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We study the large space and time scale behavior of a totally asymmetric,
nearest-neighbor exclusion process in one dimension with random jump rates
attached to the particles. When slow particles are sufficiently rare, the system
has a phase transition. At low densities there are no equilibrium distributions,
and on the hydrodynamic scale the initial profile is transported rigidly. We
elaborate this situation further by finding the correct order of the correction
from the hydrodynamic limit, together with distributional bounds averaged
over the disorder. We consider two settings, a macroscopically constant low
density profile and the outflow from a large jam.

1. Introduction. We study a simple model of single-lane traffic, a system
known in the interacting particle systems literature as the totally asymmetric
nearest-neighbor exclusion process. In the traffic interpretation the particles in the
process represent vehicles that occupy the points (sites) of the one-dimensional
integer latticeZ. The particles move to the right by executing nearest-neighbor
jumps after exponentially distributed random waiting times. The continuous
waiting time distribution has the convenient effect that simultaneous jump attempts
never happen. The exclusion rule means that jumps to already occupied sites are
prohibited. If a particle attempts to jump but the site to its right is already taken,
the particle simply stays put and waits for its next jump attempt. So the particles,
or vehicles, never pass each other.

The special feature we add to the process is random rates. This means that
the mean waiting time betweeuccessive jump attempigries from particle to
particle. These mean waiting times will be chosen randomly at time zero, and then
kept fixed as the dynamics is run. Since the exclusion rule prevents faster particles
from overtaking slower patrticles, the system has the potential to produce large
platoons of particles trapped behind unusually slow particles. This paper studies
some aspects of this clustering phenomenon.
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Next we introduce notation and give a technically more precise description
of the process. We label the particles by integers in an increasing fashion.
The position of particlei at time ¢ is denoted by an integer-valued random
variableo; (). The exclusion rule stipulates that(r) < o;11(¢) for all i € Z and
all > 0.

At the outset each patrticle; receives its jump rate;, which then remains
fixed throughout the dynamics. The rates: {p;} are i.i.d. random variables with
common distributionF. F is supported onc, 1] for somec > 0, and we take
c to be the left endpoint of the support 8f In other wordsF (p) =0 for p < c,

F(p) > 0for p>c,andF(1) = 1. We also assumg(c) = 0 so no particle has
as its intrinsic jump rate.

Once the rates have been fixed and an initial configuratiea (o;:i € Z)
specified, the process(t) = (o;(t):i € Z) evolves in the usual way. each
particleo; carries its own Poisson clock of rate, and whenever the clock rings,

o; advances one step to the right provided the next site to the right is vacant.

It is also useful to consider the gapst) = 0;+1(t) — 0;(t) — 1. The process
n() = (n;(¢t):i € Z) is a zero-range process with random rates attached to the
spatial positions. The jump rule is that whenever a particle is present at pasition
[n; = 1], one particle is moved from to i — 1 at ratep;. We can also view
this system as a series of tandem queues where quisugerved at ratg;, and
customers departing queuenmediately join queué — 1. The gap variable; (7)
is the queue length and the patrticle incremeiit) — o; (0) is the departure process
from queud.

Fix the ratesp = {p;}. Given anya € [0, c], the product distributionPP with
geometric marginals

a a k
(1.1) Pp[n,-:k]:<1——><—) , k=0,1,2,...,

Pi/ \Di
is an invariant distribution for the gap proces&). In this equilibrium, each
particle motion is marginally a Poisson process with wat&lore precisely, for
eachi, the increments; (r) — o;(s) is Poisson with meam(r — s). This is a
consequence of Burke’s theorem from queueing theory, according to which the
departure process of af/M /1 queue in equilibrium is a Poisson process.

When F is suitably chosen, this model manifests a phase transition. Here is a

way to approach it. Givea € [0, ], the (annealed) mean gap in equilibrium is

u=/Ep[m]F®Z<dp>=f AR ().

(.11 p—a

The common velocity: of the particles cannot exceedbecause there are particles
whose intrinsic rates come arbitrarily closertdr hus the maximal mean gag is
defined by letting: " ¢; in other words,

c
(clIp—C¢C

(1.2) u* = dF(p).
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If this integral is finite, there is a critical gap sizé& < oo such that the geometric
product equilibrium distributins do not exist for mean gaps- «*. Equivalently,
there is a positive critical densiy* = (1 + u*)~1 for the exclusion particles such
that the product equilibria for the gaps do not exist at low densitiesp*. One
interesting question is the behavior of the system at low densities.

This system attracted interest in both the theoretical physics and mathematics
literature, startig from the mid-1990s. It appears that the invariant distribu-
tions (1.1) have been discovered several times independently. Among the early
ones was Evans [3, 4], who derived the invariant distributions for the disordered
exclusion model in both continuous and discrete time. Independently, Krug and
Ferrari [7] studied the phase transition of the continuous-time model and inter-
preted the results in various physical contexts such as traffic flow and directed
polymers. In general, on the physics side, there is wide interest in particle sys-
tems as simple models of traffic flow and other “single file” systems. We refer the
reader to [8] for a review of particle systems in traffic modeling. The state of the art
in traffic modeling with exclusion type systems is the Gray—Griffeath model [6],
which is an exclusion process whose jump rates depend on nearby sites.

Returning to the disordered exclusion, on the mathematical side, Benjamini,
Ferrari and Landim [2] first proved hydrodynamic limits for several asymmetric
exclusion and zero-range processes with random rates. However, their assumptions
specifically ruled out the phase transition.

A complete hydrodynamic limit theorem for the model studied here was
proved by Seppaldinen and Krug [11]. For the ca%e- 0O, the result was the
following. If the initial distributions have a macroscopic profile belp#, then
on the hydrodynamic scale the initial macroscopic profile is rigidly translated at
speedc. In particular, if the system has initially a spatially homogeneous particle
distribution with density < p* (such as ergodic gaps with mean- u*), atagged
particle satisfies

t7 o) > ¢ ast — .

Subsequently Andjel, Ferrari, Guiol and Landim [1] proved a weak convergence
result for the low density regime. Start the system so that the gaps are ergodic with
meanu > u*. Then the gap process converges weakly to the maximal invariant
distribution, in other words, to the product distribution with marginals as in (1.1)
with a =c.

The hydrodynamic limit and the weak limit suggest the following picture.
Let us follow particleop that initially starts at the origin. The other particles
are distributed so that the gaps are, for example, i.i.d. with mean*, and
then initially particle density i < p*. As ¢ grows, particlesg(t) experiences
an increasing density around itself, and correspondingly its advance is slowed
down. The reason is thaty is part of an ever-growing “platoon” of particles,
headed by an especially slow particle. As this platoon catches up with slower
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platoons ahead of it, it grows and slows down even more. Asoo, the particle
density aroundg(t) approaches the critical densip/, and simultaneously its
motion slows down to rate. However, all this must happen at a scale below
the hydrodynamic, because the hydrodynamic limit reveals only the trivial final
behavior.

The purpose of this paper is to quantify the slowdown experienceah by
when the system starts at low density. Technically speaking, we are seeking
the next-order term in the hydrodynamic limit. We find that by timero(z)
has traveled a distancer + w()r"+tD/"+2 wherev > 0 is an exponent
characterizing the tail of*(p) asp \, ¢, andw(¢) is a random quantity, which
becomes strictly positive and is tight as> co. We do not have a precise limiting
distribution forw (). Our bounds suggest that, for largehe tail ofw(¢) behaves
like exp{—C (u — u*)~ w2} for some constart. These results are for annealed
distributions, in other words, for probabilities where the random rates have been
averaged out.

Following the nonrigorous picture sketched above, proofs of the estimates
proceed by bounding the rate of the slowest particle in a suitable range ahead
of op(¢). The technical side of the proofs involves couplings of various kinds
between several processes with different rates and/or initial distributions.

We also address another question which is related, and partly uses the same
tools for the proof, as the main result. Suppose the exclusion process starts with
all sites in(—o0, 0] occupied and all sites ifil, c0) vacant. The traffic version
of this setup is outflow from a large jam: initially vehicles are packed at maximal
density 1 to the left of the origin, and we follow the evolution of the density profile
of the vehicles on a macroscopic scale. As tirmacreases tao, ther~1-scaled
density profile of vehicles approaches a particular deterministic function supported
on the interval(—oo, c]. It follows from this that the numbeX, of particles that
are in(ct, co) at timer must satisfyX; = o(t). We find bounds on the true size
of X;. This question is not restricted to the situation whefe< co. It makes
sense whenever (¢) = 0 because then every particle is attempting to jump at a
rate strictly higher tham. Then presumabl¥; is unbounded asincreases.

2. Results. The basic assumption is on the tailBfp) asp \ c.
There exist constantsl < v < oo and O< k < oo such that
(2.1) F
im P
pNe (p— ot
If the reader prefers a concrete example,Hehave densityf (p) = k(v + 1) x
(p — ¢)” on some intervalc, ¢ + €). At v = —1, the distributionF has a jump of
sizek atc, so there is a positive densikyof particles with minimal rate. The
behaviors we look at become simple. Values —1 are of course not possible.
Recall the defiition (1.2) of the critical gapu™. An integration by parts checks
that, under assumption (2.1)> 0 is equivalent ta:* < oo.
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First we look at the slowdown phenomenon in low density. We specify that
particle og starts at the origindg = 0]. Initial locations(o; :i # 0) of the other
particles are determined by taking the initial géps to be i.i.d. random variables
with common meam = En; > u™* and finite variance. Then set

i—1 -1

oi=i+» n; fori>0 and o;=i+)» n; fori<oO.

j=0 Jj=i
Our results are bounds on the “annealed” distributions of the quantities of interest.
This means that while the process is run with fixed rates{p;}, we look at the
average of all the processes for different choicep,abut with the fixed initial
distribution for (o;). The symbolP will denote this probability measure which
represents the random choice of rates, the random initial configuratiprand
the random exclusion evolution.

Notationally it is convenient to use

1
oOQ=—,
v+ 2
so that in particular the power of the correction is

_v+1
42

Set also
_ (w422

AW = e

THEOREM 1. Assume (2.1) with v > 0. Let the initial gaps {n;} be i.i.d.
random variables with common mean u = En; > u™ and finite variance. The
following bounds are valid for any 0 < z < oo:

: 1) —ct
(2.2) |Ii’n SupP (GO(tl)TC > z) =< exp{—A(v)‘lﬁz”Z}
—00 -
and
o 1) —ct
(2.3) liminf P(“O(tl)fac > z) > exp{—uf—u* z”+2}.

Next we consider the situation where initially all siteq#co, 0] are occupied
by particles, and all sites ifil, c0) are vacant. This could be thought of as an
outflow from a large jam. Now there is always a rightmost particle, so we label
the particles with nonpositive integers in increasing order. We drop the generic
notation, and for this special situation denote the locations of the particles at time

by
ce<E () < E_1(t) < E0(1).
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The initial locations aret;(0) = i for i < 0. Particle&; jumps at ratep;
independently drawn from distributiofi.

This system has a hydrodynamic limit which can be expressed in terms of
the empirical measure as follows: for a compactly supported continuous test
function¢,

t@y*gyw*mm=ﬁ¢mmmw

almost surely. The limiting density(x) is supported ofi—oo, c]. (The reader can

find more information about the limit andx) in [11].) For the homogeneous
exclusion with constant rates 1, this is Rost’s classical result [9], with a piecewise
linear profile

1, x =< _11
muo={%a—xx —l<x<1,
0, x> 1.

The random rates produce the following qualitative difference with the
homogeneous case. In the homogeneous case with rates 1, the lead gsrticle
is a Poisson process of rate 1, and so its Iocatimn{-is{)(tl/z). In other words, its
location coincides with the right edge of the hydrodynamic front. However, in the
disordered system the lead particle is a Poisson process gpgatehich under
assumption (2.1) is strictly greater thanThus&g(z) and in fact a large number of
particles are ahead of the hydrodynamic front whose right edge at tismatc:.

The second question we address is to bound the number of these particles.

Let X, be the number of particles that are beyond pomat timer; in other

words,

X, =0vsupk>1:&_;11(¢) > ct}.

THEOREM 2. Assume (2.1)with v > 0. Thenfor all b > 0,
limsupP{X; > br'™*} < exp{—A(v) " kb"T?}

t—00

and

liminf P(X, > b1} > exp(—A(W) (L + u™)" kb 2.

Whenv < 0, we no longer have a finite critical gap sizé Theorem 1 fails,
not just because > u* is no longer possible, but because in equilibriagir) is
a Poisson process and has fluctuations on the stale
The phenomenon described by Theorem 2 is not restricted-t6. With —1 <
v <0, it is still the case that many particles advance ahead of the hydrodynamic
front, as no particle has the lower bounds its actual rate.
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Forv =0, our result is the same as for= 0 but with a logarithmic weakening
in the lower bound. This seems an artifact of our proof, so it is not clear whether
this is the true state of affairs. Note thathat= 0 we havea =1 — o = 1/2,
matching with diffusive fluctuations.

THEOREM 3. Assume (2.1) with v = 0. Let ¢ > 0 be arbitrarily small and
0 < a < oo arbitrarily large. If 0 < b < oo is large enough, then for all large
enough 7,

Plat*?(logn™t < X, <bt*?} > 1—¢.

X, changes behavior for < 0, and is of smaller order thaw (r1~¢).
Unfortunately, we do not have matching upper and lower bounds: As—1
(¢ 7 1), the ratio of the upper and lower bound exponents becomes 1.

THEOREM4. Assume(2.1)with—1<v <0.Lete >0.1f 0< b < o0 islarge
enough, then for all large enough ¢,

P{X; <br™/2) >1_¢
If 0 < a < oo issmall enough, then for all large enough ¢,
P{X; > atT/G) > 1 ¢

The upper bound is on the boundary of conflicting with Gaussian fluctuations of
the Poisson clocks. For large with high probability the slowest particle among
bt1tV)/2 particles has rate at most+ ¢¢~1/2 for a smallg > 0. Consequently,
the number of jump attempts experienced by this slow particle by#isiPoisson
with meancr 4+ ¢+1/2. This can be brought below by a fluctuation of order'/2 in
the clock. Thus there is some chance that this particle does noteehghime?:.

To improve the probability to + ¢, we choose andg so that there is a large
enough number of slow particles. The lower bound meets this “Gaussian border”
only in the limitv N\ —1.

3. Variational representations. In this section we run through notions which
have been elaborated elsewhere [11]. The purpose is to establish the conventions
followed in this paper, which in some cases deviate slightly from those used before.
Let an arbitrary initial configuratioa = {o;} be given, random or deterministic.

Fix the rates{p;}. The process (¢t) = {o;(¢)} is constructed with the usual
graphical representation, by attaching a ratehomogeneous Poisson process
N; = (N;(t):t > 0) to each patrticle;.

Construct an auxiliary familyz’ (¢)} of exclusion processes by stipulating that,

at timer = 0, their initial locations are

(i) =0;+j  forj<o0.
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Only particle indicesi < 0 are used for the auxiliary processes. The jumps of the
particlesgj’. are defined by

;} attempts to jump whenever Poisson clagk ; rings

This translation of the index of the clock has the effect that, for any fixed
particles{oy, ;,ﬁ_l. i > k} make jump attempts at the same times, namely when
clock Ng rings.

Process¢!(r) has initially all sites in(—oo, 0;] occupied and all sites in
[o; + 1, o0) vacant. From this observation one can see that the variational equation

(3.1) ox(t)=_inf & (1)

is valid atr = 0. Then one proves it by induction on jumps for all times
In Theorems 2—-4 we consider the systé) that starts exactly as' () but
centered at the origin. Let

£ =) —oi.

Then the processes (r) are copies of(r), except that the ratefg;} have been
shifted in space. Of course this does not affect the distributiog’ 6§ when

the rates are averaged out. We will find it convenient to use the variational
equality (3.1) also in the form

(3.2) ox(t) = inf {oi +&_; (1)),

Exclusion processes can be represented by interface processes. Suppose an
interface process is given in terms of a height functies #;(¢) from Z into Z.
This means that at time the interface is the graph of the functiaii), so that
h;(¢) is the vertical coordinate of the location of the interface over sité/e
impose the conditiork; < ;11 on admissible height functions. Dynamics are
defined by stipulating that, iV; (¢) = N;(t—) + 1, then

hi(t)=h;(t—)+1  providedh;(t—) < hjt1(r—) — 1.

In other words, heighk; jumps up at ratep;, provided it does not go above its
right neighbor. Obviously, we can map betwesin) andhi () by

0i(t) = hi(t) +i.

Precisely speaking, if the processas) andh(¢) are coupled so that this equality
is true atr = 0, then it remains true for adl> 0.
The gap process(t) = {n; (¢)} is defined in terms of these processes by

ni(t) =0i11(t) —0i(t) = 1=h;11(t) — h; (2).

The variational equation for the height process takes this formzZLey be an
interface process with these properties: initially

Zj~=0 forj <i and Zj.zoo for j > i.
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Dynamically,
Z’/ takes its jump commands from Poisson proc€gsor all i and ;.
Then
(3.3) hi(t) = inf {hi + Zi ().

There is no translation in (3.3) because each column of the height processes
h(t) and Z'(¢t) reads the same clock. Sineg(r) = ho(z), we can use the
variational formula

(3.4) oo(t) = inf {h; + Z4(n)}
in the proof of Theorem 1 where we follow the evolutionogfr).

4. Proof of Theorem 1. We begin with the key lemma that points the way to
controlling the blavior of the system by looking at the slowest rate in a suitable
range of indices. For fixed positiva andg», and a positive real paramet®t, let

(4.1) J(N)=inf{i >0:p; <c+q2N""}
and define the event
D(N)={pi>c+qgaN"for0<i <[g1N'"*])

4.2) )
={J(N) >qiN""}.

LEMMA 1. Assume(2.1)and recall that therates {p;} arei.i.d. with common
distribution F. For fixed g1, g2 > 0,

(4.3) Jim_P(D(N)) = expi—xq1q5™).

PrROOE Leté > 0. For p sufficiently close ta,
(4.4) (k=8 (p— "< F(p) <k +8)(p— ).
Due to the independence of the rajgswe have
(4.5) P(D(N)) = (1— F(c +gaN~))lesV" ™,
This yields the upper and lower bounds
(1— (% 5)q5+1N—a(u+l))[qlNl’“]

for P(D(N)). Let N — oo and thens — 0 to obtain the limit (4.3). O
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4.1. Proof of the upper bound in Theorem 1. The upper bound (2.2) follows
from this proposition.

PrRoPOSITION 1. Suppose the initial gaps {n;} are an i.i.d. sequence with
common mean u > ™ and finite variance. Let g1, g2 > 0. Then, for any § > 0,
limsupP[oo(t) > ct + (qu(u — u*) + g2)t* = + 8617 < lim P(D()).
—00

t—00

Before proving Proposition 1, let us observe how it implies the upper

bound (2.2). Together with Lemma 1, the proposition gives
limsupPloo(t) > ct + i < eXp{—Kq1q5+1}

t—00

for anyqsi, g2 such thatt = g1(u — u™) + g2 + §. Minimize the right-hand side of
the inequality subject to this constraint gn ¢g». Then lets — 0.
The remainder of this section proves Proposition 1.

LEMMA 2. Consider an arbitrary processo (¢). Let K > 1. Then

. i L7 _
tILmOO P [oo(t) = osr?gkz{h’ + Zo(t)}] =1

PrROOF From the definition of the procesBl.[K’](-), initially at time zero
z¥1(0) = 0 for i < [Kr]. Variable Z[§/] is the first to jump, after which
zlgi_1 may jump, thenz/g) ,, and so on. Consequently, the tinfe when
variabIeZéK” takes its first jump up is a sum of independent exponential waiting

times with ratespx, pixn-1, k-2 - - -» po- Lete > 0. Since each ratg; is
bounded above by I’ < (K — &)t with probability that vanishes exponentially
fast asy — oo. If we take O< ¢ < K — 1, we conclude that

P{zl 1) >0} -0

exponentially fast.
To prove the lemma, it suffices to show tlﬁ{f”(r) =0 implies

_ i . J
oo(t) = ofr?lsnkt[hj + Zy(®)].
Leti > [Kt]. Then, sinc@é > 0 always and the heigh is nondecreasing in

hi + Zh(t) > hi = hikg = hign + 25 @).

This shows that indices> [Kt] cannot contribute to the infimum in the variational
formula. O
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LEMMA 3. Consider two processes o and ¢ whose initial gaps are i.i.d.
with common mean En; = En; = u and finite variances. Couple the initial
configurations so that they are independent, but give the processes the same
rates { p;} and the same Poisson clocks. Then for § > 0,

lim_Ploo(r) = Go(1) +817~*] =0.
PROOFE LetK > 1 and define the event
A(K, 1) = {cro(t) =, min [, + Z} () anddo(r) = Oir?iir}{t[ﬁj + 7} (z)]}.
By Lemma 2,P(A(K,t)) > 1 ast - c0. OnA(K, 1),
oo(r) = min_ {h; + Ziny = omin {h - hi+hj+Z{0)
< Go(r) + max (h; —h;}.

By Kolmogorov’s inequality,

P[ max {h; —h;} > 8t

1_a] - KtVar[n1] + KtVar[71]
0<j<K1 - '

§22(1-a)

As 2(1—a)=2(v +1)/(v + 2) > 1, this last expression vanishes ras> oo.
Consequently,

Ploo(t) = 6o(t) + 8171 < P(A(K, 1)) + P[O max {(h; —h;} > 8:1—“]
<j<Kt ‘
gives the conclusion by letting— oc. [

Now define a particular meaninitial system as follows. Fix a numbér< u*,
and leta be the equilibrium velocity corresponding to average gagefined by
_ a
U= —dF(p).
(1] p—a

For each realizatiomp of the rates, let{i;;} have the nonstationary geometric
product equilibrium distribution

-~ =k
rra=n=(i-7)(;)
Pi pi

ThenEn; = i, and the{n; } are i.i.d. when the random rates are averaged out. We
chosex strictly less than™ because then

~ 2
E[ﬁiZ]Z/ {2< a_) + a_}dF(p)<oo.
(c,1] p—a p—a




1588 I. GRIGORESCU, M. KANG AND T. SEPPALAINEN

This finite variance is necessary so we can apply the previous Lemma 3. We cannot
use equilibrium gaps at meari because they have infinite variance ikQ> < 1.

Let {y;} be an i.i.d. sequence of honnegative integer-valued random variables,
independent of#;}, and with common meaBy; = u — ii. Assume they;} have
finite variance. Define

ni =i + i
Then {7;} are i.i.d. with common mean. Let 6 () denote the process with
60(0) = 0 and initial gapg7;}.

LEMMA 4. For any§ > 0,
limsupP[60(t) > ct + (q1(u — ) + g2)t* % + 8117%] < limsupP (D(1)).

—>00 —00

ProoOF Thinking of the zero-range process of the gap evolution, couple
the processe§(t) = {7;(t)} andn(r) = {;(¢)} via the basic coupling, so that
n; (t) < n;(¢) for all i andz. This entails having; andg; read the same Poisson
clocks for eachi.

Let

J(@)=inf{i >0:p; <c+qat™"}.

The variable J(r) depends only on the rates. Sinég)(t) — 654 (0) is
stochastically dominated by a meant ¢,1~% Poisson random variable, the event

B1(t) = {670y (t) <571y (0) + ct + qot* ™% + 8617 /4)
satisfiesP (B1(1)¢) — 0. Let
Bo(t) = {671 (0) < J(0)(u + 1)+ J(1)8/(4q1)}.

By the weak law of large number®,(B2(¢)¢) — 0 because/ (1) — oo almost
surely. By the connection between particlégs) and gapsy; (), and by the
coupling with; (¢),

J()—1
Go(1) =Gyw()— Y (1) — J ()
i=0
J()—1
<G — Y ni@)—J@).
i=0

By stationarity,n(z) = {#;(¢)} has the same distribution for all> 0, under any
fixedp.
Now combine the inequalities. On the event

A(t) = {o0(t) > ct + (q1(u — i) +q2)tl_°‘ _'_51‘1—05}’
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we have
J()—1
Grn (= Y i)+ J@) +ct + (qulu — i) + g) ™ + 5117
i=0
Consequently, od () N B1(t) we have

J(—-1
Gi0©@ = 3 () + @) + qr(u — it + 35,
i=0
Next, onA(¢) N B1(t) N B2(t) we have
J(n-1
3 J(1)8
Z ni@) <J@u—qi1(u— ﬁ)tl_“ _ —(Sll_a + () .
i=0 4 4q91

And finally, on the evenD(r)¢, J (1) < q1t1~%, and so as our last inequality, on
A(t) N By(t) N Ba(t) N D(¢)¢ we have

J()—1

> i) < T — 38t
i=0

To summarize,
P[G0(t) > ct + (qa(u — @) + g2)t1 7% + 5:179]
< P(D(1)) + P(B1(1)°) + P(B2(1))
J()—1
+ P(D(t)c N { Y oni) < T - 5;1—“/2})
i=0

The conclusion follows because @r)¢, J (1) < g1t2~* while still J(r) — oo,
so the last probability vanishesas> co. [

Now we prove Proposition 1. Fix < u* so that

g1(u* —u) < 8/4.

Define the processes(r) ando (1) as was done for Lemma 4. Couple all three
processeso (¢), 6 (¢), o (¢t)) so that the initial gaps af (¢) are independent of the
initial gaps of the other two, and all read the same Poisson clocks. By the choice
of i,

Ploo(r) = ct + (qu(u — u*) 4 q2)t* % + 8:17%]
< P[5o(0) = ct + (q1(u — i) + g2)t*~* + 81*7°/2]
+ Ploo(t) = Go(t) + 817 /2].
Letr — oo and apply the lemmas.
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4.2. Proof of the lower bound in Theorem 1. The lower bound will follow
from proving this proposition.

PROPOSITION2. Supposetheinitial gapsarei.i.d. withcommonmeanu > u*
and finite variance. Given positive g1, g2, let

r=min{gz, (u — u*)q1}.
Then for any § > 0,

(4.6) liminf P{oo(r) > et + ret=® — 51179 > expl—kqigy ).
— 00

The lower bound (2.3) will follow from this proposition the same way the upper
bound (2.2) followed from Proposition 1. Namely, for a givenmaximize the
right-hand side of (4.6) subject to— § = z, and then les — 0.

To prove Proposition 2, we start with the variational equation and split it into
two separate ranges:

oo(r) = inf (1 (0) + Zg(1)) = min{$1(0), S2(1).

where
S1)=_inf  {h;0)+Z{()} and Sx(t)= inf {h;0)+ Z}®)).

0<j=<qurl j>qurte

We shall show that

4.7 liminf P{S1(1) > ct + got*% — 8:17%} > lim P(D (1))
t—00 [—0o0

and

(4.8) lim P{S2(t) = et + qu(u — whrt — sty =1,

Together with Lemma 1, these imply (4.6).
Proof of lower bound, part 1. In this section we prove (4.7) fd¥1(z).

PROPOSITION 3. Let g1,¢2,8 > 0. There exists an event B(¢t) such that
P(B()¢) — 0and
(S1(1) > ct + qott™% — 8:17%} D D(t) N B(1).
Lower bound (4.7) follows from this proposition. The rest of this section proves
the proposition. Pick a further constapatsuch that
O<g3<g2<q3+d/4
We shall coupler (z) with a faster proces&(¢) whose jump rateg; are given by

pi=piV(c+qgN"%.
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Process (¢) will be in equilibrium so that each partickg () jumps as a Poisson
process with rate

a=c+qg3N“.

To achieve this, the gap proceg$r) = {#;(¢)} has to have the appropriate
geometric product equilibum distribution. Giverp, {#7;} are independent with
geometric marginals

- Ak
PPl = k] = (1— i)(i) . k=0,12....
Pi/ \Di
Note that this is sensible because p; for eachi by the assumptiogs < ¢g2. The
processeg(¢) andés (1) depend onV, but we suppress this dependence from the
notation.
The mean gap for thé&(r) process is

A

~ N a
i = E[] =f 4 dF(p).
(c,11 p —a

LEMMA 5. Themean gap it convergesto u® as N — oo.

PROOF The integral comes in two parts:

A A

~ a a
0= ——dF(p) + ——=dF(p)
(c.e+qN—] p —a (c+g2N—2,11 p —a
c+qgaN~¢ _
— L—o{ . F(C +q2N ot)
(g2 —q3)N

c+qgaN™“
+ /(C’l] mlwﬂzl\"“’l} (p)dF(p).
The first term on the last line vanishes &s— oo by hypothesis (2.1). To
the second term we apply dominated convergence. The integrand converges
toc/(p — c) for each fixedp € (¢, 1], and satisfies the bound

c+q3N™* 1 (p) < g2 c+g3
1 N-e1 < .
p—c—qaN—a TNl g2—q3 p—c

if N > 1. The last upper bound is integrable undéf(p), again by assump-
tion (2.1). O

For higher moments of; we develop a bound.

LEMMA 6. Fork>1land N >4,
E[jf] < CN“ =2 Jog N,

C is a constant that depends on k& and all the other constants in the problem, but
not on N.
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PROOF  For a fixedp, properties of a geometric distribution give
EP[if1 < Co+ C1(EP[A:D* < Co+ Ca(pi — ) ~*
for constantg"g, C1 that depend o#. It remains to show
/( 1](;3 —a)y *dF(p) < CNY 1" jog N,
c,

This integral is decomposed as

(4.9) (g2 — q3)~*N* / dF(p) + (p— &) *dF(p).
(c,c+qa2N~¢] (c+q2N—1]

Apply assumption (2.1) to the first integral. In the second integral, observe that

k
AN — _ 2
(p—aF<qup-o* f0rq4=< 1 )
92— q3

Subsume the constanjsinto constants”;. Thus the next upper bound is of the
form

(4.10) CoN¥k=1-0) | ) / (p— o)k dF(p).

(c+goN~—*,1]
Pick C» ands > 0 so thatF (p) < Ca(p — c)" 1 for ¢ < p < ¢ + 8. In the second
term, the integral ovelic + 68, 1] is bounded by a constant. Over+ g2 N ~%, ¢+ 8]
integrate by parts:

dF
/ ) Fle+8)5 -
(c+qaN—2,c+38] (p — ©)

/ F(p)di(p— o8
(c+q2N~%,c+46]

c+4

< C3+C2k/ (p—c)"Fdp.
c+q2N~¢

Consider different cases for the last integralvlt k — 1, it is bounded by a
constant. Ifv =k —1, itis bounded by'3+Cslog N. Finally, inthe case < k—1,

it is bounded byCsN *—1=v)¢ |n all cases the bound given in the statement of the
lemma works. [

Couple{n;} and{n;} so that they are mutually independent.
LEMMA 7. Foranyg > 0,6 >0,

lim P{ inf [h,~-ﬁ,~]<—3N1—“}=0.
N—o0 ijqul_“

Note that the height functioh changes withv in the statement above.
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PrRoOOE TakeN large enough so that — &z > 0, which can be achieved by
Lemma 5 and the assumptian> u*. Then the probability in the statement of the
lemma is bounded above by

Pl int iy =iy = =) < —ante)
<j=gN+¢
<8 2N~21=0) . g N1=*(Varno] + Varlfol),

where we used Kolmogorov's inequality. By the previous lemma[)dar<
CN*1=)7" |og N, while Varn] is a constant. Ag(1—v)* < 1—« forall v > 0,
the probability vanishes @8 — oco. [

Now we turn toS1 (7). Consider first a fixed. SetN = ¢, and as above construct
the equilibrium process(-) with ratesp; . Also, letZ/ denote the corner processes
run with the p; rates. On the ever®(¢), we have

Si(f)= min a{h‘,-+2é(t)}

0<j<qitl~

= min {hj — flj + }Alj + 26(1)}

0<j<qurl=*

> min_ {h; —h;}+60(0),
O<j=<qitt—* -

because
hj+Z§(0) = 60(1)
for eachj > 0. Consequently,
{S1(t) > et + gt~ — 5117}
> D()N { min  {h; —h;} > =381, 60(t) > ct + got*™* — %&1—“}
0<j=qtt~
= D(t) N B(1),
where the last identity means that the evdit) is defined by the previous
expression in braces. For the complement,
P(B(t)°) < P{ min  {h; —h;} < —%&1—“}
0<j=qtt~
N 1-« l¢, 1«
+ P{6o(t) < ct +qot™ ™% — 5817}

The probabilities above vanish as> oo, the first by Lemma 7. For the second
probability, note thaég(z) is Poisson distributed with mean

at =ct +qat™™* > ct + gt — Tori.

Since 1— o > 1/2, the deviatior%étl—"‘ has zero probability in the— oo limit.
This completes the proof of Proposition 3.
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Proof of lower bound, part 2. In this section we complete the proof of
Proposition 2 by proving (4.8).
ProrPoOsITION4. Giveneg, § > 0,
P(So(t) > ct 4+ (u —u* —8)qutt ™} >1—¢

for all large enough z.

PROOF Let {5’} be the independent meaf equilibrium gaps, so givep,

k
Pp[n;‘:k]:<1—i><i> . k>0
Pi/ \Di

Let o*(t) be the equilibrium process where partiel§ () is a ratec Poisson
process. Couple the processgs) ando *(r) so that they read the same Poisson
clocks but their initial states are independent.

By the Strong Law of Large Numbers,

M~ Y(hpy —h%) — u—u*  almostsurely.
M— o0
Note that here we do not need finite variance, whichith@eight function would

not possess if G v < 1. Shrink§ if necessary so that &€ § < u — u™*. Pick
Mo = My(8, ¢) such that

P{h; —hj >ju—u*—68/2)forall j > Mo} >1—¢/2.
Since 1—- « > 1/2, there exists & such that
Plog(t) > ct —qutt™48/2) =1 —¢/2
for all r > 9. Now with probability at least % ¢, for r > 19 such thagj111~* > Mo,

Saty=_inf {h;+Z§(®)

j=qute

— inf (b — IS 4R+ Z0))

jzqurle

> inf {hj =I5} 4 og(0) = qut T — u* = 8/2) +ct — qutT8/2
Jj=qit~*

:ct—l—qltl_“(u—u*—é). 0

5. Proof of Theorem 2. We begin with the upper bound. Lét > O,
0<0 <1, 0<e<6bandgr =0b — ¢. Let p be the minimal rate among
P—prt-a]s - -» P_jgpri-e), @NAI @nindex such thap; = p. Let Y (¢) be a Poisson
variable with meawrr + got1=%. If p <c+ gt~ Y (¢r) dominates the number of
jump attempts particlé; experiences during time intervgd, ¢t]. By the particle
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ordering,s_[b,l_a](t) > ct implies &;(t) > ct, and therebyt; must have at least
ct + 0br1~% jump attempts. We get the bound

P{X; > bt} < P{&_pp-ay(t) = ct}
< P{p>c+qa ) + P{Y(t)>ct +6bt1%),.
Since 1—- « > 1/2, the last probability vanishes as> co. By Lemma 1 we get

limsupP (X, > bt~} < exp(—k (1 — )bgy™*Y).

1—00

Lete \ 0 sothalyy 7 0b, and then choose= (v + 1)/(v + 2).

The lower bound of Theorem 2 comes from the lower bound of Theorem 1. Pick
a densityu > u*, and let the initial gap$n;} be bounded i.i.d. random variables
with meanu. By the variational formula (3.2),

oo(r) = inf (o} + &2, ),

where&/ (1) is a version of the () process with translated rates. et 0, and
then pickd > b(u + 1). Let j = [br1~%]. Then
Sij(t) > 00(t) — o > ct + (o0(t) — ct) — 0.

The annealed distribution of the process(r) is the same as that of(r).
Consequently,

P{X; > bt¥™) > P{&_j1a)(t) > ct]
t) —ct
> P{O‘O(tl)fac >0, Oppsl-a] < Qll_a}.
By the law of large numbers,—”"‘a[b,lfa] — b(u+ 1), and so by Theorem 1,

. . 1) —ct
liminf P{X, > b1} > liminf P{M > 9}
t—00 [—00

tl—()l

K
zexp{——9”+2}.
u—u*

Maximize the last lower bound ovérandu subject tou > u* and6 > b(u + 1).

6. Proof of Theorem 3. The argument for the upper bound is similar to the
previous one. Now =0 and 1— @ = 1/2. Lete > 0 be small. By the central
limit theorem, we can fix a large & M < oo so that, ifY (¢) is a Poisson random
variable with meamnt + 1%, then

PIY(t)>ct+ M1 <eg/4
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for all large enough. Givene andM, choose O< g2 <1< M < g < b so that
eX[X—qu‘ZH'l) >1—¢/16
and
exp(—«bgy ™) < /16

Let

J(@)=inf{i >0:p_; <c+qat "}
By Lemma 1 we havey < oo, so that

Plgit™ < J(t) <bt¥™ ) >1—¢/4
for all + > #. Suppose this event happens. Thenéifi,,1-«,(t) > ct, also
&_ju)(t) = ct, and particl&_; ;) has had to cover distanee+ J (1) > ct +qti,

The incremené_; ) (1) — &— () (0) is stochastically bounded by the variatyle)
defined above. So for large enough

P{X,> bt < P{f_[btlfa](t) > ct}
<Pl{&_;@)>ct}+¢/4
<PY(t) 2 ct +qt* )} +¢/4
<eg/2.

We prove the lower bound by comparison with a faster system in equilibrium.
Let 0 < a < oo be fixed. Givere > 0, pick 1< w < oo large enough so that

(6.1) P[Y(N)> EY(N) —wNY?|>1—¢/4

for large enoughv, for a Poisson variabl#(N) with meancN + 2wNY/2. Later
we have to increase further.

Let g» = 4w, and define faster rates b = p; v (c + ¢g2N~Y/?). Consider
N large enough to havg; < 1. Let6(¢) be a process run with ratgs and in
equilibrium, so thabg(z) is a Poisson process with rate

a=c+2wN Y2

The gap proces#(t) then has a product distribution with independent geometric
marginals

k
Pli=a=(1-5)(%). k=012
Pi/ \Di
The annealed mean gap is
a

u:E[ﬁ,-sz 4 aF(p)
(c,] p—a
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and the annealed variance is bounded as in

2
Vati] < Elif1 =2 | l](f’ ) dF(p) +u.

p—a
LEMMA 8. Thereisaconstant C that dependsonly onthedistribution F such
that, for large enough N,
u<ClogN and Var[#;]<CNY2
PrROOF First for the mean. Integrate by parts, and use assumption (2.1) to
pick 0 < § < 1 such that
F(p)<k+D(p—rc) forc<p<c+3$.

Then note that
2 — 2w

12

1
p—a> (p—6)=§(p—6) forp>c+qN~

Carrying out these steps yields
F N—l/Z
u=2fletaey ) / ¢ AF(p)
c+qNY2—a =~ Jietgn-1211p—a
_aF(c+gN""?
e+ qaN"Y2—a

aF(1) aF(c+qaN71? a
ST o)
1—a c+qgoN 12 —q (c+gaN—1/2 1] p—a

1 F
__a +a/ L)de
l-a c+qN-Y2 (p —a)
a c+d d 1 F
S—+4(K+l)a/ P +4af (p)z P
l—a c+gN-Y2 p—c¢ s (p—c)

< 1L +4(k + Da(logs — loggoN ~/?) + 4as™*
—d

1
< _1+c +2(k + 1) logN + 4571
—C

<ClogN.
In the second to last step, we togklarge enough so that

1
a=c+q2N_l/2§%§1.

If N > 3, inthe last step we can take

1
czl_”+2(/<+1)+45—1,
—C
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which depends only on the distributidn
Following the same pattern fdi‘[ﬁl.z] shows that, after integration by parts, the
main part is the integral

1
az/ F(p) dp

+goN-Y2 (p — a)3

c+6 dp 8a2/1 F(p)

2
<8’ +1) [ gl

c+g2N-12 (p — ¢)?
The desired bound follows as abové.
Let£(¢) denote &-type process run with ratg%. Let
j(N) =[aN"?(log )™,
From the variational coupling (3.2), we have
LU (0 = o) — 65

= ct + 2wN Y2 4 (Go(t) — (ct + 2wN~Y21)) — G ).

The processes(r) andé () depend onV but we suppress this from the notation.
Set times = N. Note that when the random rates are averaged out, processes
£/N) (1) andé (r) have the same distribution. We get this bound:

P{&_jn(N) > ¢N}
> P{60(N) — (cN + 2wNY?) > —wNY? &, n) < wNY?)
> P{60(N) — (cN + 2wNY?) > —wNY?} — P{6;(n) = wNY?).

The next to last probability is at least-1e/4 for large N by (6.1). It remains to
show that the last probability vanishesids— co. From the annealed perspective,
6y isasumofi.i.d’s, soits mean and variance are bounded as follows:

E6 v =j(N)(u+1) < CaN'/?
and
Var[é(x)] = j(N) Varfjo] < CaN (logN)~2.

At this point we need to increase our original choicewfto guarantee that
w > 2Ca, wherea is given in the beginning of the proof ard is the constant
that appears in Lemma 8. Then Chebychev’s inequality gives

P{6ja) = wNY?) < P8 = Ej) + CaNV?)

CaN (logN)~1
< - = 7
- C2a2N

’
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which vanishes a® — oo. We can conclude that, for largé,
P{é_j(N)(N) > CN} >1-— 8/3.

Finally we make contact witB(N). Givengz chosen above, pici; > 0 small
enough so that eXp-xg1g2) > 1 —¢/7. Let D(N) be the event

D(N) = {p; = p; for —[q1NY?] <i <0}

By Lemma 1,P(D(N)) > 1 — ¢/6 for large enoughV. On the eventD(N),
£ () =& (1) for —[q1NY2] <i <0 and all > 0, so in particular foi = j(N)
if N is large enough. Consequently,

P{Xy =aNY?logN)™1}
> Pl&_jn)(N) > cN}
> P({&_sv)(N) > cN} N D(N))
= P({E_sn)(N) > cNJN D(N))
> P{E_jw)(N) > cN} = P(D(N))
>1-¢/3—¢/6
=1-¢/2.

This completes the proof of Theorem 3.
7. Proof of Theorem 4.

7.1. Proof of the upper bound of Theorem 4. The upper bound is proved by
comparison with independent particles. Let

l1—-a 1+v
p= 20 2
Forb > 0 andg, > 0, define
0
K, = Z p; §c+q2t_1/2}.
i=—[bth1+1

LEMMA 9. Let {Y;(¢)} be independent copies of a Poisson random variable

with mean c¢r + g2r1/2, independent of the rates {p;} and thereby independent
of K,. Then, given ¢ > 0, if g2 is small enough while bq;r islarge enough,

P{Yit) >ctfor1<j<K;}<e

for all large enough .
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PrROOF Fixasmall 0<§ < 1/2. Fix a positive integen large enough so that
(3 +8)™ < ¢/2. Pickeg > 0 small enough so that

P(x = —¢e0) <(1+8)/2

for a standard norma{. Let gz < gp4/c.
By assumption (2.1), for large K, is stochastically dominated by a binomial

random variable withs¢#] trials and sacess probabilityc + 1)gs+—1+/2,
Such a variable converges weakly to a Poisson with méan- 1)q‘2“rl ast — oo.
Thus we may fixb large enough so that

P(K,<m)<¢g/2

for large enough.
By the choice ofj> and the definition ot () = Y1(¢),

Y0 —EY() }
JVarY(®) ~ of

Then by the central limit theorem, for large enough
P{Y(t) > ct} < P(x > —¢e0) +8/2<1/2+3.
Finally, as theY;(¢) are i.i.d. and independent &,
P{Y;j(t)>ctforl<j <K}

Ky
= E[ [Py > ct}:|

j=1

PIY(1) = et} < P{

<E[G+8) <Pk <m)+ (3 +5)" <s. 0

Fix b andg2 so that the lemma is satisfied. Let
I, = {—[btﬁ] <i<0:p;<c —{—qzt_l/z}.

Once the ratep; have been chosen according to distributfoand; determined,
give each index € I, an independent Poisson procegs.) of ratec + got ~ /2.
Thin N;(-) appropriately to get the correct rate. These thinned processes are
the Poisson clocks for indiceise I;. Meanwhile, give the other indices their
independent Poisson clocks. This way we can claim that, for eacl, the
number of jump attempts experienced by partiglduring (0, ¢] is bounded above
by the mean't + ¢-t1/2 Poisson variabl&V; () that is independent of the ratps.

Suppose_,5141(f) > ct. By the particle ordering§; (1) > ¢t for all i € I,
which implies thatN;(r) > ct for all i € I;. By the lemma above, this event has
probability less thare for large . To summarize, we have shown that, for an
arbitrarye > 0, b can be chosen so that

P{X,>btP} <¢
for large enough.
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7.2. Proof of the lower bound of Theorem 4. For an exclusion process with
constant rates, for anya > 0 and O< y < 1,

(7.1) lim % —_2/a in probability.
This statement is a consequence of a limit proved by Glynn and Whitt [5] and the
explicit computation of the value 2 on the right-hand side first done in [10]. See
Lemma 4.1 in [10] for the derivation of (7.1) from [5]. (But note that the proéess
in [10] is not the same asin the present paper.)

Let 8= (3+v) L Let 0<a < oo andg = 2./a + 2. Use assumption (2.1)
exactly as in the proof of Lemma 1 to show that, given O, if a is small enough,
then for large enough

Plpi=c+qt=Pfor —[arPI™M]<i<0}>1-¢/2.

On this event_,sa+v,(t) is bounded below bﬁ_[azﬂuﬂ)](t), whereé (r) is a

process whose clocks ring at constant rate gt —#. For £(¢), (7.1) gives the
following bound: for large with probability at least 1 ¢/2,

g_[a,ﬂ(lw)](t) > ct + ql’l_ﬁ _ 2«/5(6‘1’ + qtl_ﬁ)(l+ﬁ(1+v))/2 _ t(l"‘ﬁ(l""v))/z

> cI.

The last lower bound by followed from 1— 8 = (14 8(1+v))/2 and the choice
ofg.

We have shown that, givesnn> 0 and a small enough > 0, then for large
enoughe, the inequalityé_,,sa+v(#) > ct holds with probability at least + &.

This inequality implies, > ar#d+v),
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