}′(x) =
(

x

bk

)−γ2

∇β[Uk−1](bk) − x−γ2γ2

∫ bk

x
{Uk−1}′(r)rγ2−1 dr.

Since x ≥ bk−1, we deduce from the concavity of Uk−1 on [bk−1,∞) � bk that for
p̂ ∈ ∂Uk−1(bk)

{Uk}′(x) ≤
(

x

bk

)−γ2

∇β[Uk−1](bk) − x−γ2γ2p̂

∫ bk

x
rγ2−1 dr

=
(

x

bk

)−γ2

∇β[Uk−1](bk) − p̂

[(
x

bk

)−γ2

− 1
]

≤
(

x

bk

)−γ2[∇β[Uk−1](bk) − p̂
] + p.

Recalling the assertion (5.31) which was derived in the proof of Lemma 5.2, we
deduce that {Uk}′(x) − p < 0 which concludes the proof in the case x ≤ bk .

3b. The case x > bk is treated similarly. Equation (5.38) is replaced by

{Uk}′(x) = x−γ1γ1

∫ x

∞
{Uk}′(r)rγ1−1 dr

and we use (5.33) instead of (5.34). �

Our final result shows that the sequence (Uk)k≤n constructed in the above
proposition corresponds to (vk

n)k≤n.

PROPOSITION 5.2. Let (Uk)k≤n be the sequence of functions defined in
Proposition 5.1. Then, for each k ≥ 1, Uk = vk

n.

PROOF. Since U0 = h, it suffices to show that for all x > 0 and k ≥ 0

Uk+1(x) = sup
ν∈U(F)

E

[∫ ∞
0

Uk(Xν(t))
n

T
e−(n/T )t dt

∣∣∣Xν(0) = x

]
.

Let k ≥ 0 be fixed. We first deduce from Proposition 5.1 that Uk+1 is a classical
solution of

−1

2
x2σ 2

2 [Uk+1
xx ]+ + 1

2
x2σ 2

1 [Uk+1
xx ]− + n

T
(Uk+1 − Uk) = 0 on [0,∞).

Since σ1 < σ2, the above ODE can be written as

sup
σ1≤ν≤σ2

1

2
x2ν2Uk+1

xx + n

T
Uk = n

T
Uk+1 on [0,∞).(5.39)
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Recalling from Proposition 5.1 that Uk+1 is C2, we then deduce from Itô’s lemma
that, for all x ≥ 0, ν ∈ U(F) and all stopping time τ ,

Uk+1(x) ≥ E

[
e−(n/T )τUk+1(Xν(τ )) +

∫ τ

0
Uk(Xν(t))

n

T
e−(n/T )t dt

∣∣∣Xν(0) = x

]
.

Since Uk and Uk+1 are bounded, it follows from the dominated convergence the-
orem that

Uk+1(x) ≥ E

[∫ ∞
0

Uk(Xν(t))
n

T
e−(n/T )t dt

∣∣∣Xν(0) = x

]
(5.40)

for all ν ∈ U(F).

On the other hand, we deduce from (5.39) and Itô’s lemma that for ν̂ ∈ U(F)

defined by

ν̂t = σ11Uk+1
xx (Xν̂(t))<0 + σ21Uk+1

xx (Xν̂(t))≥0, t ≥ 0,

we have, for all stopping time τ ,

Uk+1(x) = E

[
e−(n/T )τUk+1(Xν̂

τ ) +
∫ τ

0
Uk(Xν̂

t )
n

T
e−(n/T )t dt

∣∣∣Xν̂(0) = x

]
.

Since Uk+1 and Uk are bounded, we obtain by sending τ → ∞ that

Uk+1(x) = E

[∫ ∞
0

Uk(Xν̂(t))
n

T
e−(n/T )t dt

∣∣∣Xν̂(0) = x

]
,

which, combined with (5.40), concludes the proof. �

REMARK 5.4. Condition (5.9) can be clearly relaxed by only assuming that
the payoff function satisfies the estimates (5.25) at infinity and the origin. We re-
frained from starting with such conditions because the parameters γ1 and γ2 arise
along our analysis. Similarly, all our analysis goes through under the condition
that h is bounded, not necessarily lying in the interval [0,1].

REMARK 5.5. Throughout this example, we assumed that the payoff func-
tion h is continuous, excluding some important example in finance. The only place
where this assumption was used is the proof Lemma 5.1 and to derive the continu-
ity properties (3.8)–(3.9) of Corollary 3.1. Notice that some cases where h is not
continuous can be handled. Consider, for instance, the digital option example:

h(x) := 1[1,∞)(x) for all x ≥ 0.

We directly compute that

U1(x) := T1[h](x) = [1 − (1 − β1)x
γ1]1[1,∞)(x) + β1x

γ21[0,1)(x),
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where

β1 = γ1

γ1 − γ2
.

When h is continuous and satisfies the requirements of Lemmas 5.1 and 5.2, the
constant b1 is the unique solution of the equation U1(b1) = h(b1). In the above
case of the digital option, notice that h(1) = 1 and U1(b1) = β1 �= 1. In particu-
lar, U1 is not a C2 function in this case.

Clearly, the above function U1 is a bounded smooth solution of boths ODEs
(5.12) and (5.13), and satisfies property (i) of Proposition 5.1. Although U1 is
not C2 at the point b1 = 1, the proof of Proposition 5.2 is still valid under the
above properties, since Itô’s lemma holds for the function U1. Hence U1 = v1

n.
Observe that U1 satisfies (5.25) of Lemma 5.1, and therefore Propositions 5.1

and 5.2 can be applied to the sequence (Uk) started from k = 2.
By the same reasoning as in 2b in the discussion at the end of Section 5.2, the

mapping

t �→ sup
ν∈U(F)

E[h(Xν(t))|Xν(0) = x]

is continuous. For ν ∈ U(F), we have ν ≥ σ1 > 0 P-a.s., so that Xν is uniformly
elliptic. This implies that

t �→ E[h(Xν(t))|Xν(0) = x] = P[Xν(t) ≥ 1]
is also continuous. Hence Conditions (3.8) and (3.9) of Corollary 3.1 hold for this
case.

5.4. A numerical example. In this section we use the maturity randomization
algorithm to approximate the value function v defined in (5.3). We consider the
same model as in Section 5.1 with

σ1 = 0 and h(x) = 1x≥K(5.41)

for some real parameter K > 0. The reasons for considering this particular case
are:

1. The value function v can be computed explicitly, up to a simple numerical
integration. This will allow us to test our numerical results.

2. Although σ1 = 0, the reasoning of Section 5.3 is easily adapted to this context.

PROPOSITION 5.3. In the context of (5.41), the value function v is given by

v(0, x) = w(0, x)

:= 1x<K

[∫ m(x)

−∞
e−2m(x)(m(x)−r)/(σ 2

2 T )fT (r) dr + FT (m(x))

]
+ 1x≥K
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where m(x) := ln(K/x) and

fT (r) := 1

σ2
√

2πT
e(−1/(2σ 2

2 T ))(r+(1/2)σ 2
2 T )2

and FT (x) :=
∫ ∞
x

fT (r) dr.

Furthermore, for every x ≥ 0, the optimal control associated to v(0, x) is given
by

ν̂x(t) = σ21t≤τx , t ∈ [0, T ],
where

τx := T ∧ inf
{
t ≥ 0 :−1

2σ 2
2 t + σ2Wt ≥ ln(K/x)

}
.

PROOF. Clearly w is continuous on [0, T ] × [0,∞) and C1,2 on [0, T ] ×
[0,K]. Then, standard arguments show that it satisfies

−vt − 1
2σ 2

2 x2vxx = 0 on [0, T ] × [0,K],(5.42)

and satisfies the boundary conditions

v(T , ·) = 1·≥K and v(·,K) = 1.(5.43)

For ν ∈ U(F), let Xν
t,x be the solution of (5.2) with initial condition Xν

t,x(t) = x at
time t . Recalling the law of the maximum of a drifted Brownian conditionally to
its terminal value (see, e.g., [7]), we obtain that

w(t, x) = E
[
h
(
X

ν̂t,x

t,x (τ ν̃
t,x)

)|Xν̂t,x

t,x (t) = x
] = P

[
max

t≤s≤T
X

ν̂t,x

t,x (s) ≥ K

]
,(5.44)

where

ν̂t,x(s) = σ21s≤τ ν̃
t,x

with ν̃(s) = σ2, s ∈ [t, T ]
and, for ν ∈ U(F),

τ ν
t,x := inf{t ≤ s ≤ T :Xν

t,x(s) ≥ K} ∧ T .

It follows that w is nonincreasing in t . Since it solves (5.42), it is convex and solves

min
0≤ν≤σ2

−wt − 1
2ν2x2wxx = 0 on [0, T ] × [0,K].(5.45)

Fix ν ∈ U(F) and observe that, by Itô’s lemma, (5.45), (5.43) and definition
of τ ν

t,x ,

w(t, x) ≥ E
[
w

(
τ ν
t,x,X

ν
t,x(τ

ν
t,x)

)] = E
[
1τν

t,x≤T

] ≥ E[h(Xν
t,x(T ))].

In view of (5.44), this implies that w = v and that the optimal strategy is given
by ν̂t,x . �
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TABLE 1

K = 100,x = 95,T = 0.5 K = 100,x = 95,T = 1

σ2\n 10 200 500 1000 Exact σ2\n 10 200 500 1000 Exact

0.2 0.6884 0.6978 0.6981 0.6982 0.6982 0.2 0.7693 0.7763 0.7765 0.7766 0.7767
0.4 0.8279 0.8330 0.8332 0.8333 0.8333 0.4 0.8697 0.8734 0.8735 0.8735 0.8736
0.6 0.8754 0.8789 0.8790 0.8790 0.8791 0.6 0.9030 0.9055 0.9056 0.9056 0.9056

We next define the sequence of randomized control problems (vk
n) as in Sec-

tion 5.2. The associated sequence of ODEs is given by

min
0≤ν≤σ2

−1
2ν2x2(vk+1

n )xx + λn(v
k+1
n − vk

n) = 0 on [0,K]

with v0
n = h and vk

n(x) = 1 for x ≥ K . A straightforward adaptation of the argu-
ments of Section 5.3 then shows that (vk

n)k≤n is explicitly given by the inductive
scheme

vk+1
n =

(
x

K

)γ2[
1 + H 2

K [vk
n]

(
x

K

)]
on [0,K]

where γ2 and H 2 are defined as in Section 5.3 for the corresponding value of n.
Condition (5.34) of Corollary 3.1 holds by Proposition 5.3. By Remark 3.5(ii),

it suffices to check (5.33) for the optimal control associated to v(0, x). Since this
optimal control does not depend on the time horizon T , this amounts to check-
ing (5.34). Since assumptions (HY), (HV) and (HU) are satisfied, the above
scheme is consistent.

In Tables 1 and 2, we report numerical estimates of v obtained by using the
approximating sequence (vn

n). The “exact” values of v have been computed by
numerical integration of the formula reported in Proposition 5.3.

In Table 1 above, we fix the parameters K , x, and we explore the performance
of the maturity randomization algorithm for various values of T and σ2. Our ex-
periments show an excellent performance of the algorithm. Notice that we already
obtain sharp estimates for a small value of n = 10.

TABLE 2

K = 100,x = 50,T = 1

σ2\n 10 200 500 1000 Exact

0.4 5.8058 × 10−2 5.7949 × 10−2 5.7951 × 10−2 5.7952 × 10−2 5.7954 × 10−2

K = 100, x = 80, T = 1
0.4 6.9973 × 10−2 6.9430 × 10−2 6.9419 × 10−2 6.9415 × 10−2 6.9411 × 10−2
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We next fix the parameter σ2, and vary the values of the parameters x and T .
We observe again, in Table 2, the algorithm shows an excellent performance even
for small values of n.

REFERENCES

[1] AVELLANEDA, M., LEVY, M. and PARAS, A. (1995). Pricing and hedging derivative securities
in markets with uncertain volatilities. Applied Mathematical Finance 2 73–88.

[2] CARR, P. (1998). Randomization and the American put. Review of Financial Studies 11
597–626.
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