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ITERATED BROWNIAN MOTION IN AN OPEN SET

By R. DANTE DEBLASSIE
Texas A& M University

Suppose a solid has a crack filled with a gas. If the crack reaches the
surrounding medium, how long does it take the gas to diffuse out of the crack?
Iterated Brownian motion serves as a model for diffusion in a crack.i¢f
the first exit time of iterated Brownian motion from the solid, the¢r > r)
can be viewed as a measurement of the amount of contaminant left in the
crack at time. We determine the large time asymptotics”qfr > r) for both
bounded and unbounded sets. We also discuss a strange connection between
iterated Brownian motion and the parabolic oper%m2 — %

1. Introduction. Suppose an infinite slab with finite thickness is cracked. The
crack is filled with a gas and the crack reaches the surrounding medium. How long
does it take the gas to diffuse out of the crack? Burdzy and Khoshnevisan [14] show
a reasonable model of diffusion in a crack is given by iterated Brownian motion.
In essence, the crack is modeled as the path of two-sided Brownian motion. In
analogy with ordinary Brownian motion and diffusionifis the first exit time of
iterated Brownian motion from the solid, theiizP> 7) provides a measure of the
amount of contaminant left after timre This is the object of our study.

To define iterated Brownian motiod; started atz € R, let Xf, X, andY;
be independent one-dimensional Brownian motions, all started at 0. Two-sided
Brownian motion is defined to be

X, t>0,

X(__t), t <0.

Then iterated Brownian motion startedzat R is
Z[=Z+X(Yt), tZO

In R" one requiresX* to be independent-dimensional Brownian motions.
Observe there is a choice here: ours or the requirement that the components of
n-dimensional iterated Brownian motion be independent one-dimensional iterated
Brownian motions. In fact, the latter process is the subject of the article [48] by
Xiao. Our choice is motivated by a connection W%th2 — % and the interpretation
of Burdzy and Khoshnevisan [14] as diffusion in a Brownian crack.

Recently this process has been the subject of many articles. Limit theorems are
studied in [4, 17, 21, 29, 32, 46]; path properties and local time in [8, 11, 18, 30,
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31, 48]; level sets in [13] and [28]. Burdzy [12] studied the variation of iterated
Brownian motion. These results were extended by Khoshnevisan and Lewis [33]
in their development of a stochastic integral for iterated Brownian motion.

Although iterated Brownian motion is not a Markov process (the Chapman—
Kolmogorov equation is not valid), a variant of it is known to have a connection
with the parabolic operatgyA? — 2 [23].

The purpose of this article is two-fold: First, we establish a strange connection
between iterated Brownian motion and a certain partial differential equation
involving §A2 — 2 If this connection is analogous to the Brownian case, there
might be a way to study the lifetime of iterated Brownian motion in an open set
by solving an initial-boundary value problem. We show this is not true in general.
The second purpose of the article is to determine asymptotics of the distribution of
the lifetime using another method. Now we write detailed statements.

For typographical simplicity, write

)=~ exp( “2)
Pttt =ty 2t)

If /e Cp(R"), the space of bounded and continuous real-valued functiof® pn
set

u(t,x) = Ex(f(Z)),
whereE, denotes expectation associated WA= x. Then

u(t, x) = E(f(x +XtOvY)+X (0v (—Yt)))>
(L.1) = [ E(fe+ XTOV 3+ X0V ()t ) dy

:2/0 /Rnf(w)pn(y, lw — x|)p1(t, y) dwdy.

If we proceedormally and differentiate under the integral with respect taising
that Ap, (¢, x) = 22 p,(t, x), we get

=2 [" [ A A(pay. 0 = xD)pat ) duwdy

00 52
=8 [~ [ s 500 =D |pse. vy duady.
0 JRrn ay
Next, change the order of integration, integrate by parts twice and then reverse the
order of integration again to get
82

0
=8 [~ [ fpa(y.fw =)ot v dwdy
0 Jrn dy

— 162,
ot
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Thus, there is hope a slight variation of Funaki’'s result carries through for our
version of iterated Brownian motion. This is false. Differentiation under the
integral is not possible and this leads to the following strange connection.

THEOREM 1.1. Let f e C;°(R"). Then the function u(t, x) = Ex[ f(Z;)]
solves the Cauchy problem

u € C%((0, 00) x R") N Cp([0, 00) x R"),

1 0 1 1
1.2 - 2__) _ 11 ;
(1.2) <8A 51 u(t, x) 2«/%Af(x) on (0, co) x R™,

u(0,x) = f(x).

After submitting this article, an elegant variant of Theorem 1.1 due to Allouba
and Zheng [2] appeared in print. See Theorem 0.1 as well as other interesting
results in that paper. The theorem generalizes our Theorem 1.1 in two ways: First,
the LaplacianA can be replaced by the generatérof a continuous Markov
process. Thus, iterated Brownian motion can be replaced by a more general iterated
Markov process. Second, the functighneed only be a bounded element of the
domain ofA with bounded Hdélder continuous second-order partial derivatives.

Let B; ben-dimensional Brownian motion anbh C R” a reasonable open set.
Fortp(B) =inf{t > 0: B, ¢ D}, itis well known that the function

v(t,x) = E[g(B)I(tp(B) > 1)]

solves the initial-boundary value problem

1 0
(—A——)v:O on(0, o0) x D,

2 ot
v(0,x) = g(x), xeD,
v(t,x) =0, x €0D.

In light of Theorem 1.1, ifD C R" is an open set, there is hope the function
u(t,x)= P, (tp(Z) > t) solves

1 0
(éAZ - 5)u(t,x) =0  on(0,00) x D,
u0,x)=1, x €D,
u(t,x)=0, x e€adD.

Since the PDE is fourth order, an additional boundary condition is needed. For
this choice ofu, it turns out to be“ =0, x € 3D, where-Z is the inward normal
derivative. Unfortunately, this fails.
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THEOREM 1.2. Let D = (0,1). Then for any a > 0, the function g(¢, x) =
Py (T(0,00)(Z) > t) does not satisfy

a—— =

g og
x4 ot

We use another method to study the lifetime of iterated Brownian motion in an
open setD C R". Forr-dimensional iterated Brownian motidh let

tp(Z)=inf{t >0:Z, ¢ D}

be the lifetime ofZ in D. Here and in the sequel we write~ g and f < g to
mean for some positiv€; andCo, C1 < g < Cgandf < C1g, respectively. We

also write f () ~ g(¢) ast - oo t0 meang%) — 1 ast — oo.

Let D C R" be an open cone, with vertex 0, such thatlnDis regular for the
Laplace—Beltrami operatdrg,—1 on S"~1. We call D ageneralized cone. Then for
somep(D) > 0, the exit timerp (B) of n-dimensional Brownian motion fronp
satisfies

P(tp(B) > 1) ~ C(x)t~ PP ast — oo

([5], Corollary 1). Ifn = 2 and the angle oD is & € (0, 2r), then
T

1.3 D)= —;

(1.3) p(D) 2

see [15].

THEOREM1.3. Let D CRR" beageneralized cone. Thenast — oo

=P p(D) <1,
Py(tp(Z) > 1) =~ { tLIny, p(D)=1,
~P(D)+D/2. p(D) > 1.

Since Brownian motion in a half-space has the same lifetime as Brownian
motion in the positive reals, the next result is immediate from Theorem 1.5 and
formula (1.3).

COROLLARY 1.4. If D C R hastheform(—oo, a) or (b, 00),thenast — oo,
P (xp(Z) > 1) ~ 1712,

THEOREM 1.5. Let D € R" be bounded and open with regular boundary. If
Ap isthe principal eigenvalue of %A on D with Dirichlet boundary conditions,
then

log Py (tp(2) > 1) ~ =325%Y%  ast — oo.
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REMARK 1.6. Compare with the Brownian case
P(tp(B) > 1) ~C(x)e™*P'  ast — oo.

Finally, let us point out the search for probabilistic connections with higher-
order PDEs has gone on for a long time (at least since the 1960s). Biharmonic
functions and related boundary value problems were studied by Vanderbei[47] and
Helms [25, 26]. Concerning fourth-order operatorsadviecki [35, 36] explored
connections with the 4-asymptotically stable motion and Nishioka [38-41]
considered the biharmonic pseudo-process—the one whose “transition density”
is the fundamental solution of the parabolic biharmonic operator. Orsingher and
his collaborators [1, 6, 7, 37, 42-44] studied processes governed by signed
measures related to fundamental solutions of higher-order parabolic equations.
Also, Hochberg and Orsingher [27] considered hyperbolic equations. Finally,
Allouba [3] looked at connections with higher-order operators and Feynman—Kac-
type formulas.

The article is organized as follows. The proof of Theorem 1.1 is given in
Section 2. In Sections 3 and 4 the proofs of Theorems 1.3 and 1.5, respectively,
are given. The last section is an appendix containing some technical results used
in Sections 3 and 4. In Section 5 we prove Theorem 1.2.

2. Proof of Theorem 1.1. Let f € C;°(R"). As pointed out above, differ-
entiation under the integral is not valid; hence to prove Theorem 1.1, we use
distributions. Since: is bounded, it yields a distribution oft = (0, co0) x R”.
Standard notation for this ise D' (). We showu is a Weak solution o(lA2

)u(t x)= —§¢:Af(x) on Q. Since the operat%A2 5, Is hypoelliptic and

_1/2Af(x) € C*®(Q), by the hypoelliptic regularity theorem,e C>®(Q) andu
is a classical solution to the partial differential equation. The initial condition is
clearly satisfied and Theorem 1.1 will follow.

To showu is a weak solution, it is enough to prove

1 a 1
2.1 t, ,x)dxdt =0
@y [ u.n]ga? 2¢_ Jotax
for ¢ € C§°(R2), the space of smooth functions with compact suppoRinVe

describe the case > 2, leavingn = 1 to the reader. Let > 0. By Fubini's
theorem,

/ qu(p dxdt
Q

o0
:2// / Pa(y, |w — x|) f(w) p1(t, ) A2p dx dy dw dt
QJOo Be (w)
2.2) ’ 2
+2/Qfo f().Pn<%lw—x|>f<w>p1<r,y>A pdxdydwd
Ew('

=L+ D, say,
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whereB,(w) = {x e R": |lw — x| < ¢}. Now

|w —xl2 n
Axpn(y, lw —x[) = pa(y, lw —x|) 5 — =
y y
and, if% denotes the outward normal derivative @B (w)¢,
0 €
S Pn(y, lw —x)=—pp(y,e)  forxedBe(w).
ony y

Hence by Green’s identity,
[ @%parlw = xydx
Be (w)¢

|w—x|2 n

(2.3) = [ w2 agax
y y

B (w)€

0 £
+/ [pn(y, €) Ap — —pn(y, 8)A<p] do(x),
3 Be (w) ony y

whereo (x) is surface measure @B, (w). Another application of Green’s identity
is not useful at this stage. Instead, observe

9 1
a—pn(y, lw—x|) =z Auwpn(y, lw—x])
y 2

1Tlw—x|2 n
:E[ 12 —;}pn(y,lw—xl).

Hence, (2.3) becomes

d
/ pn<y,|w—x|>AZqodx=2/ [ pa(ys lw — xD)]Ap dx
Be (w)° Be(w)© 0y

d €
+/ pn(y,e)[ A@——A(p]dcr(x).
3B, (w) ony y

Now we can writel> from (2.2) as
(2.4) =13+ 14+ I,

where

00 0
n=2 [ f(w)pl(t,y)pn(y,e?)[ / Bg(w)(anwa)dam]dydwdr,

% 1
=— = A
Iy 28/9/0 f(w)pl(t,y)pn(y,e)y[/aBg(w) qodo(X)} dydwdt,

00 0
=4 [T [ p@ipsen]| 5w x| spdrdydua.
QJo JB.wy ay
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By Fubini’s theorem and integration by parts in theintegral,
o0
y
s=4 [T f@p 02 puy. v = xDagdrdydwa.
QJo e ()¢ !

This has a form likel>, where nowAg in I is replaced by and pi(z, y) is
replaced bszypl(t, v). Repetition of the derivation leading to (2.4) yields

(2.5) Is=1Ig+ I7 + Ig,
where
o0 y e
=4 [~ r@pen?poel [ do)|dydwar
aJo t 3By (w) Oy

00 1
fr=—te [ [* fwme. ool [ Bg(w)«)da(x)]dydwdr,

oo 0
n=s[ [~ f(w)pm,y)iqo[—pn(y,|w—x|>}dxdydwdr.
QJo  JB.(w) t Loy

By Fubini’s theorem and integration by parts in theintegral,
00 1 y2
== [T [ sl -2 |pesenoie - ) drdydwads
QJ0 e (W)€ ! !

o d
=16 [T [ s gm0 |opw =) dsdydwar

2 . .
using thatj, p1(z, y) = —3p1(1, y)[ — %7 1. Now we integrate by parts in ther

t
integral to get

oo d
(2.6) Ig=—16 f / f F@)p1t, 1)L pu(y. lw — x]) dx dy dwdt.
QJo JB.(w) ot

Sincep € C3°(R2), there is a bounded functidn(z, w) with compact support i
such that

0
’ Ap(t, x)
on

andh is independent of < 1.
Then for some\f1, M2, M3 > 0,

Sh(t,U)), xeaBE(w)v

I <C /Q /0 h(t, w)p1(t, ) pu(y. €)0 (3Be (w)) dy dw di

n—1 M *©
<Cs pi(t, V) pn(y,e)dydwdt
M1 BM3(O) 0

:an—lsz /OO 1 oY 1 e_ez/zydydt
m Jo 2rm1 (2my)n/2
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< Cg”—lsz /OO ie—yz/ZMzée—sz/Zy dydt
- M Jo 2mt (2 y)n/?

ot [ ey 2 g,
0

The charge of variablas= % transforms this to

foe) 4
122y —y— &
|I3] < Cs/o u" exp( u 8M2u2) du.
If n=2,

®© 4 et 1 et 1 —u
expl —u — ——= )du < Texpl ———= | d e "d
/o ! p( ! 8M2u2> u_/ou p( 8M2u2> u+/1 e o
1 0 0
=—/ v_le_”dv—i—/ uleu
2 Jed /M, 1

after changing variables = 87”—2 in the first integral. Using this it is easy to

showlz — 0ase — 0. If n > 3,

o0 4 0
/ u"/z_zexp(—u — L) du < / U271 gy < o0.
0 8Mou? 0

Then again/s — 0 ase — 0. A similar argument applies tf3 and/7. In any event

(2.7) lim I3 = lim Is = I|m I7=0.

e—0 e—0

By dominated convergence in (2.6),
. dg
(2.8) lim 18:—8/ u(,x)— @, x)dxdt.
e—0 Q ot
Also, dominated convergence gives
(2.9 lim 7, =0.
e—0
Thus (2.2) becomes
/ ul’pdxdt = lim (11 + I2)
Q

=Ilim b

e—0

(2.10) ) ,
= gllm I3+ I4+ Ig + I7 + Ig) [using (2.4)—(2.5)]

= lim 14— 8 / u—dxdt by (2.7)~(2.8)].

e—0
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It remains to analyzé,. Make the change of variablas= % in thedy integral to
get

281—n
- n/2

0 2
X/ / [f(w)l?l(f, 8—>u"/2_1€_”/ Agodo(x)i| dudwdt.
QJO 2u 9B (w)

Sinceg € C3°(R2), there is a bounded functiolm (z, w) with compact support
in Q such that fore < 1, thedu dwdt integrand (the portion square brackets) is
bounded by

Iy =
(2.11)

Ct Y22 o= w)e 1,

whereh andC are independent af < 1. Then we can let — 0 in (2.11) and use
dominated convergence to end up with

2 00 1
lim I :——/ / "L
e—0 4 /2 Jo Jo f(w)\/%bi ¢

X |:|im el_"/ Agodo(x)i| dudwdt
0Be(w)

e—0

2 //OOf( ) 1 01 —M[Zn"/z Aplt )]d Jwdi
= w)——u e S W udw
72 o Jo NezT rnj2)~"

1

1

Hence, (2.10) reduces to
/ ul’pdxdt = —4/ Af(w)<p(t w)dwdt — 8/ u—dxdt,
which is (2.1).
3. Proof of Theorem 1.3. If D C R is an open set, write
t5(x) =inf{t > 0:XF 4+ x ¢ D),
and if I C R is an open interval, write

nr=n()=inf{t > 0:Y; ¢ I}.
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By continuity of the paths,
P.(tp > 1)
=P, (Zs;e Dforalls <1)

x+XT(OvY)eDandx+ X (0v (~Yy)) e Dforalls <t)
(3.1)

= P(
P(t}(x) >0V Y, andr, (x) >0V (=) forall s <¢)
P(— TD(x)<YS<rD(x)f0ra||s§t)
P(n

(=15 (), T (%)) > 1).
Once we show fom-dimensional Brownian motiorB and a generalized cone
D CR",

d
(3.2) EPx(TD(B) <t)~c) PPl ast — oo,

then Theorem 1.3 is an immediate consequence of (3.1) and the next theorem.

THEOREM 3.1. Let & be a positive random variable with density f(¢) such
that for some positive C and p, f(t) ~ Ct—P~1 ast — oo. If & and & are
independent copies of &, independent of the Brownian motion Y, thenast — oo,

1P, p <1,
P(n—gr.69 > 1) ~{ t~Ling, p=1,
s

We give the proof of the asymptotic (3.2) in Lemma A.3 of the Appendix.

PrRoOF OF THEOREM 3.1. We will abuse notation and allo¥y = x; the
probability associated with this will bg,. For typographical simplicity, write

T= n(O,oo)(Y)-

The following distributions oh(_u,v) andr are well known:

(33) P0(77( uv)>t

_M) in &t D

o 2(u + v)? u-+v
x/\/_ wz
(3.4) Pi(t > 1) = Py (n(0.00) > 1) \/_/ 2 dw
([22], pages 340-342). By (3.4),
(3.5) Pi(non >1) < Pt >1) < — Al

NG



ITERATED BROWNIAN MOTION IN AN OPEN SET 1539

By Lemma A.1 of the Appendix, choog¢ > 0 so large that

(3.6) Pi(no1>t)~ (sinmc)e‘”zt/2 fort > M, uniformly inx € (0, 1).
0,1)

Then choosé < 5 so small that

(3.7) sinmTx ~ x, x € (0, 6].

ChooseK > 0 so large that

3.8 (u)~uP L, u>K.

(3.8) f

Finally, we consider so large that

t
(3.9) K < 6\/;.

By independence of, &1, andé&,, using scaling and translation invariance of
Brownian motion,

P(n-¢.6) > 1)
= Po(n(-&,.6») > 1)

- /0 /O Po(1(umy > 1) £ () f (v) dv du

00 oo ,
:/0 /o Pyuju+v) <77(O,1) > + v)2>f(u)f(v) dvdu.

SinceP(no,1) > t) = P1—x (1,1 > t), we have

0 u t
L[ P (n00 > sz ) £ £ dvd

00 U ,
=‘/(; /(; Pv/(u+v)<77(0,1) > m)f(u)f(v) dvdu

oo o0 "
:/O /v PU/(IH—U) (77(0,1) > m)f(u)f(v) dudv
(reversing the order of integration)
o0 o "
=/(; /L; Pu/(u+v) (77(0,1) > m)f(u)f(v)dvdu
(relabeling). Thus,

P(n(-¢.6) > 1)

(3.10) o oo t
= 2/0 /u Pu/(u+v) (n(O,l) > m)f(u)f(v)dvdu.
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We break up the integral into several pieces:

t t
A= U)K <u<$ |—, > [— L
1 (u,v) <u< i u-+v M}
A u,v):0<u<K,u+v> !
= u,v). U= , U v = N E
2 M
A )8 <u<vutv> |-
={(u,v):d|/—=<u<vutv>[—;,
3 M M

Ag={w,v):u>0,v>K,u<v,u+v< —},

=

As={(u,v):u>0,u <v <K}

It turns out the integral oA 1 is the “dominant” piece.

The dominant piece: upper bound. On Aj, %= < 8«/_%4 = § and sov >
16, > Y2, > K. Hence, by (3.5) and (3.8),

3 12
t
[[ Puso(n03 = s ) F0F ) v

u
S//Alﬁf(u)f(v)dvdu

Sa/t/M  poo
%t_l/zf / v PP dvdu
K t/M—u

S JTTM f P
%t_l/zf u_p< L —u) du
K M

$Vt/M
A t_l/zf uP(Vt)Pdu (¢ large

K

(3.11)

(changing variables = +/tw).

< SNIM _ 5 and

The dominant piece: lower bound. Notice on A1, ;2 < N
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(u+v)2 < M. Hence,

t
/[ Pt (77(0,1) . m)f(u)f(v)dvdu

= //Al Pu/(u+v)(7)(o,1) > M)f(u) du f(v)dv

8/t/ u el —pi
w/ / v P L Lavdu  [by (3.6)~(3.8)]
K TM—u U+ V

8/M | |
=t 1’/ /1/J—;( z—w) PTrw P dzdw

[changing variables = (u + v)//t, w =u//t]

—p [T KN 1gzg
>t S —
/ /1/J— z( ﬁ) v caw
1 K\—P-1 8/vM
:t_p/ (z——) dz/ w Pdw
VM 2 Vi K/

00 §/vM
wt“’/ z_”_zdz/ wPdw  forlarget.
1/vM K/t

Combined with (3.11), we end up with

/ f Puusn (mo b> o )f(u)f(v)dvdu

(3.12) 8/
A t_pf w dw.
K/t
The remaining terms: upper bounds. Onthe setdo, v>./+ — K > K if tis

large enough. Hence, by (3.5) and (3.8),

K poo u
< —pp1
//AZN/O /W—u ﬁv dv f(u)du
K 1 (/1 -’
~/0 t u( " —u) f(u)du
>
5:‘1/2( /ﬁ —K) /O wf (u)du

~ t_(p+l)/2

(3.13)

for ¢ large.
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Onthe setAs, if ¢ is large, theny > u > K so by (3.5) and (3.8),

//A f/A 1 f(u)f(v)dvduwf/ LY avdu

Wt/M)/2 poo 1 1
= / v P TP dudu
ENG 7]
o o
(3.14) + / / v P Y14y dy
i) /2 Ju
W2 1(1 [+ \ 7 o0 1
5/ —(— — u_”_la’u+/ “ur gy
sy p\2\ M (Vi/M)/2 p
~t P + P
~tP,
On Ay, since(uJ:v)2 > M, by (3.6) and tha@ is bounded for alk,

t
[] B (103> s ) £ F ) v

< // u e—nzt/Z(u—i-v)zf(u)f(v) dvdu
Ag U+

K pJt/M—u
~ / / U T hR2WA0? =P gy du
u-+v

M2 et IM—u
+ / _/ u—+v

2 2
—74t/2(u+v) u—p—lv—p—ldvdu

[using (3.8)]. Changing variables= “}”, w = u in the first integral and = “j;”,
w= ? in the second to get

K 1M 2
W —m?/2:2 P=Y Jidzd
/ /w—}—K)/\/—Z\/_ S e/t —w) T dzdw
1/@VM) (1M
P B N R O s e
w
1/J— p-l
_(p+1)/2/ / w —NZ/ZZ f(w)z_p 1<1_i> dzdw
w—i-K)/«/—Z Z\/;
1@V NI 1 —rt
+t"’/ / —e‘”z/zzzw_”z_p_1<l— ﬂ) dzdw.
K/t 2w Z Z
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In the first term, since & w < K and% <z, we have

w 1
—F = =<z
Wt - w+K T2

hence(1 — Z’f—ﬂ)— -1 (%)—P—l. In the second term, sincew2< z, we have
w 1
¥z
Z 2

hence(1— 2)=r~1 < (3)~r~L.
It follows that

// <l (17+1)/2/ /1/\/— 7P~ 2 —n2/272 f(w)dzdw
Ag w—l—K)/«/—

1/@2vM) pl/vM 5 2,2
+t"’/ y / 7z P~ w Pe /% dzdw
K/t 2w

K r1/vM
< t_(”+1)/2/ / wz_p_ze_nz/zzzf(w) dzdw
0 0

1M 1/(2vM
+t_p</ N—z_p_ze_nz/zzzdz)/ (@A w P dw
0 K/t

(3.15)

1/2vM
%t_(”+l)/2+t_p/ a J—)w_pdw
K/t

~ (P D2 / +17P,
A

using (3.12).
Finally, onAs, since

sy > M, by (3.6),

K rK
// S/ / e_nZt/Z(lH_v)zf(u)f(v)dvdu SCe_”zt/8K2
As 0o Jo

<t P for ¢ large.
Using (3.10) and (3.13)—(3.16), fodarge,

(//Al) S P(n-g1.80 > 1)
S [(//A )+t—(p+1)/z+t_p
(i)

(3.16)
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By (3.12), forr large,
=7, p<1
<// )% t~Lint, p=1,
A1 t—(P+D/2, p>1
Hence, the desired conclusion followd.]

4. Exponential decay. In this section we prove Theorem 1.5. First we state a
couple of lemmas.

LEMMA 4.1. Let & be a positive random variable such that for some
¢>0, —logP(¢ >1t) ~ct ast — oo. Then for independent copies & and &>
of &, —logP 1+ &2 > t) ~ctast — oo.

PROOF By independence,

t
P<s1+sz>r>=1—/oP@sr—y)dyP(ssy)
- (M= PE>1—y)]d,PE <
- —/O —P(E>1—y)]dyPE<Y)

t
:P(f§>t)+/o P(E>1—y)d,PE<y)

> P(E > 1).

For an upper bound, note for adly< ¢, E[¢?¢] < co. Then by the Markov—
Chebyshev inequality and independence,

P(E1+&>1) <e "E[£119)]
= e "[E[5])%.
Thus,
0t —2logE[¢’ ] < —logP(E1+ & > 1) < —log P (€ > 1).
Divide by ct, lett — oo, then letd 4 ¢ to get the desired conclusion[]
We use Lemma 4.1 to derive asymptotics of the Laplace transfor(g;of

£2)~2. This is a simple application of de Bruijn’s Tauberian theorem ([9],
page 254). We state a special case of it for the convenience of the reader.

DE BRUIUN'S TAUBERIAN THEOREM (Special case). Let X be a positive
random variable such that for some positive B and p,
—logP(X <x)~Bx~? asx — 0.
Then
—logEe X ~ (p + 1) BYP+D p=p/ (D p/(p+D) as i — oo.
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LEMMA 4.2. Wth&; and & asinLemma4.1,
—log E(exp(—1/ (61 + £2)%)) ~ 3(c/2?*\Y3  asi — .

PROOFE BylLemma4.2,

3 1 _ -1/2
|°9P<7(§1+§2)25x>_ log P(§1+&2>x"7%)

1/2

~cx~ asx — 0.

The claim follows from de Bruijn’s theorem.[J
We will also need the following application of de Bruijn’s theorem.

LEMMA 4.3. Let X be a positive random variable with density f(u) =
yu‘ze—“/ﬁ for u > 0. Here @ > 0 and y is chosen to give total mass 1. Then
—log Ee X ~ 30%/32-2/3)1/3 g5 ), — 0.

PrROOFE We have, changing variablaes= v2,

X
P(X <x) :/ yu_ze_“/ﬁ du
0

* —v
= _/x—l/z 2yve *Ydv

2 -
= P lax V2 4 e,
o

Hence,

1/2

—logP(X <x) ~ax™ asx — 0.

The desired conclusion follows from de Bruijn’s theorerml

The main result of this section is the next theorem. Before proving it, we show
how it yields Theorem 1.5.

THEOREM 4.4. Let &€ > 0 be a positive random variable whose density f
satisfies —log f () ~ ct ast — oo. If & and & are independent copies of &,
independent of the Brownian motion Y, then

—l0g P (n(—ey,60) > 1) ~ 3¢¥3%13  ast— .

In Lemma A.4 of the Appendix we prove for a bounded open/set R” with
regular boundary,

d
log (EPX (tp(B) < t)) ~ —Apt ast — 0o,
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where Ap is the principal eigenvalue o%A on D with Dirichlet boundary
condition. Then by (3.1) and Theorem 4.4, Theorem 1.5 follows.

PROOF OF THEOREM 4.4. First we give a lower bound. Let> 0. Recall
we use the notatiog = f to mean for some constant > 0, ¢ > c¢1 f. Choose
M andé asin (3.6) and (3.7). By hypotheses, cho&se 0 such that

(4.1) e AU < ryy < e fory > K.

Fort large, let
t 1-56 t
={(u,v): K <u<$§,/|—, Uu<v<_|— —uy.
M 1) M

Then by (3.10),

t
P(n_ t) > P >
(N(—g1,60) > 1) = / /A u/(u+v)(?7(o,1) Py

On the set4, sinces < % we havev > ( —Du>u>Kandu +v>*4% Thus,
—+ <d and so by (3.6), (3.7) and (4.1),

)f(u)f(v) dvdu.

P(n(-g1,89) > 1)
/‘SV’/ / o222 y—e(ke)u ,—c (L4 gy g0
~ 1-8)u/s U u+v
(changing variables = u + v, z = u)

SJtIM it/ M
%/ / Ee—nZZ/sze—c(l—&-e)x dx dz
X

(reversing the order of integration)
8
/ X Z _ ZI/ZXZE—C(l—"-S)X dzdx
K/8

Jt/M ]_

K/$ X’

2t/2x26—0(1+8)X[82x2 _ KZ] dx

]

Ji/M
z/ 1 —wP/2x% e (Lke)x (52,2 _ g2y gy (for ¢ large)
2

K/s X

2.2
- /‘/ 1M Ee—nzz/sze—c(l—&-e)x (52x2 — 8_x> dx
—Jokss x 4

(changing variables = x 2)

§2/4K2

~
~

M—ze—c(1+e)/ﬁe—n2zu/2 du.
M/t
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Thus we have for large,

82/4K? ) 1 20/2
(4.2) P(T}(_gl,gz) > t) Z/ u - e_c( +6)/‘/E€_n tu/ du.
M/t
Now
/OO M—Ze—c(l+e)/ﬁe—n2tu/2 du
82/4K2
(4.3)

2 2 [®
< o~ m0%/8K f y—2e—cAH IV g, <
§2/4K2

and changing variables= v=2,

/M/’ =20 —ce) /i )=tu)2 g
0

M
(4.4) </ /tu_ze_c(1+8)/ﬁdu
0
:2/00 Ue—c(l+g)v dv<\/;e—c(l+e)«/Z/M'
/M ~

By Lemma 4.3, withw = ¢(1+ ¢) andi = ”72’

_log X 2 —e(ke) /i y—mPu2 g 30237203(1 4 )23 1/3

(4.5)
ast — oo.

By (4.3)—(4.5), we can rewrite (4.2) for largas
(4.6) P(n(—%’l,éz) > l) 2z exp(—%c2/3n2/3(l + 8)5/3l1/3).

Now we give an upper bound. By (3.10) and (3.6),

Pocaio=0=2 [[ oot [ L. ]
(77( fu62) = ) [ u+v§JU—M+ utv>\/t/M
t
< (Purtn (10> 3 ) £ F @) dv)

4.7 S // e—7t21‘/2(u—i-v)2 (u v dvdu
(4.7) —— f) f(v)

+//u+v>«/f/_M f(”)f(v)dvdu

< E[eXp<_2(§:7—it§2)2>} + P(E1+E>Vi/M).
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SinceP (& > 1) = [ f(u)du, by our hypotheses on the densjtyof &,
logP (& >1t)~ —ct ast — oo.

By Lemmas 4.1 and 4.2, farlarge (4.7) becomes

P(1—gr.en > 1) S eXp(—3c73n?3(L = e)'1F)

+exp(—c(L—e)y/t/M)
< exp(—gc2/3n2/3(1 —e)/3).
Combined with (4.6), this yields
—3*3?3(1 4 6)%° <liminf13log P (n(-g,.¢,) > 1)

<limsupt~3log P (n(—¢,,65) > 1)

—00

< —%c2/3n2/3(1 —g).

Lete — 0 to get the desired conclusion]

5. Proof of Theorem 1.2. In one dimension, with the boundary conditions
0= f(0) = f() = f'(0) = f/'(1), the biharmonic operatog’% is known to
have a complete orthonormal set of eigenfunctigns.n > 1} in L2(0, 1), with
corresponding eigenvalugs,, :n > 1}. In fact, the eigenvalues are of the form
A =a? whereq is a positive solution of

coSa)cosha) =1,
and the corresponding eigenfunction is
5.0) c(e)[(sin() + sinh(a))(sin(ex) — sinh(eex))
' + (coga) — cosha))(cogax) — coshax))],

with ¢(«) chosen to make th£2(0, 1) norm one. Moreover,

oy ~ [(2n+1)rr
2

These facts can be found in [19] on pages 113-116.

4
(5.2) ] asn — oo.

LEMMA 5.0. The eigenfunctions are uniformly bounded:

sup|e, (x)| < oo.
n,x
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PROOF  Simple computation reveals the constaat) in (5.1) satisfies(a) ~
2¢~* asa — oo. Expansion of (5.1) reveals the only trouble comes from the

—sinh(«) sinh(ax) + cosha) coshax)
terms. However, these combine to give ce@gll — x)) and clearly («) cosha (1—
x)) is bounded fox € (0,1). O

From (3.1), sinceP(r(jal) (x) > 1) = Py(n.1) > t), we have

(5.3) Py(r0,1(2) > 1) =/0 /0 Po(N(—uw) > 1) f(x,u) f(x,u)dudv,

where f (x, u) = —j—qu(n(o,l) > u) is the density of),1). This density has two
expansions—one good for largethe other good for smai:

00 2_2
(5.4) f(x,u)=2n Z(Zn +1) exp(—WM) sin((2n + Dwx),
n=0

flx,u) = (27)~ Y232
(5.5) ~
« Z [(x + Zk)e—(x+2k)2/2u +A-x+ Zk)e—(l—x+2k)2/2u]
k=—00
[see [22], page 342, and [10], page 172, (3.0.2)]. These expansions can be used to
prove the following lemmas. We omit the details.

LEMMA 5.1. For g(z, x) = Pyx(7(0,1)(Z) > t), thederivatives giﬁ are bounded

for x in compact subsets of (0, 1), > 0andn < 4.

LEMMA 5.2. Thefunction g(¢, x) = P, (7(0,1)(Z) > t) satisfies the boundary
conditions 22 = 0atx =0, 1 for n <1.

Now we prove Theorem 1.2. To get a contradiction, assume

g(t, x) = Px(r0,1)(2) > 1)
satisfies the equation

g 84g

— =dad—7.

ot dx4
Taking the Laplace transform imand using Lemma 5.1 to interchange integration
and differentiation, this becomes

4

. "
(5.6) kg()»,x)—l:aﬁg(k,x),
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where
o0
300 0) =/ e Mg (t,x) dr.
0

Sinceg is bounded, so ig; hence for each > 0, we can expand with respect to
the orthonormal basigy,, :n > 1} of L2(0, 1),

g x) = c(Wga(x)  InL?0,1),
n=1

where

1
e = [ 4G 0gu(x) dx.
To determine:, (1), note by (5.6)

1 1 34 .
kcn(/\)—/o wn(y)dy=a/o [wg(/\,w]wn(mdx.

By Lemmas 5.1 and 5.225 ¢(x, x) = 0 for x = 0, 1 andn < 1. Sincey, satisfies
the same boundary conditions, we can integrate by parts four times to get

hen(h) — / oa(y)dy =a f 300 9P (x) dx

1
——a fo 800 X) ko (x) dx

= —ai,c,(A).
Thus,
1
d
en(h) = fo ©n(y) y.
A+ar,
Consequently,

20, x) = Zf;‘:’;(yi Y on(x) in L2(0, 1).

By (5.2) and Lemma 5.0, the convergence is also pointwise. Then by the continuity
theorem for Laplace transforms, for0a < b,

oo b 1 b
—ains _
(5.7) > [ [ [ gan(y)dy]gan(x)e as= [ gs.x)ds.

a

Fort large, say > T,
— 1 —aipt 1 —ai1t
> [/o @n(y) dy]qon(x)e " [/O P1(y) dy]m(x)e !
n=1

~ C(x)e 9M!
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[by Lemma 5.0 and (5.2)] and
exp(—% . %k%i)tl/g) <g(t,x)

(by Theorem 1.5). Hence for> T, (5.7) yields

/ZI exp(—c1sY3) ds < /ZI e~ (.
t t
This implies
texp(—c12'/313) < cpem M1 —em M), 1> T.
Take the natural logarithm of both sides, dividerb$? and letr — oo to get
—C121/3 < —00,

a contradiction.
APPENDIX
We collect some technical results used above.

LEMMA A.1. Ast— oo,

4 : ,
Py(no,1) >1t) ~ ;e‘”z’/z sinm x uniformly for x € (0, 1).

PROOF In light of the eigenfunction expansion

4 = 1 > 2_2
P t)=— ————e 2T 2gin2n 4 1
(o >1) 7=t (en+ D

([22], page 342), it suffices to show for some- 0, independent o,

|sin(2n + 1) x|

<c(2n+ 1% 0,1).
sinmx sc@n+h x<(0.1)

Since
|sin(2n + D (1—x)|  |sin(2n + Dmx|
sinz(1—x) B sinTx

we can restrict attention to € (0, %]. There exists > 0 such that simx > cx,
x e (0,3]andso
|sin(2n + x| _ (20 +Dx
sinx - cx

T 1
:;(2n+1), xe(O,E]. 0
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To prove (3.2), we collect some facts.IIf C R” is a generalized cone, there is
a complete set of orthonormal eigenfunctianswith corresponding eigenvalues
0< A1 <A <-...satisfying

Lgiamj=—am; onDNS"1
mj=0 ons""tnap
and foro (d6) surface measure o§t 1,
/Dmsn_lmﬁ(e)a(de) =1

[16]. For notational simplicity, set

(A1) yi=|nj+ (g - 1)2.

The confluent hypergeometric function (foe- 0) is

a(a+1) 72
Fi(a, b, 1+ -—-— e
1hla.b,2) = +b1' Trern2 "
Bafiuelos and Smits [5] have shown there is a series expansion

Ix[2\%/2  ra; no|xf? X
(A2) Pi(tp(B)>1)= ZB( ) am(Sea+ 5 =B (),

|x|

which converges uniformly fofx, ) € K x [T, o0), whereK C D is compact,
T >0,

(A3) a=v-(3-1)
and r 5
(A4) B = LUID [  6)0 o).

['(aj+n/2)
They also show for eache D,

|X|2 ay/2
Py(tp(B) > 1) ~ Blm1<| |><—) ta/? ast — oo.

Hence, thep(D) described in the Introduction and appearing in the statement of
Theorem 1.5 i%1/2.

LEMMA A.2. Letk>Obeaninteger.Ifa>kandy —a — 1> 0,then

r MNo—k
OfxalFl(a,y,—x)Sxk#(j_o{)), x>0.
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PrOOF By formula 9.211.2 on page 1058 of [24],

L@y —a)
C(y)

—X
:x“(—x)l—V/ N —x — )y gy
0

x 1 1 y-a-1
:x“+l_7’/ e My xY Y (1— —) du
0

X
X y—a—1
:/ e_”u“_1<1— E) du
0 X

y—a—1
_/ —ualkk(l _) du
X

<x / e u* 1 Kdy  (sincey —a—1>0)
0

1Fi(a, y, —x)

< x*T(a — k).

It is clear from the nonnegativity of the integral in the third equality above that
x*1Fi(a,y,—x)> 0. O

From formula 9.213 on page 1058 in [24],

d o
(A.5) ElFl(a, Y, X) = ;1F1(0t+1,)/+1,X)
and by Theorem 8, page 102, in [16],
(A.6) sup |mj[? < Cma V"2,
pnsr-1

Also, the proof of Theorem 4.1 part (iv) in [20] carries through in our context to
yield
o0
(A7) Y a2 <o0
j=1
LEMMA A.3. Theasymptotic (3.2)isvalid.
PROOF Let f(¢) be the density oP, (tp(B) <t). Then

—dP B
f0) == Pu(ep(B) > 1)
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If we can show for fixedx the series obtained from (A.2) by termwise
differentiation with respect to converges uniformly for > T, then by (A.5)

o= ZB <| |2> _/‘/2mj<i)t_1

x|
a n |x|2
A.8 4 (Y L
(A-8) X[z“(z it 2z>
a;j/2 ( aj n |x|2>|x|2]
_ 2 R+ Y 14a + 2 SRR
Ty R R A S 7

Since1Fi(a,y,z) — 1 asz — 0, the asymptotic (3.2) [withp(D) = a1/2] is
immediate. Thus, we need only prove uniform convergence-irT” of the series
in (A.8) for x fixed. ChooseV so large that

I'a/2—n—4)2a+n/2)
T(a/2)

Then choosd so large that

(A.9) <2"%laa+n—21""*3/2  fora>N.

aj>NV2n for j > J.

This is possible by (A.1) and (A.3), sindg — oo asj — oo by (A.7).
By (A.4) and (A.6), forr > T andj > J,
2I'((aj+n)/2)

Bjm; ( ) 1
| x| ['(aj+n/2)

Hence, by Lemma A.2 with =n + 4, for j > J andt > T, the jth term in the
series (A.8) is bounded in absolute value by

Tte(n ))L(n 12l ((aj +n)/2)
[(aj+n/2)

5 [ﬂ<ﬁ)"+4r(aj +n/2)T(a;j/2—n—4)
2\ 2 T(a;/2T((aj+n)/2)

}(ﬁ)"ﬂr(lﬂj +n/2T(1+a;/2—n —4)]
2\ 2t IF'A+4a;/2)T((aj+n)/2)

_ _T_lc<n)x<."—1>/2<ﬁ)"+4
2 I 2t

y |: .F(aj/Z—n —4) L (aj+n/2(aj/2—n—-MPT'(a;j/2—n —4)]
7 T(/2) (aj/2)T(a;/2)
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71 n—2(|1x12\" T (@j/2—n —4) n
< el Ll 20 4+
=g <0 ( 2 ) (/2 [ Tt 2}
T_l n—1)/2 |x|2 nt4 —(n
< 7c(n)k§ )/ <7> 284, (a; +n— 2" "I2 by (A.9)

Sincea;(a; +n — 2) = 1, this is the same as

T—l |X|2 n+4 |X|2 n+4
+6 -2 —1on+5 -2

The uniform convergence for> T of the series in (A.8) follows from (A.7).O
LEMMA A.4. For abounded openset D C R” with regular boundary;,
d
log (EPx(rD(B) < t)) ~ —Apt ast — oo,

where Lp is the principal eigenvalue of %A on D with Dirichlet boundary
conditions.

PROOF There is an eigenfunction expansion

Ptp(B) > 1) = e Mgy (x) / oc(y) dy,
k=1 D

where O< A1 < A2 < --- and{¢y} are the eigenvalues and eigenfunction%ﬂf
on D with Dirichlet boundary conditions. Moreover, for sorae> 0, for each
fo > 0,

(A.10) ok ()2 < atg "2 M0
and
0
Z e M0 o0
k=1

([45], pages 121-127). Then it is easy to showifar D,

d d
S DB =) = ——Pi(tp(B) > 1)

— - —Ait d
> ke wk(X)ka(y) y

k=1
and then that

d
log (EPx(TD(B) < t)) ~ —X\1t ast — oo. 0
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