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CRAMÉR’S ESTIMATE FOR A REFLECTED LÉVY PROCESS1

BY R. A. DONEY AND R. A. MALLER

University of Manchester and Australian National University

The natural analogue for a Lévy process of Cramér’s estimate for a
reflected random walk is a statement about the exponential rate of decay of
the tail of the characteristic measure of the height of an excursion above the
minimum. We establish this estimate for any Lévy process with finite negative
mean which satisfies Cramér’s condition, and give an explicit formula for the
limiting constant. Just as in the random walk case, this leads to a Poisson
limit theorem for the number of “high excursions.”

1. Introduction. The reflected processR = (Rn, n ≥ 0) formed from a
random walkS = (Sn, n ≥ 0) by setting

Rn = Sn − In whereIn = min
i≤n

Si, n ≥ 0,

arises in many areas of applied probability, including queuing theory, risk theory
and mathematical genetics; see, for example, [1, 2, 6] and [8]. In these applications,
the current maximum ofR,

M(R)
n = max

j≤n
Rj = max

0≤i≤j≤n
{Sj − Si},

is of particular interest; in the genetics context this is called the maximal segmental
score. The segments here correspond to excursions of the random walk above its
minimum, and, more generally, the behavior of

N(y,n) = #{excursions completed by timen whose heights exceedy}
is important. A classical result in [7] asserts that if the random walk has a finite
negative drift and Cramér’s condition is satisfied, thenN(y,n) has a limiting
Poisson distribution whenn,y → ∞ in such a way thatne−y converges to a
positive constant. In [8] extensions of this result to processes other than random
walks were given, including compound Poisson processes and Brownian motion
with negative drift. We show here that these extensions actually hold when the
underlying process is any Lévy process with finite negative drift which satisfies
Cramér’s condition.
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2. The random walk case. Let S be any random walk with finite negative
mean which satisfies Cramér’s condition, namelyE(eγS1) = 1 for someγ ∈
(0,∞). Let hi, i = 1, . . . , denote the height of theith excursion above the
minimum, that is,

hi = max
0≤n≤Ti−Ti−1

{
STi−1+n − STi−1

}
,

whereTi is theith strict descending ladder time, withT0 = 0, and letM∞ denote
the all-time maximum of the walk. Also writeT +

i , H+
i = S(T +

i ) for the weak
increasing ladder times and heights andHi = |S(Ti)| for the decreasing ladder
heights. Then Cramér’s famous estimate states that

lim
x→∞ eγ xP (M∞ > x) = C = P(H+

1 < ∞)

γE(H+
1 eγH+

1 ;H+
1 < ∞)

.(1)

(See, e.g., page 413 of [6].) Obviously, thehi are independent, identically
distributed and it is easy to deduce from the above that, in the nonlattice case,

eγ xP (h1 > x) → K := C{1− E(e−γH1)}.(2)

To see this, observe the identity

P(M∞ > x) = P(h1 > x) +
∫ ∞

0
P(h1 ≤ x,H1 ∈ dy)P (M̃∞ > x + y),(3)

whereM̃∞ is an independent copy ofM∞, multiply by eγ x, and letx → ∞; this
argument is due to Iglehart [7].

Now introduce the finite constantα = ET1, so that the strong law implies that

sup{i :Ti ≤ n}
n

a.s.→ 1

α
asn → ∞.

Using (2), it is then easy to see that ifn and andy → ∞ in such a way that
ne−γy → αλ/K , then the number of thehi which exceedy and occur by timen
has a limiting Poisson(λ) distribution.

3. The Lévy process case. Now let X be any Lévy process withEX1 ∈
(−∞,0) which satisfies Cramér’s condition, namely

E(eγX1) = 1 for someγ ∈ (0,∞),

and defineY, the process reflected in its infimum, by

Ys = Xs − Is whereIs = inf
0≤u≤s

Xu, s ≥ 0.

Let L = (Lt , t ≥ 0) andL−1 = (L−1
t , t ≥ 0) denote the local time process ofY

at 0 and its right continuous inverse, and write

εt (u) = Y(L−1
t + u) − Y(L−1

t ), u ≥ 0, and ξt = inf{u : εt (u) ≤ 0}.
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Thenεt = (εt (u),0 ≤ u < ξt ) is the excursion above the minimum at local timet,

and

ht = sup
(
εt (u),0≤ u < ξt

)
is the height of this excursion. Thus, the Poisson point process (ht , t ≥ 0) is
the continuous time version of(hi, i ≥ 1) for a random walk. Ifη denotes the
characteristic measure of(ht , t ≥ 0), then the statement which corresponds to (2)
in this context is that

eγ xη
(
(x,∞)

) → K∗ asx → ∞.(4)

Our aim is to establish (4), determine the constantK∗ and deduce that the number
of excursions ofY away from 0 with heights exceedingy which take place by
time t satisfies a Poisson limit theorem. Of course, the reason that this is potentially
more difficult than the random walk case is that there may be an infinite number
of excursions in any finite time interval.

The starting point, naturally, is the following known Lévy process version
of (1); (see [4]): withS∞ = sup0≤t<∞ Xt denoting the all-time supremum and
H+ = (H+

t , t ≥ 0) the increasing ladder-height process,

eγ xP (S∞ > x) → C∗ = β

γm
asx → ∞,(5)

where

β = − logP(H+
1 < ∞) and m = E

(
H+

1 eγH+
1 ;H+

1 < ∞)
.(6)

Actually, it is easy, by applying the random walk argument to the independent,
identically distributed sequence of excursions heights which exceed some fixed
δ > 0, to deduce from (5) that (4) holds, but with a value ofK∗ which apparently
depends onδ. Thus, the proof of the following theorem, which is quite delicate, is
essentially a matter of justifying an interchange of limits. The inverse local time
processL−1 = (L−1

t , t ≥ 0) is the Lévy version of the descending ladder time
process, and the corresponding ladder height process is defined by

Ht = |X(L−1
t )| = |I (L−1

t )| whereIt = inf
0≤s≤t

Xs.

THEOREM 1. (i) Let φ(θ) = − logE(e−θH1) denote the exponent of the
subordinator H. Then, as x → ∞,

eγ xη
(
(x,∞)

) → K∗ := φ(γ )C∗ = φ(γ )β

γm
.

(ii) Introduce the finite constant α∗ = EL−1
1 , and let N(y, t) denote the number

of excursions of Y with heights exceeding y which occur by time t. Let t, y → ∞
in such a way that te−γy → α∗λ/K∗. Then N(y, t) has a limiting Poisson(λ)

distribution.
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PROOF. WriteSt = sup0≤u≤t Xu andŜt = S(L−1
t ). Then applying the Markov

property at the stopping timeL−1
t , we see that

P(S∞ ≤ x) = P {(Ŝt ≤ x) ∩ (S̃∞ ≤ x + Ht)},
where S̃∞ is independent of̂St and Ht and has the distribution ofS∞. Note,
however, thatHt andŜt are dependent. Subtracting the termP(Ŝt ≤ x)P (S∞ ≤ x)

gives

P(Ŝt > x)P (S∞ ≤ x) = P {(Ŝt ≤ x) ∩ (x < S̃∞ ≤ x + Ht)}.(7)

Our first step is to examine the behavior ofeγ x P (Ŝt > x) asx → ∞ for fixed t.

Note first that in view of (5) and the fact thatP(Ŝt > x) → 0 asx → ∞ for fixed t,

eγ xP {(Ŝt > x) ∩ (x < S̃∞ ≤ x + Ht)} ≤ eγ xP (Ŝt > x)P (S̃∞ > x) → 0.

Thus, asx → ∞, for each fixedt,

P (x < S̃∞ ≤ x + Ht)
(8)

= eγ xP {(Ŝt > x) ∩ (x < S̃∞ ≤ x + Ht)} + o(1)

= eγ xP (Ŝt > x)P (S∞ ≤ x) + o(1)(9)

= eγ xP (Ŝt > x) + eγ xP (Ŝt > x)P (S∞ > x) + o(1)(10)

= eγ xP (Ŝt > x) + o(1).(11)

Next recall from [4] that we can writeeγ xP (S∞ ∈ dx) = βU(dx), whereU is the
renewal measure corresponding to a distribution on[0,∞) with the finite meanm
given in (6). So we can write

eγ xP (x < S̃∞ ≤ x + Ht) = βE

(∫ Ht

0
e−γyU(x + dy)

)
:= βEZt(x).(12)

SincemU(x +dy) converges weakly to a Lebesgue measure, we see that, for each
fixedω andt ,

Zt(x,ω) → m−1
∫ Ht(ω)

0
e−γy dy = 1− e−γHt (ω)

mγ
asx → ∞.(13)

Also, using the subadditivity ofU and Erickson’s bounds (see [5]), we get

Zt(x,ω) ≤ U
(
x + Ht(ω)

) − U(x) ≤ U
(
Ht(ω)

) ≤ 2Ht(ω)

m
.

Since EX1 ∈ (−∞,0), we haveEHt < ∞ for any fixed t, so by dominated
convergence, we conclude from (8), (12) and (13) that

lim
x→∞ eγ xP (Ŝt > x) = βE lim

x→∞Zt(x)

(14)
= βE(1− e−γHt )

mγ
= β(1− e−tφ(γ ))

mγ
.
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To connect this to the asymptotic behavior ofeγ xη(x), whereη(x) = η((x,∞)),

we need the following observation; the eventŜt ≤ x occurs if and only if each
excursion at local times, for all s ≤ t, has height≤ Hs + x. Hence, by a standard
application of the compensation formula (see [3], page 7), we have

t−1P(Ŝt > x) = t−1E

(
1− exp

{
−

∫ t

0
η(x + Hs)ds

})
.(15)

Using the bound 1− e−x ≤ x in this shows that, for anyt > 0,

t−1eγ xP (Ŝt > x) ≤ t−1eγ xE

∫ t

0
η(x + Hs)ds ≤ eγ xη(x).

From (14) we see that

lim inf
x→∞ eγ xη(x) ≥ lim

t↓0
lim

x→∞ t−1eγ xP (Ŝt > x) = lim
t↓0

β(1− e−tφ(γ ))

mγ t
= K∗.

Also, using the bound 1− e−x ≥ x − x2/2 in (15) gives, for any fixedε > 0 and
all t > 0,

t−1eγ xP (Ŝt > x)

≥ t−1eγ x

(
E

∫ t

0
η(x + Hs)ds − 1

2
E

{∫ t

0
η(x + Hs)ds

}2)

≥ eγ x

(
Eη(x + Ht) − t

2
η(x)2

)

≥ eγ xη(x + ε)P (Ht ≤ ε) − t

2
eγ xη(x)2.

Rearranging, using (14), the fact thatP(Ht ≤ ε) → 1 ast ↓ 0, and noting that the
final term above iso(lim supx→∞ eγ xη(x)), we see that

lim sup
x→∞

eγ xη(x) = eγ ε lim sup
x→∞

eγ xη(x + ε)

≤ eγ ε lim
t↓0

lim
x→∞ eγ xt−1P(Ŝt > x)/P (Ht ≤ ε)

= eγ εK∗.
Sinceε is arbitrary, the proof of (i) is complete.

For (ii), note that standard properties of Poisson point processes show that
N(y, t) has a Poisson distribution with parameter(Ltη(y)). It follows from the
strong law for subordinators ([3], page 92) thatLt ∼ t/α∗ as t → ∞, so the
conclusion follows. �

REMARK 2. It is easy to adapt our arguments to extend the convergence in (ii)
of Theorem 1 to joint convergence in law for different values ofλ, and this leads to
a process version of our result. (We are grateful to a referee for this observation.)
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