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We consider a discrete-time financial market model with finite time
horizon and give conditions which guarantee the existence of an optimal
strategy for the problem of maximizing expected terminal utility. Equivalent
martingale measures are constructed using optimal strategies.

1. Introduction. In this paper we study the existence of optimal portfolios
for maximizing expected utility at the end of a trading period in a financial market.
Preferences of the agent in consideration are described by a nondecreasing concave
functionU : R — R, trading dates occur at discrete time instants.

The same problem has been treated in [27] for a general, continuous-time
semimartingale model. The article (similarly to its predecessor [20]) formulated
a so-called “reasonable asymptotic elasticity” conditionlbmvhich is sufficient
for the existence of an optimal stratregy (provided that the asset price process
admits an equivalent local martingale measure and is locally bounded). This
condition appears to be necessary in the general context, as highlighted by the
counterexamples given there. The paper made extensive use of functional analysis
and followed an approach via the dual problem. We wondered how this could be
avoided, at least in a discrete-time setting.

As it will become clear in the arguments below, in discrete-time market models
a direct probabilistic approach is possible, based on a simple idea going back to,
for example, [25]. Under weaker “asymptotic elasticity” conditions, we manage
to establish the existence of optimal strategies for nonsmooth utility functions
and for possibly unbounded price processes, hence, we cover (though only in
discrete-time) several cases where previous results do not apply, see Remark 2.6
of [29], as well as Remark 2.9 below. Although our arguments appear to be fairly
straightforward, they are not quite evident due to a number of hidden pitfalls
related to some delicate measure theoretic issues.
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1368 M. RASONYI AND L. STETTNER

It seems that, despite its practical importance, discrete-time utility maximization
has been somewhat neglected lately. Schal [31] considers utilities defined on the
whole real line in a finite probability space setting; Schal [29, 30] studies the case
of utilities U :Ry — R; Kramkov and Schachermayer [20, 21] give exhaustive
treatments of the cas& :R, — R in a general semimartingale model. It is
possible to apply our techniques to this kind of utility function, too; related results
will be presented elsewhere.

On the history of the problem, consult the papers cited above with the references
therein. In Section 2 below we present our main results. Section 3 deals with
consequences of the absence of arbitrage property. Section 4 considers a one-step
model which is then carried over to several time steps in Section 5. In Section 6
equivalent martingale measures are constructed using optimal strategies, Section 7
presents examples and corollaries of the main results. Finally, the Appendix
contains auxiliary material.

2. Problem formulation. A usual setting for discrete-time market models
is considered: a probability spadg2, ¥, P); a filtration (%;)o<;<r and a
d-dimensional adapted proce§$)o<;<7 describing the (discounted) price a@f
assets which are present in a given economy. We supposefthabntains
all P-zero sets. The symbol-,-) denotes the usual scalar product]m’,
x| == 4/ {x, x).

In what follows, B, will denote the set ofF;-measurabled-dimensional
random variables. Trading strategies are represented by arhitrdimensional
predictable processe®;)i<,<r, Where ¢," denotes the investor's holdings in
asset at timer; predictability means thas; € E,_1. The family of all predictable
trading strategies is denoted k. In continuous-time models “admissibility”
requirements are usually imposed on portfolios (e.g., the value process is bounded
from below). An important feature of the present approach is that we go beyond
the class of (locally) bounded price processes. When dealing with unbousnded
it is crucial to allow portfolios which are not necessarily bounded from below.

The value at time of a portfolio¢ starting from initial capitat is given by

t
Vil =c+ > (i AS),
i=1

whereAS; :=S; — S;_1 andc € R.

Fix a concave nondecreasing functibn R — R. The positive (resp. negative)
part of a real-valued functiol is denoted by (resp.V ~). Regular conditional
distributions and generalized conditional expectations are used throughout the
paper. Dependence of various functionswor Q2 will often be dropped in the
notation. By convention/’(x) denotes théeft-hand derivative ofU at x.

We are dealing with maximizing the expected terminal utimW(V;’¢) from
initial endowment. In order to have a well-posed problem, it should be stipulated
that the optimal value is finite.
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ASSUMPTION 2.1. Suppose that the following random functions are well
defined:

Ur(x) =U(x), x eR;
forO<t < T and for allx e R,
Ur(x) := eSSSUE (U 1(x + (€, AS;11))|F1) <oo  as,

Eekly
and for allx e R,
1) EUp(x) < 00.

REMARK 2.2. We remark that regular versionslgf exist by Proposition 4.4
below. The quantity; (x) is the highest future expected conditional utility with
respect taF; for an agent who starts trading at timevith initial endowmentx.

So Assumption 2.1 roughly says that the supremum of future expected utility
at time 0 should not attaino. This is a natural requirement in the context of
utility maximization. If U is bounded from above [e.g., the often encountered
exponential utilityU (x) =1 — e~ or the shortfall function/ (x) = maxx, 0}],

then Assumption 2.1 trivially holds. For unbound&d Assumption 2.1 seems to

be more difficult to verify, we shall check its validity in a fairly broad model class
in Proposition 7.1.

We will impose the followingabsence of arbitrage (NA) property (see Section 3
for a discussion):

) (NA):¥p (V2 > 0as.= VI =0as).

One can assert the existence of an optimal strategy under certain conditions
onU.

AssuMPTION2.3. The utility function/ : R — R is concave, nondecreasing;
U (0) =0, and there exist§ > 0 and O< y < 1 such that forx > X and for any
A>1,

3 UOx) <AVU(x).

REMARK 2.4. Condition (2.3) appears as a hypothesis in [20] and [27]; it is
equivalent to a certain asymptotic elasticity property/of

. U’
limsup 0)x
X— 00 X

see Section 6 of [20] for details. This concept encompasses the most frequently en-
countered behaviors of utility functions & (bounded, logarithmic, powest 1).

The conditionU (0) = 0 can evidently be dropped, we stipulate it only for the sake

of a simpler presentation.

<1
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It is possible to replace (2.3) by a hypothesis on the behavior af —oco.

ASsSUMPTION2.5. The functiorl/ is concave, nondecreasing(0) = 0 and
there existx > 0, x < 0 such that

4) UQx) < AMU (x),

forall x <x.

REMARK 2.6. Again, this is equivalent to another property of a “asymptotic
elasticity,” which appears in [27]:

/
liminf Z_09%

x——o00 U(x)

>1,
see also [10] and [11].

THEOREM 2.7. Let U satisfy either Assumption 2.3 or Assumption 2.5 and
S satisfy (2). Let us suppose that Assumption 2.1 holds true. Then there exists a

strategy ¢* = ¢*(c) satisfying
u(c)=EU(VE?) < oo,
where

u(c):= sup EUVE?),
ped(U,c)

and © (U, ¢) isthe set of strategies ¢ € ® for which the expectation EU(V}“’) is
well defined.

Introduce the random subsé, (w) of R¢: the smallest affine hyperplane
containing the support of the (regular) conditional distribution 2§, with
respect tof;_1; this is an¥;_1-measurable random set, see the Appendix and
Proposition A.1 in particular. We now present a uniqueness result.

THEOREM 2.8. If the assumptions of the previous theorem are met and U is
strictly concave, then there is a unique optimal strategy ¢* satisfying

¢ € D, as.
We present the proofs of Theorems 2.7 and 2.8 in Sections 4 and 5, under

Assumption 2.3. At the end of Section 5 we indicate the necessary modifications
under Assumption 2.5.
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REMARK 2.9. In[27]the existence of an optimal strategy is proved for locally
boundedS (which is a local martingale under some equivalent measure) and under
certain conditions o/ [differentiability, Inada conditions, (2.3) and (2.5)].

In the present discrete-time setting one may assert the existence of an optimal
strategy for a larger class of utility functions. Examples 7.4 and 7.5 show that there
are applications of our main result for which this extension is crucial.

We also allowS to be possibly unbounded. In this case, the usual duality
approach (see, e.g. [17, 27] or [9]) does not work: according to Counterexample 2.1
on page 46 of [9], the dual problem may fail to admit an optimal solution.

One may even consider even random utility functiois, w); see [19] and [1].
This comes in handy, for example, when we have a fixed random vargblg
(contingent claim) and try to maximize

EU(VE? — B),

for some (deterministicl/. Our arguments are applicable in this case, too:

THEOREM2.10. Sat Ur(w) = U(x — B(w)). upposethat (NA) and Assump-
tion 2.1,aswell aseither Assumption 2.3or Assumption 2.5,hold. If B isbounded,
then there exists ¢* = ¢*(c) such that

u(B,c)=EU(VE® — B) < o0,
where

(5) u(B,c):= sup EUWVS? - B),
$ed®U,c,B)

and ®(U,c, B) is the set of dtrategies ¢ € ® such that the expectation
EU(VS? — B) iswell defined.

See the end of Section 5 for a proof.

3. Absence of arbitrage. Proposition 3.1 suggests that (NA) cannot be
dropped in Theorem 2.7 above.

PrRoOPOSITION3.1. If U is drictly increasing and (NA) fails, there is no
maximizer ¢* = ¢*(c) such that u(c) = EU(Ve'?") < 4o0.

PROOF  Take a strategy violating (2). Then
EU(VEY ) = EU(VE? +VR0) > EU(VEY),
contradicting the optimality op*. O
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ProOPOSITION3.2. Under (NA), the set D, (w) is actually a vector subspace
of R? almost surely.

ProoOF This follows from Theorem 3 of [15]. It is also easy to give a direct
argument. [

We will need a “gquantitative” characterization of (NA), see Proposition 3.3
below. This statement is implicit in [15], but it does not follow from the arguments
there. Compare also to Lemma 2.6 of [26]. Define

E, = (£ € &1 |&(w)| =10n{D; 1 # (0}, (@) € Dy11(w) s}
PropPoOsITION 3.3. (NA) implies the existence of F;-measurable random
variables g, k; > 0 satisfying
(6) Vpe&  PUp,AS4)<—BlF) =k on{Di1# {0}
almost surely, forall 0 <t < T — 1.

PrROOF We may and will suppos®, 1 # {0} a.s. Fixt and a sequence
8, \ 0. Define

A, = {a):essjan((p, ASi+1) < =6, F) = 0}-

PEE;

The essential infimum is actually attained by sopje= E;. Indeed, takek ¢ ch
such that

I@ilwmﬁA&H)<—%Wﬁ=a§mwunA&H)<—%Wm

PEE;

apply Lemma A.2 to obtain a random subsequefifeonverging to some;.
Define

Bi:={(py. ASi+1) <=8}, B:={(p}, ASi+1) < =8},

and check thaB C liminfg By, so liminf; I, (w) = Liminf, B, (®), and the Fatou
lemma guarantees that

P({py. ASi41) < —8n|F) < |i1£n P({Py, ASi41) < —=8,|F0),

so p; attains the essential infimum.
Clearly,A,+1 C A, set

A= () An.

n=1
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We shall showP (A) = 0. If this were not the case, one would have a random
subsequencg; of p* converging to some. A Fatou lemma argument as above
shows

P((p, ASt11) < 01F7) < liminf P((Dy, ASi41) < —8,|F) =0
on A, so, necessarily,
P({pla, AS;11) = 01F;) =1,
hence, (NA) implies that
P({(pla, AS;11) =01F) =1,

which contradicty € D1, thus, indeedP (A) = 0 must hold.
Define

o0
Bri=) dulyciac  With Af =2
n=1

This is an almost everywhere positive function ByA) = 0 and it is easy to see
that

Vpe&  P(p.ASi1)<—B|F)>0  as. O
The condition in Proposition 3.3 is actually equivalent to (NA).

4. Optimal strategy for the one-step case. Let V(x, w) be a function from
R x € to R such that for almost atb, V (-, w) is a nondecreasing (finite-valued)
concave function an@ (x, -) is £-measurable for any fixed. Let # C ¥ be
a o-algebra containing?-zero sets. Let” be ad-dimensional random variable.
Denote by E the family of #-measurabled-dimensional random variables.
Introduce

E:={£ € B:|5(w)|=1, on{D # {0}, £(») € D(w) a.s},

here D denotes the smallest affine subspace containing the support of the
conditional distribution oft with respect ta# (see the Appendix). We suppose
that D is actually a vector subspace a.s. and that

(7) Vpek& P((p,Y) < —8|H) >« on|{D # {0}},

with some#-measurable random variabless > 0.

This setting will be applied in Section 5 with the choic®# = #,_1,
D = D,,Y = AS;; V(x) will be the maximal conditional expected utility from
capitalx if trading begins at time.

Assume that, for alk € R,

(8) EV(x)> —o00,
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and that
(9) essSUlE (V(x + (£, Y))|H) < oo a.s.
E€cE
Finally, suppose that almost surely, for alE R andA > 1 both,
(10) V(ax) <AV(x)+C)\Y, V(x) <AV (x)+ CAY

hold for some constants > 0 and O< y < 1. The first inequality will be used for
negative, the second for positive valuesiaf).

REMARK 4.1. We may interpre¥ as a random element taking values in
a Lusin space (see lll. 16 of [6]): one can identify the $ebf nondecreasing
concave function® — R with a Borel-subset oR"; if U is a nondecreasing
concave function, then let the corresponding elemeiittbbe

(U(q1).U(q2), ...),

where(g,).en IS a fixed enumeration dp. We leave the details to the reader, as
we need this fact only once, in the proof of Proposition 4.6.

Now we briefly sketch the strategy for proving the existence of an optimal
portfolio in the one-step case. After constructing regular versions of certain
functions (Propositions 4.2 and 4.4), a sequehde, w) is chosen along which
the optimal expected utility of (9) is attained. We project strategieslon
(Proposition 4.6) and show [using (7) and (10)] that we may suppns$es K
for some#¢-measurabl&k (Lemma 4.8). Then a compactness argument provides
the limit & (Lemma 4.9), which turns out to be an optimal strategy.

PrROPOSITION4.2. Let& € B befixed. There exists a version of
x— E(V(x+ (&, Y))|J€),

such that it is a nondecreasing upper semicontinuous concave function ( perhaps
taking the value —o0), for almost all w.

ProOF We fix a version ofF (¢, w) := E(V (g + (£, Y))|#) for g € Q. The
following inequalities hold almost surely for any pairs< g of rational numbers:

Flqy + F
Fq) < F(q2). F(ﬂ;%)Z @0+ Flaa)

Let us fix aP-zero setV such that outside this set, the above inequalities hold.
Extend F (-, w) on the real line for eacly € Q \ N as an upper semicontinuous
concave function (taking possibly the valueo). Fix x € R and rationalg, \ x.

The monotone convergence theorem yields

F(x) =1lim F(gn) =lim E(V(gn + (£, Y)|H) = E(V (x + (5, Y))| ).

showing thatF is, indeed, as required [
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REMARK 4.3. It is actually possible to prove the existence abatinuous
version (taking possibly the valueoo). It is also clear that the version constructed
above is almost surely continuous for al y if y is such that

E(V(y+ (£, Y)|H) > —00 a.s.

PrROPOSITION4.4. Thereisafunction G: Q2 x R — R whichisa version of

esssuE(V(x + (&, Y))|H)

ekl

for each fixed x € R and which isa nondecreasing finite-valued concave (a fortiori
continuous) function for almost all w.

PROOFE As in the previous proof, we construct a versiaiig, ) of the
esssup foy € Q and extend it orR as a function which is increasing, concave
and finite-valued [by (8) and (9)], hence, continuous. FixR and a sequence of
rationalsg, ' x. Monotone convergence shows that

G(x)=lim 1 G(gy) =limesssuE(V (g, + (£, Y))|H)
n n o gem
=essSuE(V (x + (&, Y))|H#),
E€E
the proposition is proved.[

We construct a sequence of strategies converging to the optimal value for all
x eR.

LEMMA 4.5. There exist B(R) ® Jf-measurable functions &,(x, w) and
suitable versions G, (x) of

E(V(x + (& (x), Y))|H#),
such that outside a fixed P-zero set, we have, for all x € R,
(11) lim_ E(V (x + (5,(x), Y))|7#) = G (x),
where G(x) is the regular version of esssup_g E(V (x + (&, Y))|#) figuring in

Proposition 4.4. The limit is attained in a nondecreasing way.

PROOF It suffices to prove this fox € [0, 1); in an analogous way, we get
sequenceg, for all the intervaldn, n + 1), n € Z and then by “pasting together,”
we finally get an approximation all along the real line.

Fix a versionG (-, w) of the essential supremum given by Proposition 4.4. First
let us notice that, for fixed € R, the family of functions

(12) E(V(x + (£, Y)|H), ek
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is directed upwards, so there is a sequepge) € E such that
im A E(V(x + (na(x), Y))| ) = e§5§urE(V(x + (&, YDIH),
ex

almost surely. Let us fix such a sequence for each dyadic ragoad0, 1). Now
set

&o(x, w) :=0.

Suppose thady, ..., &,—1 have been defined, as wellagx w)forO<x <k/2"
for some O< k < 2” — 1. Fork =0, we setf, (x, w) := ;c ,x €[0,1/2"), where
K is chosen such that

E(V ({2, YD) = E(V ((a-1(0), )| ) V E(V ((12(0), Y))| ).

Fork > 1, we set
k k+1
k
gn(xv Cl)) ':Kn (C()), X € |:2n 2}’1 >’

wherex* e 2 is chosen in such a way that
E(V(k/2" + (k. Y))| )

(
(v (e (5
- UCRACIRNEY
(o +fes () 1)),
almost everywhere. This is possible, as the family (12) is directed upwards.

Using Proposition 4.2 and Remark 4.3, take versions of the conditional
expectations

Gp(x, ) :=E(V(x + (5,(x), Y))|#)(®),
which are nondecreasing, concave and finite-valued on intervals of the form
[k/2", (k +1)/2"),0 < k < 2" — 1. Proposition 4.4 and (13) show that there
is a P-null set N such that, outside this sef(-) is continuous, the functions
G, (x) are nondecreasing in and continuous on subintervals of the fofip2",
(k+1)/2"),0<k <2" -1, forn € N. By the definitions ofy, (x) and&, (x), we
see immediately that (outside anothieizero setV’), for all dyadic rationalg;,

G(g) = lim 1 E(V(q + {&(q), V))13¢) = lim_1 Gu(g).

Consequently, outsid& U N’, the sequencé&,, (x, w) is nondecreasing in, for
all x € [0, 1). For anyx € R and dyadic rationalg; < x < g2,

Gu(q1) £ Gu(x) < Gul(g2)
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outsideN, so, necessarily,
G(qu) < liminf G, (x) <limsupG,(x) < G(q2),
n

outsideN U N’. The functionG being continuous at, we get convergence at each
pointx € [0,1). O

PROPOSITION4.6. Let & € E. Then £ € E, where £ (w) is defined as the
orthogonal projection of & (w) on the subspace D (w), for all w. Furthermore,

E(V(x+ (§, YNIH)=E(V(x+ (£, Y)|H)
holds almost everywhere for each x.

PrROOFR It is a standard exercise with the measurable selection theorem
(Il. 44 of [6]) to show that there exisR?-valued random variables;(w),
1 <i <d, which almost surely spab(w). Define the random set

{(w,x):x € D(w), (E(w) —x,0i(w)) =0,1<i <d}.

Almost surely it consists of one poirf(w), hence, it is the graph of a function
which is measurable, again by 1ll. 44 of [6].

We consider the random eleméiit, Y) € V x R? (see Remark 4.1) and denote
its regular conditional probability with respect£6 by R(dv, dy, ») (see page 36
of [12] for an existence proof). Let itg-marginal be denoted by (dy, w).
We fix any w € Q such thatR(, -, w), X (-, w) are measures. By the measure
decomposition theorem of Dellacherie and Meyer ([6], lll. 70-73), we have that

R(dv,dy,w) = Q(dv,y,w)X(dy, w),
for a suitable stochastic kern@l. We have

EWVG+E I = [ [ o+ E3)0wr.y.0)Xdy.)
and

EVG+E IR = [ ] o6+ (63D 0w, v )X (dy. o).

The integrands differ only on the sBtx 'V, whereB := {y: (y, &) # (y, £)}. By
the definition ofD, X (B, w) = 0, hence, the two integrals above are equal, which
is just the statement of the propositiori]

LEMMA 4.7.
liminf essinfP(V(=N) < -1, (p, Y) < =8| F)

N—oo peg

>essinfP((p,Y) < —8|H).

pel
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ProOE Clearly, V(—N) — —oo almost surely agv — oo. The essential
infima are attained by somg(N): this can be shown just like in Proposition 3.3.
So it suffices to prove

liminf P(V(=N) < =L (p(N). Y) < —38|3¢) = essinfP((p. ¥) < —5|.3),

pel

which follows again by taking a convergent random subsequence and the Fatou
lemma. O

LEMMA 4.8. Let usfix xg, x1 € R, xg < x1. There exists an #-measurable
randomvariable K = K (xg, x1) > 0 such that, for any &£ € E satisfying & € D and
|€] > K a.s., we have almost surely

Vxo<sx<x1  E(Vx+(7Y)—Vx)|H)<O0.

PrROOFE Take¢ € E, |€] > 1 and fix a version of
E(V(x+ (5, Y)|H),

as given by Proposition 4.2. By (10), we have the following estimation for any
X0 <x <Xx1:

Voo e =vE (x (rfiel) = v (v (o)

=6 (i + (7))
+ 201 = g2y (s (v het).

Now observe that Lemma 4.7 and (7) entail that there igameasurable random
variableNg > 0 such that

(14) essinfP(V(—No) < —1,(p,Y) < =8| H)(w) > /2.

PEE
Then

_ X1 3 A—y)/2

(v (gt + (g )" ) = -Eamis
where
§ x1 _
B:={<|§| >< —§,V(—Np) < —1, @ HS V>/25<—No}.

Putting together our estimations so far,
(15) E(V(x + (£, Y)|H) < |§|VE<V+<x1+<é| >))J€)

(16) +2C|E|Y — || T2 2,
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as soon as
(17) aE

g @n2g o
|&|L+r)/2 51 o <—No

Let Ko(w) > 0 be an#-measurable random variable such that (17) is true for
|€] = Ko. We shall show in a minute that the first term on the right-hand side
of (15) is smaller thard.|£|” for some#f-measurabld. (w) > 0, so this right-hand
side is smaller thal' (V (xg)|#), provided thaté| > K1, for some#-measurable
K1(w) > 0. Finally, we may conclude thatK := Ko Vv K1 Vv 1, then the statement
of Lemma 4.8 holds.

It remains to estimate the first term of the right-hand side of (15). Introduce the
following vectors fori € W := {—1, +1}:

0/ :=i(j), j=1,....d.
It is easy to see that

VI +(p, Y) < m%XV“L(n + (0, Y)),
[AS]

foranyp e R4, |p| < 1. Hence, the term in consideration is smaller than

(18) E17 Y E(VT(xp+ (6, Y)IH) =: €]" L(w),
ieW

andL is finite by (9). O
LEMMA 4.9. There exists a B(R) ® F#-measurable function &(x, w) such
that, for all x e R,

E(V(x + (E(x),Y))|#) = essSUE (V (x + (£, Y))|#).

EcE

PROOF It suffices to prove this, for example; € [0, 1), then one can
“paste together” the optimal strategy fare R. We take an approximating
sequencé, as provided by Lemma 4.5, then change to the projecégfiiguring
in Proposition 4.6. Using Proposition 4.2 and the structure, of the approximating
seguence, one can see that there are suitable versions of

E(V(x + (€ (x), Y))|#),
such that almost surely,
Vxe[0,1)  E(V(x+ (E.(x), V)| H) > G(x), n— 00.

Then takexg := 0, x1 := 1 and truncaté, : the strategies

M = Enlyi, 1<k (vo.x1))
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do at least as well as the original sequence since by Lemma 4.8 (and using suitable
versions of the conditional expectations) almost surely,

Vxel0l)  E(V(x+ (&), )IH) < E(V(x+ (0. (x), Y))|H).
Again, for suitable versions of the conditional expectations, we almost surely have
Vx €[0,1) E(V(x + (n,(x), Y))|H) > G(x), n— 00.

Now use Lemma A.2 to find a random subsequeice n,, of n, converging
to somet. Apply the Fatou lemma (we shall justify its use in a while):

E(V(x + (E(x),Y))|#) = imsupE(V (x + (ix(x), Y))|#)  a.s,
k

for each fixedx. By construction, almost surely
Vx  E(V(x+ @), Y)|FH) > E(V(x + (&, (x), Y)) | H),

so the definition of essential supremum and the construction imply that, for each
fixedx e R,

E(V(x+ E@), Y)|H)=Gx),

that is,G (x) is a version of the conditional expectation.
It remains to check that one is allowed to use the Fatou lemma. This can be
shown as in Lemma 4.8: take thg i ¢ W defined there and estimate as follows:

VI + (. YD) <maxVi(x + K (6. Y) < D Vi + K6, 7)),
ieW ;
ieWw
for eachn, hence,
E(maxv+(x + (iin, Y))|J€) <> E(V'(x+K(6,Y)|H) < oo,
" iew
dueto (9). O
PROPOSITION4.10. Theé constructed in the proof of Lemma 4.9 satisfies
G(H)= E(V(H + (§(H), Y))|J€) = esssu;E(V(H + (&, Y))|J€) as.,
E€E
for any #¢-measurable R-valued random variable H; here G is the function
constructed in Proposition 4.4.
PrROOF One may suppose, for exampk,e [0, 1). Fix n € N. Clearly,
(19) Gu(H)=E(V(H + (&,(H).Y))|#)  as,

for step functionsH, see the proof of Lemma 4.5. For genefdl| take step
function approximationg?; \ H, I — oo such thatH; € [k/2", (k + 1)/2") on
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the set{w: H(w) € [k/2", (k + 1)/2")}, for all 0 < k < 2" — 1. The strategies,
are piecewise constant;,(H;) — G,(H),l — oo by piecewise continuity, so
monotone convergence implies (19) for gengtlalNow the proof of Lemma 4.9
shows
Gn (H) < E(V(H + (nn (H), Y))|H)
almost surely, for each e N. Lettingk — oo, we get, by Lemma 4.5,
G(H)<E(V(H+ (EH),Y))|#) as.

The left-hand side of the second equality in the statement of Proposition 4.10 is
clearly not greater than the right-hand side, so we only need to show that for fixed
& € g,

(20) G(H,w)> E(V(H + (§,Y))|¥) a.s.

For step functionsH, (20) is clearly true. Taking step functiorf$, \, H, the
left-hand side converges by path regularityfthe right-hand side by monotone
convergence. [

5. Dynamic programming. First we need an easy fact abdit

PrROPOSITIONS.1. Let U satisfy Assumption 2.3. Then there is a constant
C > 0 such that U satisfies for all x and all A > 1 both of the following
inequalities:
(21) U(x) <AU(x) +CLY,
(22) Ux) <A'U(x)+CA.

PROOFE Obviously (21) holds true for > X, sincer > 1Y and O< y < 1. As
U is nondecreasing, (2.3) implies that

(23) UQx) <UOX) < AU (X),

for 0 < x < x, so we may seC := U(x). For x < 0, we have the following
estimation by concavity:

Ux) <U@x)+ U (x)(A—Dx <Ux)+ r—1(Ux) —U(0)) =AU (x).

Now (22) is clear forx > 0 by Assumption 2.3 and (23). Finally, (22) fer< 0
follows from (21), since in this cagé (x) <0 andAY <i. O

We would like to perform a dynamic programming argument in a non-
Markovian context just like Evstigneev [7]; establishing that some crucial
properties ofU are preserved by/;. In particular, the “asymptotic elasticity”
conditions (21) and (22). In continuous-time models such preservation properties
are studied in Lemma 3.12 of [20] and in section “Dynamic version of the utility
maximisation problem” of [27].
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ProPoOSITION5.2. The functions U;,0 < ¢t < T have versions, which are
almost surely nondecreasing, concave, and satisfy (21) and (22),aswell as
(24) EU;(x) > —o0, xeR,0<t<T,

(25) U (x) < 00, xeR 0<t<T.
Thereexist B(R) ® F;-measurable functions §,+1, 1<i < T suchthat
(26)  VxeR  Ui(x,0)=E(Uia(x + E1(x), ASi1)) | 7).

PrROOF Going backwards fron¥" to 0, apply Lemma 4.9 with the choice
V.=U, ¥ =5%F;_1,D .= D;, Y := AS,. We need to verify the conditions of
Section 4:D is a random subspace by Propositions 3.2 and A.1; (7) follows
from (6); (8) and (9) will come from (24) and (25); (10) is a consequence of (21)
and (22); (25) follows from Assumption 2.1. We will check (21), (22) and (24) ina
little while. Denote the resulting of Lemma 4.9 byg,, 1<t < T, it satisfies (26).

Good versions exist by Proposition 4.4. Foe T, (22) holds because of
Proposition 5.1 and far < T, by

U_10wx) = E(U; (Ax 4 (& (x), AS))|Fi-1)
<A (E(Ui(x + (& Ox) /X, AS))|Fi—1) + C) <AV (Uy—1(x) + C).

We get (21) in the same way. It remains to establish (24): the statement is true,
since

(27) Ur(x) > E(Ui41(0)|F) > - > Ur (%),

and the latter is deterministic..C]

Now setp] := £1(c) and define inductively
5 t
b= $t+1<c+ Z(cbjf, ASj>>, 1<t<T-1
j=1

Joint measurability of, assures that* is a predictable process with respect to
the given filtration.

PROPOSITIONS.3. For any strategy ¢ € ®(U, x),
(28) E(U(VE)Fo) < E(U(VE?) | Fo) = Uo(o).

PrROOF Rememberind/r = U and using Proposition 4.10, we may rewrite
the right-hand side of (28) as follows:

E(Ur (Vi) F0) = E(E(Ur (V2?) + (5. AST))| Fr-1)| Fo)

= E(Ur-1(V5'*))|1%0).
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Continuing the procedure, we finally arrive at
E(U(Vy?)1%0) = E(U1(V})1%0)
= E(U1(c + (¢7, AS1)|F0) = Uo(c).

We remark that all conditional expectations below exist by the definition
of ® (U, x). By the definition ofUr_3,

E(Ur (Vi) Fr_1) = E(Ur(VE2, + (¢, AST)IFr_1) < Ur_1(VE2).

Iterate the same argument and obtain

(29)

(30) E(U(Vy?)Fo) < Uo(o).
Putting (29) and (30) together, one gets exactly (28).
PROOF OFTHEOREM 2.7 UNDER ASSUMPTION2.3. Proposition 5.3 shows
thatu(c) = EUp(c) and¢™(c) is an optimal strategy. (]
PROOF OFTHEOREM 2.7 UNDER ASSUMPTION2.5. Define
Ux):=U@x+%) —U®R).
Assumption 2.1 holds for this new function and an optimal strategy/furnishes

one forU. U(O) =0 and ifx <0, we have, by Assumption 2.5 far> 1,

U(ix) < x1+“U(x + %) —U®X)

< x1+°’0(x —~ (1 —~ %)x)

Let us introduce the notation

so we have
UQwx) < A0 (x + %),

for x < 0. An argument similar to that of Proposition 5.1 above and Lemma 6.3
of [20] shows that, for alk € R,

U(x) < 20 (x + %),
U(x) <AU(x + x).

Replacing Proposition 5.1 by the two inequalities above, only minor modifications
are needed in the estimations of Lemma 4.8 and Proposition 5.2, otherwise the
proof of Theorem 2.7 goes through for. [
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PROOF OFTHEOREM?2.8. IfU is strictly concave, the functiorig, are easily
seen to be strictly concave too. Now unicity has to be proved by forward induction.
Let us suppose that; € Eg, ¢; € D1 a.s.,i =1, 2, such that

E(Ux(c+ (¢i, AS1))) =u(c)
for i = 1, 2 with a given fixed. Then for the strategys := (¢1+¢2)/2, we obtain
EUi(c + (¢1, AS1)) + EUr(c + (92, AS1))

EUi(c + (¢3, AS1)) > > > u(c),

by concavity. By the definition ofi(c), only equality is possible, hence, strict
concavity implies that, necessarily,
(¢3, AS1) = (P2, AS1) = (¢1, AS1) a.s.
But this implies that actuallgs — ¢» € Df, which is only possible if
$1—¢2=0 a.s,

as required. The induction step is identical, one has to apply the induction
hypothesis and consider

EUL(VSY + (91, AS))
for ¢; € E,_1, ¢; € D; a.s.,i =1, 2. The above argument shows = ¢» almost
surely. [
PROOF OFTHEOREM2.10. First suppose Assumption 2.3. Let us define
Ur(x,w):=U(x — B(w)),

andU;,0 <t < T — 1 in a respective manner. Boundedness3aoiind Assump-
tion 2.1 imply (1). Furthermore, observe thati€ R is such that > |B| almost
surely, then by Proposition 5.1,

Ur(Ax) =U(x — B) <AU(x — B/A) + CAY
<AUx—B+)+CA =AUr(x+4£)+C\
and
Ur(Ax) <AYUr(x +£) + CA7,

for all A > 1. Hence, it is easy to see that, apart from trivial changes in the
estimations of Lemma 4.8 and Proposition 5.2, the arguments of Sections 4 and 5
go through. Under Assumption 2.5, we use

Ux):=Ur(x+%—£—B)—Ur(E—{—B),
and the proof of Theorem 2.7 under this assumption (see above) gives
UGwx) < 2AMe0(x — x4 20),
U(x) <2U(x — %+ 20),
the same arguments work almost without modificatiors.
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6. Utility based pricing. We are looking for equivalent martingale measures,
that is, Q ~ P such thatS is a Q-martingale, using utility considerations. This
approach has already been pursued by, for example, Davis [5], Frittelli [8] and
Hugonnier, Kramkov and Schachermayer [14], and goes back to principles of
economic theory, see [13].

Recently Schal [29-31] have investigated this method in the discrete-time
context. A natural candidate for an equivalent martingale measure is

dQ  U'(ve?)
(31) — = 7TC¢*,
dP EU/(vi?)
whereg¢* is the optimal strategy for initial capital

REMARK 6.1. Unfortunately, in several cases, formula (31) fails to provide
a martingale measure, even for a “nicg”. Let us fix, for examplel (x) :=
1—e,T:=1,c:=0andletAS; be symmetric and not integrable. Then

Ee %251 = o0, ¢ R\ {0},

the optimal strategy is given hy; := 0, the correspondin@ is P itself; but P is
certainly not a martingale measure!

THEOREM 6.2. Let us suppose that U satisfies either Assumption 2.3 or
Assumption 2.5 and that it is strictly increasing and continuously differentiable.
Furthermore, assume that S satisfies (2) and is bounded. If Assumption 2.1is met,
then (31) defines an equivalent martingale measure.

Before proving this theorem, we need several auxiliary assertions. First notice
that, by Theorem 2.7, there is an optingél

PROPOSITIONG.3. Let f:R¢ — R aconcave function. Then

/

T Sls_sl'Hf(s)_f(H ; __5|>‘v‘f(s')—f(s/+ Ei;ﬂ)

for |s — 5’| < 1.

PrROOF We see that, for any € [0, 1],

16 = £6) =16 = (b + 15

so concavity implies that the left-hand side is not greater than

ror-r - a-nr(* ) =a-n(ro - r(52)

(s" — /\S)>,
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Let|s —s’| <1l andletusset:=1—|s —s’|. We obtain

76 =16 =l =156 - £+ o )

s — 5|

The statement of Proposition 6.3 now follows by interchanging the roles of
sands’. O

From now on, we use notation and assumptions of Section 4, as well as
hypotheses of Theorem 6.2. In addition, suppose that for almost, all(-, »)
is continuously differentiable; is bounded and

(32) —00< EV(x+(y,Y)) <o0,

forallx e R, y € RY.

PROPOSITIONG.4. The function
(x, ) = E(V(x + (y, )| #)
hasaversion H (x, y, w) which is continuously differentiablein (x, y) € R4+,
HH(x,y,0)=E(V'(x+ (y, Y)HY'|H#), 1<i<d,
where 9; is the derivative with respect to y’,
(33) WHx, y,0)=E(V'(x + (y, Y)|H).
Furthermore, for any & € E and any #¢-measurable R-valued r.v. X,
H(X, &, w)=E(V(X+ (£, Y)|#),
G H(X, €, 0)=E(V'(X+ (£, Y)Y |H), 1<i<d.
So onehasalso
E(V/(X 4+ (E(X), Y))Y'|#) =0, 1<i<d.
PROOF We confine ourselves to the case= 1 andx, y € [0, 1]. First apply

Proposition 6.3 with the choic€ :=x + yY,s :=x + (y + h)Y for h € R such
that|hY| < 1:

[Vix+ G +hY)—Vix+yY)]
|

(34) <IYH|[V(Ex+OG+nY)| +Vx+yY)l}
YV +yY + DI+ |[V(x+ v+ b)Y +1)]}.

Condition (32) implies that the right-hand side of the above inequality &lin
Hence,

Vix+ (o +h)Y)—V(x+hY)
h

Vv’ Y)Y = lim
(x+y ) h—0
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is also inLt, even sup (o1 |V'(x + yY)Y| is in L*. A similar argument works
for (33).

Now apply Lemma A.3 and obtain a continuously differentiable versioH of
Notice that the second assertion is clear for step functi&ng and we
may also suppos&, & > 0. Taking arbitrarys¢ > 0 and increasing step-function

approximations, &, we get

01H(X,§,) — 01H(X,§)
by continuity and
E(V(X+&Y)Y|H) = E(V(X+&YDYT|H) - E(V (X - Y)Y |H)
— E(V/(X +EY)Y|H)

by monotone convergence. The above reasoning Xor ” X and & fixed
completes the argument. The analogous statemer# fimilows in a similar way.
In the present case, Lemma 4.9 giveB-aero setN such that

(35) Y x H(x,é(x),w):G(x,a)), w€eQ\N,

whereG is as constructed in Proposition 4.4.
From the definition ofG and by continuity oiG, H,

(36) Vx,y H(x,y,0) <G(x,w), weQ\ N,
outside another zero-sat'. Now the last assertion follows by the optimality&f
O

We improve on Proposition 4.4 next.

PROPOSITIONG6.5. Thefunction

x — €SSSUE (V (x + (£, Y))|H#)

EeckB

has a version G (x, w) which is almost surely continuously differentiable and, for
any J¢-measurable R-valued random variable X,

G(X,w) =esssuE(V (X + (&, Y))|H).

EeE
Also,
(37) G'(X,w)=E(V'(X + (E(X),Y))|¥).

PrRoOOF TakeG as given by Proposition 4.4. From Proposition 6.4,

s H(s,y,w)=E(V'(s+ (y, V)| H).
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Now we borrow a trick from Theorem 4.13 of [30]. Outside a null set, fox ahd
foranyh e N,

G(x+1/h) —G(x)>H(x+1/h, Ex)) — H(x,&(x)),
see the end of the proof of Proposition 6.4. Letting> oo, we find that
0 H(x,E(0) = G'(x—) = G'(x+) = 8 H(x, £ (x)),
by smoothness of/, so G is indeed smooth almost everywhere, a similiar
argument assures that one can plignto G'. O

PrROPOSITIONG.6. The functions U, 0 <t < T, have continuously differen-
tiable versions which also satisfy (32). Furthermore, we have for 1 < i < d and for
1<r<T,

E(U/(X + (&/(X), AS;))AS!|F,_1) =0,
for any #;_1-measurable X.
PRoOOR Fort =T, the first two assertions are clear &ss bounded. The

rest follows by Propositions 6.4 and 6.5 and backward induction; (32) holds true
because of (8) and Assumption 2.1

PROOF OFTHEOREM6.2. We need to check that, foralkOr <7 — 1,
E(U'(vi?)1F) = U](vE?).

Indeed, this follows by backward induction and (37). We also get, by an estimation
like (34), that

Uye) = E(U' (Vi) Fo)

is in L1, thus, Proposition 6.6 implies that ti@ defined by (31) is an absolutely
continuous martingale measure. Bss strictly increasing and concavi, never
vanishes, s@ is equivalent taP. O

7. Ramifications. We would like to check that Theorems 2.7 and 6.2 hold in
concrete, nontrivial classes of models. L&tdenote the set of random variables
with finite moments of all orders.

PROPOSITION7.1. Let ussuppose Assumption 2.3 (or Assumption 2.5),

(38) Mix|7'<U'(x) < K(x[F + 1)

for some k,/, M, K > 0; and that U is continuousdly differentiable and strictly
increasing. Furthermore, assume that for all 0 <r < T, we have |AS;| € M
and (NA) holds such that 8;, x; of Proposition 3.3 satisfy 1/8;,1/«x; € M for
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0<t=<T —1 (this applies, in particular, when «;, = «, 8; = B deterministic
constants, e.g., when S has independent increments).

Then Assumption 2.1 holds; for every initial endowment ¢, there exists a strategy
¢*(c) such that

u(c)=EU(VE?) < o0,

and (31) defines an equivalent martingale measure.

ProoFr We shall check that the arguments in the proofs of Theorems
2.7 and 6.2 work. The main point consists in establishing a more “quantitative”
version of Lemma 4.8. Suppose Assumption 2.3, the case of Assumption 2.5 is
analogous.

We shall show by backward induction that, for alkG < T andx € R,

(39) Ui(x) < E(U(x 4+ A+ 1x[%) )| F7),

(40) Ui(x) <o0 a.s.

41) 35 e Ui) = E(Ua(x + (1), ASi41)1F),
(42) E+1(0)] < (L + x[*)9y,

(43) U, is continuously differentiable

(44) U/(x) = E(U] .1 (x + (E41(x), ASi11)) | 7).

whereg;, o; > 0 constantsyp;, ¥, € M.

Suppose that the above statements are truetfdrand proceed by the induction
step (the case= T is trivial). Estimations of Lemma 4.8 [(14), (15), (17) and (18),
in particular] show that, for ang € E;, ¢ € D;+1, |[¢| > 1,

E(Urs1(x + (@, ASia))|Fr) <161 L(x) +2C|¢|" — |¢| 72, /2,
whenever

(45) essinfP (U, 1(1x] — 1917/28,) < =1, (q, ASi41) < —BilF2) > k1 /2,

qEE;

andL(x) is defined as

L(x):= Y E(U,(x + (6, ASi11)|F7).
ieW

EstimatingL (x) from above by (39) as
L(x) <2PEUT (Ix] + [1+ (x| + Vd|AS141]) " or11) | F7)
< 29U (O E(Ix| + [1+ (x| + ‘/3|Ast+l|)§t+l]9t+l)|?}),
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we conclude thaL (x) < (14 |x|*)J, wherew > 0, J € M. Turning our attention
to (45), let us use concavity, the induction hypotheses, (39), (42) and (44), while
supposingd¢|=7/26, > |x|:

Urra(1x] — 191E77728,)
< U;41(0) — U1 (0) (|91 T7728, — |x))

< E(U(pr+D)|Fr41) — E(U' ()| Fi11) (19127728, — |x)),

whereW € M. DefineN1, No € M by
AE (V| F; 4EU Fi
Ny = (V| t)’ Ny = (U (pr+2)] z)'
Ky Kt

The Markov inequality then assures

P(V < N1, E(U(pr41)| Fr41) < N2|F1) = 1 —k; /2.
Hence, by (6) and the above considerations,

essinfP (Uyy1(|x| — 19117/28,) < =1, (q, AS,) < —B|F7)

qEE;

> essinfP (U'(N1) (8161472 = 1x]) > 1+ Na,
qEE;
E(U(prDIFi41) < Na. W < N1, (g, AS,) < —f/|F7) = x1/2,
provided that
1+ No )
46
(46) 1= | (e + 1) /8

Note that, due to (38), condition (46) is met as soon¢ds> (1 + |x|*)® for
somes > 0,0 € M.
Choosep so large as to have

|97 L +2C|¢|" — || 72, /2

i|2/(1—J/)

K
< —mE([m + L+ x5 o1 YU F) < E(Uipa(0) | Fr),

where we used (39) and (38) in the second inequality. Again, by the bound on
L(x), this gives a condition ofyp| which is polynomial inx and involves terms

in M, that is, the essential supremuii is attained by portfolios satisfying (42)

for appropriatex,, ¥, given by the tedious estimations above. Now it follows that

if ¢ satisfies the bound (42) then for suitable- O, p; € M,

E(Uis1(x + (@, AS)IF)
< E(U(x + L+ [Ix] + || AS 115 pr41) 1 F7 )
<EU(x+ @+ [x")p0)|F) <UO)VE(]x| + (1 + |x|%) o | F2),
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which shows (40), as well as (39), and the arguments of Section 4 provide an
optimal &,1(x) which satisfies (42). Skipping through arguments of Section 6
(Proposition 6.4), it becomes clear that for establishing the differentiability; pf

one needs the integrability of something like

sup U/ 1(x 4+ yAS 11)|ASii1l.
x,y€la,b]

(We have switched to dimension 1 andy € [a, b] without loss of generality.)
The above quantity is smaller than

|AS 411U (= p(|AS+1]1X)) < |1+ [AS41] + X6

wherep(x) > 0 is a polynomial ofc; » > 0 andX € M [see (44), (42) and (38)],

and this is indeed integrable. So the arguments of Section 6 apply, (43) and (44)
follow. Finally, EUp(c) < oo is deduced from (39); the existenceddf(c) and Q

follow just like in Sections 5 and 6.00

r
’

NOTE ADDED IN PROOF With a different argument it is posible to get rid of
the left-hand side inequality in (38).

REMARK 7.2. Analogous arguments show thatSiis bounded, (NA) holds
with k; = k, B; = B deterministic constants in Proposition 3.3 and either one of
Assumptions 2.3, 2.5 holds, then Assumption 2.1 is true and there eksisded
optimal strategy*.

We now demonstrate that, even under (NA), the expected utility maximization
problem does not necessarily admit an optimal portfolio.
ExaMPLE 7.3. Define a strictly increasing concave functiérby setting
U@© =0,
U’ (x) :=l+1/n2, xemn—-—Ln]l,n>1,
U@x):=3-1/n’>, xemn+1,n<-1
Take
So:=0, P(S1=1)=3/4, P(S1=-1)=1/4.

One can calculate the expected utility of the strategy= n, n € Z with initial
capitalc = 0:
3U(n)+ U(—n)
4

1 " .2 i .2 - .2
:Z<3n+3j§:11/1 —3n+Y 1/ ):;1/1 : n=>0;

j=1

EUnS1) =
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and

—n —n —n
EU(nSy) = %1(9;1 +33 1/j%—n+)Y 1/j2) =>"1/j*+2n, n<O.
j=1 j=1 j=1

This utility tends to

il/ﬂ:nz/e

i=1
in an increasing way as— oo. In fact, it is easy to see that the function

$1— EU(¢151), preR

is increasing inp1, SO we may conclude that the supremum of the expected utilities
is 72/6, but it is not attained by any strategy. It is clear that one can construct a
similar example witiU’ continuous and’ strictly concave. It would be interesting

to find the minimal conditions o/ which assure the existence of an optimal
portfolio under (NA) and Assumption 2.1.

REMARK 7.4. In Section 6 we have proven for boundéda certain
“individual” version of the fundamental theorem of asset pricing: absence of
arbitrage implies that an agent of subjective utilify finds an equivalent
martingale measure computed from his or her optimal investment strategy. In the
light of Proposition 7.1, we might relax the assumptionSoAn interesting special
case is wherl/ (x) := x, x < 0 and otherwisd/ and S satisfy the assumptions of
Proposition 7.1. Then we get a martingale measure &ifid P bounded [due to
the fact thatU/(x) < 1]. That is, in this particular model class we have reproved
the result of Dalang, Morton and Willinger [4].

REMARK 7.5. Using Proposition 7.1 with a suitablé such thatU (x) = x,
x > 0, one obtains a martingale meas@dre~ P such thatd Q/d P > h for some
constantz > 0. This result seems to be new and did not follow from the generic
functional analytic approach to the construction of martingale measures (i.e.,
separation theorems). Note that, just like in Remark 7.4, we rely on the fact that a
larger class of utility functions is allowed, see Remark 2.9.

REMARK 7.6. We finally note that an optimal strategy exists under conic
portfolio constraints too. LeC be a fixed polyhedral cone iR?. If we admit
only strategies satisfying, € C for all + and define (NA),®, and so on in the
respective manner, Theorem 2.7 remains true. Modification is required only in the
Fatou lemma arguments of Lemmas 4.8 and 4.9. The chfbiee]Ri corresponds
to forbidden short sales. In this case, the argument of Theorem 6.2 provides a
measurg) ~ P such thatS is aQ-supermartingale. The fact that (NA) under short
sales constraints is equivalent to the existence of an equivalent supermartingale-
measure was first noticed in [16], see also [2, 22, 24].
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APPENDIX

Let # C ¥ be ao-algebra containing®-zero sets. Anf¢-measurableandom
set D is an element of# ® B(R?), whereB(R?) denotes the Borel sets &.
A random affine subspace D is J¢-measurable random set such tiixiw) is an
affine subspace @& for eachw.

LetY be ad-dimensional random variable apd-, w) := P(Y € -|#¢) a regular
version of its conditional distribution. Lab(w) be the smallest affine subspace
of R? containing the support Qi (-, ).

PROPOSITIONA.1. D isan #-measurable random affine subspace.

PROOFE This is only a sketch. We begin by showing that sugp®) or,
equivalently, its complement supp.(-, ) is a random set. Leg be a countable
base for the topology d&“. Then

supl’ u(- ) == J{G € $: (G, w) =0},

which proves the assertion. Actuall(w) := convsuppu(-, )) is a random
set, where cony) denotes closed convex hull. This is based on the existence
of a sequence of random variables that is dense in the random setGupp
which is provided by Theorem Ill. 22 on page 74 of [3]. Now a simple argument
(Theorem 111.40 on page 87 of [3]) shows that the closed convex hull is, indeed,
a random set.

Take a measurable selectdmw) of Z(w). Then the random set— Z contains O
in its relative interior,

[U{nz:zeZ—Z}}—Fv(a))

neN

clearly equalsD (), which proves the proposition.]

LEMMA A.2. Letn,:R x Q — R? bea sequence of B(R) ® F-measurable
functions such that for almost all w,

Vx liminf |, (x, w)| < co.
n—oo

Then there is a sequence n; of B(R) ® F-measurable N-valued functions, ny <
ni+1, k € N such that almost surely 7 (x, ) := n,, (x, @) converges for all x to
some 77(x, w) as k — oo. To put it more concisely, there is a convergent random
subsequence.

PROOF This is just a variant of Lemma 2 in [17].0
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LEMMA A.3. Let C(z,w),z € [0, 1)2 be continuously differentiable for
almost all » and measurable for any fixed z such that E sup.¢(g 12 1C(z, )| < 00
and E[sup [01C(z, )| +sup [32C(z, w)|] < co. Thenthereisa version H(z, )
of

z—> E(C(z, w)|H),

which isalmost surely a continuously differentiable function.

PROOF RegardC as a random element of the Banach sp@égo0, 1]%) of
continuously differentiable functions equipped with the norm

IfIl:=sup [f(z)|+ sup [81f(z)|+ sup [d2f(2)l.
2€[0,12 2€[0,12 2€[0,12

and the corresponding Borel-field. It is easy to see thas measurable in this
sense. Then the assertion follows from Proposition V-2-5 of [28].
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