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THE LONG-RUN BEHAVIOR OF THE STOCHASTIC
REPLICATOR DYNAMICS
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Aachen University

Fudenberg and Harris’ stochastic version of the classical replicator
dynamics is considered. The behavior of this diffusion process in the presence
of an evolutionarily stable strategy is investigated. Moreover, extinction of
dominated strategies and stochastic stability of strict Nash equilibria are
studied. The general results are ilkaged in connection with a discrete war
of attrition. A persistence result for the maximum effort strategy is obtained
and an explicit expression for the evolutionarily stable strategy is derived.

1. Introduction. The deterministic replicator dynamics is one of the most
widely used dynamical models to describe the evolution of a population under
selection. The evolution is governed by a symmetric two-player gameaygtire
strategies, 1.., n. Leta;; denote the pay-off to a player using stratggggainst
an opponent playing strategy Let A = (ajx). Suppose that every individual of
the population is programmed to play one fixed pure strategy. For every point
of time ¢ > 0, let ¢;(r) denote the size of the subpopulation whose individuals
play strategyj, and let§; (1) = ¢;(¢)/[¢1(t) + - -- + £, (1)] denote the proportion
of j-players in the population. If the population statés) = (£1(¢), ..., &, ()T,
then{A&(r)}; is the average pay-off to individuals playirjg when individuals
are paired at random. Suppose that the pay-off represents the increase of fitness,
measured as the number of offspring per unit of time. Then

d .
(L.1) 50 ooy, =1
and so
d .
(1.2) Z(t) =&, (AL}, —ET AE@)], Jj=1...,n

This is the deterministic replicator dynamics of Taylor and Jonker (1978). See
Hofbauer and Sigmund (1998) and Nowak and Sigmund (2004) for detailed
discussions from a biological point of view and Weibull (1995) for a description
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in an economic context. See also Hofbauer and Sigmund (2003) for an extensive
survey of deterministic evolutionary game dynamics.

Recently, models of evolutionary dynamics which incorporate stochastic effects
have attracted substantial interest. The seminal paper of Foster and Young (1990)
seems to be the first that presents a continuous-time replicator model based on a
stochastic differential equation. Kandori, Mailath and Rob (1993) study a related
discrete-time system. The present paper investigates the stochastic replicator
dynamics introduced by Fudenberg and Harris (1992). This model is related to
that of Foster and Young, but exhibits a boundary behavior that appears to be more
realistic from a biological perspective. Following Fudenberg and Harris (1992),
consider the stochastic variant of (1.1),

(1.3)  dZj(t)=Z;(O{AX(1)}jdt +0;dW;(1)], i=1....n,
where (W1(1), ..., W,(t))T = W(r) is an n-dimensional Brownian motion,
o1, ...,0, are positive coefficients and

X(@t) = (X1(0), ..., X, ()" (Z1@0). ..., Zy(D))".

T ZiO) + -+ Za0)

The evolution of the population stal&(r) is then given by the stochastic replicator
dynamics

(1.4) dX(t) =b(X (1)) dt + C(X (1) dW (1),
where
b(x) = [diag(x1. ..., x,) —xx" ][A — diago?, ..., 0 2)Ix
and
C(x) = [diagx1, ..., x,) —xx! |diag(oy, . . ., o)

forxe A={ye©OD":y14+--- 4+ y, = 1}. In many interesting situations,

the deterministic differential equation (1.2) has a stationary poim jrwhich
corresponds to a population state where every pure strategy is present. In fact every
Nash equilibrium is stationary. On the other hand, the only stationary points for
the stochastic differential equation (1.4) are the verticea p€orresponding to
populations consisting of one common type of players.

A series of important results on the behavior of the stochastic replicator
dynamics have been established for the case where the underlying game has
two pure strategies. For example, Fudenberg and Harris (1992) and Saito
(1997) examine properties of ergodic distributions, Amir and Berninghaus (1998)
establish a result on equilibrium selection and Corradi and Sarin (2000) provide
an asymptotic analysis. However, a large part of the arguments used there is
tailored to the case = 2 and cannot be extended to the general case?2.

This is because whem = 2 one basically deals with one-dimensional diffusion
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processes, and many of the tools available for these processes are not applicable to
higher-dimensional diffusions, which correspond to games with three or more pure
strategies. In particular, in the general case, an approach via analyzing a closed
form expression of the stationary distribution is not possible.

The present paper investigates (1.4) in the general gase2. Section 2
establishes a connection between stable behavior of the proc&gsesand
the static concept of an evolutionarily stable strategy (ESS), which has been
introduced by Maynard Smith and Price (1973). Under suitable conditions, it is
shown that if an ESS exists, théf(¢) is recurrent and the stationary distribution
concentrates mass in a small neighborhood of the ESS. Explicit bounds for the
expected time to reach that neighborhood are also given. Section 3 investigates
dominated strategies. It is shown that the probability that the frequency of a
dominated strategy is above a prescribed level decreases exponentially quickly to
zero. Interestingly, it turns out that, depending on the sizes of the stochastic terms,
weakly dominated strategies may become extinctin the stochastic model (1.4) even
if they survive in the deterministic model (1.2). In Section 4 a sufficient condition
is derived for a Nash equilibrium to be asymptotically stochastically stable. In
this connection another example emerges which shows that the deterministic
model and the stochastic model can lead to quite different predictions: In the
Prisoner’s Dilemma, the strategy “defect” is a strict Nash equilibrium and becomes
predominant under (1.2), but may become extinct under (1.4).

By way of illustration, a discrete variant of the war of attrition is analyzed
in some detail in the last section. This is a model which describes conflicts that
are settled by display rather than \eace; see Maynard Smith (1982). A rather
general theorem on the persistence of the maximum effort strategy is obtained
as a consequence of the results in Section 2. Furthermore, explicit expressions
for ESSs are derived; the ESSs are given in terms of linear combinations of
Chebyshev polynomials of the second kind evaluated along the imaginary axis.
This yields a fairly accurate picture of the long-run behavior of the stochastic
replicator dynamics when the conflicts are modeled by a war of attrition.

Hofbauer and Sigmund [(1998), Section 7.5] show that the deterministic
replicator equation is, in a sense, equivalent to the deterministic Lotka—\olterra
equation. The behavior of solutions to this equation under random perturbations
has recently been investigated by Khasminskii and Klebaner (2001), Klebaner
and Liptser (2001) and Skorokhod, Hoppensteadt and Salehi [(2002), Section 11].
There is almost no overlap with the results presented here.

2. Stochastic replicator dynamics and evolutionarily stable strategies.
The concept of a Nash equilibrium is too weak to yield reasonable convergence or
stability results for (1.4). A somewhat stronger concept, which is of fundamental
importance in evolutionary game theory, is that of an evolutionarily stable strategy
(ESS), introduced by Maynard Smith and Price (1973). The cloAweA is also
referred to as the set of mixed strategies. A strafegyA is said to be an ESS if
the following two conditions hold:
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(i) pfAp>qlApforallge A,
and
(i) if q#pandp’ Ap=q’ Ap, thenp” Aq > q” Aq.

This static concept lies between that of a Nash and a strict Nash equilibrium, and
turns out to be particularly relevant to the long-run analysis of (1.4).

Forx e A, let Py denote the probability measure corresponding to the process
X (r) with initial condition X (0) = x, and letEx denote expectation with respect
to Px. Note thatPy{X(t) e Aforall: >0} =1 forallxe A. Let P(¢,X,G) =
Py{X(t) € G} for all Borel subsets; C A. Let 1 = inf{r > 0:X(¢) € G}. For
>0, letUs(x)={y e A:|ly — x| <38}, where|| - || denotes the Euclidean norm.
Let e; denote thejth unit vector inR" and letl € R” denote the vector all of
whose entries are 1. The mixed strategyis identified with the pure strategy.
The matrixA is said to be conditionally negative definite if

y'Ay<0  forally e R” suchthatt’y =0,y 0.

THEOREM2.1. Let X(¢) be given by the stochastic replicator dynamics (1.4)
and let p € A bean ESSfor the underlying pay-off matrix A. Set A = %(A + AT,
and let A» be the second largest eigenvalue (counting multiplicity) of

— 1 1. .— 17A1
A-ZAn" - 1A+ =1l
n n n
Then
(2.1) A2 <O,
Definex > 0 by
2 1¢ 2 1

K :EZpJO’

i —2’
j=1 22’;:1 g;
and suppose that

n
2.2 ———V A2 min p;.
( ) K< n_1 | 2|1§j§n Pj

Then X (¢) isrecurrent, thereexists a uniqueinvariant probability measuresr on A,
and for every initial value x € A, the transition probabilities P (z, X, -) converge
to 7 intotal variation. Moreover, for every § > «/4/|A2],

2
 h2l8?

d(x,p)
42182 — K2’

@ =#{Us(p}=1
(2.3)

®)  Extyp) =
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and for every ¢t > 0,

(2.4) /nX(s) plIZds |x|{

whered(x,p) =3_;. p;>0Pj log(p;/x;) isthe Kullback—Leibler distance between
x and p. '

Inequalities (2.1), (2.3)(b)and (2.4) also hold if the ESSp € A, provided that
A is conditionally negative definite.

0P )

REMARK 2.1. The quantity|A,| can be interpreted as a measure of how
strongly the ES$ attractsX (¢) to a neighborhood gb.

REMARK 2.2. Foster and Young (1990) point out that, in view of its local
character, the ESS condition is not “quite the right concept of dynamical stability
in a biological context.” It is therefore not surprising that in the above theorem
the ESS condition is augmented by some additional requiremenk thehot too
large and tha# be conditionally negative definitefif € d A. The second condition
is easily seen to be satisfied in the examples in Section 5. Bapat and Raghavan
[(1997), Section 4.1] provide some criteria to check whether a given matrix is
conditionally negative definite.

The proof of Theorem 2.1 requires the following auxiliary result.

LEMMA 2.1. Let A e R, n > 2, bea conditionally negative definite matrix
and let A» be the second largest eigenvalue of

S 1..,.— 17A1
D:=A-=-A11" - -1"A+—-11",

n n

where A = 3(A + AT). Then
xT' A
ax —=— = <0
xT'1=0 XX
x#0
PROOF Note first that

(2.5) xIDx=xT"Ax  forall x e R" such thatt”x = 0.

The vectorl is an eigenvector oD corresponding to the eigenvalig= 0. Thus
if A is another eigenvalue dd with corresponding eigenvectgrthen1’y = 0. It
then follows from (2.5) and the assumption tiais conditionally negative definite
that

y'Dy y'Ay

A=
yTy yTy

<0.
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Thusii = 0 is the largest eigenvalue @f, and the variational description @b,
the second largest eigenvalue, and (2.5) yield

xT Dx xT Ax
A2 = max 7 = MaxX — < 0.
xT1=0 X1X xT1=0 X'X
X0 X740 O

PROOF OF THEOREM 2.1. Let L denote the second-order differential
operator associated witki(z), that is,

9 92
(2.6) LX) = Zb()f(x)+ Z ik f(xi, fecn),

j=1 0x;

where
b;(x) =x;(ej —x)T[A —diage?, ..., 02X,

Yik() =" cjy(¥)ckn(X),
v=1
xjI=xpoj,  j=k,

cjkX) = { —X j XkOF, Jj#k.

Suppose firstthat € A, and seg(x) =d(X, p) = 3_; pjlog(p;/x;) forallx € A.
Then, for allx, g(x) > 0 and

Lgx)=— pje; —x)[A —diagof, ..., o2)Ix
j=1

n n
1 2 2 2 2
j=1

k=1
n n
_ T 1 22,1 2
=(X—pP)AX— 3 xf0i+3) pjo;
j=1 j=1

As p is evolutionarily stable(x — p)” Ap < 0. Sincep € A, A is conditionally
negative definite. This follows from the proof of Haigh's theorem (1975). Hence,
in view of Lemma 2.1,

x—p)" Ax < (x = p)" A(x = p) < Aallx — p||®
andi, < 0. The Cauchy—Schwarz inequality gives<X(y"i_; x%0?) Z;!:laj‘z,
so that—Y"_; x202 < —(X"_; 0%~ It now follows that
(2.7) Lg(X) §k2||x—p||2+/c2, X€EA.

Suppose that? > «2/|1z|. For everyx € A \ Us(p), Lg(X) < 2282 + k2, and it
follows by Ité's formula thatg (X (1)) — (1282 + «2)r is a local supermartingale
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on [0, 0y (p))- Hence [cf. proof of Theorem 5.3 in Durrett (1996), page 268]
g(X) = (11216% — k?) Extg, (), Proving (2.3)(b).

To prove recurrence, consider the transformed proEéss= ¥ (X (¢)), where
U: A — R 1is defined by (x) = (log(x1/xy), ..., log(x,—1/x,))" . One has

dY;(t) ={(e; —e)TAVTY (1) — 3(07 — 0D} dt + 0 dW;(t) — 0,y AW, (1),
j=1...,n—-1,

where W—1(y) = (1 + &1 + -+ 4 e¥n-1)"L(e1, . e¥n-1 1)T. Note that the
second-order differential operator associated with is uniformly elliptic. It will

next be shown thaiUs, has positive distance frodA for somesg > «//TA2].

This implies thatWw (Us,) is a compact set. In view of (2.3)(b) it will then
follow that Y (¢) is recurrent [Bhattacharya (1978) and Khas'minskii (1960)] and
the transition probabilities converge in total variation to the unique stationary
probability measure [Durrett (1996), Chapter 7]. The same applies th&rirjo

By (2.2), one may chooséy such thatx//[A2] < o < (n/(n — 1)) min; p;.
Supposeg € R”, ’;:1 y; =1 and|ly — p|l = do. Let jo be such thaty;, — pj,l =
maxi<;j<n |y; — pjl, and set

T
Pjo — Yjo Pjo — Yjo n
Z=\(vi,— Pi, R”".
(yjo Pio n—1 n—1 ) ©
One may verify thatz is majorized byy — p in the sense of Definition A.1

in Marshall and Olkin [(1979), page 7], and it follows from Proposition C.1 in
Marshall and Olkin [(1979), page 64] that

n n 1
2 2 2 2
=305 pPz Y= (14— )i i)
j=1 j=1

=" max(y; )2
T —lizjend TP

Thus, for everyj, y; > miny<x<, px — (n — 1)do/n > 0, showing that the distance
between Us, andd A is positive.

For K > g(x) let Tx = inf{r > 0:g(X(¢)) = K}. Then, by Dynkin's formula
and (2.7),

IANTK

0= Bg(X( A Tk0)) =00+ Bx [ Le(X(5)ds

IATK
< g + szx/O 1X(s) — plI2ds + k2Ex(t A ).

If K — oo, thent A T, — ¢, and (2.4) follows by the bounded convergence
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denote the indicator function @f{ (p) =

theorem. To prove (2.3)(a), Iqtﬁgc(p)

A\ Us(p). Then, by (2.4),

—c _ 1
7 (Us (p)) = lim Ex_/ Xg€ (X (5)) ds

TIX(s) — pll2 K2
. <
tllm E A 52 ds olo2

An inspection of the above arguments shows that is conditionally negative
definite, then (2.1), (2.3)(b) and (2.4) hold if the E$& 9 A. In this case, however,
X (t) need not be recurrent ]

If pis an ESS forA, then there exists a constang R such thaf Ap}; = ¢ for
all j e {1,...,n} with p; > 0; see Hofbauer and Sigmund [(1998), page 63]. Thus

so that the drift vectob(x) of the stochastic differential equation (1.4) will in
general not be zero at = p. If, however,p is an ESS for the modified pay-

off matrix B = A — diago?, ..., 02), thenb(p) = 0. From this point of view

it is more natural to investigate the distance betw&dgn and an ESS forB.

A simple modification of the proof of Theorem 2.1 yields the following result.
The analogous results on recurrence and the stationary distribution are omitted for
brevity.

THEOREM2.2. Let X(7) be given by the stochastic replicator dynamics (1.4)
with underlying pay-off matrix A. Let p € A be an ESS for the modified pay-

off matrix A — diag(o?, ..., 02). Suppose also that A — diag(302, ..., 302) is

conditionally negative definlte Then for everyinitial statex € A and everyr > 0,
d(X,p)

@8 B [ 1X0)- <3 - —Zp,(l po?

=1

whered(X,p) =3_;. pj>0Pj log(p;/x;) and A5 is the second largest eigenvalue
of

1 1

A—=A11" — 1 Al
n

11TA+ 117,
where A = 3[A + AT — diagio?, ..., 02)].

REMARK 2.3. If the ESSp € A, it follows that A — diagd?, ..., 02)
is conditionally negative definite, so that in this case, the assumption that
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A — diag(%olz,..., %onz) should be conditionally negative definite is not very
restrictive. To compare (2.4) and (2.8) note thal > |A»| and
1 12
—ZP/(l PIOf S = o+ 5 Y o]
Z] 19 j=1

3. Extinction of dominated strategies. This section is concerned with the
evolution of strategies that are inferior to other strategies in the sense of
domination.

A strategyp € A is said to be weakly dominated by strategy A if

plAr<qlAr  forallreA

with strict inequality for some. If the inequality is strict for all, thenp is said
to be strictly dominated by.

For the deterministic replicator dynamics (1.2), Akin (1980) has shown that
strictly dominated pure strategies become extinct; more precisely, their frequencies
in the population converge to zero. Theorem 3.1 establishes that under the
stochastic replicator dynamics (1.4) even pure strategies that are only weakly
dominated become extinct under a suitable condition on the diffusion coefficients
o1,...,0,. Theorem 3.1 also gives an upper bound for the probability that at a
given point of timer the frequency of a dominated strategy is above a prescribed
valuee > 0. The bound converges exponentially quickly to zeroas co.

THEOREM3.1. Let X(r) begivenby (1.4). Supposethat the pure strategyk is
weakly dominated by some mixed strategy p € A. Setc; = m|nqu p’ Aq— ek AqQ
and supposethat o1, ..., 0,, are such that

2
%

(3.1) 2=-- + = Zp]a] <c1.

Then for every initial statex € A,

Pi{ X (1) = o(exp[—(c1 — c2)t + 3omaxv/ 1 loglogr ])} =

andforO<e¢<landr >0,

PXi(t)>e) <1 q,{CS(X) +loge + (c1 — o)t }
X B )

Umax\/z

where ®(v) is the normal distribution function, omax = maxoy,...,o0,} and
e3(¥) =31 pjlog(x;/x).
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PROOFE Let H(t) =log X (r) — ?lej logX;(z) for t > 0. Then, by Itd’s
formula,

t 0.2 1 n )
H(t) = H(0) +/O el AX(s) —pT AX(s) — ?k + Ejglpj(,j ds

+ o Wi(t) = > pjo W)
j=1
< H0)+ (ca—c))t +6W (1),

wheres = [(1— pi)?02+ X ;4 p2o21M2 andW (1) = [ox Wi (1) — Xi_y pjoj %

W;(t)]/o is a standard Brownian motion. Clearky,< V20max. It follows that
Py-almost surely,

lim supXy (1) expl(c1 — c2)t — 3omaxv/t loglogr |
—00

<limsupexpg H (7) + (c1 — ¢2)t — 3omaxv/t 10glogt |

[—00
< lim supexp—c3(X) + 6 W (r) — 3omaxv/7 loglogr | = 0
[—00

by the law of the iterated logarithm. Moreover,

Pu{Xi(¢) > e} < Px{H(t) > loge}
< Px{—c3(X) + (c2 —c1)t + 6 W(r) > loge}

{C3(X) +loge + (c1 — c2)t }
<1-—® .
Umaxx/z O
REMARK 3.1. Condition (3.1) is always satisfied4fis strictly dominated
by p and o1 = --- = 0,. The condition is also satisfied when is merely

weakly dominated andy > o; for every j # k. Thus if the diffusion coefficient
corresponding to a weakly dominated strategy is large enough, its frequency
converges to zero. This behavior is different from the behavior of weakly
dominated strategies under the deterministic replicator dynamics where weakly
dominated strategies may well persist with any prescribed positive population
share; see Weibull [(1995), Example 3.4, page 84]. This difference between the
deterministic and the stochastic population dynamics agrees with the findings
of Alvarez (2000) which show that, under mild conditions, “increased stochastic
fluctuations decrease the expected population density.” Cabrales (2000) proves that
in a similar stochastic model iteratively strictly dominated strategies become rare,
provided stochastic effects are sufficiently small.
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REMARK 3.2. Inthe situation of Theorem 3.1,
P Xi(t) > e} =o0(e™ "), t — 00,

for any O< y < (c1 — ¢2)?/(402,y. This is easily verified using the bound
1— ®(v) <exp—v2/2),v > 0.

REMARK 3.3. The assumptions of Theorem 3.1 may be satisfied even if the
pure strategy is not dominated by any other pure strategy. For example, let

2 2 2 2. 2
A=(4 1 1| and #<1+af.
1 4 4
11

Then the pure strategy 1 is strictly dominated gy (0, 5, E)T and, according
to Theorem 3.1X1(r) — 0 almost surely, even though neither strategy 2 nor
strategy 3 dominates strategy 1.

4. Stochastic stability of Nash equilibria. The last section dealt with the
extinction of pure strategies that were inferior to at least one strategy. The present
section investigates strategies that can be regarded as being locally superior to all
other strategies. The relevant concept is that of a strict Nash equilibrium.

A strategyp € A is called a Nash equilibrium if

p’Ap>qlAp  forallqeA.

If the inequality is strict for alf # p, thenp is a strict Nash equilibrium.

In other words, a Nash equilibrium is a best reply to itself, and a strict Nash
equilibrium is the unique best reply to itself. Only pure strategies can be strict
Nash equilibria; see Weibull [(1995), page 15]. Thus if nearly the whole population
plays a strict Nash equilibrium, then the highest pay-off is obtained by exactly that
strategy so that natural selection would not favor any other strategy. This suggests
that a strict Nash equilibrium should be asymptotically stable state, which is
indeed the case under the deterministic replicator dynamics (1.2). This need not
be the case for the stochastic replicator dynamics (1.4), as is illustrated by the
following example.

ExaAMPLE. Consider the Prisoner’'s Dilemma game [Hofbauer and Sigmund
(1998), page 101] with two pure strategies: Lo-operate, 2 defect, and pay-off
matrix

a a
A= ( 1 12) , as1 > ail > az2 > aio.
azi a2

Here strategy 2 is a strict Nash equilibrium and under (1.2), lim&2(¢) = 1 for

all initial statest(0) € A. On the other hand, if
o3 _of
2575 + maXaz1 — ai1, azz — aiz},
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then condition (3.1) of Theorem 3.1 is satisfied witk= 2, p = (1, 0)7, so that

P {lim;_, o, X1(t) =1} for all x € A. This is a reasonable behavior, because if all
players co-operate, then the received pay-off, is larger thary,, the pay-off

they receive when all players defect. Thus the stochastic model may explain the
spread of co-operative behavior, which could not be observed in the deterministic
model. This fact agrees with results of Nowak, Sasaki, Taylor and Fudenberg
(2004) who study a discrete-time Markov chain to explain the emergence of co-
operation in a finite population that plays the Prisoner’s Dilemma game.

The next theorem gives a sufficient condition for a strict Nash equilibrium to be
asymptotically stochastically stable. Notice that a pure strateigya strict Nash
equilibrium if and only ifay, > a i for all j # k.

THEOREM4.1. Let X(r) begivenby (1.4).Let k beastrict Nash equilibrium.
Supposethat oy, is so small that

(4.1) age > ajx +of  foral j#k.
Then e is asymptotically stochastically stable. That is, for any neighborhood U
of e, and for any ¢ > 0 thereis a neighborhood V' of e such that
PX{X(t) eUforallt >0, tlim X (1) :ek} >1-¢
— 00

for everyinitial statexe VN A.

PrRooOF The proof is an application of the stochastic Lyapunov method.
Consider the Lyapunov functiap(y) = 1 — y;. Evidently,¢(y) >0 forally € A
with equality if and only ify = e;. It will be shown that there is a constant- 0
and a neighborhooty of e, such that

4.2) Lo(y) < —cop(y) forallye Von A,

whereL is the differential operator given by (2.6). The assertion then follows from
Theorem 4 and Remark 2 in Gichman and Skorochod [(1971), pages 314 and 315].
Write B = A — diago?, ...,02). Forally € A,

Lo(y) = —yi(ex —y)T By

=Yk Y, Yubuvyy — k(L= 1) D vy
nFk v#k
v#£k

+ Y2~ — yi)b + Z Yubuk ¢-
w#k
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Let B =maxX|b,,|:u,v=1,...,n}. Then

Y by B Y v Y v =BA—y)% = by < BL— ).
jiFk pFk vk vk
v#k

Moreover, condition (4.1) ensures that for same 0, b, < by —« forall u #k,
so that

—(1— y)brr + Z Yubuk < —Q1 — y)bik + (brr — @) Z yu=—a(l—yp).
nFtk nFEk

Hence
Lo(y) < 2Byi(1— yi)? — ayZ(L— yi) = —yel(@ + 28) v — 2B} (),

which proves (4.2) withg={y € A : yx > %gigg} ande=¢. O

REMARK 4.1. Condition (4.1) means thatis a strict Nash equilibrium with
respect to the modified pay-off matr If k is only a neutrally stable strategy with
respect taB [see Weibull (1995), Definition 2.4, page 46], then, by Proposition 2.7
of Weibull [(1995), page 48]L¢(y) = —yr(ex —y)T By < 0 for ally in a certain
neighborhood of;. Hence in this case Theorem 4 of Gichman and Skorochod
[(1971), page 314] yields thaj is still stochastically stable.

Theorem 4.1 says that if the population is in a state sufficiently near to a
strict Nash equilibriume;, then, with probability close to 1, that equilibrium
will actually be selected by the stochastic replicator dynamics in the sense that
lim;_ - X (¢) = &. If there are several strict Nash equilibria and the initial state is
not close to any of them, it is neither clear which one will be selected nor in fact if
any will be selected at all. The next theorem establishes that when the underlying
game is a coordination game, that is, every pure stategy is a strict Nash equilibrium,
then it is almost certain that one of the equilibria will be selected.

THEOREM 4.2. Let A be the pay-off matrix of a co-ordination game and
let X (¢) be given by (1.4). Suppose that, for every k, oy is so small that ay; >
ajx +af for all j # k. Then, for everyinitial statex € A,

Px{zingo X(t) =g for somek} =1

The proof hinges on the following theorem, which is of interest in its own right.
It states that for any underlying gamg(r) will come arbitrarily close to one of
the pointsey, ..., €, in finite time.
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THEOREM 4.3. Let A be an arbitrary pay-off matrix, let X(z) be given
by (1.4)and let x € A. Let ¢ > 0. Consider the hitting time

7. =inf{r > 0: Xy (t) > 1— ¢ for somek € {1, ...,n}}.
Then Exte < oo. Moreover,

Px{supmax{Xl(t), L Xu) = 1} =1

t>0

PROOF Fora > 0 andy € A define
P (Y) = P(y) =ne® — ek
k=1
Let B= A — diagloZ, ..., o) and letL be given by (2.6). Then

n , 052 n Y
Loy)=—a ) y(e —y)" Bye™* — > > y,?{a,?(l— i+ :a]?yf.}e%
k=1 k=1 j#k

Let B8 > 0 be such that
(e —y)'By|<pB  forallye Aandke{dl,...,n)}.
Let omin = min{o1, ..., 0,}. Then

" o2,
Loy <ay yke“yk{ﬁ — 2min 1 - yk>2}.
k=1
Leta > 0 be so large that
2
- 1
a%y(l—y)ZZnﬂ—{—l forallye[—,l—e].
n

Suppose thay € A is such thaty, <1 —¢ forall k =1,...,n. Then there is at
least oneyy in [, 1 ¢], and so

Loy <af > we4+a > wye—n-1p-1}

k:yr<l/n k:yre[l/n,1—¢]

o/n a/n

e e

<af(n—1)

+ o
n n

{-n =D -1

Thus, by Dynkin’s formula, for every < oo,

AT

0< Ex¢{X(Te/\T)}=¢>(X)+Ex/O Lo(X(s))ds

o/n

<ne* —a Ex(te AT).

n
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Letting 7' — oo, one obtains by monotone convergence that, < n2e® /o < co.
Choosings = 1/m, one obtains in particular that

Px{supmax{Xl(t), L Xn)=1-— %} =1

t>0

for everym € N. Hence

Px{supmax{Xl(t), L XnM)) = 1}

t>0

o 1
= PX[ N {supmax{Xl(t),...,X,,(t)} >1-— —}} =1
m

m=1 t>0

g

PROOF OFTHEOREM 4.2. Lete > 0 and suppose that > a;i + sz for
all j,k=1,...,n with j £ k. Then, for everyk, there exists, by Theorem 4.1,
somes; > 0 such that

PX{ lim X(t):ek}>l—e if xp>1-— 6.
1—00

Sett =inf{r > 0:X;(#r) > 1 — 8 forsomek} and F = {lim;_. o X (t) = g for
somek}. Let x denote the indicator function @f. According to Theorem 4.3, is
Py-almost surely finite, and so, by the strong Markov property of 1td diffusions,

Py(F)=ExExqo)xr = 1—e¢.

As ¢ > 0 was arbitrary, the assertion follows[]

5. A discrete war of attrition. Theorems 2.1 and 2.2 show that an ESS, if
it exists, gives precise information about the long-run behavior of the stochastic
replicator dynamics. In this section explicit expressions are derived for ESSs for
a discrete variant of the war of attrition, introduced by Maynard Smith and Price
(1973). See Maynard Smith (1982) and Bishop and Cannings (1978) for a detailed
discussion and extensions.

In the discrete symmetric war of attrition each player selects a pure strategy
7 €1{0,1,...,n}, which determines the maximum length of tineg, the player is
willing to display fa. The contest progssses until one of the players has reached
his chosen limit; this player leaves and the other player obtains a reward. The value
of the reward is constant or a decreasing function of the length of the contest. Both
players incur a cost given by the length of the contest. If both players have chosen
the same length of time, the reward is shared.

Specifically, the pay-off matrid = (a;1), j,k=0,...,n, is given by

Vk — Cks J >k,
Vk .
(5.1) ajk=1\"% — Cks J =k,

—cj, j <k,
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where

O<c¢og<ci<---<c, and vg=>v1>--->v,>0.
The corresponding stochastic replicator dynamics is
(5.2) dX(t)=b(X(@))dt+C(X(t))dW (1),

where W (¢) denotes an(n + 1)-dimensional Brownian motion and, for =
(x07 ey x}’l)Ty

b(x) = [diag(xo, . .., x,) — xxT ][A — diag&, ..., 5 2)]x
and
C(x) = [diag(xo, ..., x,) — xx! |diagoo, . . ., op).

Theorem 2.2 suggests to consider ESSs not only béit also of the modified
pay-off matrixB = (b;r), j,k=0,...,n, with

Uk — Cks J >k,
Vk .
(5.3) bjk= > Tk T Pk J=k,
—cj, Jj <k,
and
v
O<cg<c1<---<cy, vg>vL>--->v, >0, 0§pk<—k.

2

The following lemma ensures that the pay-off matrice@nd B satisfy the
assumptions in Theorems 2.1 and 2.2. The proof is in the Appendix.

LEMMA 5.1. For thewar of attrition with pay-off matrix given by (5.1)or (5.3)
there exists a unique ESS, and the pay-off matrix is conditionally negative definite.

The nexttheorem is a basic persistence result for the replicator dynamics, saying
that with probability close to 1 the maximum effort strategy, that is, strategyil
not die out. Forj =0, ..., n, lete; denote the j + 1)st column of the unit matrix
of ordern + 1.

THEOREMDS5.1. Let X (¢) be given by the stochastic replicator dynamics (5.2)
withinitial statex € A. Let ¢ > 0. Thenthereexists 6 * = o*(¢) > 0 such that

PX{Iim supX,(t) > 0} >1-—g¢,

t—00

provided that oy, ..., 0, <o*.
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PROOF Letp be the ESS for. It will first be shown thatp,, > 0. Suppose
that this is not the case, so that=maxj : p; > 0} < n. Thene], ., Ap < €] Ap,
see Hofbauer and Sigmund [(1998), page 63]pAs= 0 for j > m,

m—1
v
enT1Ap = E (Uj — Cj)Pj + (?m - Cm)Pnu
j=0

m
€1AP =) (v —c))pj.
j=0
Thus
0<e), n AP — +1Ap—_%pm<o§

a contradiction. Hencg,, > 0.
By Theorem 2.1 and Lemma 5.1, for al- O,

L [doxp)
B [ %00 = pulPds = 4 Z piof

wherei, # 0 depends only od. Choosep > 0 ando* > 0 such that

d(x,p) pZe ("2 pZe
< , < .
|A2lto 16 [A2] 8

Thusifoyg, ...,0, <o*, then

1t 2,
Ex;/ X (s) — pul?ds < % forall t > 1o.
0

Now consider the increasing sequence of events
F, {X (s)<?foralls>to+u} w=1212 ...

For everyu,

2(to+n) 2

2
&
Pn 1X,,(5) — pul?ds dPg > %PX(FM),

>
8 ~ 2(t0 + M) /F/L fo+p
o] thatPX(U ~1 Fu) <e.Hence

PX{IlmsupX () > 0} > PX< N FC> >1—c¢.

t—00 =1

g

In general the ESS for a discrete war of attrition may have a fairly complicated
structure. Cressman [(2003), Section 7.4] describes a broad approach to calculating
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ESSs for these games using backward induction. Whittaker (1996) has recently
solved several closely related resource allocation problems based on a multiple
trial war of attrition. The following theorem gives an explicit expression for the
ESSin the case where thg and they; are constant and; = j for all strategieg .
Combining Lemma 5.1 and Theorems 2.1, 2.2 and 5.2, one obtains a fairly
complete picture of the long-run behavior of the stochastic replicator dynamics
when the conflicts are modeled by a war of attrition.

Let U,,(x) denote thenth Chebyshev polynomial of the second kind, and let

U_1(x) =0. Leti = v/—1.

THEOREM5.2. Consider the war of attrition with pay-off matrix B = (b ),
j,k=0,...,n, where

v—k, j >k,

v .
(5.4) bix=y5"k=p. =k

-7, j <k,

and0<p < %v. The unique ESS p is given as follows. If the reward v is so large
that v > 2n + 2p, then

po=--=pn-1=0,  p,=1
Otherwisethereisa uniqueindex s € {0, ..., n — 1} such that

(5.5) n—1+p§%+s<n+p,
and
-(5)
Pk—c 2 Y
v
(5.6) X {us—k+1+ <s+1—n+ > +P)us—k

+(S+1_n)<g+p>us—k—l}, O<k<s,

(5.7 pr=0, s+1<k<n-1,
1 v s+1
T

i) 2
2y ’ Y

where

up = (—i)/)kUk<
and
c=—ugi2+(n—5s—1—2p)usi1+ {200 —s — 1) + y2u,
—(n—s —Dy2u,_1.
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The proof of this theorem requires some auxiliary results, which are proved in
the Appendix.

It was shown in the proof of Theorem 5.1 that for the war of attrition (5.3),
strategyn is always contained in the support of the ESS. The next lemma states
that for j < n, strategyj can belong to the support only if the corresponding cost
cj is below a certain threshold. This is the discrete analogue of Theorem 7 of
Bishop and Cannings (1978). The lemma explains in particular the choicenof
Theorem 5.2.

LEMMA 5.2. Let p be the ESS for the war of attrition with pay-off matrix
B=(bj1), j,k=0,...,n, described by (5.3).1f j <n and ¢; > ¢ + pu — 3Vn,
then pj= 0.

The next two lemmas give explicit formulas for determinants related to the pay-
off matrix of a war of attrition. Let/; denote th& x k matrix with all entries equal
to 1 and letl, denote the& x 1 vector all of whose entries are 1.

LEMMA 5.3. Let B € R#+Dx+D pe given by (5.3). For k =0,...,n,
let B denote the matrix obtained from B by replacing column k with the
vector 1,,11. Then

n—1

detB™ =] (_"?f — pj)
j=0
and, for k=0,...,n—1,
_ k=1,
detB® = det(B,—« + cxdu—t) [ | (‘?J - m)’
j=0

where B, isthe (n — k) x (n — k) principal submatrix of B situated in the bottom
right-hand corner.

LEMMA 5.4. Let B € R#FDx+D pe given by (5.4) with 0 < p < Fv. Set
Yy = /%vz— p2. Then

detB = (g _ p)(—iy)"_l

() (1)

PROOF OF THEOREM 5.2. Let B be given by (5.4). Suppose first that
v>2n+2p. Thenj>n+p — %v foreveryj =0,...,n — 1. Thusifp is the
ESS, then, by Lemma 5.2, =0for j =0,...,n — 1, sothap =e,.
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Suppose next that®< v < 2n + 2p. Defines € {0, ...,n — 1} by (5.5) and
definep € R"*1 by (5.6), (5.7) and (5.8). It will be shown that

(5.8) {Bp}; = {Bph ifo<j<s,
(5.9) {Bp}; <{Bp}), ifs+l<j<n-1

It will also be shown thap € A. Since, by Lemma 5.1, any principal submatrix
of B is conditionally negative definite, it will then follow from Haigh’s (1975)
theorem thap is the ESS.

Form=0,...,n set

boo ... bom
B,=| : .
bumo ... bum
According to Lemma 5.4,
v v
(5.10) detB,, = (E — p){um + <§ + p)um_l}.
Set
boo ... bos boy Po
B=| S and p=| :
bo ... bg by Ds
b ... bus by Pn

Fork=0,...,s + 1 let B% denote the matrix obtained frol by replacing
columnk with the vectorl, . As py =0fors + 1<k <n -1,

(5.11) {Bp}, = {Bp};, 0<j<s, {BP}s+1=1{Bp}n.

The matrixB is again of the form (5.3). It follows from Lemma 5.3 that for every
k<s-—1,

br+ik+1tk ... bryrs+k bryint+k
k . . .
detB(k)—<— p) d :
bsk+l+k bs,s+k bsn +k
bnk+l+k bn,s+k byn+k
v k
(54
_g—p—l 1 1 1]
v
-1 ——p-2... -2 -2
v > 0
x det : : : :
v—1 v—2 ... %—p—(s—k) —(s—k)
v—1 v—2 ... v—(s—k) %—p—(n—k)




STOCHASTIC REPLICATOR DYNAMICS 1039

Denote the matrix in the previous line lgy. To calculate de® augmentQ from

the left by the(s — k + 1) x 1 vector(v, ..., v)T and put on top of the matrix thus
obtained the X (s — k + 2) vector(%v —p,0,...,0). This gives a matrix which

is equal toB;_;1 except for the element in the lower right-hand corner, which is
$v— p —n+k, while the corresponding elementBf_i41 is v — p —s +k — 1.

Hence
detQ = <g — ,0) det[ 2 P 1><(s—k+1):|
vl g1 0

-1
v
_ (E _ p) (detBy o1 — (n— s — 1) detB, ),

and so, by (5.10),

k
— v v
detB® = <_§ - p) |:Ms—k+1 + <§ + p)us—k

—(n—s— 1){Ms—k + <% + P)us—k—l}]

= CPk>

provided k < s — 1. Similarly, detB® = cp,, and it follows directly from
Lemma 5.3 that

_ v s+1
detB¢*D = (_E _ p) = cpp.

Thus
detB©
detBG+D
Let adjB denote the adjugate matrix &f. It is readily verified that
detB©
(5.13) (@djB)ls42= : ,
detB¢+D

and therefore

S detB
Bp:EB(adJB)ls-&-Z:T s+2-

In view of (5.11) this proves the first claim (5.8).
If s < j <n,then, by (5.5),

v
bjn=_j§_s_1§§_n_p=bnn7
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and so

N S S
{BP}; = bjipk+bjnpn = _ bukPk +bjnpn <Y _ bukPk + bunpn = {BPn,
k=0 k=0 k=0

proving the second claim (5.9).

Finally, to show thap € A set
v v
tj :uj+<s+1—n+E—{—p)u‘,-_1+(s+l—n)<§+p>uj_2, j=212,...,

so that the first 4+ 1 entries ofp can be written as

1 v k
Pk=—<———,0) fs—k+1, 0<k<s.
c 2

In view of (5.5),

v
1125—0_n+5<0’

v v
t2:<§+p)<§—p—n+s+l)—(2,0+1)l‘1>0-

Using the recurrence relation for the Chebyshev polynomials [Szegd (1975),
equation (4.7.17), page 81] one may verify that

up = —(20 4+ Dug_1+ y2ur_2, k>1
Therefore,
o =—Q2p+ D1+ y%u_o, k> 3.

It now follows by induction that—1)*7; > 0 for all k. A short calculation shows
thate = —t,42 + (3v — p)ts41, SO that(—1)°+1e > 0. (In particulare # 0, which
has hitherto been tacitly assumed.) It is thus obvioushat O for 0< k < n.

To verify that)_}_, px = 1 note that by (5.7), (5.12) and (5.13),

n 5
1 =
Z Pk = Pn + Z Pk =~ ST.A,_z(adJB)ls—i—Z-
k=0 k=0 ¢

By a well-known determinantal formula for partitioned matrices [Gantmacher
(1959), page 46],

1/ ,(adjB)1, > = detB — det(B — 1,121 ,).
Observing that, by (5.10),
detB = detB; 1 — (n — s — 1) detB;

(5 )i (B s (B o]
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and

-1
detB ~ L1l = (3~ p) (detBisz— (0 —s — DdetBi)

v v
=uUs42 + (5 + p)us+1 —(n—s— 1){us+1 + (5 + p)us},

one obtains that” ,(adjB)12=c,sothaty?_opr =1. O

s+2

APPENDIX

PROOF OFLEMMA 5.1. Asq’Bq=q’Aq — Z’;:Oquj < q” Aq for all
q € R**1 it suffices to show that is conditionally negative definite. Define the
n x nmatrix D by dj, = %(bjk +bij) — bjo— box +boo, j,k=1,...,n. Thus

djx = Ymin{j .k} — 2Cmin{j,k} — Vo + 2co.

Fork=1,...,nletf; bethen x 1 vector whose first — 1 entries are 0 and whose
remaining entries are 1. Theghcan be written as

n
D= (vk — vk—1— 2(ck — cx—D)ff .
k=1
showing thatD is negative definite. This implies thdt is conditionally negative
definite; see Haigh (1975).

The existence of an ESS now follows, since in a game with conditionally
negative definite pay-off matrix, a Nash equilibrium, which always exists, must be
an ESS. To prove uniqueness suppos@&dq are ESSs. Thep! Bp > g’ Bp and
q” Bq > p” Bq, so that(p — q)” B(p — q) > 0. SinceB is conditionally negative
definite, this impliep=q. O

PROOF OFLEMMA 5.2. The assertion is obviously true gf; = 0 for all
Jj <n,soassume; > 0 forsomej <n.Letm:=maxj:j <n, p; >0}. Then
pm > 0 and, as in the proof of Theorem 54, > 0, so thate! Bp = €l Bp, see
Hofbauer and Sigmund [(1998), page 63]. Sipge=0if m+1<;j<n—1,

m—1

L Bp=Y" (v —Ck>pk+(

k=0

Um

2 Cm — :Om)Pm —CmPn,

i v
e Bp=>) (v —c)pr+ (% —Cn— ,On)pn-
k=0

Thus

v v
O:e,{Bp—e,lep: (?m +/0m)Pm+(?n_Cn — Pn +Cm)pn’
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and it follows thatv, /2 — ¢, — pp + ¢ < 0. Thatis,c, + o, — v, /2 > ¢;. NOW
suppose that <n» andc; > ¢, + p, — v, /2. Thenc; > ¢, and since the sequence
(cp) isincreasing, > m. Thusp; =0. O

PROOF OF LEMMA 5.3. Suppose ¥ k<n -1 Forj=0,...,k—1,
addv; — ¢; times columnk of B®, that is, the vectof, 1, to column,. For
j=k+1,...,n, addc; times columnk to columnj. The matrix thus obtained

can be patrtitioned as
D 1 *
0 1 _ 0 )
0 Li« Busk+tcrJunuk

where D is a k x k upper triangular matrix with diagonal elementay/2 —
00, ..., —Vk_1/2 — px—1. The assertion is now obvious. The proof is similar for
k=0andk=n. O

LEMMA A.1l. Let y1,y2,x € R, y1,y2 > 0. The determinant of the n x n
tridiagonal matrix

X y1r 0 O ... O 0 0
-y x y1 0 ... O 0 0
D, (x) = 0O —y x n 0 0 0
0 0 0O 0 ... =y x n
0 0 0O 0 ... 0 —yp =x
is given by
ix
Al detD, (x) = i"( )”/ZU,,(— )
(A.1) Y1y2 2 77

PrROOF Note first that
detDi(x)=x,  detDa(x) =x%+ y1y2.
Expanding deD,,(x) along the last column, one obtains that, fas 2,
detD,(x) = xdetD,,_1(x) + y1y2detD, _»(x).
Denote the expression on the right-hand side of (A.1),bi). Then
h)=x,  ha(x) =x"+ny,
and, by the recurrence formula for the Chebyshev polynomials [Szeg6 (1975),
(4.7.17), page 81], for > 2,

ix ix
ho(x) =" 2)("_1)/2xUn—1(— )—i"( 1y2)"/2U, —2(— )
. 2./v1v2 iy " 2,/v1y2

=xhy—1(x) + y1y2h,—2(x).
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Now the assertion follows by induction[]

PROOF OFLEMMA 5.4. Define the: x n matricesF andG by

) _
> 1%
v
v —_ —
2 1Y
F = v_ ,
v v 5P
v
v v v Vo3P
-1 -1 -1 -1
-1 -2 -2 -2
G-|-1 —2 -3 _3
| -1 -2 -3 —n

Let I denote the: x n unit matrix. Then
detB = (% — ,0) detF + G) = <% — ,0) detG det(G~1F

It is easily seen that d&t = (—1)". Moreover,

-2 1 _
1 -2 1
o1 1 -2 1
1 -2 1
L 1 -1
so that
v
2 -
0+ 5 P
v v
- — 2 1 - —
5P 0+ 5P
v
GlF+1= B T
. .
- — 2 1
5P P+
v
L 2 P

1043

+1).
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It now follows by Lemma A.1 that
(20 + 1
de::(3—4Q(—1w{ﬁy”Un<—543i—l)

2 2y
(o (12E0)
=(—in{<%-—p>Un<—ﬂ3%5:9>—%ndh_1<—5E%§:9>}. .
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