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NEAR-INTEGRATED GARCH SEQUENCES!
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Utah and Utah State University

Motivated by regularities observed in time series of returns on specula-
tive assets, we develop an asymptotic theory of GARTCH) processesyy }
defined by the equationg = oxex, 02 = w +ay?_; + pof_; for which the
suma + B approaches unity as the number of available observations tends to
infinity. We call such sequences near-integrated. We show that the asymptotic
behavior of near-integrated GARGQH 1) processes critically depends on the
sign ofy := o+ B — 1. We find assumptions under which the solutions exhibit
increasing oscillations and show that these oscillations grow approximately
like a power function ify < 0 and exponentially i’ > 0. We establish an ad-
ditive representation for the near-integrated GARCH) processes which
is more convenient to use than the traditional multiplicative Volterra series
expansion.

1. Introduction. We study the GARCIL, 1) model of Bollerslev (1986) in
which the time seriefy;} follows (2.1) and (2.2) of Section 2. The GARCH 1)
specification is commonly used as a good approximation for modeling volatility
of financial and econometric heteroskedastic time series; see Chapter 15 of Hull
(2000) and Chapter 7 of Zivot and Wang (2003) for practical applications and
further references. This paper is motivated by the well-established fact that for
most time series of returns on speculative assets thessunp is very close
to 1. This observation led Engle and Bollerslev (1986) to introduce the so-called
integratedGARCH or IGARCH processes which in the setting of (2.1) and (2.2)
are defined by the conditiam + g = 1. The term “integrated” is borrowed from
the classical theory of linear time series [see, e.g., Brockwell and Davis (1991)], in
which arandom sequenge,} is said to be integrated if the sequence of differences
u, = x; — x;—1 is stationary. If this is the case, thg are sums or “integrals”
of the u;. The sequencéx;} is then typically not stationary and its realizations
resemble a random walk. To see why a GARCH.) process withw + 8 =1
might be called integrated, note that (2.2) may be rewritten as

y;? = (a+ ﬁ)yi_l +ex — Beg-1, e 1= (8;3 - 1)0k2-
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If there is a strictly stationary solutiofy;} to (2.1) and (2.2) an<Ee,f =1, then
{er} is a sequence of martingale differences, so;tflefollow an ARMA(L, 1)
process which is integrated (with = e; — Bex—1) if @ + 8 = 1. The above argu-
ment assumed, however, thaf} was stationary, sg,f cannot be nonstationary,
unlike in the case of ARMAL, 1) processes with independent innovatiepsin
fact, Bougerol and Picard (1992) showed that it 0 andg > 0 anda + 8 =1,
then the GARCHL, 1) process is strictly stationary.

The objective of the present paper is to investigate the asymptotic behavior of
the GARCH(, 1) process when the sua+ 8 is not necessarily equal to 1, but is
close to 1, as is the case in applications. This is achieved by allowingveni 8
to be functions of the sample sizethe larger the sample sizeis, the closer the
suma + 8 is to unity.

To illustrate some corollaries to our results, set o + 8 — 1. Note that if
|y| =n"9 for some J2 < g < 1, then assumptions (2.12) and (2.18) are satisfied.
Definey, o« f(n) to mean thay, /f (n) converges weakly to the distribution of the
innovationss;. Then, assuming that for som¢2l< g < 1, y = —n~? in the case
y <0 andy =n~7 in the casey > 0, we conclude that under the assumptions
stated in Section 2,

if y <O, Y X 0Y/2p4/2 (Theorem 2.2)
if y =0, Y & 0?12 (Theorem 2.4)
if y >0, Y & Y2 % /2 (Theorem 2.6)

The parametew is defined in (2.2).

Under our assumptions, the sequengés therefore always nonstationary and
its “oscillations” increase with the sample size at different rates, depending on the
sign of y. The casey = 0 should be contrasted with the aforementioned result
of Bougerol and Picard (1992) who showed thatiind 8 are fixed, then the
processegy,} is stationary but the expected value of its marginal distribution
is infinite. Under our assumptions, the procégg is mildly explosive but after
normalizing byn'/2 converges to a random variable with finite fourth moment.
Similar interpretation is valid in the cage< 0. If « + 8 > 1, the “oscillations”
increase at an exponential rate.

Our work is somewhat related to Nelson (1990a) who considered approximating
diffusion processes by discrete time sequences from the ARCH family. While his
main focus was on the exponential GARCH processes, he also considered as an
example a GARCHL, 1)-M process which is a random walk type process; we
refer to the original work of Nelson (1990a) for the details. In our setting Nelson’s
conditions (2.28), (2.29) and (2.33) can be stated, respectivetypas> o > 0,
ny, — —6 € R andn/?w,, — o > 0. Since his goal was to obtain a continuous
time diffusion process as a limit, Nelson needed the parametdso to depend
on n. In our theory, the parameter plays no role because we investigate what
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happens when the sum+ g8 approaches 1. Unlike Nelson (1990a), we assume
thatn|y,| — oo andnl/2«,, — 0. Our results show that assuming different rates of
convergence leads to a completely different asymptotic behavior.

In another related work, Kazaké&uiis, Leipus and Viano (2004) studied the
stability of general nonlinear processes related to the ARGCHIhodels. Their
results apply, however, to situations when the limit is a stationary process.
Specialized to GARCHL, 1) (see their Theorem 4.2 and Remark 2.2), their results
imply that «,/y, — «/y, where nowa andy < O are the parameters of the
limit process, is a sufficient and necessary condition for an appropriately defined
convergence. We again refer to the original work of Kazakiesi, Leipus and
Viano (2004) for full details which are too complex to be presented here. We study
the case whem,, — 0 and, as a result, the finite-dimensional distributions of the
GARCH(1, 1) sequences, after appropriate normalization, converge to the finite-
dimensional distributions of a process which is no longer GARCH).

The term “near-integrated” in the title of the paper is used in analogy with
the popular term “near unit root” which, in its simplest form, refers to an AR(1)
procesdx;} defined byx; = px;_1+ ex, where thee, are errors. The procegs;}
is said to have unit root ip = 1 and near unit root ip tends to 1 with the sample
size.

The paper is organized as follows. In Section 2, we state the assumptions and
the main results and provide a brief discussion of their significance. The proofs are
collected in Sections 3—6.

2. Main results. Starting with the initial valuesg and yg = ogeg, we define
the sequences, 1 <k <n, andy,, 1 <k <n, by the recursions

(2.1) Yk = Okéx, l1<k<n,
(2.2) o =w+ay? |+ ot 1, 1<k=<n,
where

(2.3) w >0, o >0, B =>0.

Throughout this paper we assume that (2.1)—(2.3) hold and:ghat, >, ..., ¢,
are independent identically distributed random variables (not necessarily with
mean zero) such that the distributiona’g’fis nondegenerate.

Nelson [(1990b), formula (6)] showed that the solutions to (2.1) and (2.2) can
be written as

k k=1 j
(24) of=c[]B+ef )+ a)|:l+ S T8+ ozs,%_l-):|, 1<k<n.
i=1 j=li=1

Nelson (1990b) also showed thfﬁ has an a.s. limit, ak— oo, if and only if
(2.5) Elog(B + aed) <0,
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assuming thak|log( + ae3)| < oc.
In this paper we assume that «,, andg = 8, andae — 0, 8 — 1, asn — oo.
In this case, by (2.7) below,

nli_)moo Elog(B,; + oy eg) =0.

We are interested in the behavioraf andy; when
(2.6) k = [nt] forafixed O<t < 1.

In fact, we study finite-dimensional distributions, but assumption (2.6) conveys the
idea and is extensively appealed to in the proofs.
For reasons explained in the Introduction, we assume that

(2.7) Eei=1

We will show that the behavior osz (the behavior ofy, can then be easily
derived) critically depends on whether the quantity

(2.8) Yy=Yoni=a+p-1

goes to zero from left or right gr = 0.
Throughout the paper we use all or some of the following assumptions:

(2.9) Eef < oo,
(2.10) n*?a -0,
(2.11) na — 00,
(2.12) nt?y 0.
In the following, we will often work with the random variables
(2.13) g =e5—1.

Our first result establishes an additive representationoforwhich should
be contrasted with the multiplicative representation (2.4). The representation in
Proposition 2.1 is valid for near-integrated GARQH1) sequences under the
stated assumptions. Representation (2.4) is easy to obtain for any GAROH
sequences by the repeated application of (2.2). The proofs of the remaining results
are based on Proposition 2.1.

PrRoOPOSITION2.1. If (2.6), (2.7)and(2.9)—(2.12)hold, then

of = g’ (1 ACIDDR S ngl))
15j<k

+w[1+ 3 ejy(1+oe > Ek—i+R£?})(1+ng?;)}'

1<j<k-1 1<i<j
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The remainder terms satisfy

(2.14) IRP| = 0p(k(@® +v?),
(2.16) max ;|R(2)-| — 0p(@?
' 1<j<k jloglog; ' */
(we sefoglogx =1if x < 4)and
1
(2.17) lr<nja<)§c ;|R,E33| = 0p(@®+y2).

REMARK 2.1. In relations (2.14)—(2.17) and throughout the paper, the
symbolsOp andop are meant as — oo, although in many places the formulas
contain only the lettek. However, because of assumption (2.6) in whithfixed
everything in the considered formulas depends in fagt.on

We describe now the asymptotic behavior of the vect@ar[ﬁtm],m =1,
2,...,Nland[yp,1.m=1,2,..., N], whereN is a fixed integer and
O<n<tr<---<ty<1l

We first consider the cage< 0. We assume

(2.18) nly| — oo,
(2.19) an'/?loglogn — 0,
3/2
(2.20) 7 o,
(07
(2.21) Eleo/*™® < 00 for somes > 0.

THEOREM 2.1. Supposey < 0 and assumptiong2.7), (2.11), (2.12)
and(2.18){2.21)hold. Then the random variables

V 2|)/|3 1 |:G[%zt ] . :|
m— > e’ |, 1
o /Esg [0)

are asymptotically independent standard normal

<m<N,

1<j=[ntm]-1

THEOREM2.2. Under the assumptions of Theor@m,the random variables

ly\*2
(;) Vintm]» l1<m<N,

are asymptotically independertach with the asymptotic distribution equal to the
distribution ofeg.
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Theorems 2.1 and 2.2 are proved in Section 4.
Next we consider the case when= 0.

THEOREM 2.3. Supposey = 0 and assumptiong2.7), (2.10), (2.11)
and(2.21)hold. Then

1 1 [o?
|: [tm]_[nfm]7m:1,2,...’Nj|_d)[§m7m:1’27""N]’

n3/20( EEZ w
0

where[¢,,,m =1,2,..., N]is an N-variate Gaussian vector with mean zero and
covariances
E[gi¢;1= 3imin, 1)13.
THEOREM2.4. Under the assumptions of Theor@m3,the random variables
(@[t )2 Ypg,1,  L<m <N,

are asymptotically independemiach with the asymptotic distribution equal to the
distribution ofeg.

Theorems 2.3 and 2.4 are proved in Section 5.
Finally, we consider the case > 0. In this case, we also need assumptions
(2.18) and (2.19), but assumption (2.20) is strengthened to

(2.22) Y _ o).
o

THEOREM 2.5. Supposey > 0 and (2.7), (2.9), (2.11), (2.18), (2.19)
and(2.22)hold. Then the vector

1 —[ntmly 0’2 )
[ 21/2)/6 1/2( il _ Yo eV )m=12..N
(EEp)Y2 alnty] w ol

converges in distribution to the vectbW (¢,,),m = 1,2, ..., N], whereW(.) is a
Wiener process

THEOREM2.6. Under the assumptions of Theor@mb,the random variables
(™ ty)2e b2y, 1<m <N,

are asymptotically independemiach with the asymptotic distribution equal to the
distribution ofeg.

Theorems 2.5 and 2.6 are proved in Section 6.

We conclude this section with a brief discussion of our results.
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Mikosch and Sirica [(2002), Section 3.2] discuss what they call the “IGARCH
effect.” Using 9558 daily returns on the S&P 500 index from the mid-1950s to
early 1990s, they estimate the GARCH1) model on intervald;, = [1, 1500+
100k]. Denoting by« and g, the estimates based on a realization over the
interval I, they plot the sumy; + B¢ againstk and observe that this sum
approaches 1 dsincreases. This observation and other arguments lead them to the
conclusion that an IGARCH model is not appropriate for returns data and arises
merely from “an accumulation of nonstationarities.” They say that if estimates are
based on shorter samples, then the estimated valyei®hot close to zero. We
repeated the experiments of Mikosch andrigh (2002), but used more recent
daily returns on the S&P 500 index starting January 1, 1990. We also worked
with the Dow Jones Industrial Average over the same period, but the results were
very similar, so we focus below only on the S&P 500 index. Figure 1 shows
2500 continuously compounded (logarithmic) daily returns on the S&P 500 index
starting January 1, 1990.

Table 1 shows the estimated parameter values and the implied vahleasfed
on S&P 500 returns over the intervdls, 2, ..., n}, where time 1 corresponds
to January 1, 1990. The estimates were computed using pseudo-maximum
likelihood estimators; that is, the estimates are the values which maximize the

0 500 1000 1500 2000 2500

Fic. 1. Twenty-five hundred continuously compounded daily returns on thesB&mdex starting
Januaryl, 1990.
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TABLE 1
Estimated parameter values and the implied valug of
based on S&P00returns shown in Figurd

n o B y

200 Q002421982 (093589156 —0.003988862
300 Q0003888147 907158442 —0.008895341
400 Q002953501 1002814152 M05767653
500 Q007391279 (092564947 —4.3774e-05
1000 0020334508 M71043772 —0.00862172
1500 003366838 ®5160780 —0.01472382
2000 0065761052 (25748954 —0.008489994
2500 0057004888 (M38578695 —0.004416417

likelihood computed under the assumption that the eepreave standard normal
distribution. It is seen from Table 1 that the valuessoind y are indeed very
close to O; it is, however, less obvious that the value dends to zero withg,

as claimed by Mikosch and &tca (2002). Thus, while keeping in mind that the
empirical analysis in Mikosch and&tca (2002) is more thorough than ours, we
will satisfy ourselves by saying that the fact the valuey @ndo are often very
close to zero is well documented.

Our results lend themselves to the following interpretation: Rather than
postulating that the observed sampie, yo, ..., yy} follows one model, say,
we consider a sequence of moddls,, such that the observatiofig, yo, ..., y,}
follow model M,,,n < N. This setting appears reasonable, because in practice
the equalitye + 8 = 1 never holds exactly and the case of the exact equality is
mathematically very special. On the other handy #nd g are assumed constant
anda + B < 1, mathematically, we deal with the usual stationary case, no matter
how close the sura + 8 is to unity.

Since our objective was to develop a rigorous probabilistic theory for near-
integrated GARCHIL, 1) processes and point out some implications of commonly
made assumptions, we do not wish to speculate at length on the empirical
consequences of our theory; any such attempt must be supported by a more
extensive empirical investigation. We merely point out that simgefollows
model M,,, the observed sequengg should have properties implied by the
sequence of modelds,. This means that the, should exhibit increasing
oscillations if the assumptions of the present paper are satisfied. Such oscillations
are not apparent for the returns in Figure 1 up to, 8ay; 1000, yet the estimated
values ofa andy are very small. This points towards a conclusion that it is not
appropriate to use a GARGH, 1) model witha close to zero ang close to 1 for
all samplegy1, y2, ..., y.}, n < 1000; such a model is not appropriate at least for
some of these samples. Thus our results lend some qualified support to the findings
of Mikosch and Sirica (2002), at least as far as modeling returns on indexes is
concerned.
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3. Proof of Proposition 2.1. In the proofs that follow, we use, ~ b, to
denote lim_ o a, /b, = 1.

The proof of Proposition 2.1 will use the following elementary result:

LEMMA 3.1. If (2.6), (2.7), (2.9), (2.10and (2.12)hold, then

max|ﬂ+ozsk, 1l =0p(1).

1<i<

PrRoOOE Note that

2
< -
1m<lax|ﬂ+owk Ll <lyl+a [max g2, —1| = |y|+al<mj<a}(xl|e] 1].
Since ¢2 are independent and |dent|cally distributed, assumption (2.9) and

Corollary 3 on page 90 of Chow and Teicher (1988) yield

max_|e] 2_11=0kY% as.
1<j<k-1

Thus the lemma follows from (2.12) and (2.10) combined with (2.6).

PROOF OF PROPOSITION 2.1. The starting point is formula (2.4). By
carefully estimating the remainder terms, we will show in three steps that it can
be written as claimed in Proposition 2.1.

Stepl. Consider the sequence of events
A, = { max |g +ag?_; — 1| < 1}.
1<i<k - -2

By Lemma 3.1, lim_, P(A,) = 1. Since by the Taylor expansioiog(1+ x) —
x| < 2x2, |x| <1/2, on the event,,,

Y log(B+ast ) — Y. (v + ki)

1<i<j 1<i<j
2 2. 2 2
<2 ) (yHak_)® <4y +4a” > EC,.
1<i<j 1<i<j

By the law of Iarge numbers and assumption (2.9),

max — |§k 1 ER ]|_ r<nax |512+...+512|:0P(1),

1<j<k ]
Therefore
[] B+ ae ) = exp|: Y log(B+ ow,g_i)i|
1<i<j 1<i<j
(3.2)

:exp(yj)exp<a > %‘k—i> exp(, ;)

1<i<j
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where

1
(3.2) max = |nc ;| = Op(a® + y2).
1<j<k j

We have thus shown that
J
(3.3) [18+act_) =€ exp(a > sk_l-)(1+ RY).
i=1 1<i<j
with R} satisfying (2.17).
We also note at this point that by (3.2) and assumptions (2.10) and (2.12),
3 _ 1) — 2,2\
@9 manlalll=0r{mgine) = Orthiet+55) =orch
Formula (3.4) will be used in the verification of (2.14) in step 3.

Step2. In this step we work with the middle factor in the right-hand side
of (3.3).

Sinceéy, &o, ... are independent, identically distributed wmg < 00, by the
weak convergence of partial sums to a Brownian motion, we have

(3.5) max| Y &—i|= 0p(k'/?)
1=i=kligs;

and therefore by assumption (2.10)

(3.6) max|a Y &—i|=op(D).
L=kl g

Let B, be the event defined by

Bn={ max|a ) & 5%}.
1=i=k] 155

By (3.6), lim, o P(B,) = 1.
Since for|x| < 1/2, |expx) — (1+ x)| < /ex?/2, on the eveni,

2
(3.7) eXP<06 > Ek—i)—<1+06 > Ek—i) Sﬁ(a > Ek—i) :
1<i<j 1<i<j 2 1<i<j
By (3.5),
2
(3.8) max (a > sk_,) = Op(ka?).
1=i=k\ 155,



900 I. BERKES, L. HORVATH AND P. KOKOSZKA

By the law of the iterated logarithm

(3.9)

2
> G- ) = 0p(a?).

l<l<]

max
1<j<k j Ioglog] (

We have thus verified that

J
(3.10) 1_[(,8+o¢8,g_i):e”<l+a > sk_i+R,E,2}>(1+ R,

i=1 1<i<j

with R(z) satisfying (2.15) and (2.16).

Step3. In this step we show that

(3.11) H(ﬂ +agl l)—eky(l—i-a > & 1+R(1)),

i=1 1<i<k

with R\ satisfying (2.14).
By (3.10) and (3.4),

[T (B+aei )= <1+ a Y Eit op<ka2>)(1+ Op(k(a®+y?))).

1<i<k 1<i<k

By the central limit theoreny;_; - &—; = Op (k*/?), so using (2.10) we get

<1+“ 2 Gt 0P<’<az>>(1+ Op (k(e? +y?)))

1<i<k
=1+a Y &+ O0p(k@®+y?),
1<i<k

establishing (3.11) witR." satisfying (2.14).
The proposition now follows from (2.4), (3.10) and (3.11).]

4. Proof of Theorems2.1 and 2.2. Throughout this section we assume that
y =y, <0andn|y| — oo.
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Using Proposition 2.1, we write fdr=[nt],0 <t <1,

okz =w+ aozeky <1+ o Z E—j + R,El))
1<j<k

i 2 3
+w Z e]V<1+o( Z gk—i +R1£’3)R1£’3

1<j=<k-1 l=<izj
4.1 iy p(2)
(4.1) +w Z e‘/yRk,j
1<j<k-1
o Y ejV(l—{—a > Sk_,-)
1<j=<k-1 l=<izj

= w+o,§1+a,32+a,33+0134.

Since|y|¥2/a — 0, the constant ternw is asymptotically negligible in Theo-
rem 2.1. In Lemma 4.3, we show that the term

ot = Y el (1+a > Ek—i)
1<j<k-1 1<i<j
yields the required asymptotic distribution. Since we work with finite-dimensional
distributions, we set(m) = [nt,,] and consider the quantities

(4.2) =y Y &m-i. 1=<m=N,
1<j<k(m)-1  1<i<j

which are obtained fromrla[%l,mL4 after centering and norming.

In Lemmas 4.4, 4.5 and 4.6, respectively, we then show that the terms
0,31, 0,22, 0,23 are negligible.

We begin with Lemma 4.1, which is used throughout the proof, and Lemma 4.2,
which applies Liapounov’'s central limit theorem (hence the assumption
E|eo|*? < 00) and is then used to prove Lemma 4.3.

Theorem 2.2 follows readily from Theorem 2.1 which together with the relation
Yi<j<k_1€’” ~|y|™! (see Lemma 4.1) implies

|V|O'k2(m) o
T 1= 04 (05 ) =or D,
2 ly11/2

because by (2.10) and (2.18)/|y |/2 — 0. It remains to notice that

2
w [ntm] (m) w

and appeal to the assumption that theg,), 1 <m < N, are independent and
identically distributed.
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LEMMA 4.1. Foranyv >0,

: 1
v ovi
E jle?’ |y|v+lF(U+1)'
1<j=<k

PROOF Since x"e?* is increasing onl0, |y|~1v] and decreasing on
[ly|~1v, 00), the sum can be approximated with integrals. Since

ly|~tv—-1 . ly |~ tv+1
/ x'eV* dx < Z jle’! 5/ x'eV*dx,
0 1

1<j<lyl=l

we conclude that

and a similar argument gives

. 1 00
VLV A v,—x
E jle |y|”+l/u xe ‘dx.
lyl|~lv<j<k

g

Before formulating our next lemma, we need to introduce new notation. For
O<tn<tr<--- <ty <ldefinek(m)=[nt,],1<m <N, and

(4.3) = Y. € E&m—i, 1<m<N.
1<i<k(m)-—1

LEMMA 4.2. Suppose thaE|eg|*? < oo for somes > 0 and that assump-
tions(2.7)and (2.12)hold. Then

d
@y DY2t1, T2, . N> (EEDY P In1, ma, ... ],
wheren, no, ..., ny are independent standard normal random variables

Proor We will use the Cramér—Wold device; see Theorem 29.4 of
Billingsley (1995). For any regk1, ua, ..., un
U1T1+ u2t2+ -+ -+ UNTN
= Y (uae® OV 4 ppe® @y DY g,
1<i<k(1)—1

+ Z (Mze(k(z)—i))/ 44 MNe(k(N)_i)y)Ei + ...
k(D<i<k(2)—-1

n 3 e ® M=y e
K(N—D)<i <k(N)—1
=81+ 82+ + SN.



NEAR-INTEGRATED GARCH SEQUENCES 903

Observe that

ES?=Egf Y (u1e®D=0Y L oe®@=Dy 4y kN =iy
1<i<k(1)-1

B2 Y u2 Y Ay

1<jsN  1<izk(D)-1
+E502 Z Hj Z e k(D+k()=2i)y

1<j#I<N 1<i<k(1)-1

By Lemma4.1,

(4.4) T SR A S 1
1<i<k(1)-1 1<i<k(l)-1 2|yl

and for 2< j < N,

@5 Y 2Ky o 2k Y 2y 0(i>.

1<i<k(1)—1 1<i<k(1)—1 vl
Similarly,
Z e(k(4i)+k(l)—2i))/ — e(k(j)—k(l)))/e(k(l)—k(l)))/ Z eZ(k(l)—i)y
1<i<k(1)—1 1<i<k(1)-1
o kK@) kDK D)y zo(i).
2|y| ly|
Therefore

1 1
2 2 2
ESt=mkbsos +O(|7|)-

The same argument appliesmjz. forany 1< j < N, so we see that

E(uiti4 puato+ - + uyty)?

(4.6) 1 1
=i+ ud 4+ uREE 5 +o(—).
12 N0y ly|

Observe also that

pATLH p2T2 o uNTN = Y cif
1<i<k(N)—1

for somec;,1 <i < k(N) — 1. It will then follow from (4.6) and Liapounov’s
central limit theorem [see, e.g., Theorem 27.3 on page 362 of Billingsley (1995)]
that

@y DY (a1 + pota + -+ 4+ unTn)
(4.7) d 21/2, 2 2 2.\1/2
— (E§) 7 (u1+uz+ -+ un)"n,
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wheren is a standard normal random variable, provided we have verified that for
somes > 0

_ 1248 £ 124811/ (248) 1/(24+8)—1/2

_1le E 1

4.8) (QC1<i<kvy-1lil 2|Ez|2 1)2 0(( ) ) o(D).
C1<i<kvy—1CTEEDY ly|

Relation (4.7) implies the claim in the lemma, so it remains to verify (4.8).
By (4.6), the denominator in (4.8) behaves lidg'|y |)/2, so choosing so small
that E|&|2H < oo, it is enough to check that

(4.9) Yoo el =0@/1yD.

1<i<k(N)-1

To illustrate, we will verify (4.9) for the summation range<li < k(1) — 1; the
remaining ranges afare dealt with in the same way. Foli < k(1) — 1 we get,
using Jensen’s inequality,

—i —i —i)y |2+8
01127 = |uge® D=7 4 ok @=07 g K=y |

< C1(N)[|uur| PPk D=D@+0)y

 |po 2k @=D@OY 4y |2 KM= @48y,

Summing the above, we get, using Lemma 4.1 as in (4.4) and (4.5),

1 1
> el i e o(—) < Co(N)—.
1<i<k(N)—1 (2+9)|y] 4 ly|

Our next lemma shows that the random variahigslefined by (4.2) have the
same asymptotic distribution asthg, 1 <m < N.

LEMMA 4.3. Suppose thaE|eg|**? < oo for somes > 0 and that assump-
tions(2.7)and(2.12)hold. Then
d
@y HY21ef, 15, i) > (EEDY 2w, n2, .. ),
wheren, n2, ..., ny are independent standard normal random variables
PROOF By Lemma 4.2, it is enough to verify that for eaeh |y |¥/?c* —

l¥1¥2t,, = 0p(1). Fix m and to lighten the notation skt= k(m). By rearrange-
ment,

= . ( > ejy)ék—zn
I<i<k-1\i<j<k-1
It is therefore enough to verify that

k=1/k=1 k—1 . 2
|y|3E[Z<Ze”)sk_i -3 |y|—1e’ysk_i} =o(1).
i=1

i=1\ j=i
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Since

(4.10) Yelv="——

and[e” — 1171 =y 1+ 0(1), we have

(4.11) e~y = (y T+ 0(D) + €7 0 (D).
j=i

Hence, by (4.10), for i <k —1,

k—1 2
(4.12) (Ze"y - |y|—1e"y) =o(yI™.
j=i
By the independence of thg,
k=1/k=1 k—1 . 2
E[ > ( > ejy)fk—i -> |)/|_l€ly$k—i}
i=1

i=1\j=i
(4.13) !

k=1/k=1 )\ 2
= EE&Z(Z(Z“’ — |y|_le”’> .
=1\ j=i
The claim thus follows by (4.12) arid/?2 — 0. O

LEMMA 4.4. If (2.6), (2.7)and(2.9)—(2.12)hold, then

ly1¥2| 4, 1)
— 14« Z E—j+ Ry,

1<j<k

=op(),

whereR,ﬁl) satisfieq2.14).

PrOOF  Sincek~Y2Y,_ ;. & ; is asymptotically normal, conditions (2.10),
(2.12) and (2.14) yield

a Y &+ R =0p(D).
1<j=k
It remains to observe that by (2.11)

3/2
&ek” = o(Dk|y|e"” =o0(1)
o

becauser < 0,k|y| — oco. O



906 I. BERKES, L. HORVATH AND P. KOKOSZKA

LEMMA 4.5. Suppos€2.6), (2.7), (2.10and(2.20)hold. Then

>, e <1+a > & ,+R(2))R(3)

1<j<k-1 1<i<j

|y 13/

=op(D),

o

prowdedR(z) satisfieq2.15)and R(3) satisfieq2.17).

PrROOF By the weak convergence of partial sums,

_il=0pkY?),
jJnax 1;]- Ek—i p(kY%)
so by (2.10) and (2.15)
4.14 ma i R =op(D).
(4.14) 1</<kx1al<lZ<Jsk + R =0p(D)

By (2.17), (4.14) and Lemma 4.1,

|3/2 2)\ @3
Yo <1+a Y & ,+R()>R<)

1<j<k-1 1<i<j

—0(1)" @+y? > jel?

ly

1<j<k—1
3/2 1
— 0p (1)'V| @2+ yD)—.
[y
It remains to observe that
|y|3/2(2 21 _a ly|3/?
ly12  |yI1/? o
1/2 Iy |3/2
an y|
= + =0(1),
(nly )12

by (2.10), (2.18) and (2.20).00

LEMMA 4.6. Supposé€2.6)and(2.19)hold. Then

3/2 ,
" 2 IRl =or
=J=K—

prowdedR . satisfieq2.16).



NEAR-INTEGRATED GARCH SEQUENCES 907

PROOF Using (2.16), Lemma 4.1, (2.18) and (2.19), we have
ly |32 2
> RS
1<j<k-1
y1¥2 , -
=0p(1) a® Y j(oglog,)e’”
o N
1<j<k-1
= 0p(D)ly|¥?a(loglogk)|y|
= 0p(1)an1/zlog logn =op(1). O

5. Proof of Theorems 2.3 and 2.4. Throughout this section we assume that
y =0.
As in the proof of Theorem 2.1, setting= 0, we have fok = [nt],0 < < 1,

O'kZ: a)+ag<l+a Z gk—]'i‘R]El))
1<j<k

fo 3 (1he X b a?)a

1<j<k-1 1<i<j
2
To Z R
1<j<k-1
to )] <1+a > sk_l-)
1<j<k-1 1<i<j

By (2.11),n%?a — oo, so the termw is negligible in Theorem 2.3. In Lemmas
5.2-5.4 we show that—3/20~1(02; + 02, + 0/ 3) = 0p(1). Therefore

1 (o 1
(5.1) m(z"‘)=ml Z Z'fk—iﬁ-Op(l).
<j<k-11<i<j
By (5.1) and Lemma 5.1, the finite-dimensional distributions of the process

11 (of

converge to the finite-dimensional distributions of the proc[eféSch(x),
0 <t < 1]. Theorem 2.3 thus follows on observing that

t s min(z,s)
_ 27— Lrmi 3
E|:/0 xdW(x)/O xdW(x)i| _/0 x“dx = z[min(z, s)]°.
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Theorem 2.3 and (2.10) imply théab[nz,,1) o/ £ 1 foreach 1< m < N,

nty ]

so Theorem 2.4 follows becaugelnt, 1)y, = (@[ntm]) ™Y 201m1,1800,1-

LEMMA 5.1. If (2.7)and(2.21)hold, then

n¥2 Ny Ek_ii(Eég)l/zftxdW(x) in D[0, 1],

1<j<nr—11<i<j 0

where{W (x), 0 < x < oo} is a Wiener process

PROOE Note that

Yo Y Ei= Y (k=D

1<j<k-11<i<j 1<i<k-1
k—1
=/ “l( > 5/)
0 1<j<x
k—1
=k-1 > gj—/ (Z §j>dx.
1<j<k-1 0 1<j=<x

By (2.7) and the Komlés, Major and Tusnady approximation [see Chapter 1 of
Csord and Horvéath (1993)], there is a Wiener proc@sssuch that

Y & — (E)YPWr () =o(xY@)  ass,

1<j=x
Hence
nt—1
n=3/? sup/ ( > ;,-—(Esg)l/zw*(x)) dx
(5.2) 0<t<1|/0 1<j<x
— OP(l)n—3/2n1+l/(2+5) — OP(l)
and

(5.3) =32 sup

O<r<1

(nr—l)( > s,-—(Esé)l/ZW*mr—l))’=0p(1).

l<j=nt-1

In (5.2) and (5.3) we can clearly replaece— 1 by nt. To complete the proof it is
therefore enough to notice that, by the scale transformation of the Wiener process,

{n_3/2<m‘W*(nt) - /"t W*(x) dx), O<r= 1}
0

i{tW(t) —/Ot Wx)dx,0<t < 1}

and use integration by partsl]
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LEMMA 5.2. If (2.6), (2.7), (2.9)—(2.11hold, then

n=32% 1+« Z Sk_j—i—R,El) =op(l),
1<j<k

whereR,ﬁl) satisfieq2.14).

PROOF By (2.7) and (2.9)Y 1 j<; &—j = Op(k%/?), so the lemma follows
immediately from (2.6), (2.10) and (2.11)

LEMMA 5.3. If (2.6), (2.7)and(2.10)hold, then

Z <1+a Z Ek Z+R(2))R(3)

1<j<k-1 1<i<j

-3/2 -1

n o

- OP(l)a

whereR(z) satisfieq2.15)and R(3) satisfieq2.17).

PROOF By (4.14), it suffices to verify than=3/2a=1y";_; 1|R(3)| =

op(1) which follows immediately from (2.17), (2.10), (2.12) and (2.20).
Recall that to establish (4.14) we needed assumptions (2.6), (2.7), (2.10) and rela-
tion (2.15). O

LEMMA 5.4. If (2.6)and(2.10)hold, then

Z R(z)

1<j<k-1

=op(D),

WhereR,E?j. satisfieq2.15).
PrROOF Follows immediately from (2.15), (2.6) and (2.10)]

6. Proof of Theorems2.5and 2.6. In this section we assume that- 0 and
ny — oo. Note that the assumptions of Theorem 2.5 imply that all assumptions
(2.9)-(2.12) hold. In particular, assumption (2.12) is implied by (2.19) and (2.22).
We again use decomposition (4.1). Lemmas 6.1-6.3 below imply that

ye v
pwETE) (a)+crk 1+0k2+0k3) =op(1).

Therefore

—ky [ 2 —ky
ye Oy ; i ye ;
W[; — E €]yi| = W E e])/ § Ek—i "JI_OP(]-)

1<j<k-1 1<i<j
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By Lemma 6.4, the last relation implies
—ky 2
ve %% Jr | — p—1/2 :
A LD M BT o R
1<j<k-1 1<i<k-1

so by Donsker’s theorem [see, e.g., Theorem 14.1 in Billingsley (1999)], we
conclude that the finite-dimensional distributions of the process

1 ye_[nt]y G[%l‘] .
— e/’ ],0<t<1
|:(E"§02)1/2 alnt]V2| o Z

1<j=<[nt]-1

converge to the finite-dimensional distributions of the Wiener pro¢8sg),
0 <t < 1]. This completes the proof of Theorem 2.5.
Theorem 2.6 now readily follows. For any<0r < 1,

_ _ — — 1/2
(6.1) (w 1)/)1/23 [m]y/z)’[nt] =(0) l)/e ["’]yﬁ[fn]) / Ent]-

Sincea[nt]Y2 — 0, it follows from Theorem 2.5 that

(6.2) ye Il (w—la[?m - > efy> =op(1).
1<j<k-1
Direct verification shows that
(6.3) ye_[m]y< Z eV — y_le["’]y) =0(1).
1<j<k-1

Relations (6.2) and (6.3) yield 'y e~ 1"V o2, —> 1, which combined with (6.1)
concludes the proof of Theorem 2.6.

LEMMA 6.1. If (2.6), (2.7), (2.9)—(2.12and (2.22)hold, then

Ve" K7 W
1+a Y &—j+ Ry

1<j<k

whereR(l) satisfieq2.14).

PROOF.  Relation (2.14) and the asymptotic normalityiof™/2 ", ; ; &—;
yield

ye ™| iy @
k2 Tt ) & j+R
1<j<k
= 0p(1) k1/2(1+oek1/2+k(a2+y2))

k1/2
(kiy)> =op(1),

= 0p(1)<gk_l/2 +y + y (k%) +
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by (2.10)—(2.12) and (2.22).00

LEMMA 6.2. If (2.6), (2.7), (2.9), (2.10), (2.12nd (2.22)hold, then

—ky
e .
re T er(ire ¥ anen®)ed
o 1<j<k—1 1<i<j

=op(D),

whereR;?) satisfieg2.15)and R) satisfieg2.17).

PROOF By (2.17) and (4.14), it suffices to show that the quantity

—ky
ve iy .. 2 2
Vk:—akl/z > eV j@®+y?)
1<j<k-1
tends to zero. Since for > 0,

ky _ oy ky
(6.4) £ e ¢

<—,
eV —1 y

we have
Vi < kY20 + (Y20 Y S0,
o

by (2.10), (2.12) and (2.22).00

LEMMA 6.3. If (2.6), (2.9)and(2.19)hold, then

—ky

ve ir| p@
1/2 Z e |Rk"|=0P(l)7
ak/ 1<j<k—1 ’

whereR,E?; satisfieq2.16).

PROOF By (2.16), we need to show that the quantity
—ky
_ve iy 2. .
Uk—m Z e!Va ]IOgIOg_}
1<j<k-1
tends to zero. By (6.4),

—ky
e
U < Y

ky
< Wozzk loglogk & = ak¥?loglogk = o(1),
o Y

by (2.19). O

LEMMA 6.4. If (2.6), (2.7)and(2.9)hold, then

y? o ' kv ?
78_ yE( Z e”’ Z Ek_i—— Z El) — 0.

1<j<k-1 1<i<j 1<i<k-1
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PRoOOE Note that

> o Taa= T (¥ oas

1<j<k-1 1<i<j I<i<k-1\i<j<k-1
and
Yo &= ) &
1<i<k-1 1<i<k-1
Therefore,

B X T aa- ¥ —s)

1<j<k—1  1<i<j 1<i<k-1 7
) eky_eiy eky 2
=28 ¥ (Gor-5)
1<i<k—1" € Y
By the Taylor expansion,

kv — et kv

eV —1 y

Therefore,

2iy

fch[ P —l—keZk”}

1<i<k—-1 ¥

1 eZky _ eZy

_ —-c  —c 2ky
_0(1)[}/2 21 + ke ]

1
— 0(1)[—3e2’<y +ke2k7’].
14
The claim follows on observing that

2
g R S
k y3 vk
and

)/2
e ke =92 5 0.



NEAR-INTEGRATED GARCH SEQUENCES 913

REFERENCES

BILLINGSLEY, P. (1995) Probability and Measure3rd ed. Wiley, New York.

BILLINGSLEY, P. (1999) Convergence of Bbability Measures 2nd ed. Wiley, New York.

BOLLERSLEYV, T. (1986). Generalized autoregregsconditional heteroskedasticitl. Econometrics
31307-327.

BoUGEROL, P. and RCARD, N. (1992). Stationarity of GARCH processes and of some nonnegative
time seriesJ. Econometric®2 115-127.

BROCKWELL, P. J. and Bvis, R. A. (1991).Time SeriesTheory and MethodsSpringer, New
York.

CHow, Y. S. and TEICHER, H. (1988). Probability Theory Independencelnterchangability,
Martingales 2nd ed. Springer, New York.

CsOR®, M. and HORVATH, L. (1993). Weighted Approximations Probability and Statistics
Wiley, New York.

ENGLE, R. F. and BDLLERSLEV, T. (1986). Modelling the persistence of conditional variances.
Econometric Res 1-50.

HuLL, J. C. (2000)Options Futures and Other Derivative®rentice-Hall, Upper Saddle River, NJ.

KAZAKEVI CIUS, V., LEIPUS, R. and MANO, M.-C. (2004). Stability ofandom coefficient ARCH
models and aggregation schem&sEconometricd420 139-158.

MikoscH, T. and SARICA, C. (2002). Long-range dependence effects and ARCH modeling. In
Theory and Applications of Long-Range DependeffiteDoukhan, G. Oppenheim and
M. S. Taqqu, eds.) 439-459. Birkh&user, Boston.

NELSON, D. B. (1990a). ARCH models as diffusion approximatioh€Econometricg5 7—38.

NELSON, D. B. (1990b). Stationarity and persistence in the GARCH)Imodel. Econometric
Theory6 318-334.

ZIvoT, E. and WANG, J. (2003) Modeling Financial Time Series with S-Pli@&pringer, New York.

|. BERKES L. HORVATH

INSTITUT FUR STATISTIK DEPARTMENT OFMATHEMATICS
TECHNISCHEUNIVERSITAT GRAZ UNIVERSITY OF UTAH
STEYRERGASSEL7/IV 155 SOUTH 1440 EAST

8010 (RAZ SALT LAKE CITY, UTAH 84112
AUSTRIA USA

AND E-MAIL : horvath@math.utah.edu

A. RENYI INSTITUTE OF MATHEMATICS
HUNGARIAN ACADEMY OF SCIENCES
P.O.Box 127

H-1364 BUDAPEST

HUNGARY

E-MAIL : berkes@stat.tu-graz.ac.at

P. KOKOSZKA

DEPARTMENT OFMATHEMATICS AND STATISTICS
UTAH STATE UNIVERSITY

3900 Q.0 MAIN HiLL

LOGAN, UTAH 84322

USA

E-MAIL : piotr@math.usu.edu



