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NEAR-INTEGRATED GARCH SEQUENCES1

BY ISTVÁN BERKES, LAJOS HORVÁTH AND PIOTR KOKOSZKA

Technische Universität Graz and Hungarian Academy of Sciences, University of
Utah and Utah State University

Motivated by regularities observed in time series of returns on specula-
tive assets, we develop an asymptotic theory of GARCH(1,1) processes{yk}
defined by the equationsyk = σkεk, σ2

k = ω +αy2
k−1 +βσ2

k−1 for which the
sumα + β approaches unity as the number of available observations tends to
infinity. We call such sequences near-integrated. We show that the asymptotic
behavior of near-integrated GARCH(1,1) processes critically depends on the
sign ofγ := α+β−1. We find assumptions under which the solutions exhibit
increasing oscillations and show that these oscillations grow approximately
like a power function ifγ ≤ 0 and exponentially ifγ > 0. We establish an ad-
ditive representation for the near-integrated GARCH(1,1) processes which
is more convenient to use than the traditional multiplicative Volterra series
expansion.

1. Introduction. We study the GARCH(1,1) model of Bollerslev (1986) in
which the time series{yk} follows (2.1) and (2.2) of Section 2. The GARCH(1,1)

specification is commonly used as a good approximation for modeling volatility
of financial and econometric heteroskedastic time series; see Chapter 15 of Hull
(2000) and Chapter 7 of Zivot and Wang (2003) for practical applications and
further references. This paper is motivated by the well-established fact that for
most time series of returns on speculative assets the sumα + β is very close
to 1. This observation led Engle and Bollerslev (1986) to introduce the so-called
integratedGARCH or IGARCH processes which in the setting of (2.1) and (2.2)
are defined by the conditionα + β = 1. The term “integrated” is borrowed from
the classical theory of linear time series [see, e.g., Brockwell and Davis (1991)], in
which a random sequence{xk} is said to be integrated if the sequence of differences
ut = xt − xt−1 is stationary. If this is the case, thexk are sums or “integrals”
of the uk. The sequence{xk} is then typically not stationary and its realizations
resemble a random walk. To see why a GARCH(1,1) process withα + β = 1
might be called integrated, note that (2.2) may be rewritten as

y2
k = (α + β)y2

k−1 + ek − βek−1, ek := (ε2
k − 1)σ 2

k .
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If there is a strictly stationary solution{yk} to (2.1) and (2.2) andEε2
k = 1, then

{ek} is a sequence of martingale differences, so they2
k follow an ARMA(1,1)

process which is integrated (withuk = ek − βek−1) if α + β = 1. The above argu-
ment assumed, however, that{yk} was stationary, soy2

k cannot be nonstationary,
unlike in the case of ARMA(1,1) processes with independent innovationsek. In
fact, Bougerol and Picard (1992) showed that ifα > 0 andβ > 0 andα + β = 1,
then the GARCH(1,1) process is strictly stationary.

The objective of the present paper is to investigate the asymptotic behavior of
the GARCH(1,1) process when the sumα + β is not necessarily equal to 1, but is
close to 1, as is the case in applications. This is achieved by allowing bothα andβ

to be functions of the sample sizen; the larger the sample sizen is, the closer the
sumα + β is to unity.

To illustrate some corollaries to our results, setγ = α + β − 1. Note that if
|γ | = n−q for some 1/2< q < 1, then assumptions (2.12) and (2.18) are satisfied.
Defineyn ∝ f (n) to mean thatyn/f (n) converges weakly to the distribution of the
innovationsεk . Then, assuming that for some 1/2< q < 1, γ = −n−q in the case
γ < 0 andγ = n−q in the caseγ > 0, we conclude that under the assumptions
stated in Section 2,

if γ < 0, yn ∝ ω1/2nq/2 (Theorem 2.2);
if γ = 0, yn ∝ ω1/2n1/2 (Theorem 2.4);
if γ > 0, yn ∝ ω1/2en/2nq/2 (Theorem 2.6).

The parameterω is defined in (2.2).
Under our assumptions, the sequenceyn is therefore always nonstationary and

its “oscillations” increase with the sample size at different rates, depending on the
sign of γ . The caseγ = 0 should be contrasted with the aforementioned result
of Bougerol and Picard (1992) who showed that ifα andβ are fixed, then the
processes{yn} is stationary but the expected value of its marginal distribution
is infinite. Under our assumptions, the process{yn} is mildly explosive but after
normalizing byn1/2 converges to a random variable with finite fourth moment.
Similar interpretation is valid in the caseγ < 0. If α + β > 1, the “oscillations”
increase at an exponential rate.

Our work is somewhat related to Nelson (1990a) who considered approximating
diffusion processes by discrete time sequences from the ARCH family. While his
main focus was on the exponential GARCH processes, he also considered as an
example a GARCH(1,1)-M process which is a random walk type process; we
refer to the original work of Nelson (1990a) for the details. In our setting Nelson’s
conditions (2.28), (2.29) and (2.33) can be stated, respectively, asnωn → ω ≥ 0,
nγn → −θ ∈ R andn1/2αn → α > 0. Since his goal was to obtain a continuous
time diffusion process as a limit, Nelson needed the parameterω also to depend
on n. In our theory, the parameterω plays no role because we investigate what
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happens when the sumα + β approaches 1. Unlike Nelson (1990a), we assume
thatn|γn| → ∞ andn1/2αn → 0. Our results show that assuming different rates of
convergence leads to a completely different asymptotic behavior.

In another related work, Kazakevičius, Leipus and Viano (2004) studied the
stability of general nonlinear processes related to the ARCH(∞) models. Their
results apply, however, to situations when the limit is a stationary process.
Specialized to GARCH(1,1) (see their Theorem 4.2 and Remark 2.2), their results
imply that αn/γn → α/γ , where nowα and γ < 0 are the parameters of the
limit process, is a sufficient and necessary condition for an appropriately defined
convergence. We again refer to the original work of Kazakevičius, Leipus and
Viano (2004) for full details which are too complex to be presented here. We study
the case whenγn → 0 and, as a result, the finite-dimensional distributions of the
GARCH(1,1) sequences, after appropriate normalization, converge to the finite-
dimensional distributions of a process which is no longer GARCH(1,1).

The term “near-integrated” in the title of the paper is used in analogy with
the popular term “near unit root” which, in its simplest form, refers to an AR(1)
process{xk} defined byxk = ρxk−1 + ek , where theek are errors. The process{xk}
is said to have unit root ifρ = 1 and near unit root ifρ tends to 1 with the sample
size.

The paper is organized as follows. In Section 2, we state the assumptions and
the main results and provide a brief discussion of their significance. The proofs are
collected in Sections 3–6.

2. Main results. Starting with the initial valuesσ0 andy0 = σ0ε0, we define
the sequencesσk,1 ≤ k ≤ n, andyk,1 ≤ k ≤ n, by the recursions

yk = σkεk, 1 ≤ k ≤ n,(2.1)

σ 2
k = ω + αy2

k−1 + βσ 2
k−1, 1≤ k ≤ n,(2.2)

where

ω > 0, α ≥ 0, β ≥ 0.(2.3)

Throughout this paper we assume that (2.1)–(2.3) hold and thatε0, ε1, ε2, . . . , εn

are independent identically distributed random variables (not necessarily with
mean zero) such that the distribution ofε2

k is nondegenerate.
Nelson [(1990b), formula (6)] showed that the solutions to (2.1) and (2.2) can

be written as

σ 2
k = σ 2

0

k∏
i=1

(β + αε2
k−i) + ω

[
1+

k−1∑
j=1

j∏
i=1

(β + αε2
k−i )

]
, 1 ≤ k ≤ n.(2.4)

Nelson (1990b) also showed thatσ 2
k has an a.s. limit, ask → ∞, if and only if

E log(β + αε2
0) < 0,(2.5)
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assuming thatE| log(β + αε2
0)| < ∞.

In this paper we assume thatα = αn andβ = βn andα → 0, β → 1, asn → ∞.
In this case, by (2.7) below,

lim
n→∞E log(βn + αnε

2
0) = 0.

We are interested in the behavior ofσ 2
k andyk when

k = [nt] for a fixed 0< t ≤ 1.(2.6)

In fact, we study finite-dimensional distributions, but assumption (2.6) conveys the
idea and is extensively appealed to in the proofs.

For reasons explained in the Introduction, we assume that

Eε2
0 = 1.(2.7)

We will show that the behavior ofσ 2
k (the behavior ofyk can then be easily

derived) critically depends on whether the quantity

γ = γn := α + β − 1(2.8)

goes to zero from left or right orγ ≡ 0.

Throughout the paper we use all or some of the following assumptions:

Eε4
0 < ∞,(2.9)

n1/2α → 0,(2.10)

nα → ∞,(2.11)

n1/2γ → 0.(2.12)

In the following, we will often work with the random variables

ξj = ε2
j − 1.(2.13)

Our first result establishes an additive representation forσ 2
k which should

be contrasted with the multiplicative representation (2.4). The representation in
Proposition 2.1 is valid for near-integrated GARCH(1,1) sequences under the
stated assumptions. Representation (2.4) is easy to obtain for any GARCH(1,1)

sequences by the repeated application of (2.2). The proofs of the remaining results
are based on Proposition 2.1.

PROPOSITION2.1. If (2.6), (2.7)and(2.9)–(2.12)hold, then

σ 2
k = σ 2

0ekγ

(
1+ α

∑
1≤j≤k

ξk−j + R
(1)
k

)

+ ω

[
1+ ∑

1≤j≤k−1

ejγ

(
1+ α

∑
1≤i≤j

ξk−i + R
(2)
k,j

)(
1+ R

(3)
k,j

)]
.
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The remainder terms satisfy ∣∣R(1)
k

∣∣ = OP

(
k(α2 + γ 2)

)
,(2.14)

max
1≤j≤k

∣∣R(2)
k,j

∣∣ = OP (kα2),(2.15)

max
1≤j≤k

1

j log logj

∣∣R(2)
k,j

∣∣ = OP (α2)(2.16)

(we setlog logx = 1 if x < 4) and

max
1≤j≤k

1

j

∣∣R(3)
k,j

∣∣ = OP (α2 + γ 2).(2.17)

REMARK 2.1. In relations (2.14)–(2.17) and throughout the paper, the
symbolsOP andoP are meant asn → ∞, although in many places the formulas
contain only the letterk. However, because of assumption (2.6) in whicht is fixed,
everything in the considered formulas depends in fact onn.

We describe now the asymptotic behavior of the vectors[σ 2[ntm],m = 1,

2, . . . ,N ] and[y[ntm],m = 1,2, . . . ,N ], whereN is a fixed integer and

0 < t1 < t2 < · · · < tN ≤ 1.

We first consider the caseγ < 0. We assume

n|γ | → ∞,(2.18)

αn1/2 log logn → 0,(2.19)

|γ |3/2

α
→ 0,(2.20)

E|ε0|4+δ < ∞ for someδ > 0.(2.21)

THEOREM 2.1. Supposeγ < 0 and assumptions(2.7), (2.11), (2.12)
and(2.18)–(2.21)hold. Then the random variables√

2|γ |3
α

1√
Eξ2

0

[
σ 2[ntm]

ω
− ∑

1≤j≤[ntm]−1

ejγ

]
, 1≤ m ≤ N,

are asymptotically independent standard normal.

THEOREM 2.2. Under the assumptions of Theorem2.1,the random variables( |γ |
ω

)1/2

y[ntm], 1≤ m ≤ N,

are asymptotically independent, each with the asymptotic distribution equal to the
distribution ofε0.
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Theorems 2.1 and 2.2 are proved in Section 4.
Next we consider the case whenγ = 0.

THEOREM 2.3. Supposeγ = 0 and assumptions(2.7), (2.10), (2.11)
and(2.21)hold. Then

1

n3/2α

1√
Eξ2

0

[
σ 2[ntm]

ω
− [ntm],m = 1,2, . . . ,N

]
d→[ζm,m = 1,2, . . . ,N ],

where[ζm,m = 1,2, . . . ,N ] is anN -variate Gaussian vector with mean zero and
covariances

E[ζiζj ] = 1
3[min(ti , tj )]3.

THEOREM 2.4. Under the assumptions of Theorem2.3,the random variables

(ω[ntm])−1/2y[ntm], 1≤ m ≤ N,

are asymptotically independent, each with the asymptotic distribution equal to the
distribution ofε0.

Theorems 2.3 and 2.4 are proved in Section 5.
Finally, we consider the caseγ > 0. In this case, we also need assumptions

(2.18) and (2.19), but assumption (2.20) is strengthened to
γ

α
= O(1).(2.22)

THEOREM 2.5. Supposeγ > 0 and (2.7), (2.9), (2.11), (2.18), (2.19)
and(2.22)hold. Then the vector[

1

(Eξ2
0)1/2

γ e−[ntm]γ

α[ntm]1/2

(
σ 2[ntm]

ω
− ∑

1≤j≤[ntm]−1

ejγ

)
,m = 1,2, . . . ,N

]

converges in distribution to the vector[W(tm),m = 1,2, . . . ,N ], whereW(·) is a
Wiener process.

THEOREM 2.6. Under the assumptions of Theorem2.5,the random variables

(ω−1γ )1/2e−[ntm]γ /2y[ntm], 1≤ m ≤ N,

are asymptotically independent, each with the asymptotic distribution equal to the
distribution ofε0.

Theorems 2.5 and 2.6 are proved in Section 6.

We conclude this section with a brief discussion of our results.
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Mikosch and St̆arică [(2002), Section 3.2] discuss what they call the “IGARCH
effect.” Using 9558 daily returns on the S&P 500 index from the mid-1950s to
early 1990s, they estimate the GARCH(1,1) model on intervalsIk = [1,1500+
100k]. Denoting byαk and βk the estimates based on a realization over the
interval Ik , they plot the sumαk + βk againstk and observe that this sum
approaches 1 ask increases. This observation and other arguments lead them to the
conclusion that an IGARCH model is not appropriate for returns data and arises
merely from “an accumulation of nonstationarities.” They say that if estimates are
based on shorter samples, then the estimated value ofγ is not close to zero. We
repeated the experiments of Mikosch and Stărică (2002), but used more recent
daily returns on the S&P 500 index starting January 1, 1990. We also worked
with the Dow Jones Industrial Average over the same period, but the results were
very similar, so we focus below only on the S&P 500 index. Figure 1 shows
2500 continuously compounded (logarithmic) daily returns on the S&P 500 index
starting January 1, 1990.

Table 1 shows the estimated parameter values and the implied value ofγ based
on S&P 500 returns over the intervals{1,2, . . . , n}, where time 1 corresponds
to January 1, 1990. The estimates were computed using pseudo-maximum
likelihood estimators; that is, the estimates are the values which maximize the

FIG. 1. Twenty-five hundred continuously compounded daily returns on the S&P500index starting
January1, 1990.
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TABLE 1
Estimated parameter values and the implied value ofγ

based on S&P500returns shown in Figure1

n α β γ

200 0.002421982 0.993589156 −0.003988862
300 0.0003888147 0.9907158442 −0.008895341
400 0.002953501 1.002814152 0.005767653
500 0.007391279 0.992564947 −4.3774e− 05

1000 0.020334508 0.971043772 −0.00862172
1500 0.03366838 0.95160780 −0.01472382
2000 0.065761052 0.925748954 −0.008489994
2500 0.057004888 0.938578695 −0.004416417

likelihood computed under the assumption that the errorsεk have standard normal
distribution. It is seen from Table 1 that the values ofα andγ are indeed very
close to 0; it is, however, less obvious that the value ofγ tends to zero withn,
as claimed by Mikosch and Stărică (2002). Thus, while keeping in mind that the
empirical analysis in Mikosch and Stărică (2002) is more thorough than ours, we
will satisfy ourselves by saying that the fact the values ofγ andα are often very
close to zero is well documented.

Our results lend themselves to the following interpretation: Rather than
postulating that the observed sample{y1, y2, . . . , yN} follows one model, say,M ,
we consider a sequence of models,Mn, such that the observations{y1, y2, . . . , yn}
follow model Mn,n ≤ N . This setting appears reasonable, because in practice
the equalityα + β = 1 never holds exactly and the case of the exact equality is
mathematically very special. On the other hand, ifα andβ are assumed constant
andα + β < 1, mathematically, we deal with the usual stationary case, no matter
how close the sumα + β is to unity.

Since our objective was to develop a rigorous probabilistic theory for near-
integrated GARCH(1,1) processes and point out some implications of commonly
made assumptions, we do not wish to speculate at length on the empirical
consequences of our theory; any such attempt must be supported by a more
extensive empirical investigation. We merely point out that sinceyn follows
model Mn, the observed sequenceyn should have properties implied by the
sequence of modelsMn. This means that theyn should exhibit increasing
oscillations if the assumptions of the present paper are satisfied. Such oscillations
are not apparent for the returns in Figure 1 up to, say,N = 1000, yet the estimated
values ofα andγ are very small. This points towards a conclusion that it is not
appropriate to use a GARCH(1,1) model withα close to zero andβ close to 1 for
all samples{y1, y2, . . . , yn}, n ≤ 1000; such a model is not appropriate at least for
some of these samples. Thus our results lend some qualified support to the findings
of Mikosch and St̆arică (2002), at least as far as modeling returns on indexes is
concerned.
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3. Proof of Proposition 2.1. In the proofs that follow, we usean ∼ bn to
denote limn→∞ an/bn = 1.

The proof of Proposition 2.1 will use the following elementary result:

LEMMA 3.1. If (2.6), (2.7), (2.9), (2.10)and (2.12)hold, then

max
1≤i<k

|β + αε2
k−i − 1| = oP (1).

PROOF. Note that

max
1≤i<k

|β + αε2
k−i − 1| ≤ |γ | + α max

1≤i<k
|ε2

k−i − 1| = |γ | + α max
1≤j≤k−1

|ε2
j − 1|.

Since ε2
j are independent and identically distributed, assumption (2.9) and

Corollary 3 on page 90 of Chow and Teicher (1988) yield

max
1≤j≤k−1

|ε2
j − 1| = O(k1/2) a.s.

Thus the lemma follows from (2.12) and (2.10) combined with (2.6).�

PROOF OF PROPOSITION 2.1. The starting point is formula (2.4). By
carefully estimating the remainder terms, we will show in three steps that it can
be written as claimed in Proposition 2.1.

Step1. Consider the sequence of events

An =
{

max
1≤i<k

|β + αε2
k−i − 1| ≤ 1

2

}
.

By Lemma 3.1, limn→∞ P (An) = 1. Since by the Taylor expansion| log(1+ x)−
x| ≤ 2x2, |x| ≤ 1/2, on the eventAn,∣∣∣∣∣

∑
1≤i≤j

log(β + αε2
k−i ) − ∑

1≤i≤j

(γ + αξk−i )

∣∣∣∣∣
≤ 2

∑
1≤i≤j

(γ + αξk−i )
2 ≤ 4γ 2j + 4α2

∑
1≤i≤j

ξ2
k−i .

By the law of large numbers and assumption (2.9),

max
1≤j≤k

1

j
|ξ2

k−1 + · · · + ξ2
k−j | d= max

1≤j≤k

1

j
|ξ2

1 + · · · + ξ2
j | = OP (1).

Therefore
∏

1≤i≤j

(β + αε2
k−i ) = exp

[ ∑
1≤i≤j

log(β + αε2
k−i )

]

= exp(γj)exp

(
α

∑
1≤i≤j

ξk−i

)
exp(ηk,j ),

(3.1)
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where

max
1≤j≤k

1

j
|ηk,j | = OP (α2 + γ 2).(3.2)

We have thus shown that
j∏

i=1

(β + αε2
k−i ) = ejγ exp

(
α

∑
1≤i≤j

ξk−i

)(
1+ R

(3)
k,j

)
,(3.3)

with R
(3)
k,j satisfying (2.17).

We also note at this point that by (3.2) and assumptions (2.10) and (2.12),

max
1≤j≤k

∣∣R(3)
k,j

∣∣ = OP

(
max

1≤j≤k
|ηk,j |

)
= OP

(
k(α2 + γ 2)

) = oP (1).(3.4)

Formula (3.4) will be used in the verification of (2.14) in step 3.

Step2. In this step we work with the middle factor in the right-hand side
of (3.3).

Sinceξ1, ξ2, . . . are independent, identically distributed withEξ2
0 < ∞, by the

weak convergence of partial sums to a Brownian motion, we have

max
1≤j≤k

∣∣∣∣∣
∑

1≤i≤j

ξk−i

∣∣∣∣∣ = OP (k1/2)(3.5)

and therefore by assumption (2.10)

max
1≤j≤k

∣∣∣∣∣α
∑

1≤i≤j

ξk−i

∣∣∣∣∣ = oP (1).(3.6)

Let Bn be the event defined by

Bn =
{

max
1≤j≤k

∣∣∣∣∣α
∑

1≤i≤j

ξk−i

∣∣∣∣∣ ≤ 1
2

}
.

By (3.6), limn→∞ P (Bn) = 1.

Since for|x| ≤ 1/2, |exp(x) − (1+ x)| ≤ √
ex2/2, on the eventBn∣∣∣∣∣exp

(
α

∑
1≤i≤j

ξk−i

)
−

(
1+ α

∑
1≤i≤j

ξk−i

)∣∣∣∣∣ ≤
√

e

2

(
α

∑
1≤i≤j

ξk−i

)2

.(3.7)

By (3.5),

max
1≤j≤k

(
α

∑
1≤i≤j

ξk−i

)2

= OP (kα2).(3.8)



900 I. BERKES, L. HORVÁTH AND P. KOKOSZKA

By the law of the iterated logarithm

max
1≤j≤k

1

j log logj

(
α

∑
1≤i≤j

ξk−i

)2

= OP (α2).(3.9)

We have thus verified that

j∏
i=1

(β + αε2
k−i ) = ejγ

(
1+ α

∑
1≤i≤j

ξk−i + R
(2)
k,j

)(
1+ R

(3)
k,j

)
,(3.10)

with R
(2)
k,j satisfying (2.15) and (2.16).

Step3. In this step we show that

k∏
i=1

(β + αε2
k−i ) = ekγ

(
1+ α

∑
1≤i≤k

ξk−i + R
(1)
k

)
,(3.11)

with R
(1)
k satisfying (2.14).

By (3.10) and (3.4),

∏
1≤i≤k

(β + αε2
k−i ) = ekγ

(
1+ α

∑
1≤i≤k

ξk−i + OP (kα2)

)(
1+ OP

(
k(α2 + γ 2)

))
.

By the central limit theorem
∑

1≤i≤k ξk−i = OP (k1/2), so using (2.10) we get

(
1+ α

∑
1≤i≤k

ξk−i + OP (kα2)

)(
1+ OP

(
k(α2 + γ 2)

))

= 1+ α
∑

1≤i≤k

ξk−i + OP

(
k(α2 + γ 2)

)
,

establishing (3.11) withR(1)
k satisfying (2.14).

The proposition now follows from (2.4), (3.10) and (3.11).�

4. Proof of Theorems 2.1 and 2.2. Throughout this section we assume that
γ = γn < 0 andn|γ | → ∞.
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Using Proposition 2.1, we write fork = [nt],0 < t ≤ 1,

σ 2
k = ω + σ 2

0 ekγ

(
1+ α

∑
1≤j≤k

ξk−j + R
(1)
k

)

+ ω
∑

1≤j≤k−1

ejγ

(
1+ α

∑
1≤i≤j

ξk−i + R
(2)
k,j

)
R

(3)
k,j

+ ω
∑

1≤j≤k−1

ejγ R
(2)
k,j

+ ω
∑

1≤j≤k−1

ejγ

(
1+ α

∑
1≤i≤j

ξk−i

)

=: ω + σ 2
k,1 + σ 2

k,2 + σ 2
k,3 + σ 2

k,4.

(4.1)

Since |γ |3/2/α → 0, the constant termω is asymptotically negligible in Theo-
rem 2.1. In Lemma 4.3, we show that the term

ω−1σ 2
k,4 = ∑

1≤j≤k−1

ejγ

(
1+ α

∑
1≤i≤j

ξk−i

)

yields the required asymptotic distribution. Since we work with finite-dimensional
distributions, we setk(m) = [ntm] and consider the quantities

τ ∗
m = ∑

1≤j≤k(m)−1

ejγ
∑

1≤i≤j

ξk(m)−i , 1 ≤ m ≤ N,(4.2)

which are obtained fromω−1σ 2[ntm],4 after centering and norming.
In Lemmas 4.4, 4.5 and 4.6, respectively, we then show that the terms

σ 2
k,1, σ

2
k,2, σ

2
k,3 are negligible.

We begin with Lemma 4.1, which is used throughout the proof, and Lemma 4.2,
which applies Liapounov’s central limit theorem (hence the assumption
E|ε0|4+δ < ∞) and is then used to prove Lemma 4.3.

Theorem 2.2 follows readily from Theorem 2.1 which together with the relation∑
1≤j≤k−1 ejγ ∼ |γ |−1 (see Lemma 4.1) implies

|γ |σ 2
k(m)

ω
− 1= OP

(
α

|γ |1/2

)
= oP (1),

because by (2.10) and (2.18),α/|γ |1/2 → 0. It remains to notice that( |γ |
ω

)1/2

y[ntm] = εk(m)

( |γ |σ 2
k(m)

ω

)1/2

and appeal to the assumption that theεk(m), 1 ≤ m ≤ N, are independent and
identically distributed.
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LEMMA 4.1. For anyν ≥ 0,∑
1≤j≤k

jνeγj ∼ 1

|γ |ν+1�(ν + 1).

PROOF. Since xνeγ x is increasing on [0, |γ |−1ν] and decreasing on
[|γ |−1ν,∞), the sum can be approximated with integrals. Since∫ |γ |−1ν−1

0
xνeγ x dx ≤ ∑

1≤j≤|γ |−1ν

jνeγj ≤
∫ |γ |−1ν+1

1
xνeγ x dx,

we conclude that ∑
1≤j≤|γ |−1ν

jνeγj ∼ 1

|γ |ν+1

∫ ν

0
xνe−x dx

and a similar argument gives∑
|γ |−1ν≤j≤k

jνeγj ∼ 1

|γ |ν+1

∫ ∞
ν

xνe−x dx.

�

Before formulating our next lemma, we need to introduce new notation. For
0 < t1 < t2 < · · · < tN < 1 definek(m) = [ntm],1 ≤ m ≤ N, and

τm = ∑
1≤i≤k(m)−1

eiγ ξk(m)−i , 1 ≤ m ≤ N.(4.3)

LEMMA 4.2. Suppose thatE|ε0|4+δ < ∞ for someδ > 0 and that assump-
tions(2.7)and (2.12)hold. Then

(2|γ |)1/2[τ1, τ2, . . . , τN ] d→ (Eξ2
0)1/2[η1, η2, . . . , ηN ],

whereη1, η2, . . . , ηN are independent standard normal random variables.

PROOF. We will use the Cramér–Wold device; see Theorem 29.4 of
Billingsley (1995). For any realµ1,µ2, . . . ,µN

µ1τ1 + µ2τ2 + · · · + µNτN

= ∑
1≤i≤k(1)−1

(
µ1e

(k(1)−i)γ + µ2e
(k(2)−i)γ + · · · + µNe(k(N)−i)γ

)
ξi

+ ∑
k(1)≤i≤k(2)−1

(
µ2e

(k(2)−i)γ + · · · + µNe(k(N)−i)γ
)
ξi + · · ·

+ ∑
k(N−1)≤i≤k(N)−1

µNe(k(N)−i)γ ξi

=: S1 + S2 + · · · + SN.
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Observe that

ES2
1 = Eξ2

0

∑
1≤i≤k(1)−1

(
µ1e

(k(1)−i)γ + µ2e
(k(2)−i)γ + · · · + µNe(k(N)−i)γ

)2

= Eξ2
0

∑
1≤j≤N

µ2
j

∑
1≤i≤k(1)−1

e2(k(j)−i)γ

+ Eξ2
0

∑
1≤j �=l≤N

µjµl

∑
1≤i≤k(1)−1

e(k(j)+k(l)−2i)γ .

By Lemma 4.1,
∑

1≤i≤k(1)−1

e2(k(1)−i)γ = ∑
1≤i≤k(1)−1

e2iγ ∼ 1

2|γ |(4.4)

and for 2≤ j ≤ N ,∑
1≤i≤k(1)−1

e2(k(j)−i)γ = e2(k(j)−k(1))γ
∑

1≤i≤k(1)−1

e2(k(1)−i)γ = o

(
1

|γ |
)
.(4.5)

Similarly,∑
1≤i≤k(1)−1

e(k(j)+k(l)−2i)γ = e(k(j)−k(1))γ e(k(l)−k(1))γ
∑

1≤i≤k(1)−1

e2(k(1)−i)γ

∼ 1

2|γ |e
(k(j)−k(1))γ e(k(l)−k(1))γ = o

(
1

|γ |
)
.

Therefore

ES2
1 = µ2

1Eξ2
0

1

2|γ | + o

(
1

|γ |
)
.

The same argument applies toES2
j for any 1≤ j ≤ N , so we see that

E(µ1τ1 + µ2τ2 + · · · + µNτN)2

= (µ2
1 + µ2

2 + · · · + µ2
N)Eξ2

0
1

2|γ | + o

(
1

|γ |
)
.

(4.6)

Observe also that

µ1τ1 + µ2τ2 + · · · + µNτN = ∑
1≤i≤k(N)−1

ciξi

for someci,1 ≤ i ≤ k(N) − 1. It will then follow from (4.6) and Liapounov’s
central limit theorem [see, e.g., Theorem 27.3 on page 362 of Billingsley (1995)]
that

(2|γ |)1/2(µ1τ1 + µ2τ2 + · · · + µNτN)

d→ (Eξ2
0)1/2(µ2

1 + µ2
2 + · · · + µ2

N)1/2η,
(4.7)
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whereη is a standard normal random variable, provided we have verified that for
someδ > 0

(
∑

1≤i≤k(N)−1 |ci |2+δE|ξi|2+δ)1/(2+δ)

(
∑

1≤i≤k(N)−1 c2
i Eξ2

i )1/2
= O

((
1

|γ |
)1/(2+δ)−1/2)

= o(1).(4.8)

Relation (4.7) implies the claim in the lemma, so it remains to verify (4.8).
By (4.6), the denominator in (4.8) behaves like(1/|γ |)1/2, so choosingδ so small
thatE|ξ0|2+δ < ∞, it is enough to check that∑

1≤i≤k(N)−1

|ci |2+δ = O(1/|γ |).(4.9)

To illustrate, we will verify (4.9) for the summation range 1≤ i ≤ k(1) − 1; the
remaining ranges ofi are dealt with in the same way. For 1≤ i ≤ k(1) − 1 we get,
using Jensen’s inequality,

|ci|2+δ = ∣∣µ1e
(k(1)−i)γ + µ2e

(k(2)−i)γ + · · · + µNe(k(N)−i)γ
∣∣2+δ

≤ C1(N)
[|µ1|2+δe(k(1)−i)(2+δ)γ

+ |µ2|2+δe(k(2)−i)(2+δ)γ + · · · + |µN |2+δe(k(N)−i)(2+δ)γ ]
.

Summing the above, we get, using Lemma 4.1 as in (4.4) and (4.5),∑
1≤i≤k(N)−1

|ci|2+δ ∼ C1(N)|µ1|2+δ 1

(2+ δ)|γ | + o

(
1

|γ |
)

≤ C2(N)
1

|γ | . �

Our next lemma shows that the random variablesτ ∗
m defined by (4.2) have the

same asymptotic distribution as theτm,1≤ m ≤ N .

LEMMA 4.3. Suppose thatE|ε0|4+δ < ∞ for someδ > 0 and that assump-
tions(2.7)and (2.12)hold. Then

(2|γ |3)1/2[τ ∗
1 , τ ∗

2 , . . . , τ ∗
N ] d→ (Eξ2

0 )1/2[η1, η2, . . . , ηN ],
whereη1, η2, . . . , ηN are independent standard normal random variables.

PROOF. By Lemma 4.2, it is enough to verify that for eachm, |γ |3/2τ ∗
m −

|γ |1/2τm = oP (1). Fix m and to lighten the notation setk = k(m). By rearrange-
ment,

τ ∗
m = ∑

1≤i≤k−1

( ∑
i≤j≤k−1

ejγ

)
ξk−i .

It is therefore enough to verify that

|γ |3E
[

k−1∑
i=1

(
k−1∑
j=i

ejγ

)
ξk−i −

k−1∑
i=1

|γ |−1eiγ ξk−i

]2

= o(1).
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Since

k−1∑
j=i

ejγ = ekγ − eiγ

eγ − 1
(4.10)

and[eγ − 1]−1 = γ −1 + O(1), we have

k−1∑
j=i

ejγ − |γ |−1eiγ = ekγ (
γ −1 + O(1)

) + eiγ O(1).(4.11)

Hence, by (4.10), for 1≤ i ≤ k − 1,
(

k−1∑
j=i

ejγ − |γ |−1eiγ

)2

= O(|γ |−1).(4.12)

By the independence of theξi ,

E

[
k−1∑
i=1

(
k−1∑
j=i

ejγ

)
ξk−i −

k−1∑
i=1

|γ |−1eiγ ξk−i

]2

= Eξ2
0

k−1∑
i=1

(
k−1∑
j=i

ejγ − |γ |−1eiγ

)2

.

(4.13)

The claim thus follows by (4.12) andkγ 2 → 0. �

LEMMA 4.4. If (2.6), (2.7)and(2.9)–(2.12)hold, then

|γ |3/2

α

∣∣∣∣∣ekγ

(
1+ α

∑
1≤j≤k

ξk−j + R
(1)
k

)∣∣∣∣∣ = oP (1),

whereR
(1)
k satisfies(2.14).

PROOF. Sincek−1/2 ∑
1≤j≤k ξk−j is asymptotically normal, conditions (2.10),

(2.12) and (2.14) yield

α
∑

1≤j≤k

ξk−j + R
(1)
k = oP (1).

It remains to observe that by (2.11)

|γ |3/2

α
ekγ = o(1)k|γ |ekγ = o(1)

becauseγ < 0, k|γ | → ∞. �



906 I. BERKES, L. HORVÁTH AND P. KOKOSZKA

LEMMA 4.5. Suppose(2.6), (2.7), (2.10)and(2.20)hold. Then

|γ |3/2

α

∑
1≤j≤k−1

ejγ

∣∣∣∣∣
(

1+ α
∑

1≤i≤j

ξk−i + R
(2)
k,j

)
R

(3)
k,j

∣∣∣∣∣ = oP (1),

providedR
(2)
k,j satisfies(2.15)andR

(3)
k,j satisfies(2.17).

PROOF. By the weak convergence of partial sums,

max
1≤j≤k−1

∣∣∣∣∣
∑

1≤i≤j

ξk−i

∣∣∣∣∣ = OP (k1/2),

so by (2.10) and (2.15)

max
1≤j≤k−1

∣∣∣∣∣α
∑

1≤i≤j

ξk−i + R
(2)
k,j

∣∣∣∣∣ = oP (1).(4.14)

By (2.17), (4.14) and Lemma 4.1,

|γ |3/2

α

∑
1≤j≤k−1

ejγ

∣∣∣∣∣
(

1+ α
∑

1≤i≤j

ξk−i + R
(2)
k,j

)
R

(3)
k,j

∣∣∣∣∣
= OP (1)

|γ |3/2

α
(α2 + γ 2)

∑
1≤j≤k−1

jejγ

= OP (1)
|γ |3/2

α
(α2 + γ 2)

1

|γ |2 .

It remains to observe that

|γ |3/2

α
(α2 + γ 2)

1

|γ |2 = α

|γ |1/2 + |γ |3/2

α

= αn1/2

(n|γ |)1/2 + |γ |3/2

α
= o(1),

by (2.10), (2.18) and (2.20).�

LEMMA 4.6. Suppose(2.6)and(2.19)hold. Then

|γ |3/2

α

∑
1≤j≤k−1

∣∣R(2)
k,j

∣∣ejγ = oP (1),

providedR
(2)
k,j satisfies(2.16).



NEAR-INTEGRATED GARCH SEQUENCES 907

PROOF. Using (2.16), Lemma 4.1, (2.18) and (2.19), we have

|γ |3/2

α

∑
1≤j≤k−1

∣∣R(2)
k,j

∣∣ejγ

= OP (1)
|γ |3/2

α
α2

∑
1≤j≤k−1

j (log logj)ejγ

= OP (1)|γ |3/2α(log logk)|γ |−2

= oP (1)αn1/2 log logn = oP (1). �

5. Proof of Theorems 2.3 and 2.4. Throughout this section we assume that
γ = 0.

As in the proof of Theorem 2.1, settingγ = 0, we have fork = [nt],0 < t < 1,

σ 2
k = ω + σ 2

0

(
1+ α

∑
1≤j≤k

ξk−j + R
(1)
k

)

+ ω
∑

1≤j≤k−1

(
1+ α

∑
1≤i≤j

ξk−i + R
(2)
k,j

)
R

(3)
k,j

+ ω
∑

1≤j≤k−1

R
(2)
k,j

+ ω
∑

1≤j≤k−1

(
1+ α

∑
1≤i≤j

ξk−i

)

=: ω + σ 2
k,1 + σ 2

k,2 + σ 2
k,3 + σ 2

k,4.

By (2.11),n3/2α → ∞, so the termω is negligible in Theorem 2.3. In Lemmas
5.2–5.4 we show thatn−3/2α−1(σ 2

k,1 + σ 2
k,2 + σ 2

k,3) = oP (1). Therefore

1

n3/2α

(
σ 2

k

ω
− k

)
= 1

n3/2

∑
1≤j≤k−1

∑
1≤i≤j

ξk−i + oP (1).(5.1)

By (5.1) and Lemma 5.1, the finite-dimensional distributions of the process[
1

n3/2α

1

[Eξ2
0 ]1/2

(
σ 2[nt]
ω

− [nt]
)
, 0 < t < 1

]

converge to the finite-dimensional distributions of the process[∫ t
0 x dW(x),

0 < t < 1]. Theorem 2.3 thus follows on observing that

E

[∫ t

0
x dW(x)

∫ s

0
x dW(x)

]
=

∫ min(t,s)

0
x2dx = 1

3[min(t, s)]3.
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Theorem 2.3 and (2.10) imply that(ω[ntm])−1σ 2[ntm]
P→1 for each 1≤ m ≤ N ,

so Theorem 2.4 follows because(ω[ntm])−1/2y[ntm] = (ω[ntm])−1/2σ[ntm]ε[ntm].

LEMMA 5.1. If (2.7)and(2.21)hold, then

n−3/2
∑

1≤j≤nt−1

∑
1≤i≤j

ξk−i
d→ (Eξ2

0)1/2
∫ t

0
x dW(x) in D[0,1],

where{W(x),0≤ x < ∞} is a Wiener process.

PROOF. Note that∑
1≤j≤k−1

∑
1≤i≤j

ξk−i = ∑
1≤i≤k−1

(k − i)ξk−i

=
∫ k−1

0
x d

( ∑
1≤j≤x

ξj

)

= (k − 1)
∑

1≤j≤k−1

ξj −
∫ k−1

0

( ∑
1≤j≤x

ξj

)
dx.

By (2.7) and the Komlós, Major and Tusnády approximation [see Chapter 1 of
Csörg̋o and Horváth (1993)], there is a Wiener processW ∗ such that∑

1≤j≤x

ξj − (Eξ2
0)1/2W ∗(x) = o

(
x1/(2+δ)

)
a.s.

Hence

n−3/2 sup
0≤t≤1

∣∣∣∣∣
∫ nt−1

0

( ∑
1≤j≤x

ξj − (Eξ2
0 )1/2W ∗(x)

)
dx

∣∣∣∣∣
= OP (1)n−3/2n1+1/(2+δ) = oP (1)

(5.2)

and

n−3/2 sup
0≤t≤1

∣∣∣∣∣(nt − 1)

( ∑
1≤j≤nt−1

ξj − (Eξ2
0)1/2W ∗(nt − 1)

)∣∣∣∣∣ = oP (1).(5.3)

In (5.2) and (5.3) we can clearly replacent − 1 by nt . To complete the proof it is
therefore enough to notice that, by the scale transformation of the Wiener process,{

n−3/2
(
ntW ∗(nt) −

∫ nt

0
W ∗(x) dx

)
, 0 ≤ t ≤ 1

}

d=
{
tW(t) −

∫ t

0
W(x)dx,0≤ t ≤ 1

}

and use integration by parts.�
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LEMMA 5.2. If (2.6), (2.7), (2.9)–(2.11)hold, then

n−3/2α−1

∣∣∣∣∣1+ α
∑

1≤j≤k

ξk−j + R
(1)
k

∣∣∣∣∣ = oP (1),

whereR
(1)
k satisfies(2.14).

PROOF. By (2.7) and (2.9),
∑

1≤j≤k ξk−j = OP (k1/2), so the lemma follows
immediately from (2.6), (2.10) and (2.11).�

LEMMA 5.3. If (2.6), (2.7)and(2.10)hold, then

n−3/2α−1

∣∣∣∣∣
∑

1≤j≤k−1

(
1+ α

∑
1≤i≤j

ξk−i + R
(2)
k,j

)
R

(3)
k,j

∣∣∣∣∣ = oP (1),

whereR
(2)
k,j satisfies(2.15)andR

(3)
k,j satisfies(2.17).

PROOF. By (4.14), it suffices to verify thatn−3/2α−1 ∑
1≤j≤k−1 |R(3)

k,j | =
oP (1) which follows immediately from (2.17), (2.10), (2.12) and (2.20).
Recall that to establish (4.14) we needed assumptions (2.6), (2.7), (2.10) and rela-
tion (2.15). �

LEMMA 5.4. If (2.6)and(2.10)hold, then

n−3/2α−1

∣∣∣∣∣
∑

1≤j≤k−1

R
(2)
k,j

∣∣∣∣∣ = oP (1),

whereR
(2)
k,j satisfies(2.15).

PROOF. Follows immediately from (2.15), (2.6) and (2.10).�

6. Proof of Theorems 2.5 and 2.6. In this section we assume thatγ > 0 and
nγ → ∞. Note that the assumptions of Theorem 2.5 imply that all assumptions
(2.9)–(2.12) hold. In particular, assumption (2.12) is implied by (2.19) and (2.22).

We again use decomposition (4.1). Lemmas 6.1–6.3 below imply that

γ e−kγ

αk1/2
(ω + σ 2

k,1 + σ 2
k,2 + σ 2

k,3) = oP (1).

Therefore

γ e−kγ

αk1/2

[
σ 2

k

ω
− ∑

1≤j≤k−1

ejγ

]
= γ e−kγ

k1/2

∑
1≤j≤k−1

ejγ
∑

1≤i≤j

ξk−i + oP (1).
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By Lemma 6.4, the last relation implies

γ e−kγ

αk1/2

[
σ 2

k

ω
− ∑

1≤j≤k−1

ejγ

]
= k−1/2

∑
1≤i≤k−1

ξi + oP (1),

so by Donsker’s theorem [see, e.g., Theorem 14.1 in Billingsley (1999)], we
conclude that the finite-dimensional distributions of the process[

1

(Eξ2
0)1/2

γ e−[nt]γ

α[nt]1/2

[
σ 2[nt]
ω

− ∑
1≤j≤[nt]−1

ejγ

]
,0 < t < 1

]

converge to the finite-dimensional distributions of the Wiener process[W(t),

0 < t < 1]. This completes the proof of Theorem 2.5.
Theorem 2.6 now readily follows. For any 0< t < 1,

(ω−1γ )1/2e−[nt]γ /2y[nt] = (
ω−1γ e−[nt]γ σ 2[nt]

)1/2
ε[nt].(6.1)

Sinceα[nt]1/2 → 0, it follows from Theorem 2.5 that

γ e−[nt]γ
(
ω−1σ 2[nt] − ∑

1≤j≤k−1

ejγ

)
= oP (1).(6.2)

Direct verification shows that

γ e−[nt]γ
( ∑

1≤j≤k−1

ejγ − γ −1e[nt]γ
)

= o(1).(6.3)

Relations (6.2) and (6.3) yieldω−1γ e−[nt]γ σ 2[nt]
P→1, which combined with (6.1)

concludes the proof of Theorem 2.6.

LEMMA 6.1. If (2.6), (2.7), (2.9)–(2.12)and (2.22)hold, then

γ e−kγ

αk1/2

∣∣∣∣∣ekγ

(
1+ α

∑
1≤j≤k

ξk−j + R
(1)
k

)∣∣∣∣∣ = oP (1),

whereR
(1)
k satisfies(2.14).

PROOF. Relation (2.14) and the asymptotic normality ofk−1/2 ∑
1≤j≤k ξk−j

yield

γ e−kγ

αk1/2

∣∣∣∣∣ekγ

(
1+ α

∑
1≤j≤k

ξk−j + R
(1)
k

)∣∣∣∣∣
= OP (1)

γ

αk1/2

(
1+ αk1/2 + k(α2 + γ 2)

)

= OP (1)

(
γ

α
k−1/2 + γ + γ (k1/2α) + (k1/2γ )3

kα

)
= oP (1),
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by (2.10)–(2.12) and (2.22).�

LEMMA 6.2. If (2.6), (2.7), (2.9), (2.10), (2.12)and (2.22)hold, then

γ e−kγ

αk1/2

∣∣∣∣∣
∑

1≤j≤k−1

ejγ

(
1+ α

∑
1≤i≤j

ξk−i + R
(2)
k,j

)
R

(3)
k,j

∣∣∣∣∣ = oP (1),

whereR
(2)
k,j satisfies(2.15)andR

(3)
k,j satisfies(2.17).

PROOF. By (2.17) and (4.14), it suffices to show that the quantity

Vk = γ e−kγ

αk1/2

∑
1≤j≤k−1

ejγ j (α2 + γ 2)

tends to zero. Since forγ > 0,

ekγ − eγ

eγ − 1
<

ekγ

γ
,(6.4)

we have

Vk < k1/2α + (k1/2γ )
γ

α
→ 0,

by (2.10), (2.12) and (2.22).�

LEMMA 6.3. If (2.6), (2.9)and(2.19)hold, then

γ e−kγ

αk1/2

∑
1≤j≤k−1

ejγ
∣∣R(2)

k,j

∣∣ = oP (1),

whereR
(2)
k,j satisfies(2.16).

PROOF. By (2.16), we need to show that the quantity

Uk = γ e−kγ

αk1/2

∑
1≤j≤k−1

ejγ α2j log logj

tends to zero. By (6.4),

Uk ≤ γ e−kγ

αk1/2
α2k log logk

ekγ

γ
= αk1/2 log logk = o(1),

by (2.19). �

LEMMA 6.4. If (2.6), (2.7)and(2.9)hold, then

γ 2

k
e−2kγ E

( ∑
1≤j≤k−1

ejγ
∑

1≤i≤j

ξk−i − ekγ

γ

∑
1≤i≤k−1

ξi

)2

→ 0.
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PROOF. Note that

∑
1≤j≤k−1

ejγ
∑

1≤i≤j

ξk−i = ∑
1≤i≤k−1

( ∑
i≤j≤k−1

ejγ

)
ξk−i

and ∑
1≤i≤k−1

ξi = ∑
1≤i≤k−1

ξk−i .

Therefore,

E

( ∑
1≤j≤k−1

ejγ
∑

1≤i≤j

ξk−i − ∑
1≤i≤k−1

ekγ

γ
ξi

)2

= Eξ2
0

∑
1≤i≤k−1

(
ekγ − eiγ

eγ − 1
− ekγ

γ

)2

.

By the Taylor expansion,
∣∣∣∣e

kγ − eiγ

eγ − 1
− ekγ

γ

∣∣∣∣ ≤ C1

(
eiγ

γ
+ ekγ

)
.

Therefore,

∑
1≤i≤k−1

(
ekγ − eiγ

eγ − 1
− ekγ

γ

)2

≤ 2C2
1

[ ∑
1≤i≤k−1

e2iγ

γ 2 + ke2kγ

]

= O(1)

[
1

γ 2

e2kγ − e2γ

e2γ − 1
+ ke2kγ

]

= O(1)

[
1

γ 3
e2kγ + ke2kγ

]
.

The claim follows on observing that

γ 2

k
e−2kγ 1

γ 3e2kγ = 1

γ k
→ 0

and

γ 2

k
e−2kγ ke2kγ = γ 2 → 0. �
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