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THE LONG-RUN BEHAVIOR OF THE STOCHASTIC
REPLICATOR DYNAMICS
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Aachen University

Fudenberg and Harris’ stochastic version of the classical replicator
dynamics is considered. The behavior of this diffusion process in the presence
of an evolutionarily stable strategy is investigated. Moreover, extinction of
dominated strategies and stochastic stability of strict Nash equilibria are
studied. The general results are illustrated in connection with a discrete war
of attrition. A persistence result for the maximum effort strategy is obtained
and an explicit expression for the evolutionarily stable strategy is derived.

1. Introduction. The deterministic replicator dynamics is one of the most
widely used dynamical models to describe the evolution of a population under
selection. The evolution is governed by a symmetric two-player game withn pure
strategies, 1, . . . , n. Let ajk denote the pay-off to a player using strategyj against
an opponent playing strategyk. Let A = (ajk). Suppose that every individual of
the population is programmed to play one fixed pure strategy. For every point
of time t ≥ 0, let ζj (t) denote the size of the subpopulation whose individuals
play strategyj , and letξj (t) = ζj (t)/[ζ1(t) + · · · + ζn(t)] denote the proportion
of j -players in the population. If the population state isξ(t) = (ξ1(t), . . . , ξn(t))

T ,
then {Aξ(t)}j is the average pay-off to individuals playingj , when individuals
are paired at random. Suppose that the pay-off represents the increase of fitness,
measured as the number of offspring per unit of time. Then

dζj (t)

dt
= ζj (t){Aξ(t)}j , j = 1, . . . , n,(1.1)

and so

dξj (t)

dt
= ξj (t)[{Aξ(t)}j − ξ(t)T Aξ(t)], j = 1, . . . , n.(1.2)

This is the deterministic replicator dynamics of Taylor and Jonker (1978). See
Hofbauer and Sigmund (1998) and Nowak and Sigmund (2004) for detailed
discussions from a biological point of view and Weibull (1995) for a description
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in an economic context. See also Hofbauer and Sigmund (2003) for an extensive
survey of deterministic evolutionary game dynamics.

Recently, models of evolutionary dynamics which incorporate stochastic effects
have attracted substantial interest. The seminal paper of Foster and Young (1990)
seems to be the first that presents a continuous-time replicator model based on a
stochastic differential equation. Kandori, Mailath and Rob (1993) study a related
discrete-time system. The present paper investigates the stochastic replicator
dynamics introduced by Fudenberg and Harris (1992). This model is related to
that of Foster and Young, but exhibits a boundary behavior that appears to be more
realistic from a biological perspective. Following Fudenberg and Harris (1992),
consider the stochastic variant of (1.1),

dZj (t) = Zj (t)[{AX(t)}j dt + σj dWj(t)], j = 1, . . . , n,(1.3)

where (W1(t), . . . ,Wn(t))
T = W(t) is an n-dimensional Brownian motion,

σ1, . . . , σn are positive coefficients and

X(t) = (X1(t), . . . ,Xn(t)
)T = 1

Z1(t) + · · · + Zn(t)

(
Z1(t), . . . ,Zn(t)

)T
.

The evolution of the population stateX(t) is then given by the stochastic replicator
dynamics

dX(t) = b(X(t)) dt + C(X(t)) dW(t),(1.4)

where

b(x) = [diag(x1, . . . , xn) − xxT ][A − diag(σ 2
1 , . . . , σ 2

n )]x
and

C(x) = [diag(x1, . . . , xn) − xxT ]diag(σ1, . . . , σn)

for x ∈ � = {y ∈ (0,1)n : y1 + · · · + yn = 1}. In many interesting situations,
the deterministic differential equation (1.2) has a stationary point in�, which
corresponds to a population state where every pure strategy is present. In fact every
Nash equilibrium is stationary. On the other hand, the only stationary points for
the stochastic differential equation (1.4) are the vertices of�, corresponding to
populations consisting of one common type of players.

A series of important results on the behavior of the stochastic replicator
dynamics have been established for the case where the underlying game has
two pure strategies. For example, Fudenberg and Harris (1992) and Saito
(1997) examine properties of ergodic distributions, Amir and Berninghaus (1998)
establish a result on equilibrium selection and Corradi and Sarin (2000) provide
an asymptotic analysis. However, a large part of the arguments used there is
tailored to the casen = 2 and cannot be extended to the general casen > 2.
This is because whenn = 2 one basically deals with one-dimensional diffusion
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processes, and many of the tools available for these processes are not applicable to
higher-dimensional diffusions, which correspond to games with three or more pure
strategies. In particular, in the general case, an approach via analyzing a closed
form expression of the stationary distribution is not possible.

The present paper investigates (1.4) in the general casen ≥ 2. Section 2
establishes a connection between stable behavior of the processesX(t) and
the static concept of an evolutionarily stable strategy (ESS), which has been
introduced by Maynard Smith and Price (1973). Under suitable conditions, it is
shown that if an ESS exists, thenX(t) is recurrent and the stationary distribution
concentrates mass in a small neighborhood of the ESS. Explicit bounds for the
expected time to reach that neighborhood are also given. Section 3 investigates
dominated strategies. It is shown that the probability that the frequency of a
dominated strategy is above a prescribed level decreases exponentially quickly to
zero. Interestingly, it turns out that, depending on the sizes of the stochastic terms,
weakly dominated strategies may become extinct in the stochastic model (1.4) even
if they survive in the deterministic model (1.2). In Section 4 a sufficient condition
is derived for a Nash equilibrium to be asymptotically stochastically stable. In
this connection another example emerges which shows that the deterministic
model and the stochastic model can lead to quite different predictions: In the
Prisoner’s Dilemma, the strategy “defect” is a strict Nash equilibrium and becomes
predominant under (1.2), but may become extinct under (1.4).

By way of illustration, a discrete variant of the war of attrition is analyzed
in some detail in the last section. This is a model which describes conflicts that
are settled by display rather than violence; see Maynard Smith (1982). A rather
general theorem on the persistence of the maximum effort strategy is obtained
as a consequence of the results in Section 2. Furthermore, explicit expressions
for ESSs are derived; the ESSs are given in terms of linear combinations of
Chebyshev polynomials of the second kind evaluated along the imaginary axis.
This yields a fairly accurate picture of the long-run behavior of the stochastic
replicator dynamics when the conflicts are modeled by a war of attrition.

Hofbauer and Sigmund [(1998), Section 7.5] show that the deterministic
replicator equation is, in a sense, equivalent to the deterministic Lotka–Volterra
equation. The behavior of solutions to this equation under random perturbations
has recently been investigated by Khasminskii and Klebaner (2001), Klebaner
and Liptser (2001) and Skorokhod, Hoppensteadt and Salehi [(2002), Section 11].
There is almost no overlap with the results presented here.

2. Stochastic replicator dynamics and evolutionarily stable strategies.
The concept of a Nash equilibrium is too weak to yield reasonable convergence or
stability results for (1.4). A somewhat stronger concept, which is of fundamental
importance in evolutionary game theory, is that of an evolutionarily stable strategy
(ESS), introduced by Maynard Smith and Price (1973). The closure�� of � is also
referred to as the set of mixed strategies. A strategyp ∈ �� is said to be an ESS if
the following two conditions hold:
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(i) pT Ap ≥ qT Ap for all q ∈ ��,
and

(ii) if q �= p andpT Ap = qT Ap, thenpT Aq > qT Aq.

This static concept lies between that of a Nash and a strict Nash equilibrium, and
turns out to be particularly relevant to the long-run analysis of (1.4).

For x ∈ �, let Px denote the probability measure corresponding to the process
X(t) with initial conditionX(0) = x, and letEx denote expectation with respect
to Px. Note thatPx{X(t) ∈ � for all t ≥ 0} = 1 for all x ∈ �. Let P (t,x,G) =
Px{X(t) ∈ G} for all Borel subsetsG ⊂ �. Let τG = inf{t > 0 :X(t) ∈ G}. For
δ > 0, letUδ(x) = {y ∈ � :‖y − x‖ < δ}, where‖ · ‖ denotes the Euclidean norm.
Let ej denote thej th unit vector inR

n and let1 ∈ R
n denote the vector all of

whose entries are 1. The mixed strategyej is identified with the pure strategyj .
The matrixA is said to be conditionally negative definite if

yT Ay < 0 for all y ∈ R
n such that1T y = 0,y �= 0.

THEOREM 2.1. Let X(t) be given by the stochastic replicator dynamics (1.4)
and let p ∈ � be an ESS for the underlying pay-off matrix A. Set �A = 1

2(A + AT ),
and let λ2 be the second largest eigenvalue (counting multiplicity) of

�A − 1

n
�A11T − 1

n
11T �A + 1T A1

n2 11T .

Then

λ2 < 0.(2.1)

Define κ > 0 by

κ2 = 1

2

n∑
j=1

pjσ
2
j − 1

2
∑n

j=1σ−2
j

,

and suppose that

κ <
n

n − 1

√|λ2| min
1≤j≤n

pj .(2.2)

Then X(t) is recurrent, there exists a unique invariant probability measure π on �,
and for every initial value x ∈ �, the transition probabilities P (t,x, ·) converge
to π in total variation. Moreover, for every δ > κ/

√|λ2|,

(a) π{Uδ(p)} ≥ 1− κ2

|λ2|δ2
,

(b) Exτ�Uδ(p) ≤ d(x,p)

|λ2|δ2 − κ2 ,

(2.3)
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and for every t > 0,

Ex
1

t

∫ t

0
‖X(s) − p‖2 ds ≤ 1

|λ2|
{

d(x,p)

t
+ κ2

}
,(2.4)

where d(x,p) =∑j : pj>0 pj log(pj /xj ) is the Kullback–Leibler distance between
x and p.

Inequalities (2.1), (2.3)(b)and (2.4) also hold if the ESS p ∈ ��, provided that
A is conditionally negative definite.

REMARK 2.1. The quantity|λ2| can be interpreted as a measure of how
strongly the ESSp attractsX(t) to a neighborhood ofp.

REMARK 2.2. Foster and Young (1990) point out that, in view of its local
character, the ESS condition is not “quite the right concept of dynamical stability
in a biological context.” It is therefore not surprising that in the above theorem
the ESS condition is augmented by some additional requirement: thatκ be not too
large and thatA be conditionally negative definite ifp ∈ ∂�. The second condition
is easily seen to be satisfied in the examples in Section 5. Bapat and Raghavan
[(1997), Section 4.1] provide some criteria to check whether a given matrix is
conditionally negative definite.

The proof of Theorem 2.1 requires the following auxiliary result.

LEMMA 2.1. Let A ∈ R
n×n, n ≥ 2, be a conditionally negative definite matrix

and let λ2 be the second largest eigenvalue of

D := �A − 1

n
�A11T − 1

n
11T �A + 1T A1

n2
11T ,

where �A = 1
2(A + AT ). Then

max
xT 1=0

x �=0

xT Ax
xT x

= λ2 < 0.

PROOF. Note first that

xT Dx = xT Ax for all x ∈ R
n such that1T x = 0.(2.5)

The vector1 is an eigenvector ofD corresponding to the eigenvalueλ1 = 0. Thus
if λ is another eigenvalue ofD with corresponding eigenvectory, then1T y = 0. It
then follows from (2.5) and the assumption thatA is conditionally negative definite
that

λ = yT Dy
yT y

= yT Ay
yT y

≤ 0.



1024 L. A. IMHOF

Thusλ1 = 0 is the largest eigenvalue ofD, and the variational description ofλ2,
the second largest eigenvalue, and (2.5) yield

λ2 = max
xT 1=0

x �=0

xT Dx
xT x

= max
xT 1=0

x �=0

xT Ax
xT x

< 0.

�

PROOF OF THEOREM 2.1. Let L denote the second-order differential
operator associated withX(t), that is,

Lf (x) =
n∑

j=1

bj (x)
∂f (x)

∂xj

+ 1

2

n∑
j,k=1

γjk(x)
∂2f (x)

∂xj ∂xk

, f ∈ C2(�),(2.6)

where

bj (x) = xj (ej − x)T [A − diag(σ 2
1 , . . . , σ 2

n )]x,

γjk(x) =
n∑

ν=1

cjν(x)ckν(x),

cjk(x) =
{

xj (1− xj )σj , j = k,
−xjxkσk, j �= k.

Suppose first thatp ∈ �, and setg(x) = d(x,p) =∑j pj log(pj /xj ) for all x ∈ �.
Then, for allx, g(x) ≥ 0 and

Lg(x) = −
n∑

j=1

pj (ej − x)T [A − diag(σ 2
1 , . . . , σ 2

n )]x

+ 1
2

n∑
j=1

pj

(
σ 2

j − 2xjσ
2
j +

n∑
k=1

x2
kσ 2

k

)

= (x − p)T Ax − 1
2

n∑
j=1

x2
j σ 2

j + 1
2

n∑
j=1

pjσ
2
j .

As p is evolutionarily stable,(x − p)T Ap ≤ 0. Sincep ∈ �, A is conditionally
negative definite. This follows from the proof of Haigh’s theorem (1975). Hence,
in view of Lemma 2.1,

(x − p)T Ax ≤ (x − p)T A(x − p) ≤ λ2‖x − p‖2

andλ2 < 0. The Cauchy–Schwarz inequality gives 1≤ (
∑n

j=1x2
j σ 2

j )
∑n

j=1σ−2
j ,

so that−∑n
j=1x2

j σ 2
j ≤ −(

∑n
j=1 σ−2

j )−1. It now follows that

Lg(x) ≤ λ2‖x − p‖2 + κ2, x ∈ �.(2.7)

Suppose thatδ2 > κ2/|λ2|. For everyx ∈ � \ Uδ(p), Lg(x) ≤ λ2δ
2 + κ2, and it

follows by Itô’s formula thatg(X(t)) − (λ2δ
2 + κ2)t is a local supermartingale
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on [0, τ�Uδ(p)). Hence [cf. proof of Theorem 5.3 in Durrett (1996), page 268]

g(x) ≥ (|λ2|δ2 − κ2)Exτ�Uδ(p), proving (2.3)(b).
To prove recurrence, consider the transformed processY (t) = (X(t)), where

 :� → R
n−1 is defined by(x) = (log(x1/xn), . . . , log(xn−1/xn))

T . One has

dYj (t) = {(ej − en)
T A−1(Y (t)) − 1

2(σ 2
j − σ 2

n )
}
dt + σj dWj(t) − σn dWn(t),

j = 1, . . . , n − 1,

where −1(y) = (1 + ey1 + · · · + eyn−1)−1(ey1, . . . , eyn−1,1)T . Note that the
second-order differential operator associated withY (t) is uniformly elliptic. It will
next be shown that∂Uδ0 has positive distance from∂� for someδ0 > κ/

√|λ2|.
This implies that(Uδ0) is a compact set. In view of (2.3)(b) it will then
follow that Y (t) is recurrent [Bhattacharya (1978) and Khas’minskii (1960)] and
the transition probabilities converge in total variation to the unique stationary
probability measure [Durrett (1996), Chapter 7]. The same applies then toX(t).
By (2.2), one may chooseδ0 such thatκ/

√|λ2| < δ0 < (n/(n − 1))minj pj .
Supposey ∈ R

n,
∑n

j=1 yj = 1 and‖y − p‖ = δ0. Let j0 be such that|yj0 − pj0| =
max1≤j≤n |yj − pj |, and set

z =
(
yj0 − pj0,

pj0 − yj0

n − 1
, . . . ,

pj0 − yj0

n − 1

)T

∈ R
n.

One may verify thatz is majorized byy − p in the sense of Definition A.1
in Marshall and Olkin [(1979), page 7], and it follows from Proposition C.1 in
Marshall and Olkin [(1979), page 64] that

δ2
0 =

n∑
j=1

(yj − pj )
2 ≥

n∑
j=1

z2
j =

(
1+ 1

n − 1

)(
yj0 − pj0

)2
= n

n − 1
max

1≤j≤n
(yj − pj )

2.

Thus, for everyj , yj ≥ min1≤k≤n pk − (n − 1)δ0/n > 0, showing that the distance
between∂Uδ0 and∂� is positive.

For K > g(x) let τ̃K = inf{t > 0 :g(X(t)) = K}. Then, by Dynkin’s formula
and (2.7),

0 ≤ Exg
(
X(t ∧ τ̃K)

)= g(x) + Ex

∫ t∧τ̃K

0
Lg(X(s)) ds

≤ g(x) + λ2Ex

∫ t∧τ̃K

0
‖X(s) − p‖2 ds + κ2Ex(t ∧ τ̃K).

If K → ∞, then t ∧ τ̃k → t , and (2.4) follows by the bounded convergence
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theorem. To prove (2.3)(a), letχ�UC
δ (p) denote the indicator function of�UC

δ (p) =
� \ �Uδ(p). Then, by (2.4),

π
(�UC

δ (p)
)= lim

t→∞ Ex
1

t

∫ t

0
χ�UC

δ (p)(X(s)) ds

≤ lim
t→∞ Ex

1

t

∫ t

0

‖X(s) − p‖2

δ2 ds ≤ κ2

|λ2|δ2 .

An inspection of the above arguments shows that ifA is conditionally negative
definite, then (2.1), (2.3)(b) and (2.4) hold if the ESSp ∈ ∂�. In this case, however,
X(t) need not be recurrent.�

If p is an ESS forA, then there exists a constantc ∈ R such that{Ap}j = c for
all j ∈ {1, . . . , n} with pj > 0; see Hofbauer and Sigmund [(1998), page 63]. Thus

[diag(p1, . . . , pn) − ppT ]Ap = 0,

so that the drift vectorb(x) of the stochastic differential equation (1.4) will in
general not be zero atx = p. If, however,p is an ESS for the modified pay-
off matrix B = A − diag(σ 2

1 , . . . , σ 2
n ), then b(p) = 0. From this point of view

it is more natural to investigate the distance betweenX(t) and an ESS forB.
A simple modification of the proof of Theorem 2.1 yields the following result.
The analogous results on recurrence and the stationary distribution are omitted for
brevity.

THEOREM 2.2. Let X(t) be given by the stochastic replicator dynamics (1.4)
with underlying pay-off matrix A. Let p ∈ �� be an ESS for the modified pay-
off matrix A − diag(σ 2

1 , . . . , σ 2
n ). Suppose also that A − diag(1

2σ 2
1 , . . . , 1

2σ 2
n ) is

conditionally negative definite. Then for every initial state x ∈ � and every t > 0,

Ex
1

t

∫ t

0
‖X(s) − p‖2 ds ≤ 1

|λ′
2|
{

d(x,p)

t
+ 1

2

n∑
j=1

pj (1− pj )σ
2
j

}
,(2.8)

where d(x,p) =∑
j : pj>0 pj log(pj /xj ) and λ′

2 is the second largest eigenvalue
of

�A − 1

n
�A11T − 1

n
11T �A + 1T �A1

n2 11T ,

where �A = 1
2[A + AT − diag(σ 2

1 , . . . , σ 2
n )].

REMARK 2.3. If the ESSp ∈ �, it follows that A − diag(σ 2
1 , . . . , σ 2

n )

is conditionally negative definite, so that in this case, the assumption that
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A − diag(1
2σ 2

1 , . . . , 1
2σ 2

n ) should be conditionally negative definite is not very
restrictive. To compare (2.4) and (2.8) note that|λ′

2| > |λ2| and

1

2

n∑
j=1

pj (1− pj )σ
2
j ≤ − 1

2
∑n

j=1 σ−2
j

+ 1

2

n∑
j=1

pjσ
2
j .

3. Extinction of dominated strategies. This section is concerned with the
evolution of strategies that are inferior to other strategies in the sense of
domination.

A strategyp ∈ �� is said to be weakly dominated by strategyq ∈ �� if

pT Ar ≤ qT Ar for all r ∈ ��
with strict inequality for somer. If the inequality is strict for allr, thenp is said
to be strictly dominated byq.

For the deterministic replicator dynamics (1.2), Akin (1980) has shown that
strictly dominated pure strategies become extinct; more precisely, their frequencies
in the population converge to zero. Theorem 3.1 establishes that under the
stochastic replicator dynamics (1.4) even pure strategies that are only weakly
dominated become extinct under a suitable condition on the diffusion coefficients
σ1, . . . , σn. Theorem 3.1 also gives an upper bound for the probability that at a
given point of timet the frequency of a dominated strategy is above a prescribed
valueε > 0. The bound converges exponentially quickly to zero ast → ∞.

THEOREM 3.1. Let X(t) be given by (1.4).Suppose that the pure strategy k is
weakly dominated by some mixed strategy p ∈ ��. Set c1 = minq∈�� pT Aq − eT

k Aq
and suppose that σ1, . . . , σn are such that

c2 = −σ 2
k

2
+ 1

2

n∑
j=1

pjσ
2
j < c1.(3.1)

Then for every initial state x ∈ �,

Px
{
Xk(t) = o

(
exp
[−(c1 − c2)t + 3σmax

√
t log logt

])}= 1,

and for 0 < ε < 1 and t > 0,

Px{Xk(t) > ε} < 1− �

{
c3(x) + logε + (c1 − c2)t

σmax
√

2t

}
,

where �(v) is the normal distribution function, σmax = max{σ1, . . . , σn} and
c3(x) =∑n

j=1 pj log(xj/xk).
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PROOF. Let H(t) = logXk(t) −∑n
j=1 pj logXj (t) for t ≥ 0. Then, by Itô’s

formula,

H(t) = H(0) +
∫ t

0
eT
k AX(s) − pT AX(s) − σ 2

k

2
+ 1

2

n∑
j=1

pjσ
2
j ds

+ σkWk(t) −
n∑

j=1

pjσjWj(t)

≤ H(0) + (c2 − c1)t + σ̃ W̃ (t),

whereσ̃ = [(1− pk)
2σ 2

k +∑j �=k p2
j σ

2
j ]1/2 andW̃ (t) = [σkWk(t) −∑n

j=1pjσj ×
Wj(t)]/σ̃ is a standard Brownian motion. Clearly,σ̃ ≤ √

2σmax. It follows that
Px-almost surely,

lim sup
t→∞

Xk(t)exp
[
(c1 − c2)t − 3σmax

√
t log logt

]
≤ lim sup

t→∞
exp
[
H(t) + (c1 − c2)t − 3σmax

√
t log logt

]
≤ lim sup

t→∞
exp
[−c3(x) + σ̃ W̃ (t) − 3σmax

√
t log logt

]= 0

by the law of the iterated logarithm. Moreover,

Px{Xk(t) > ε} ≤ Px{H(t) > logε}
≤ Px

{−c3(x) + (c2 − c1)t + σ̃W(t) > logε
}

< 1− �

{
c3(x) + logε + (c1 − c2)t

σmax
√

2t

}
. �

REMARK 3.1. Condition (3.1) is always satisfied ifk is strictly dominated
by p and σ1 = · · · = σn. The condition is also satisfied whenk is merely
weakly dominated andσk > σj for everyj �= k. Thus if the diffusion coefficient
corresponding to a weakly dominated strategy is large enough, its frequency
converges to zero. This behavior is different from the behavior of weakly
dominated strategies under the deterministic replicator dynamics where weakly
dominated strategies may well persist with any prescribed positive population
share; see Weibull [(1995), Example 3.4, page 84]. This difference between the
deterministic and the stochastic population dynamics agrees with the findings
of Alvarez (2000) which show that, under mild conditions, “increased stochastic
fluctuations decrease the expected population density.” Cabrales (2000) proves that
in a similar stochastic model iteratively strictly dominated strategies become rare,
provided stochastic effects are sufficiently small.
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REMARK 3.2. In the situation of Theorem 3.1,

Px{Xk(t) > ε} = o(e−γ t ), t → ∞,

for any 0< γ < (c1 − c2)
2/(4σ 2

max). This is easily verified using the bound
1− �(v) ≤ exp(−v2/2), v > 0.

REMARK 3.3. The assumptions of Theorem 3.1 may be satisfied even if the
pure strategyk is not dominated by any other pure strategy. For example, let

A =
2 2 2

4 1 1
1 4 4

 and
σ 2

2 + σ 2
3

2
< 1+ σ 2

1 .

Then the pure strategy 1 is strictly dominated byp = (0, 1
2, 1

2)T and, according
to Theorem 3.1,X1(t) → 0 almost surely, even though neither strategy 2 nor
strategy 3 dominates strategy 1.

4. Stochastic stability of Nash equilibria. The last section dealt with the
extinction of pure strategies that were inferior to at least one strategy. The present
section investigates strategies that can be regarded as being locally superior to all
other strategies. The relevant concept is that of a strict Nash equilibrium.

A strategyp ∈ �� is called a Nash equilibrium if

pT Ap ≥ qT Ap for all q ∈ ��.

If the inequality is strict for allq �= p, thenp is a strict Nash equilibrium.
In other words, a Nash equilibrium is a best reply to itself, and a strict Nash

equilibrium is the unique best reply to itself. Only pure strategies can be strict
Nash equilibria; see Weibull [(1995), page 15]. Thus if nearly the whole population
plays a strict Nash equilibrium, then the highest pay-off is obtained by exactly that
strategy so that natural selection would not favor any other strategy. This suggests
that a strict Nash equilibrium should be an asymptotically stable state, which is
indeed the case under the deterministic replicator dynamics (1.2). This need not
be the case for the stochastic replicator dynamics (1.4), as is illustrated by the
following example.

EXAMPLE. Consider the Prisoner’s Dilemma game [Hofbauer and Sigmund
(1998), page 101] with two pure strategies: 1= co-operate, 2= defect, and pay-off
matrix

A =
(

a11 a12
a21 a22

)
, a21 > a11 > a22 > a12.

Here strategy 2 is a strict Nash equilibrium and under (1.2), limt→∞ ξ2(t) = 1 for
all initial statesξ(0) ∈ �. On the other hand, if

σ 2
2

2
>

σ 2
1

2
+ max{a21 − a11, a22 − a12},
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then condition (3.1) of Theorem 3.1 is satisfied withk = 2, p = (1,0)T , so that
Px{limt→∞ X1(t) = 1} for all x ∈ �. This is a reasonable behavior, because if all
players co-operate, then the received pay-off,a11, is larger thana22, the pay-off
they receive when all players defect. Thus the stochastic model may explain the
spread of co-operative behavior, which could not be observed in the deterministic
model. This fact agrees with results of Nowak, Sasaki, Taylor and Fudenberg
(2004) who study a discrete-time Markov chain to explain the emergence of co-
operation in a finite population that plays the Prisoner’s Dilemma game.

The next theorem gives a sufficient condition for a strict Nash equilibrium to be
asymptotically stochastically stable. Notice that a pure strategyk is a strict Nash
equilibrium if and only ifakk > ajk for all j �= k.

THEOREM 4.1. Let X(t) be given by (1.4).Let k be a strict Nash equilibrium.
Suppose that σk is so small that

akk > ajk + σ 2
k for all j �= k.(4.1)

Then ek is asymptotically stochastically stable. That is, for any neighborhood U

of ek and for any ε > 0 there is a neighborhood V of ek such that

Px

{
X(t) ∈ U for all t ≥ 0, lim

t→∞X(t) = ek

}
≥ 1− ε

for every initial state x ∈ V ∩ �.

PROOF. The proof is an application of the stochastic Lyapunov method.
Consider the Lyapunov functionφ(y) = 1− yk. Evidently,φ(y) ≥ 0 for all y ∈ ��
with equality if and only ify = ek . It will be shown that there is a constantc > 0
and a neighborhoodV0 of ek such that

Lφ(y) ≤ −cφ(y) for all y ∈ V0 ∩ �,(4.2)

whereL is the differential operator given by (2.6). The assertion then follows from
Theorem 4 and Remark 2 in Gichman and Skorochod [(1971), pages 314 and 315].
Write B = A − diag(σ 2

1 , . . . , σ 2
n ). For ally ∈ �,

Lφ(y) = −yk(ek − y)T By

= yk

∑
µ �=k

ν �=k

yµbµνyν − yk(1− yk)
∑
ν �=k

bkνyν

+ y2
k

{
−(1− yk)bkk + ∑

µ �=k

yµbµk

}
.
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Let β = max{|bµν| :µ,ν = 1, . . . , n}. Then∑
µ �=k

ν �=k

yµbµνyν ≤ β
∑
µ �=k

yµ

∑
ν �=k

yν = β(1− yk)
2, −∑

ν �=k

bkνyν ≤ β(1− yk).

Moreover, condition (4.1) ensures that for someα > 0,bµk ≤ bkk −α for all µ �= k,
so that

−(1− yk)bkk + ∑
µ �=k

yµbµk ≤ −(1− yk)bkk + (bkk − α)
∑
µ �=k

yµ = −α(1− yk).

Hence

Lφ(y) ≤ 2βyk(1− yk)
2 − αy2

k (1− yk) = −yk{(α + 2β)yk − 2β}φ(y),

which proves (4.2) withV0 = {y ∈ � : yk > 1
2

α+4β
α+2β

} andc = α
4 . �

REMARK 4.1. Condition (4.1) means thatk is a strict Nash equilibrium with
respect to the modified pay-off matrixB. If k is only a neutrally stable strategy with
respect toB [see Weibull (1995), Definition 2.4, page 46], then, by Proposition 2.7
of Weibull [(1995), page 48],Lφ(y) = −yk(ek − y)T By ≤ 0 for all y in a certain
neighborhood ofek . Hence in this case Theorem 4 of Gichman and Skorochod
[(1971), page 314] yields thatek is still stochastically stable.

Theorem 4.1 says that if the population is in a state sufficiently near to a
strict Nash equilibriumek , then, with probability close to 1, that equilibrium
will actually be selected by the stochastic replicator dynamics in the sense that
lim t→∞ X(t) = ek . If there are several strict Nash equilibria and the initial state is
not close to any of them, it is neither clear which one will be selected nor in fact if
any will be selected at all. The next theorem establishes that when the underlying
game is a coordination game, that is, every pure stategy is a strict Nash equilibrium,
then it is almost certain that one of the equilibria will be selected.

THEOREM 4.2. Let A be the pay-off matrix of a co-ordination game and
let X(t) be given by (1.4). Suppose that, for every k, σk is so small that akk >

ajk + σ 2
k for all j �= k. Then, for every initial state x ∈ �,

Px

{
lim

t→∞ X(t) = ek for some k

}
= 1.

The proof hinges on the following theorem, which is of interest in its own right.
It states that for any underlying game,X(t) will come arbitrarily close to one of
the pointse1, . . . , en in finite time.
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THEOREM 4.3. Let A be an arbitrary pay-off matrix, let X(t) be given
by (1.4)and let x ∈ �. Let ε > 0. Consider the hitting time

τε = inf
{
t > 0 :Xk(t) ≥ 1− ε for some k ∈ {1, . . . , n}}.

Then Exτε < ∞. Moreover,

Px

{
sup
t>0

max{X1(t), . . . ,Xn(t)} = 1
}

= 1.

PROOF. Forα > 0 andy ∈ �� define

φα(y) = φ(y) = neα −
n∑

k=1

eαyk .

Let B = A − diag(σ 2
1 , . . . , σ 2

n ) and letL be given by (2.6). Then

Lφ(y) = −α

n∑
k=1

yk(ek − y)T Byeαyk − α2

2

n∑
k=1

y2
k

{
σ 2

k (1− yk)
2 +∑

j �=k

σ 2
j y2

j

}
eαyk .

Let β > 0 be such that

|(ek − y)T By| ≤ β for all y ∈ � andk ∈ {1, . . . , n}.
Let σmin = min{σ1, . . . , σn}. Then

Lφ(y) ≤ α

n∑
k=1

yke
αyk

{
β − ασ 2

min

2
yk(1− yk)

2
}
.

Let α > 0 be so large that

α
σ 2

min

2
y(1− y)2 ≥ nβ + 1 for all y ∈

[
1

n
,1− ε

]
.

Suppose thaty ∈ � is such thatyk ≤ 1 − ε for all k = 1, . . . , n. Then there is at
least oneyk in [ 1

n
,1− ε], and so

Lφ(y) ≤ αβ
∑

k : yk<1/n

yke
αyk + α

∑
k : yk∈[1/n,1−ε]

yke
αyk{−(n − 1)β − 1}

≤ αβ(n − 1)
eα/n

n
+ α

eα/n

n
{−(n − 1)β − 1}

≤ −α
eα/n

n
.

Thus, by Dynkin’s formula, for everyT < ∞,

0 ≤ Exφ{X(τε ∧ T )} = φ(x) + Ex

∫ τε∧T

0
Lφ(X(s)) ds

≤ neα − α
eα/n

n
Ex(τε ∧ T ).
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LettingT → ∞, one obtains by monotone convergence thatExτε < n2eα/α < ∞.
Choosingε = 1/m, one obtains in particular that

Px

{
sup
t>0

max{X1(t), . . . ,Xn(t)} ≥ 1− 1

m

}
= 1

for everym ∈ N. Hence

Px

{
sup
t>0

max{X1(t), . . . ,Xn(t)} = 1
}

= Px

{ ∞⋂
m=1

{
sup
t>0

max{X1(t), . . . ,Xn(t)} ≥ 1− 1

m

}}
= 1.

�

PROOF OF THEOREM 4.2. Letε > 0 and suppose thatakk > ajk + σ 2
k for

all j, k = 1, . . . , n with j �= k. Then, for everyk, there exists, by Theorem 4.1,
someδk > 0 such that

Px

{
lim

t→∞X(t) = ek

}
> 1− ε if xk ≥ 1− δk.

Set τ = inf{t ≥ 0 :Xk(t) ≥ 1 − δk for somek} and F = {lim t→∞ X(t) = ek for
somek}. LetχF denote the indicator function ofF . According to Theorem 4.3,τ is
Px-almost surely finite, and so, by the strong Markov property of Itô diffusions,

Px(F ) = ExEX(τ)χF ≥ 1− ε.

As ε > 0 was arbitrary, the assertion follows.�

5. A discrete war of attrition. Theorems 2.1 and 2.2 show that an ESS, if
it exists, gives precise information about the long-run behavior of the stochastic
replicator dynamics. In this section explicit expressions are derived for ESSs for
a discrete variant of the war of attrition, introduced by Maynard Smith and Price
(1973). See Maynard Smith (1982) and Bishop and Cannings (1978) for a detailed
discussion and extensions.

In the discrete symmetric war of attrition each player selects a pure strategy
j ∈ {0,1, . . . , n}, which determines the maximum length of time,cj , the player is
willing to display for. The contest progresses until one of the players has reached
his chosen limit; this player leaves and the other player obtains a reward. The value
of the reward is constant or a decreasing function of the length of the contest. Both
players incur a cost given by the length of the contest. If both players have chosen
the same length of time, the reward is shared.

Specifically, the pay-off matrixA = (ajk), j, k = 0, . . . , n, is given by

ajk =


vk − ck, j > k,
vk

2
− ck, j = k,

−cj , j < k,

(5.1)
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where

0 ≤ c0 < c1 < · · · < cn and v0 ≥ v1 ≥ · · · ≥ vn > 0.

The corresponding stochastic replicator dynamics is

dX(t) = b(X(t)) dt + C(X(t)) dW(t),(5.2)

where W(t) denotes an(n + 1)-dimensional Brownian motion and, forx =
(x0, . . . , xn)

T ,

b(x) = [diag(x0, . . . , xn) − xxT ][A − diag(σ 2
0 , . . . , σ 2

n )]x
and

C(x) = [diag(x0, . . . , xn) − xxT ]diag(σ0, . . . , σn).

Theorem 2.2 suggests to consider ESSs not only ofA but also of the modified
pay-off matrixB = (bjk), j, k = 0, . . . , n, with

bjk =


vk − ck, j > k,
vk

2
− ck − ρk, j = k,

−cj , j < k,

(5.3)

and

0≤ c0 < c1 < · · · < cn, v0 ≥ v1 ≥ · · · ≥ vn > 0, 0 ≤ ρk <
vk

2
.

The following lemma ensures that the pay-off matricesA and B satisfy the
assumptions in Theorems 2.1 and 2.2. The proof is in the Appendix.

LEMMA 5.1. For the war of attrition with pay-off matrix given by (5.1)or (5.3)
there exists a unique ESS, and the pay-off matrix is conditionally negative definite.

The next theorem is a basic persistence result for the replicator dynamics, saying
that with probability close to 1 the maximum effort strategy, that is, strategyn, will
not die out. Forj = 0, . . . , n, let ej denote the(j + 1)st column of the unit matrix
of ordern + 1.

THEOREM 5.1. Let X(t) be given by the stochastic replicator dynamics (5.2)
with initial state x ∈ �. Let ε > 0. Then there exists σ ∗ = σ ∗(ε) > 0 such that

Px

{
lim sup
t→∞

Xn(t) > 0
}

≥ 1− ε,

provided that σ0, . . . , σn < σ ∗.
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PROOF. Let p be the ESS forA. It will first be shown thatpn > 0. Suppose
that this is not the case, so thatm := max{j :pj > 0} < n. TheneT

m+1Ap ≤ eT
mAp,

see Hofbauer and Sigmund [(1998), page 63]. Aspj = 0 for j > m,

eT
mAp =

m−1∑
j=0

(vj − cj )pj +
(

vm

2
− cm

)
pm,

eT
m+1Ap =

m∑
j=0

(vj − cj )pj .

Thus

0 ≤ eT
mAp − eT

m+1Ap = −vm

2
pm < 0;

a contradiction. Hencepn > 0.
By Theorem 2.1 and Lemma 5.1, for allt > 0,

Ex
1

t

∫ t

0
|Xn(s) − pn|2 ds ≤ 1

|λ2|
{

d(x,p)

t
+ 1

2

n∑
j=1

pjσ
2
j

}
,

whereλ2 �= 0 depends only onA. Chooset0 > 0 andσ ∗ > 0 such that

d(x,p)

|λ2|t0 <
p2

nε

16
,

(σ ∗)2

|λ2| <
p2

nε

8
.

Thus if σ0, . . . , σn < σ ∗, then

Ex
1

t

∫ t

0
|Xn(s) − pn|2 ds ≤ p2

nε

8
for all t ≥ t0.

Now consider the increasing sequence of events

Fµ =
{
Xn(s) ≤ pn

2
for all s ≥ t0 + µ

}
, µ = 1,2, . . . .

For everyµ,

p2
nε

8
≥ 1

2(t0 + µ)

∫
Fµ

∫ 2(t0+µ)

t0+µ
|Xn(s) − pn|2 ds dPx ≥ p2

n

8
Px(Fµ),

so thatPx(
⋃∞

µ=1 Fµ) ≤ ε. Hence

Px

{
lim sup
t→∞

Xn(t) > 0
}

≥ Px

( ∞⋂
µ=1

FC
µ

)
≥ 1− ε.

�

In general the ESS for a discrete war of attrition may have a fairly complicated
structure. Cressman [(2003), Section 7.4] describes a broad approach to calculating
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ESSs for these games using backward induction. Whittaker (1996) has recently
solved several closely related resource allocation problems based on a multiple
trial war of attrition. The following theorem gives an explicit expression for the
ESS in the case where theρk and thevk are constant andcj = j for all strategiesj .
Combining Lemma 5.1 and Theorems 2.1, 2.2 and 5.2, one obtains a fairly
complete picture of the long-run behavior of the stochastic replicator dynamics
when the conflicts are modeled by a war of attrition.

Let Um(x) denote themth Chebyshev polynomial of the second kind, and let
U−1(x) ≡ 0. Let i = √−1.

THEOREM 5.2. Consider the war of attrition with pay-off matrix B = (bjk),
j, k = 0, . . . , n, where

bjk =


v − k, j > k,
v

2
− k − ρ, j = k,

−j, j < k,

(5.4)

and 0 ≤ ρ < 1
2v. The unique ESS p is given as follows. If the reward v is so large

that v ≥ 2n + 2ρ, then

p0 = · · · = pn−1 = 0, pn = 1.

Otherwise there is a unique index s ∈ {0, . . . , n − 1} such that

n − 1+ ρ ≤ v

2
+ s < n + ρ,(5.5)

and

pk = 1

c

(
−v

2
− ρ

)k

×
{
us−k+1 +

(
s + 1− n + v

2
+ ρ

)
us−k(5.6)

+ (s + 1− n)

(
v

2
+ ρ

)
us−k−1

}
, 0 ≤ k ≤ s,

pk = 0, s + 1≤ k ≤ n − 1,(5.7)

pn = 1

c

(
−v

2
− ρ

)s+1

,

where

uk = (−iγ )kUk

(
− i(2ρ + 1)

2γ

)
, γ =

√
v2

4
− ρ2

and

c = −us+2 + (n − s − 1− 2ρ)us+1 + {2ρ(n − s − 1) + γ 2}us

− (n − s − 1)γ 2us−1.
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The proof of this theorem requires some auxiliary results, which are proved in
the Appendix.

It was shown in the proof of Theorem 5.1 that for the war of attrition (5.3),
strategyn is always contained in the support of the ESS. The next lemma states
that forj < n, strategyj can belong to the support only if the corresponding cost
cj is below a certain threshold. This is the discrete analogue of Theorem 7 of
Bishop and Cannings (1978). The lemma explains in particular the choice ofs in
Theorem 5.2.

LEMMA 5.2. Let p be the ESS for the war of attrition with pay-off matrix
B = (bjk), j, k = 0, . . . , n, described by (5.3). If j < n and cj ≥ cn + ρn − 1

2vn,
then pj = 0.

The next two lemmas give explicit formulas for determinants related to the pay-
off matrix of a war of attrition. LetJk denote thek ×k matrix with all entries equal
to 1 and let1k denote thek × 1 vector all of whose entries are 1.

LEMMA 5.3. Let B ∈ R
(n+1)×(n+1) be given by (5.3). For k = 0, . . . , n,

let B(k) denote the matrix obtained from B by replacing column k with the
vector 1n+1. Then

detB(n) =
n−1∏
j=0

(
−vj

2
− ρj

)
and, for k = 0, . . . , n − 1,

detB(k) = det(B̃n−k + ckJn−k)

k−1∏
j=0

(
−vj

2
− ρj

)
,

where B̃n−k is the (n−k)× (n−k) principal submatrix of B situated in the bottom
right-hand corner.

LEMMA 5.4. Let B ∈ R
(n+1)×(n+1) be given by (5.4) with 0 ≤ ρ < 1

2v. Set

γ =
√

1
4v2 − ρ2. Then

detB =
(

v

2
− ρ

)
(−iγ )n−1

×
{
−iγUn

(
− i(2ρ + 1)

2γ

)
+
(

v

2
+ ρ

)
Un−1

(
− i(2ρ + 1)

2γ

)}
.

PROOF OF THEOREM 5.2. Let B be given by (5.4). Suppose first that
v ≥ 2n + 2ρ. Thenj ≥ n + ρ − 1

2v for everyj = 0, . . . , n − 1. Thus ifp is the
ESS, then, by Lemma 5.2,pj = 0 for j = 0, . . . , n − 1, so thatp = en.
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Suppose next that 2ρ < v < 2n + 2ρ. Defines ∈ {0, . . . , n − 1} by (5.5) and
definep ∈ R

n+1 by (5.6), (5.7) and (5.8). It will be shown that

{Bp}j = {Bp}n if 0 ≤ j ≤ s,(5.8)

{Bp}j ≤ {Bp}n if s + 1 ≤ j ≤ n − 1.(5.9)

It will also be shown thatp ∈ ��. Since, by Lemma 5.1, any principal submatrix
of B is conditionally negative definite, it will then follow from Haigh’s (1975)
theorem thatp is the ESS.

Form = 0, . . . , n set

Bm =
 b00 . . . b0m

...
...

bm0 . . . bmm

 .

According to Lemma 5.4,

detBm =
(

v

2
− ρ

){
um +

(
v

2
+ ρ

)
um−1

}
.(5.10)

Set

�B =


b00 . . . b0s b0n
...

...
...

bs0 . . . bss bsn

bn0 . . . bns bnn

 and p̄ =


p0
...

ps

pn

 .

For k = 0, . . . , s + 1 let �B(k) denote the matrix obtained from�B by replacing
columnk with the vector1s+2. As pk = 0 for s + 1 ≤ k ≤ n − 1,

{�Bp̄}j = {Bp}j , 0≤ j ≤ s, {�Bp̄}s+1 = {Bp}n.(5.11)

The matrix�B is again of the form (5.3). It follows from Lemma 5.3 that for every
k ≤ s − 1,

det�B(k) =
(
−v

2
− ρ

)k

det


bk+1,k+1 + k . . . bk+1,s + k bk+1,n + k

...
...

...

bs,k+1 + k . . . bs,s + k bs,n + k

bn,k+1 + k . . . bn,s + k bn,n + k


=
(
−v

2
− ρ

)k

× det



v

2
− ρ − 1 −1 . . . −1 −1

v − 1
v

2
− ρ − 2 . . . −2 −2

...
...

...
...

v − 1 v − 2 . . .
v

2
− ρ − (s − k) −(s − k)

v − 1 v − 2 . . . v − (s − k)
v

2
− ρ − (n − k)


.



STOCHASTIC REPLICATOR DYNAMICS 1039

Denote the matrix in the previous line byQ. To calculate detQ augmentQ from
the left by the(s − k + 1) × 1 vector(v, . . . , v)T and put on top of the matrix thus
obtained the 1× (s − k + 2) vector(1

2v − ρ,0, . . . ,0). This gives a matrix which
is equal toBs−k+1 except for the element in the lower right-hand corner, which is
1
2v −ρ −n+ k, while the corresponding element ofBs−k+1 is 1

2v −ρ − s + k −1.
Hence

detQ =
(

v

2
− ρ

)−1

det

[ v

2
− ρ 01×(s−k+1)

v1s−k+1 Q

]

=
(

v

2
− ρ

)−1

{detBs−k+1 − (n − s − 1)detBs−k},
and so, by (5.10),

det�B(k) =
(
−v

2
− ρ

)k[
us−k+1 +

(
v

2
+ ρ

)
us−k

− (n − s − 1)

{
us−k +

(
v

2
+ ρ

)
us−k−1

}]

= cpk,

provided k ≤ s − 1. Similarly, det�B(s) = cps , and it follows directly from
Lemma 5.3 that

det�B(s+1) =
(
−v

2
− ρ

)s+1

= cpn.

Thus

cp̄ =
 det�B(0)

...

det�B(s+1)

 .(5.12)

Let adj�B denote the adjugate matrix of�B . It is readily verified that

(adj�B )1s+2 =
 det�B(0)

...

det�B(s+1)

 ,(5.13)

and therefore

�Bp̄ = 1

c
�B(adj�B )1s+2 = det�B

c
1s+2.

In view of (5.11) this proves the first claim (5.8).
If s < j < n, then, by (5.5),

bjn = −j ≤ −s − 1≤ v

2
− n − ρ = bnn,
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and so

{Bp}j =
s∑

k=0

bjkpk + bjnpn =
s∑

k=0

bnkpk + bjnpn ≤
s∑

k=0

bnkpk + bnnpn = {Bp}n,

proving the second claim (5.9).
Finally, to show thatp ∈ �� set

tj = uj +
(
s +1−n+ v

2
+ρ

)
uj−1+ (s +1−n)

(
v

2
+ρ

)
uj−2, j = 1,2, . . . ,

so that the firsts + 1 entries ofp can be written as

pk = 1

c

(
−v

2
− ρ

)k

ts−k+1, 0≤ k ≤ s.

In view of (5.5),

t1 = v

2
− ρ − n + s < 0,

t2 =
(

v

2
+ ρ

)(
v

2
− ρ − n + s + 1

)
− (2ρ + 1)t1 > 0.

Using the recurrence relation for the Chebyshev polynomials [Szegö (1975),
equation (4.7.17), page 81] one may verify that

uk = −(2ρ + 1)uk−1 + γ 2uk−2, k ≥ 1.

Therefore,

tk = −(2ρ + 1)tk−1 + γ 2tk−2, k ≥ 3.

It now follows by induction that(−1)ktk > 0 for all k. A short calculation shows
thatc = −ts+2 + (1

2v − ρ)ts+1, so that(−1)s+1c > 0. (In particular,c �= 0, which
has hitherto been tacitly assumed.) It is thus obvious thatpk ≥ 0 for 0≤ k ≤ n.

To verify that
∑n

k=0 pk = 1 note that by (5.7), (5.12) and (5.13),

n∑
k=0

pk = pn +
s∑

k=0

pk = 1

c
1T
s+2(adj�B )1s+2.

By a well-known determinantal formula for partitioned matrices [Gantmacher
(1959), page 46],

1T
s+2(adj�B )1s+2 = det�B − det(�B − 1s+21T

s+2).

Observing that, by (5.10),

det�B = detBs+1 − (n − s − 1)detBs

=
(

v

2
− ρ

)[
us+1 +

(
v

2
+ ρ

)
us − (n − s − 1)

{
us +

(
v

2
+ ρ

)
us−1

}]
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and

det(�B − 1s+21T
s+2) =

(
v

2
− ρ

)−1

{detBs+2 − (n − s − 1)detBs+1}

= us+2 +
(

v

2
+ ρ

)
us+1 − (n − s − 1)

{
us+1 +

(
v

2
+ ρ

)
us

}
,

one obtains that1T
s+2(adj�B )1s+2 = c, so that

∑n
k=0 pk = 1. �

APPENDIX

PROOF OF LEMMA 5.1. As qT Bq = qT Aq − ∑n
j=0q2

j ρj ≤ qT Aq for all

q ∈ R
n+1, it suffices to show thatA is conditionally negative definite. Define the

n × n matrix D by djk = 1
2(bjk + bkj ) − bj0 − b0k + b00, j, k = 1, . . . , n. Thus

djk = vmin{j,k} − 2cmin{j,k} − v0 + 2c0.

Fork = 1, . . . , n let fk be then×1 vector whose firstk −1 entries are 0 and whose
remaining entries are 1. ThenD can be written as

D =
n∑

k=1

(
vk − vk−1 − 2(ck − ck−1)

)
fkfTk ,

showing thatD is negative definite. This implies thatA is conditionally negative
definite; see Haigh (1975).

The existence of an ESS now follows, since in a game with conditionally
negative definite pay-off matrix, a Nash equilibrium, which always exists, must be
an ESS. To prove uniqueness supposep andq are ESSs. ThenpT Bp ≥ qT Bp and
qT Bq ≥ pT Bq, so that(p − q)T B(p − q) ≥ 0. SinceB is conditionally negative
definite, this impliesp = q. �

PROOF OF LEMMA 5.2. The assertion is obviously true ifpj = 0 for all
j < n, so assumepj > 0 for somej < n. Let m := max{j : j < n, pj > 0}. Then
pm > 0 and, as in the proof of Theorem 5.1,pn > 0, so thateT

mBp = eT
n Bp, see

Hofbauer and Sigmund [(1998), page 63]. Sincepj = 0 if m + 1 ≤ j ≤ n − 1,

eT
mBp =

m−1∑
k=0

(vk − ck)pk +
(

vm

2
− cm − ρm

)
pm − cmpn,

eT
n Bp =

m∑
k=0

(vk − ck)pk +
(

vn

2
− cn − ρn

)
pn.

Thus

0 = eT
n Bp − eT

mBp =
(

vm

2
+ ρm

)
pm +

(
vn

2
− cn − ρn + cm

)
pn,
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and it follows thatvn/2− cn − ρn + cm < 0. That is,cn + ρn − vn/2 > cm. Now
suppose thatj < n andcj ≥ cn +ρn −vn/2. Thencj > cm, and since the sequence
(cµ) is increasing,j > m. Thuspj = 0. �

PROOF OF LEMMA 5.3. Suppose 1≤ k ≤ n − 1. For j = 0, . . . , k − 1,
addvj − cj times columnk of B(k), that is, the vector1n+1, to columnj . For
j = k + 1, . . . , n, addck times columnk to columnj . The matrix thus obtained
can be partitioned as D 1k ∗

0 1 0
0 1n−k B̃n−k + ckJn−k

 ,

whereD is a k × k upper triangular matrix with diagonal elements−v0/2 −
ρ0, . . . ,−vk−1/2 − ρk−1. The assertion is now obvious. The proof is similar for
k = 0 andk = n. �

LEMMA A.1. Let γ1, γ2, x ∈ R, γ1, γ2 > 0. The determinant of the n × n

tridiagonal matrix

Dn(x) =



x γ1 0 0 . . . 0 0 0
−γ2 x γ1 0 . . . 0 0 0

0 −γ2 x γ1 . . . 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 . . . −γ2 x γ1
0 0 0 0 . . . 0 −γ2 x


is given by

detDn(x) = in(γ1γ2)
n/2Un

(
− ix

2
√

γ1γ2

)
.(A.1)

PROOF. Note first that

detD1(x) = x, detD2(x) = x2 + γ1γ2.

Expanding detDn(x) along the last column, one obtains that, forn > 2,

detDn(x) = x detDn−1(x) + γ1γ2 detDn−2(x).

Denote the expression on the right-hand side of (A.1) byhn(x). Then

h1(x) = x, h2(x) = x2 + γ1γ2,

and, by the recurrence formula for the Chebyshev polynomials [Szegö (1975),
(4.7.17), page 81], forn > 2,

hn(x) = in−1(γ1γ2)
(n−1)/2xUn−1

(
− ix

2
√

γ1γ2

)
− in(γ1γ2)

n/2Un−2

(
− ix

2
√

γ1γ2

)
= xhn−1(x) + γ1γ2hn−2(x).
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Now the assertion follows by induction.�

PROOF OFLEMMA 5.4. Define then × n matricesF andG by

F =



v

2
− ρ

v
v

2
− ρ

v v
v

2
− ρ

...
...

v v v . . . v
v

2
− ρ


,

G =


−1 −1 −1 . . . −1
−1 −2 −2 . . . −2
−1 −2 −3 . . . −3
...

...
...

...

−1 −2 −3 . . . −n

 .

Let I denote then × n unit matrix. Then

detB =
(

v

2
− ρ

)
det(F + G) =

(
v

2
− ρ

)
detGdet(G−1F + I ).

It is easily seen that detG = (−1)n. Moreover,

G−1 =



−2 1
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 −1


,

so that

G−1F +I =



2ρ + 1
v

2
− ρ

−v

2
− ρ 2ρ + 1

v

2
− ρ

−v

2
− ρ 2ρ + 1

v

2
− ρ

. . .
. . .

−v

2
− ρ 2ρ + 1

v

2
− ρ

−v

2
− ρ −v

2
+ ρ + 1


.
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It now follows by Lemma A.1 that

detB =
(

v

2
− ρ

)
(−1)n

{
inγ nUn

(
− i(2ρ + 1)

2γ

)

−
(

v

2
+ ρ

)
in−1γ n−1Un−1

(
− i(2ρ + 1)

2γ

)}

= (−iγ )n
{(

v

2
− ρ

)
Un

(
− i(2ρ + 1)

2γ

)
+ iγUn−1

(
− i(2ρ + 1)

2γ

)}
. �
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