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ON THE NEYMAN–PEARSON PROBLEM FOR LAW-INVARIANT
RISK MEASURES AND ROBUST UTILITY FUNCTIONALS 1

BY ALEXANDER SCHIED

Technische Universität Berlin

Motivated by optimal investment problems in mathematical finance, we
consider a variational problem of Neyman–Pearson type for law-invariant
robust utility functionals and convex risk measures. Explicit solutions
are found for quantile-based coherent risk measures and related utility
functionals. Typically, these solutions exhibit a critical phenomenon: If
the capital constraint is below some critical value, then the solution will
coincide with a classical solution; above this critical value, the solution is
a superposition of a classical solution and a less risky or even risk-free
investment. For general risk measures and utility functionals, it is shown
that there exists a solution that can be written as a deterministic increasing
function of the price density.

1. Introduction. Suppose an economic agent wishes to raise the capitalv ≥ 0
today by issuing a contingent claim with a fixed maturity. Suppose furthermore
that the (discounted) liability at maturity shall be bounded by some constantK .
There are many ways of constructing such contingent claims; for instance, the
agent could just take out a loan of sizev, which would lead to the certain liability
−v at maturity. Here, our goal is to find a contingent claim such that therisk of
the terminal liability is minimal among all claims satisfying the issuer’s capital
constraints.

In a mathematical model, the payoff of a contingent claim is usually described
as a random variableX on a probability space(�,F ,P ), and we assume that
the price ofX is given by the expectationE[ϕX], where the price densityϕ is
a P -a.s. strictly positive random variable withE[ϕ] = 1; for the purpose of this
introduction, we will also assume thatϕ has a continuous distribution. The risk of
the liability −X will be measured in terms of a certain risk measureρ. Thus, we
are interested in the following problem:

minimizeρ(−X) under the constraints
(1)

that 0≤ X ≤ K andE[ϕX] ≥ v.
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Problems of this type arise in various contexts such as in statistical test theory
for composite alternatives or in the construction of Arrow–Debreu equilibria in
mathematical economics; see, for example, [15] and Chapter 3 of [13]. Our
original motivation stems from the problem of finding risk-minimizing hedging
strategies in dynamic financial markets. It is well known that such an optimal
strategy can be constructed by hedging a solution to a static problem of type (1);
see [3, 9, 10, 18, 19 and 22].

For the choiceρ(−X) = E[X], the solution to (1) is given by the classical
Neyman–Pearson lemma, and for this reason we will call our problem (1) the
Neyman–Pearson problemfor the risk measureρ. The case in whichρ(−X) =
−E[u(−X)] for a strictly concave utility functionu is also standard. In this article,
our main goal is to solve (1) for cases in which the simple expectationE[·] in the
two preceding examples is replaced by a supremum (or infimum) of expectations,
taken over a nontrivial setQ of absolutely continuous probability measures. Thus,
we are interested in risk measures of the form

ρ(−X) = sup
Q∈Q

EQ[X](2)

or, for a utility functionu,

ρ(−X) = − inf
Q∈Q

EQ[u(−X)].(3)

The choice of (2) is motivated by the theory of coherent measures of risk as
initiated by Artzner, Delbaen, Eber and Heath [1] and further developed by
Delbaen [6, 7]. Robust utility functionals of the form (3) arise as a robust Savage
representation of preferences on payoff profiles and were suggested by Gilboa
and Schmeidler [14]. Both approaches can be brought together by introducing the
notion of a convex measure of risk [11, 12], an example being

ρ(−X) = inf
{
m ∈ R

∣∣∣ inf
Q∈Q

EQ[u(m − X)] ≥ u(0)

}
.(4)

We will also obtain results for risk measures of this type. We refer to [13] for
surveys on robust Savage representations and risk measures, as well as for standard
facts on problems like (1).

The study of general Neyman–Pearson problems for risk measures of the
form (2) was initiated by Huber and Strassen [16]and recently continued by
Cvitaníc and Karatzas [4]. Kirch [17] extended the latter results to robust utility
functionals. On the one hand, these articles deal with very general settings, in
particular with nonlinear pricing rules of the typeX �→ infP ∗∈P E∗[X], and they
yield an interpretation of solutions as classical solutions with respect to “least
favorable pairs”Q̂, P̂ (which in [4] and [17] need not be probability measures).
On the other hand, these results rely on essentially nonconstructive methods and
typically do not yield explicit solutions. Only a few special cases were solved by
Österreicher [21], Rieder [23] and Bednarski [2].
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Here, our goal is to obtain explicit solutions to (1) and to point out certain
critical phenomena that arise as a consequence of taking suprema (or infima) of
expectations in (2) and (3). To this end, we consider a more specific setting with the
linear pricing ruleX �→ E[ϕX] and make the key assumption that the risk measure
ρ is law-invariant in the sense thatρ(−X) = ρ(−Y ) wheneverX andY have the
same law underP . While this assumption might be somewhat restrictive from
the point of view of theoretical economics, it is satisfied for most risk measures
used by practitioners and allows for some interesting mathematical structure. It is
satisfied, for instance, if the setQ in (2) and (3) is of the form

Qλ =
{
Q � P

∣∣∣ dQ

dP
≤ 1

λ

}
(5)

for some givenλ ∈ (0,1] (note thatQ1 = {P }). In Section 3, we will solve the
Neyman–Pearson problem for

ρλ(−X) := − min
Q∈Qλ

EQ[u(−X)],(6)

whereu : [0,K] → R is a strictly concave and continuously differentiable utility
function. In particular, we will show that there exists acritical valuevλ ∈ (0,K)

such that the solutionX∗
v to the Neyman–Pearson problem forρλ coincides

with the classical solutionY 0
v for ρ1 as long asv ≤ vλ. For v > vλ, however,

a diversification effectoccurs:X∗
v is now a superposition of a risk-free loan of

sizeβ ∈ (0, v) and a classical solutionYβ
v for ρ1 but with modified upper bound

K − β and pricev − β. Thus, the solution is of the form

X∗
v =

{
Y 0

v , for v ≤ vλ,
β + Y

β
v , for v > vλ.

(7)

We will see that, intuitively, this effect is related to an “aversion” of the investor to
accept risky bets outside a region of the form{ϕ > y}, so that capital that cannot
be raised by issuing a risky bet on high-price scenariosω ∈ {ϕ > y} must instead
be obtained via a risk-free loan. We also get a similar result for the translation
invariant modification (4) ofρλ.

In the caseu(x) = x, the problem reduces to the Neyman–Pearson problem for
the coherent risk measure

AVaRλ(−X) = max
Q∈Qλ

EQ[X],(8)

that will be called theaverage value at risk. It is also known as “conditional value
at risk” or “expected shortfall,” and coincides, for atomless probability spaces, with
the worst conditional expectation

WCEλ(−X) = sup{E[X|A] | P [A] > λ}.
WCEλ was suggested by Artzner, Delbaen, Eber and Heath [1] as a coherent
alternative to the practitioner’s value at risk. The Neyman–Pearson problem for
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AVaRλ is relatively easy and closely related to results in [2] and [23], as will be
explained in Remark 4.7. The solutionX∗

v is of the same type as (7), withY 0
v now

denoting the optimal statistical test as provided by the classical Neyman–Pearson
lemma. Thus, we haveY 0

v = K · I{ϕ>b}, which can be interpreted as a digital
option that pays off in high-price scenarios. Moreover, the critical valuevλ can
be characterized in terms of the distribution ofϕ, and it turns out thatYβ

v =
(1− β)Y 0

vλ
, thus determiningβ as(v − vλ)/(1− vλ).

This solution for AVaRλ will be obtained as a corollary to the more general
Theorem 4.1. It solves the Neyman–Pearson problem for the class ofquantile-
based coherent measures of riskthat was introduced by Kusuoka [20]. Such a risk
measure is of the form

ρk(X) =
∫ 1

0
k(t)q−X(t) dt,(9)

where k : [0,1) → [0,∞) is an increasing right-continuous function such that∫ 1
0 k(t) dt = 1, and whereqX denotes a quantile function of the random variable

X ∈ L∞. AVaRλ corresponds to the choicek = 1
λ
I[1−λ,1). Moreover, Kusuoka [20]

showed that all law-invariant coherent risk measures which admit a representa-
tion (2) can be constructed from this class of quantile-based coherent risk mea-
sures. The maximal representing setQ for ρk has been described by Dana and
Carlier [5].

The Neyman–Pearson problem forρk of (9) admits a solution of the form

X∗ = β · I[a,b)(ϕ) + K · I[b,∞)(ϕ),

where the parameters 0≤ β < K and 0≤ a ≤ b ≤ ∞ can be obtained via
a nonlinear variational problem, which involves only two real parameters and
which can be solved in a straightforward manner. In contrast to the case of
AVaRλ, one may encounter the case 0< a < b < ∞, which now corresponds to a
diversification into thetwo digital options(K − β) · I[b,∞)(ϕ) andβ · I[a,∞)(ϕ),
the latter being less risky than the former but no longer risk-free.

Our method in obtaining these results is different from the ones used by Huber
and Strassen [16], Cvitanić and Karatzas [4], Kirch [17] and others. It is based
on the key observation that, for a large class of law-invariant risk measuresρ,
there exists a deterministic increasing functionf ∗ : (0,∞) → [0,K] such that
X∗ := f ∗(ϕ) solves (1). Thus, we are able to reduce the original problem for
risk measures such as (6) or (9) to a semiclassical problem of Neyman–Pearson
type, but with the additional constraint that the solution must be an increasing
function of the price density. Ifρ involves the setQλ of (5), then this auxiliary
problem can be solved directly. In the case of a general quantile-based coherent
risk measure, the auxiliary problem is first transformed into a moment problem
for subprobability measures, which then can be solved by using general integral
representation results.
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This paper is organized as follows. In Section 2, we will look at general
properties of solutions to the Neyman–Pearson problem (1), assuming only that
our risk measure satisfies certain “axioms.” We will comment on the existence and
(non)-uniqueness of solutions, and we will prove our key result on the existence of
a deterministic increasing function that yields a solution when applied to the price
densityϕ. In Section 3, we will solve the Neyman–Pearson problem for robust
utility functionals (6) and their translation invariant modification. In Section 4, we
will consider quantile-based coherent risk measures of the form (9). In a first step,
we will show that solving a simple moment problem within a small class of two-
step functions yields also solutions to our Neyman–Pearson problem. In a second
step, we further reduce the moment problem to a two-dimensional variational
problem. Section 5 contains the proof of the first reduction theorem in Section 4.

2. The general structure of solutions. In this section we discuss the general
structure of solutions to the Neyman–Pearson problem (1), where we takeρ

as a real-valued functional onL∞ := L∞(�,F ,P ) that satisfies the following
properties for allX,Y ∈ L∞:

Monotonicity: If X ≤ Y, thenρ(−X) ≤ ρ(−Y ).(10)

Convexity: ρ
(
λX + (1− λ)Y

) ≤ λρ(X) + (1− λ)ρ(Y ) for 0 ≤ λ ≤ 1.(11)

Law invariance: IfX andY have the same law underP, then
(12)

ρ(X) = ρ(Y ).

For simplicity, we will also assume that

R 	 m �−→ ρ(−m) is continuous and strictly increasing on[0,K].(13)

Clearly, this property holds ifρ satisfies the additional axiom of

Translation invariance:ρ(X + m) = ρ(X) − m for m ∈ R andX ∈ L∞,(14)

in which caseρ is a law-invariantconvex measure of risk[1, 11, 13]. We also
suppose thatρ is continuous from above:

Xn ↘ X, P -a.s. �⇒ ρ(Xn) ↗ ρ(X).(15)

It is straightforward to check that, given the monotonicity ofρ, continuity from
above is equivalent to the so-calledFatou property:

ρ(X) ≤ lim inf
n↑∞ ρ(Xn)

(16)
for all bounded(Xn)n∈N ⊂ L∞with Xn −→ XP -a.s.;

see, for example, Lemma 4.16 in [13]. Standard arguments such as those in
Remark 3.39 of [13] then show:
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LEMMA 2.1 (Existence of solutions).Under conditions(10), (11)and (15),
there exists a solution to the Neyman–Pearson problem(1).

We will also assume throughout this paper that the underlying probability space
(�,F ,P ) is atomless. This condition guarantees thatρ is defined on a sufficiently
large domain, and it is equivalent to the existence of a random variable with a
continuous distribution.

REMARK 2.2 (Nonuniqueness of solutions). The solution to the Neyman–
Pearson problem need not be unique. Take, for example,ρ(−X) = E[X] and
consider the solution

X∗ = K · I{ϕ>c} + γ · I{ϕ=c}(17)

for certain constantsc ≥ 0 andγ ∈ [0,K] as provided by the classical Neyman–
Pearson problem. If the distribution ofϕ is not continuous atc, one typically
hasγ ∈ (0,K), and the usual randomization ofX∗ yields another solutioñX
which takes only the values 0 and 1. More precisely,X̃ coincides withX∗ on
{ϕ �= c}; otherwiseX̃ is either 0 or 1, according to an independent Bernoulli
experiment with success probability γ . If one insists onσ(ϕ)-measurable
solutions, then (17) is the only such solution. But uniqueness may also fail in the
class ofσ(ϕ)-measurable solutions as will be shown in Remark 4.3. On the other
hand, uniqueness in the class ofσ(ϕ)-measurable solutions implies uniqueness
in the class ofF -measurable solutions, provided that the price density has a
continuous distribution; see Proposition 2.7.

We continue with the following general lemma that was suggested by Hans
Föllmer and that is of independent interest.

LEMMA 2.3. LetG ⊂ F be a countably generatedσ -algebra. Then

ρ(X) ≥ ρ(E[X|G]) for all X ∈ L∞.

In particular,

ρ(X) ≥ ρ(E[X]).(18)

PROOF. Lemma 4.45 in [13] states that

ρ(X) ≥ ρ(X · IAc + E[X|A] · IA)(19)

for any setA ∈ F with P [A] > 0 (note that the proof of the cited lemma
does not use the translation invariance ofρ). Let B1,B2, . . . be a sequence of
sets inF such thatG = σ(B1,B2, . . .), and denote byA1, . . . ,Am the atoms
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in Gn := σ(B1, . . . ,Bn). Applying (19) successively withA := A1,A2, . . . ,Am

yields

ρ(X) ≥ ρ

(
m∑

i=1

E[X|Ai] · IAi

)
= ρ(E[X|Gn]).

Thus, by the martingale convergence theorem and the Fatou property (16),

ρ(E[X|G]) ≤ lim inf
n↑∞ ρ(E[X|Gn]) ≤ ρ(X).

Finally, (18) follows by takingG = {∅,�}. �

The first consequence of the preceding lemma is that the price constraint in
problem (1) can be reduced to an equality:

LEMMA 2.4. Any solutionX∗ of the Neyman–Pearson problem with capital
constraintv ∈ [0,K] satisfiesE[ϕX∗] = v.

PROOF. The casev ∈ {0,K} is trivial, and so it is enough to consider
v ∈ (0,K). Note that (18) implies that any solutionX∗ satisfiesρ(−X∗) > ρ(0).
Indeed, sinceE[ϕX∗] ≥ v > 0 and X∗ ≥ 0, we must haveE[X∗] > 0, and
(18) and (13) yieldρ(−X∗) > ρ(0). Now suppose by way of contradiction
that E[ϕX∗] > v. Then we definẽX := αX∗, whereα := v/E[ϕX∗] < 1. The
convexity ofρ implies that

ρ(−X̃) = ρ
(−αX∗ − (1− α)0

)
≤ αρ(−X∗) + (1− α)ρ(0)

< ρ(−X∗),

which, in view ofE[ϕX̃] = v, contradicts the optimality ofX∗. �

Another immediate consequence of Lemma 2.3 is the following: IfX∗ solves
the Neyman–Pearson problem (1), then so doesX̃∗ := E[X∗ |ϕ]. In particular,
there always exists aσ(ϕ)-measurable solution. The following key proposition
states a crucial property of such solutions. Note that we always use the term
“increasing function” synonymously to “nondecreasing function.”

PROPOSITION 2.5. Every σ(ϕ)-measurable solutionX∗ can be written as
X∗ = f ∗(ϕ) for some deterministic increasing functionf ∗.

The proof of this proposition is based on the following version of the classical
Hardy–Littlewood inequalities, which we recall here for the convenience of the
reader. See, for example, Theorem 2.76 of [13] for a proof.
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THEOREM 2.6 (Hardy–Littlewood). LetX andY be two nonnegative random
variables, and letqX andqY denote quantile functions ofX andY . Then,∫ 1

0
qX(1− t)qY (t) dt ≤ E[XY ] ≤

∫ 1

0
qX(t)qY (t) dt.

If X = f (Y ), then the lower(upper) bound is attained if and only iff can be
chosen as a decreasing(increasing) function.

We will also need the following property of quantile functions: Iff is an
increasing function andY is a nonnegative random variable, then the quantileqf (Y )

of f (Y ) satisfies

qf (Y )(t) = f (qY (t)) for a.e.t ∈ (0,1);(20)

see, for example, Lemma 2.77 in [13].

PROOF OF PROPOSITION 2.5. Since the underlying probability space is
atomless, there exists a random variableU with a uniform distribution on(0,1)

such thatϕ = qϕ(U). Now letX∗ be any solution to the Neyman–Pearson problem
[for further application of this argument in Proposition 2.7, we do not yet assume
that X∗ is σ(ϕ)-measurable]. Denote byFϕ the distribution function ofϕ, and
define

f (x) =


qX∗(Fϕ(x)), if Fϕ is continuous atx,

1

Fϕ(x) − Fϕ(x−)

∫ Fϕ(x)

Fϕ(x−)
qX∗(t) dt, otherwise.

Thenf is increasing, andX := f (ϕ) satisfies

X = E[qX∗(U)|qϕ(U)] = E[qX∗(U)|ϕ],(21)

sinceFϕ(qϕ(t)−) ≤ t ≤ Fϕ(qϕ(t)) for all t . Lemma 2.3 and the law-invariance of
ρ imply that

ρ(−X) ≤ ρ
(−qX∗(U)

) = ρ(−X∗).
Moreover, the upper Hardy–Littlewood inequality and (21) yield that

v ≤ E[ϕX∗] ≤
∫ 1

0
qϕ(t)qX∗(t) dt

(22)
= E[qϕ(U)qX∗(U)] = E[ϕX],

and soX solves the Neyman–Pearson problem, too. In view of Lemma 2.4, all
inequalities in (22) must be identities. Hence, ifX∗ is σ(ϕ)-measurable, then
the “only if” part of Theorem 2.6 shows thatX∗ = f ∗(ϕ) for some increasing
functionf ∗. �

The argument in the preceding proof also yields the following uniqueness result
for price densities with a continuous distribution. Remark 2.2 shows that this
condition cannot be dropped.
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PROPOSITION 2.7. If ϕ has a continuous distribution, then uniqueness
in the class ofσ(ϕ)-measurable solutions implies uniqueness in the class of
F -measurable solutions.

PROOF. Let X∗ be an arbitrary solution and define

f := qX∗ ◦ Fϕ and X := f (ϕ).

Then X has the same distribution asX∗. As in the proof of Proposition 2.5,
we get thatX is a σ(ϕ)-measurable solution. Moreover,E[X∗|ϕ] is also a
σ(ϕ)-measurable solution by Lemma 2.3. Uniqueness givesX = E[X∗|ϕ], and
soX∗ has the same law asE[X∗|ϕ]. Hence,

0 = E[(X∗)2] − E
[
E[X∗|ϕ]2] = E

[
(X∗ − E[X∗|ϕ])2],

and we get thatP -a.s.X∗ = E[X∗|ϕ]. �

Finally, we will need some elementary properties of theminimal risk

Rϕ(v) := min{ρ(−X) | 0≤ X ≤ K,E[ϕX] ≥ v}, 0 ≤ v ≤ K.(23)

LEMMA 2.8. v �→ Rϕ(v) is a continuous convex function that strictly
increases fromρ(0) to ρ(−K) asv increases from0 to K .

PROOF. Clearly,Rϕ(0) = ρ(0) andRϕ(K) = ρ(−K), due to our assumption
P [ϕ > 0] = 1. It is also clear thatRϕ(v) is increasing inv. But if Rϕ(v) = Rϕ(v′)
for somev′ > v, then a solution for the Neyman–Pearson problem withv′ would
also be a solution forv, a contradiction to Lemma 2.4. Therefore, the function
v �→ Rϕ(v) is strictly increasing. Convexity easily follows from (11) and in turn
implies continuity in the interior of[0,K]. Using (13), right-continuity atv = 0
follows from Rϕ(v) ≤ ρ(−v), while left-continuity atv = K follows from (18).

�

3. Robust utility functionals defined in terms of density bounds. For λ ∈
(0,1], let

Qλ =
{
Q � P

∣∣∣ dQ

dP
≤ 1

λ
P -a.s.

}
and note thatQ1 = {P }. In this section, we solve the Neyman–Pearson problem
for risk measures derived from robust utility functionals of the form

Uλ(X) = min
Q∈Qλ

EQ[u(X)],
whereu is a utility function. Such utility functionals arise in a natural way from
a robust Savage representation of preferences on asset profiles; see [14] and
Section 2.5 in [13]. We will assume throughout this section thatu is concave,
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strictly increasing and continuously differentiable on its domain, which shall
contain[0,K]. When measuring risk rather than utility, it is natural to switch signs
and to introduce the convex increasing loss function
(x) := −u(−x). Thus, we
will consider the risk measure

ρλ(−X) := −Uλ(−X) = max
Q∈Qλ

EQ[
(X)].(24)

If 
(x) = x for all x, thenρλ reduces to the average value at risk AVaRλ of (8).
The terminology “average value at risk” stems from the crucial fact that AVaRλ

can be represented as an average of the upper values of the quantile functionqX

(the “value at risk”) ofX ∈ L∞:

AVaRλ(−X) = max
Q∈Qλ

EQ[X] = 1

λ

∫ 1

1−λ
qX(t) dt;(25)

see, for example, Theorem 4.39 in [13] and recall that we have assumed that
(�,F ,P ) is atomless. Thus, both AVaRλ and ρλ are law-invariant and satisfy
the general assumptions of Section 2.

We will first consider the Neyman–Pearson problem for the risk measureρλ

of (24) in the case where the loss function
 is strictly convex on[0,K]; the
Neyman–Pearson problem for AVaRλ will be considered in the next section. For
simplicity, we will assume that the price densityϕ is unbounded from above. Under
our assumptions on the loss function
, its derivative
′ is a bijective function from
its domain to some interval(a, b) ⊂ (0,∞). We extend its inverse function to all
of R by setting

I (x) =


+∞, for x ≥ b,

(
′)−1(x), for a < x < b,

−∞, for x ≤ a.

In the classical caseλ = 1, we haveQ1 = {P }, and it is well known that the unique
solution of the Neyman–Pearson problem forρ1 takes the form

X∗
1 = 0∨ I (c1ϕ) ∧ K = (

I
(
c1(ϕ ∨ y1)

) − I (c1y1)
) ∧ K,

where c1 is the unique constant such thatE[ϕX∗
1] = v; see, for example,

Section 3.3 of [13]. The parametery1 = 
′(0)/c1 can be interpreted as that level
of prices at which the investor starts taking risky bets since the solutionX∗

1 is
supported on{ϕ ≥ y1}. Clearly,c1 = c1(v) increases continuously from 0 to+∞
andy1 = y1(v) decreases continuously from+∞ to 0 asv increases from 0 toK .

For 0< λ < 1, we will see in the following theorem thatX∗
1 also solves the

Neyman–Pearson problem forρλ, but only as long as the capital constraintv does
not exceed a certaincritical valuevλ. Forv > vλ, adiversification effectwill occur:
the optimal solution will be a combination of a constantβ ∈ (0, v) and a classical
solutionX̃ with upper boundK −β and capital constraintv −β. Moreover, for all
values ofv, the classical part̃X will be concentrated on a subset of{ϕ ≥ q}, where

q := qϕ(1− λ).
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Viewing the constantβ as a risk-free loan and̃X as a risky bet, we see that this
effect is related to an “aversion” of the investor to accept risky bets on scenariosω

corresponding to pricesϕ(ω) which are not high enough. Hence, capital that
cannot be raised by issuing a risky bet on high-price scenarios must instead be
obtained via a risk-free loan. Note our shorthand notation of writingE[X;ϕ ∈ A]
for E[XI{ϕ∈A}].

THEOREM 3.1. Suppose that the distribution function ofϕ is continuous and
strictly increasing on(0,∞). Then:

(a) The Neyman–Pearson problem forρλ of (24) has a unique solutionX∗
which isP -a.s. of the form

X∗ = β + (
I
(
c(ϕ ∨ y)

) − I (cy)
) ∧ (K − β),(26)

whereβ, y andc are constants such thatβ ≥ 0, y ≥ q andc = 
′(β)/y.
(b) For everyλ ∈ (0,1), there exists a critical valuevλ ∈ (0,KE[ϕ;ϕ ≥ q])

such thatβ = 0 if v ≤ vλ and0< β < v for v > vλ.
(c) The parametersβ, c andy are increasing functions ofv.

PROOF. (a) By Proposition 2.5, we may concentrate on random variablesX

that are of the formX = f (ϕ) for an increasing functionf . Then (20) and (25)
imply that

λ max
Q∈Qλ

EQ[
(X)] =
∫ 1

1−λ
q
(f (ϕ))(t) dt

=
∫ 1

1−λ


(
f (qϕ(t))

)
dt

(27)

=
∫ 1

0


(
f (qϕ(t))

)
I{qϕ(t)≥q} dt

= E[
(f (ϕ));ϕ ≥ q],
where, in the third identity, we have used our assumptions onϕ. HenceX∗ =
f ∗(ϕ) will solve the Neyman–Pearson problem provided thatf ∗ solves

minimizeE[
(f (ϕ));ϕ ≥ q] among all increasing functionsf
(28)

with 0≤ f ≤ K andE[ϕf (ϕ)] = v,

and vice versa. In particular, (28) admits a solution. It is clear that any such solution
f ∗ must satisfyf ∗(x) = f ∗(q+) for all x ≤ q. Takingβ := f ∗(q) as given, the
restriction off ∗ to [q,∞) is the unique solution to the following problem:

minimizeE[
(f (ϕ));ϕ ≥ q] among all increasing functionsf on [q,∞)
(29)

with β ≤ f ≤ K andE[ϕf (ϕ);ϕ ≥ q] = v − βE[ϕ;ϕ ≤ q] =: vβ.
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If we drop the condition thatf in (29) is increasing, then it is well known (see,
e.g., Section 3.3 of [13]) that (29) is solved by the function

f ∗
β (x) = β ∨ I (cx) ∧ K, x ≥ q,(30)

wherec is such thatE[ϕf ∗
β (ϕ);ϕ ≥ q] = vβ . But f ∗

β is increasing and hence
solves (29). Sinceβ = f ∗(q) = f ∗(q+), we getf ∗(x) = β ∨ I (cx) ∧ K for all
x ≥ 0. Moreover, there must be somey ≥ q such thatβ = I (cy). Thus,f ∗ can be
written asf ∗(x) = β + (I (c(x ∨ y)) − I (cy)) ∧ (K − β).

As for the uniqueness of solutions, we have just shown that allσ(ϕ)-measurable
solutions are of the form (30) and can be parameterized viaβ. But a different
β needs a differentc, so that twoσ(ϕ)-measurable solutions must differ almost
everywhere. The strict convexity of
 hence implies uniqueness of (28) and in
turn uniqueness of theσ(ϕ)-measurable solution of the Neyman–Pearson problem.
General uniqueness follows from Proposition 2.7.

Part (b) is obtained by combining Lemmas 3.2–3.4. Part (c) follows from
Lemma 3.2 and the fact thatβ < v as proved in Lemma 3.4.�

LEMMA 3.2. The solutions in(26)are pointwise increasing inv.

PROOF. Let v and v′ be such that 0≤ v < v′ ≤ K , and consider the
corresponding solutionsX∗(v) andX∗(v′). We want to show thatP -a.s.X∗(v′) ≥
X∗(v). To this end, defineX := X∗(v) ∧ X∗(v′), Y := X∗(v) − X and Z :=
X∗(v′) − X. Thenv0 := E[ϕX] ≤ v, and there existsα ∈ (0,1] such that(1 −
α)E[ϕZ] = E[ϕY ] = v − v0. Clearly, we haveY = 0 on {Z > 0} and hence, by
the convexity of
, P -a.s.,



(
X + (1− α)Z + αZ

) − 

(
X + Y + αZ

)
(31)

≥ 

(
X + (1− α)Z

) − 
(X + Y ).

Both X∗(v) andX∗(v′) are increasing functions of the price densityϕ, and one
easily checks that the same is true ofX + Y + αZ and ofX + (1 − α)Z. Hence,
multiplying (31) withI{ϕ≥q}, taking expectations with respect toP , and using (27)
yields

max
Q∈Qλ

EQ[
(X∗(v′))] − max
Q∈Qλ

EQ

[


(
X∗(v) + αZ

)]
≥ max

Q∈Qλ

EQ

[


(
X + (1− α)Z

)] − max
Q∈Qλ

EQ[
(X∗(v))](32)

≥ 0,

where the latter inequality follows from the fact thatE[ϕ(X + (1 − α)Z)] = v.
Moreover,E[ϕ(X∗(v) + αZ)] = v′, which in view of (32) and the uniqueness of
solutions implies thatP -a.s.X∗(v′) = X∗(v) + αZ ≥ X∗(v). �
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LEMMA 3.3. For everyλ ∈ (0,1), there existsε > 0 such thatβ = 0 for v ≤ ε.

PROOF. Fix v ∈ (0,K) for the first step. Forγ ∈ [0, v), let fγ (x) := γ ∨
I (cγ x) ∧ K , where cγ ∈ (0,∞) is such thatE[ϕfγ (ϕ)] = v. We denote by
yγ := 
′(γ )/cγ the point at whichfγ starts being larger thanγ . Suppose that
γ ′ > γ . Theny1 := yγ ∧ yγ ′

> 0 and

E
[
ϕ · (

γ ′ ∨ I (cγ ′ϕ) ∧ K
);ϕ > y1]

= v − γ ′E[ϕ;ϕ ≤ y1]
< E[ϕfγ (ϕ);ϕ > y1]
≤ E

[
ϕ · (

γ ′ ∨ I (cγ ϕ) ∧ K
);ϕ > y1].

It follows thatγ �→ cγ = cγ (v) is strictly decreasing and thatγ �→ yγ = yγ (v) is
strictly increasing as long asv is fixed.

Now letL(γ ) := E[
(fγ (ϕ));ϕ ≥ q]. It follows from the proof of Theorem 3.1
thatβ = 0 orβ = v if

L(γ ) − L(0) > 0 for all γ ∈ (0, v).(33)

But (33) also implies thatL(v) := 
(v)P [ϕ ≥ q] = limγ↑v L(γ ) > L(0), for the
caseL(v) = L(0) is excluded by the uniqueness of the solution (26). Hence, (33) is
equivalent toβ = 0.

In addition toyγ , we will also need the pointyγ := 
′(γ )/c0 < yγ at which
f0 leaves the levelγ . Letting� := 
(fγ (ϕ)) − 
(f0(ϕ)), we have

L(γ ) − L(0) = E[�;ϕ ≥ yγ ] + E[�;y0 ≤ ϕ < yγ ]
+ E[�;q ≤ ϕ < y0].

On {ϕ ≥ yγ }, we get from the first step thatfγ (ϕ) ≤ f0(ϕ) and in turn

� ≥ 
′(f0(ϕ))[fγ (ϕ) − f0(ϕ)] ≥ c0ϕ[fγ (ϕ) − f0(ϕ)].
Moreover,� ≥ 0 on {y0 ≤ ϕ < yγ }, and on{q ≤ ϕ < y0} we haveγ = fγ (ϕ) ≥
f0(ϕ) = 0. Therefore,

L(γ ) − L(0) ≥ c0E
[
ϕ · (

fγ (ϕ) − f0(ϕ)
);ϕ ≥ yγ

]
+ (


(γ ) − 
(0)
)
P [q ≤ ϕ < y0]

≥ c0(v − γP [ϕ < yγ ] − v) + γ 
′(0)P [q ≤ ϕ < y0]
≥ γ

(

′(0)P [q ≤ ϕ < 
′(0)/c0] − c0

)
.

By our assumption thatϕ has a continuous and strictly increasing distribution
function, the factorc0 = c0(v) tends continuously from 0 to+∞ asv increases
from 0 to K , and so the right-hand side will be strictly positive as soon asv is
small enough andγ is between 0 andv. �
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LEMMA 3.4. We haveβ < v for all v ∈ (0,K) and β > 0 for v > KE[ϕ;
ϕ ≥ q].

PROOF. As to the first part of the assertion, it follows from Lemma 3.3 that
X ≡ v is not optimal for small enoughv > 0. That is,Rϕ(v) < ρ(−X) = v,
whereRϕ(v) is as in (23). The convexity ofv �→ Rϕ(v) − v, which follows from
Lemma 2.8, hence implies thatv = 0 andv = K are the only two points in[0,K]
with Rϕ(v) = v. Thus,X ≡ v cannot be optimal for anyv ∈ (0,K).

The second part of the assertion follows immediately from the fact that the
parametery in Theorem 3.1 has been shown to be larger than or equal toq. �

Let us now briefly comment on the translation invariant modification

ρ̂λ(−X) = inf
{
m ∈ R

∣∣∣ max
Q∈Qλ

EQ[
(X − m)] ≤ x0

}
of ρλ, which is a convex measure of risk in the sense of [11]. In addition to the
assumptions made at the beginning of this section, we assume that
 is defined
on all of R, andx0 is a fixed interior point of
(R). Clearly, ρ̂λ is law-invariant
and satisfies the properties (10) through (16). We denote byR(v) := Rϕ(v) the
minimal risk for ρ̂λ, as defined in (23). Recall thatq denotes the(1− λ)-quantile
of ϕ.

COROLLARY 3.5. Suppose that the distribution function ofϕ is continuous
and strictly increasing on(0,∞). Then the Neyman–Pearson problem forρ̂λ has
a unique solutionX∗ that isP -a.s. of the form

X∗ = α + (
I
(
γ (ϕ ∨ z)

) − I (γ z)
) ∧ (K − α),

whereα, z and γ are constants such that0 ≤ α < v, z ≥ q and γ = 
′(α −
R(v))/z. Moreover, for everyλ ∈ (0,1), there exists a critical valuêvλ ∈ (0,K)

such thatα = 0 if v ≤ v̂λ.

PROOF. Take a solutionX∗ at levelv and let
R(v)(x) := 
(x − R(v)). Then
we see that maxQ∈Qλ

E[
R(v)(X
∗)] = x0. On the other hand, if 0≤ X ≤ K and

E[ϕX] ≥ v butX is not a solution, then we must havêρλ(−X) > R(v) and hence
maxQ∈Qλ

E[
R(v)(X)] > x0. SoX∗ solves the Neyman–Pearson problem forρ̂λ

at levelv if and only if X∗ minimizes maxQ∈Qλ
E[
R(v)(X)] among allX with

0 ≤ X ≤ K and E[ϕX] ≥ v. For fixedv, this problem is of the same type as
the one of Theorem 3.1, and so we get a representation of solutions in terms of
the inverseIR(v) of 
′

R(v). But IR(v)(x) = I (x) + R(v), and we obtain the first
part of the assertion. The existence of the critical valuev̂λ follows by the same
arguments as in Lemma 3.3 when one replaces
 by 
′

R(v) andI by IR(v); only
minor modifications are needed.�
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From the proof it is clear that, for givenv > 0, the parametersα, γ and
z will generally be different from the corresponding parametersβ, c and y in
Theorem 3.1, because the problem now involves the loss function
R(v)(x) :=

(x − R(v)) rather than
 itself. Also, in the case in whichα = 0 but λ < 1,
the solutionX∗

λ := X∗ typically doesnot coincide with the solutionX∗
1 to the

Neyman–Pearson problem for the “classical” risk measure

ρ̂1(−X) = inf{m ∈ R | E[
(X − m)] ≤ x0}
[with the exception of an exponential loss function
(x) = eαx]. To see this, note
first that

max
Q∈Qλ

EQ[
(X − m)] > E[
(X − m)]

unlessX is constant. This in turn implies thatR(v) = ρ̂λ(−X∗
λ) > ρ̂1(−X∗

1) =:
R1(v) for otherwiseρ̂1(−X∗

λ) would be strictly less than̂ρ1(−X∗
1). But X∗

λ is of
the form

X∗
λ = 0∨ (

I (γλϕ) + R(v)
) ∧ K,

while

X∗
1 = 0∨ (

I (γ1ϕ) + R1(v)
) ∧ K,

which shows thatγλ < γ1.

4. Quantile-based coherent risk measures.A quantile-based coherent risk
measure is of the form

ρk(−X) :=
∫ 1

0
k(t)qX(t) dt, X ∈ L∞,

where k : [0,1) → [0,∞) is an increasing right-continuous function such that∫ 1
0 k(t) dt = 1, and whereqY denotes a quantile function of a random variableY .

The average value at risk AVaRλ of (25) is thus the particular quantile-based
coherent risk measure withk = 1

λ
I[1−λ,1). For generalk, let µ̃ be the positive

Radon measure on[0,1) such thatk(t) = µ̃([0, t]). Thenµ(dλ) = (1 − λ)µ̃(dλ)

is a probability measure on[0,1) such that

ρk(−X) =
∫
[0,1)

AVaR1−λ(−X)µ(dλ).

Since AVaRλ is a coherent measure of risk which is continuous from below and,
hence, from above (see, e.g., [20] or Theorem 4.39 in [13]), the same is true of
the quantile-based risk measureρk. In particular,ρk satisfies the properties (10)
through (16) and can be represented in the form

ρk(−X) = max
Q∈Qk

EQ[X],
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whereQk is a set of probability measures, which has been described by Dana and
Carlier [5].

Let us now turn to the Neyman–Pearson problem forρk . By the positive
homogeneity ofρk, there is no loss in generality if we assume thatK = 1. Our first
result in this section will show that the Neyman–Pearson problem forρk can be
reduced to the minimization of an ordinary expectation over a very limited classJ
of functions. This classJ consists of all increasing step functionsf : (0,∞) →
[0,1] that take at most one value in(0,1). More precisely, eachf ∈ J can be
written as

f = βIJ0 + IJ1

for someβ ∈ (0,1) and two disjoint intervalsJ0, J1 ⊂ (0,∞) such thatJ0 is either
empty or satisfiesP [ϕ ∈ J0] > 0. Here and in the sequel, we use the term interval
in a broad sense: an interval may also be empty or consisting of a single element.
Sincef must be increasing,J1 must either be empty or unbounded to the right.
If both J0 andJ1 are nonempty, then the right-hand endpoint ofJ0 must coincide
with the left-hand endpoint ofJ1.

Recall thatFϕ denotes the distribution function ofϕ under P and let us
introduce the function

gk(x) =


k(Fϕ(x)), if Fϕ is continuous atx,

1

Fϕ(x) − Fϕ(x−)

∫ Fϕ(x)

Fϕ(x−)
k(t) dt, otherwise.

Consider the following variational problem:

minimizeE[gk(ϕ)f (ϕ)] among all increasing functionsf
(34)

with 0≤ f ≤ 1 andE[ϕf (ϕ)] = v.

It would be tempting to apply the classical Neyman–Pearson lemma to solv-
ing (34), but this approach would only work if the functiongk(x)/x weredecreas-
ing in x, because otherwise we might not obtain anincreasingsolutionf .

THEOREM 4.1.

(a) If f ∗ solves(34), thenX∗ := f ∗(ϕ) solves the Neyman–Pearson problem
for ρk .

(b) There exists a functionf ∗ ∈ J that solves(34).
(c) If f ∗ is such thatf ∗(ϕ) solves the Neyman–Pearson problem forρk , then

f ∗ solves(34).
(d) If the solutionf ∗ ∈ J of part(b) is unique withinJ up to(P ◦ ϕ−1)-nullsets,

thenX∗ = f ∗(ϕ) is theP -a.s. uniqueσ(ϕ)-measurable solution to the Neyman–
Pearson problem forρk .
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The proof of Theorem 4.1 is deferred to Section 5. Here we will first illustrate
how this result leads to explicit solutions of the Neyman–Pearson problem for
quantile-based coherent risk measures. In order not to complicate the presentation,
we assume for the rest of this section that the distribution functionFϕ is continuous
and strictly increasing on{x > 0 | Fϕ(x) < 1}. Then the corresponding quantile
functionqϕ will also be continuous and strictly increasing. We letqϕ(0) := 0 and
qϕ(1) := ‖ϕ‖L∞ ≤ ∞, and we define two functions
 and� by


(x) :=
∫ x

0
qϕ(t) dt and �(x) :=

∫ x

0
k(t) dt, 0 ≤ x ≤ 1.

Then we take the uniquezv such that


(zv) = 1− v,

and define two functionsβ and R on �v := {(x, y) | 0 ≤ x < zv < y ≤ 1} ∪
{(zv, zv)} by

β(x, y) :=


0, if x = zv = y,
v − 1+ 
(y)


(y) − 
(x)
, otherwise,

R(x, y) := β(x, y)[�(y) − �(x)] + 1− �(y).

COROLLARY 4.2. Suppose that the pair(x∗, y∗) minimizes the functionR
over the domain�v , and letβ∗ := β(x∗, y∗), a := qϕ(x∗) andb := qϕ(y∗). Then
X∗ := f ∗(ϕ) solves the Neyman–Pearson problem forρk , where

f ∗ := β∗
I[a,b) + I[b,∞).(35)

Conversely, suppose thatf ∈ J is a.e. of the form(35) and solves(34). Then the
pair (x∗, y∗) := (Fϕ(a),Fϕ(b)) minimizesR on �v . In particular, the Neyman–
Pearson problem forρk has a unique solution if and only ifR has a unique
minimizer on�v .

PROOF. It is straightforward to verify that a functionf = βI[a,b) + I[b,∞) ∈ J
satisfies the constraints in (34) if and only if(x, y) := (Fϕ(a),Fϕ(b)) ∈ �v and
β = β(x, y). An analogous computation shows thatE[gk(ϕ)f (ϕ)] = R(x, y), so
that the assertion follows from Theorem 4.1 and Proposition 2.7.�

The preceding corollary implies thatσ(ϕ)-measurable solutions to the Neyman–
Pearson problem need not be unique, even for genuinely nonadditive risk measures
and for price densities with a continuous distribution.

REMARK 4.3. In the casek ≡ qϕ , we haveR(x, y) = v for all (x, y) ∈ �v .
Hence,eachfunction

f = β(x, y)I[a,b) + I[b,∞) for a = qϕ(x), b = qϕ(y)
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solves the Neyman–Pearson problem forρk , and so does every convex combina-
tion of these functions.

Below, we will use Corollary 4.2 to obtain an explicit solution for the Neyman–
Pearson problem for AVaRλ. As one may guess from Theorem 3.1, we will find
the dichotomyx∗ = y∗ = zv or x∗ = 0 andy∗ > zv. But before doing so, let us
show in the following example that the case 0< x∗ < y∗ < 1 can also occur.

EXAMPLE 4.4. Let us consider the case in whichϕ has a uniform distribution
on (0,2), so thatqϕ(t) = 2t , 
(x) = x2 andzv = √

1− v. We take

k = 1
2I[0,ξ ) + λI[ξ,1),

whereξ ∈ (1
2,1) andλ is such thatk integrates to 1. With this choice,�(x) < x2 =


(x) for all x ∈ (1
2, ξ ]. Consequently,R(zv, zv) = 1−�(zv) > v = R(0,1) for all

1 − ξ2 ≤ v < 3/4. It follows that(zv, zv) does not minimizeR for those values
of v. Let (x∗, y∗) be a minimizer ofR on �v . Then the right-hand derivative of
x �→ R(x, y∗) is equal to

β(x, y∗)
(

2x
�(y∗) − �(x)

(y∗)2 − x2 − k(x)

)
.

Since this expression is strictly negative for small enoughx, the optimalx∗ must
be larger than 0.

Let us now show that the casey∗ = 1 cannot occur if the parameterξ is
sufficiently close to1

2 and 1− ξ2 ≤ v < 3
4. To this end, one verifies first that the

left-hand derivative ofy �→ R(x∗, y) aty = 1 is given by(
1− β(x∗,1)

)(
2

1− �(x∗)
1− (x∗)2 − λ

)
.(36)

For 0 ≤ x ≤ zv and zv ≤ ξ , the function (1− �(x))/(1− x2) has a global
minimum atx = 1

4, where it takes the value14
15. On the other hand,λ tends to3

2
whenξ goes to1

2. Thus, (36) must be strictly positive ifξ is not too large, and we
conclude thaty = 1 cannot be optimal.

Let us now turn to the Neyman–Pearson problem for AVaRλ. There are various
ways of handling this special case. For instance, one can use the arguments of
the proof of Theorem 3.1 to reduce the problem to the variational problem (29)
for 
(x) = x, which can then be solved via the classical Neyman–Pearson lemma.
Here we will use instead a computation based on Corollary 4.2.

As in Theorem 3.1, we will find a critical valuevλ such that the solution reduces
to the solution forρ(−X) = E[X] as long asv ≤ vλ. That is, the solution provided
by the classical Neyman–Pearson lemma is optimal for capital levelsv ≤ vλ.
For v > vλ, the solution will be a nontrivial convex combination of the classical
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solution at levelvλ and of a risk-free unit investment. This critical value will be of
the form

vλ = 1− 
(yλ),

whereyλ ∈ (1− λ,1] is defined as the unique maximizer of the function

(0,1] 	 y �−→ y + λ − 1


(y)
.

Thus, if qϕ(1) = ‖ϕ‖L∞ > λ−1, thenyλ ∈ (1 − λ,1) is the unique solution to the
equation

qϕ(yλ)(yλ + λ − 1) = 
(yλ).

COROLLARY 4.5. The Neyman–Pearson problem forAVaRλ has a unique
solutionX∗. If v ≤ vλ, then

X∗ = I[b0,∞)(ϕ),

whereb0 := qϕ(zv). If v > vλ, then the solution is given by

X∗ = β∗ + (1− β∗)I[b1,∞)(ϕ),

whereβ∗ = β(0, yλ) andb1 = qϕ(yλ). Moreover, with Cλ := (yλ +λ− 1)/
(yλ),
the minimal risk(23) is given by

Rϕ(v) =
{

(1− zv)/λ, if v ≤ vλ,

1− Cλ(1− v)/λ, if v > vλ.

PROOF. It suffices to consider the case 0< v < 1. Fork = 1
λ
I[1−λ,1), we have

λR(x, y) = β(x, y)[(y + λ − 1) ∨ 0− (x + λ − 1) ∨ 0]
+ λ − (y + λ − 1) ∨ 0.

Let (x∗, y∗) be a minimizer ofR on�v , and suppose first that(x∗, y∗) �= (zv, zv).
Theny∗ > zv and

∂

∂x
β(x, y∗) = β(x, y∗) qϕ(x)


(y∗) − 
(x)
> 0.

Thus, we see thatβ(x, y∗) and, hence,R(x, y∗) are strictly increasing inx as long
asx < 1− λ. If, on the other hand,x > 1− λ, then

λ
∂

∂x
R(x, y∗) = β(x, y∗)

(
qϕ(x)(y∗ − x)


(y∗) − 
(x)
− 1

)
< 0.

Sox∗ must be equal to either 0 orzv.
Let us now look for the optimaly∗, given thatx∗ = 0. We have

λR(0, y) = λ − (1− v)
(y + λ − 1) ∨ 0


(y)
.
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For y ≤ 1 − λ, this yieldsR(0, y) = 1, which according to Lemma 2.4 cannot
be optimal. Fory > 1− λ, the choice(x∗, y∗) = (0, yλ) will be optimal—but only
if yλ > zv and unless the alternative choice(x∗, y∗) = (zv, zv) gives a better result.

If yλ ≤ zv, theny �→ R(0, y) has no minimizer on(zv,1], and it follows that
(x∗, y∗) = (zv, zv) must be the optimal choice. Note thatyλ > zv if and only
if v > vλ.

Finally, let us compareR(0, yλ) againstR(zv, zv) in case thatyλ > zv. Since
yλ > 1− λ, we have

λR(0, yλ) = λ − (1− v)
yλ + λ − 1


(yλ)
= λ − 
(zv)

yλ + λ − 1


(yλ)

and

λR(zv, zv) = λ − (zv + λ − 1) ∨ 0.

Sinceyλ is the unique maximizer of the functionx �→ (x + λ − 1)/
(x), we thus
see thatR(0, yλ) is strictly better thanR(zv, zv) and hence(x∗, y∗) = (0, yλ) as
long asyλ > zv. An application of Corollary 4.2 concludes the proof.�

REMARK 4.6 (Comparison with value at risk). Consider the value at risk at
levelλ ∈ (0,1),

VaRλ(−X) = inf{m ∈ R | P [X > m] ≤ λ},
which is a quantile-based risk measure that satisfies all the assumptions of
Section 2 except for convexity (11). DenotingRϕ(v) the corresponding minimax
risk (23), we see thatX∗ solves the Neyman–Pearson problem for VaRλ if
P [X∗ > Rϕ(v)] ≤ λ andE[ϕX∗] ≥ v. Thus, forv with zv > q := qϕ(1 − λ), any
X that is concentrated on{ϕ > q} and satisfies 0≤ X ≤ 1 andE[ϕX] ≥ v solves
our problem and has riskRϕ(v) = VaRλ(−X) = 0. Forzv ≤ q, there is a unique
solution of the form

X∗ = rI[0,q)(ϕ) + I[q,∞)(ϕ),

where r = Rϕ(v) is determined by the budget constraintE[ϕX∗] = v. This
solution is similar to the one for AVaRλ, but involves different parameters.

REMARK 4.7. It follows from the results of Kusuoka [20] and Delbaen [7]
that, for a quantile-based coherent risk measureρk , the set functionvk(A) :=
ρk(−IA) is a 2-alternating Choquet capaticity. Therefore, the Neyman–Pearson
problem forρk falls within the range of the Neyman–Pearson lemma for capacities
as proved by Huber and Strassen [16], and our results can be interpreted in terms of
the Radon–Nykodym derivativeπ of the measuredP ∗ := ϕ dP with respect to the
capacityvk . In the case of AVaRλ, we get for‖ϕ‖L∞ > λ−1 thatπ = c ·ϕ ∨qϕ(yλ)

for some constantc > 0. It is shown in [16] thatπ = dP̂ /dQ0 for someQ0 ∈ Qλ,
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and we getc · ϕ ∨ qϕ(yλ) = ϕ · dP/dQ. Using our formulae foryλ, one easily
obtainsc = λ, that is,

π = λ
(
ϕ ∨ qϕ(yλ)

)
.

This extends earlier results by Rieder [23] and Bednarski [2].

5. Proof of Theorem 4.1.

PROOF OF PARTS(a) AND (c). As in the proof of Proposition 2.5, we see that
gk(qϕ) = Eλ[k|qϕ], whereλ denotes the Lebesgue measure on(0,1). Hence, for
any increasing functionf : [0,∞) → [0,1],

ρ
(−f (ϕ)

) =
∫ 1

0
k(t)qf (ϕ)(t) dt

=
∫ 1

0
gk(qϕ(t)) f (qϕ(t)) dt

= E[gk(ϕ)f (ϕ)],
where we have used (20) in the second step. Applying Lemma 2.4 and Proposi-
tion 2.5 yields (a) and (c).�

The proof of parts (b) and (d) requires some preparation. To illustrate our idea
of solving (34), suppose first that the price density has a continuous distribution.
Then we may, without loss of generality, restrict our attention to right-continuous
increasing functionsf : [0,∞) → [0,1] in (34). Via f (x) = ν([0, x]), any such
function f can be identified with a unique subprobability measureν on [0,∞)

and vice versa. Fubini’s theorem implies that

E[gk(ϕ)f (ϕ)] =
∫

Gk(x)ν(dx)

and

E[ϕf (ϕ)] =
∫

Gϕ(x)ν(dx),

where Gk(x) = E[gk(ϕ);ϕ ≥ x] and Gϕ(x) = E[ϕ;ϕ ≥ x]. Thus, (34) is
equivalent to minimizing the integral

∫
Gk(x)ν(dx) over the convex set̃C of all

subprobability measuresν on [0,∞) that satisfy the constraint∫
Gϕ(x)ν(dx) = v.

Our strategy of solving this moment problem is to identify the extreme points ofC̃

as those subprobability measures that correspond to functions inC∩J and to show
that it suffices to minimize

∫
Gk(x)ν(dx) among such extreme measuresν.



ON THE NEYMAN–PEARSON PROBLEM 1419

If the distribution ofϕ is not continuous, the problem becomes slightly more
involved. This is mainly due to the fact that we may no longer pass to a right-
continuous (or left-continuous) version off . We may only suppose thatf is right-
continuous on the set[0,∞) \ D, whereD denotes the set of discontinuity points
of Fϕ . Nevertheless, it will be possible to identifyf with a certain measureν
living on a larger spaceS ⊃ [0,∞), in which each point inD occurs twice. Our
problem (34) will then turn out to be equivalent to a certain moment problem for
these measuresν. Once this identification has been achieved, the extreme points
of the set defined by the moment constraint onν can be identified by using general
results like those proved by Winkler [25]. In our simple situation, however, we will
avoid using the general theory. Instead, we will give a short and straightforward
argument in identifying the extreme points.

Define a probability measureµ on [0,∞) by

µ(A) := E[ϕ;ϕ ∈ A],
and denote byC the convex set of all increasing functionsf : [0,∞) → [0,1] that
are right-continuous onDc and satisfy the constraint

∫
f dµ = v.

LEMMA 5.1. The set of extreme points ofC is given by

extC = C ∩ J.(37)

PROOF. First we show the inclusion⊃ in (37). So suppose thatf ∈ C ∩ Jµ

is of the formf = β IJ0 + IJ1 and can be written asf = λf1 + (1 − λ)f2 for
certainfi ∈ C andλ ∈ (0,1). Since 0≤ fi ≤ 1, we get immediately thatfi = 0 on
(J0 ∪ J1)

c andfi = 1 onJ1. This proves thatf is an extreme point ifJ0 is empty.
Now suppose thatJ0 is nonempty. Thenµ(J0) > 0 by the definition ofJ. Since
bothf1 andf2 are increasing, eachfi must be equal to some constantβi ∈ [0,1]
on J0. But then the conditions

∫
fi dµ = v andµ(J0) > 0 imply β1 = β2 = β and

in turn f1 = f2 = f .
For the proof of the inclusion⊂ in (37), it will be convenient to identify a

function f ∈ C with a suitable subprobability measureν. To this end, we first
define a subprobability measureνD onD by

νD := ∑
x∈D

(
f (x+) − f (x)

)
δx.

Then we let

fD(x) := νD

([0, x)
)

and fc(x) := f (x) − fD(x), x ≥ 0.

Note thatfc is right-continuous and increasing. Hence, there exists a subprobabil-
ity measureνc on [0,∞) such thatfc(x) = νc([0, x]).

Now think of the setD as beingseparatefrom [0,∞), and consider the set
S := [0,∞) ∪ D, on which every discontinuity point ofµ is representedtwice.
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Our functionf gives rise to a subprobability measureν on S defined for Borel
setsA ⊂ S by

ν(A) := νc

(
A ∩ [0,∞)

) + νD(A ∩ D).

Conversely, any subprobability measureν̃ on the Borel field ofS gives rise to
an increasing functionf̃ on [0,∞) that is right-continuous except possibly at
discontinuity points ofµ: simply let f̃ (x) := ν̃(Ax), whereAx := [0, x] ∪ {y ∈
D |y < x}. Note also thatf = f̃ if and only if ν = ν̃.

By means of Fubini’s theorem, we find that
∫

f dµ = ∫
Gdν, whereG is the

function onS defined by

G(x) =
{

µ
([x,∞)

)
, for x ∈ [0,∞),

µ
(
(x,∞)

)
, for x ∈ D.

(38)

Hence,C can be identified with the set of all subprobability measuresν onS such
that

∫
Gdν = v.

Let us now consider the case in which supx f (x) = 1, corresponding to
ν(S) = 1. Supposef takes more than one value in(0,1). Then S can be
decomposed into three disjoint setsA1,A2,A3 such thatai := ν(Ai) > 0. Let
alsobi := ∫

Ai
Gdν, and denote byν|Ai

the measureν|Ai
(A) := ν(A ∩ Ai). For

coefficientsαi ≥ 0, the measure

ν1 := α1ν|A1 + α2ν|A2 + α3ν|A3

will correspond to an element ofC provided thatαi ≥ 0 and

α1a1 + α2a2 + α3a3 = 1,

α1b1 + α2b2 + α3b3 = v.

Clearly, this system of linear equations is solved by the vector(1,1,1) but admits
also another, different solution(α1, α2, α3) with 0≤ αi ≤ 2. But thenγi := 2− αi

defines yet another solution. Letting

ν2 := γ1ν|A1 + γ2ν|A2 + γ3ν|A3,

we have found two measuresν1, ν2 corresponding to two functionsf1, f2 in C

such that

ν = 1
2(ν1 + ν2)

and, hence,

f = 1
2(f1 + f2).

Thus,f cannot be an extreme point ofC.
Next, we turn to the case in whichf ∈ C satisfies supx f (x) < 1. Then the

corresponding measureν is a true subprobability measure:ν(S) < 1. If f takes
more than one value in(0,1), thenν puts positive charge on two disjoint sets
A1, A2, of which we may assume thatA1 ∪A2 = S. Letting againai := ν(Ai) > 0
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andbi := ∫
Ai

Gdν, we see thatν1 := α1ν|A1 + α2ν|A2 will correspond to some
functionf1 ∈ C provided thatαi ≥ 0 and

α1a1 + α2a2 = m,
(39)

α1b1 + α2b2 = v,

wherem may be any number between 0 and 1. The vector(1,1) solves (39)
for m = ν(S) < 1. If (39) admits also other nonnegative solutions, then we can
argue as in the caseν(S) = 1 thatf is not an extreme point ofC. If the solution
to (39) is unique, we takeε > 0 such that the numbersm± := ν(S) ± ε belong to
[0,1] and such that the solutions(α±

1 , α±
2 ) corresponding tom± have nonnegative

components. Then the measuresν± := α±
1 ν|A1 + α±

2 ν|A2 correspond to functions
f± ∈ C such thatf = 1

2(f+ + f−), and sof is not an extreme point ofC.
Finally, consider a functionf ∈ C of the formf = β IJ0 + IJ1, whereβ ∈ (0,1)

but the intervalJ0 is aµ-nullset. In this case,β can be changed arbitrarily without
violating the condition

∫
f dµ = v, and sof cannot be an extreme point ofC. �

LEMMA 5.2. The setC admits an integral representation with respect to its
extreme points: For every functionf0 ∈ C, there exists a probability measureη on
C ∩ J, defined on theσ -algebra generated by the mapsf �→ f (x), x ∈ (0,∞),
such that

f0 =
∫
C∩J

f η(df ).

PROOF. Consider the affine coding of a functionf ∈ C by a subprobability
measureν onS as introduced in the proof of Lemma 5.1. By adding an additional
point ∂ to S, we can uniquely extendν to a probability measure onS := S ∪ {∂}.
The functionG defined in (38) will be extended toS by lettingG(∂) := 0. ThenC
can be identified with the setH of all Borel probability measuresν onS such that∫

Gdν = v. Corollary 3 of [24] states thatH enjoys an integral representation,
which then carries over toC by means of Fubini’s theorem.�

PROOF OF PARTS(b) AND (d) OF THEOREM 4.1. In proving (b), our task
is to minimizeE[gk(ϕ)f (ϕ)] = ∫

gf dµ over the setC, whereg(x) = gk(x)/x.
Let f0 be a minimizer inC [which must exist, e.g., by Proposition 2.5 and part
(c) of Theorem 4.1] and consider the integral representationf0 = ∫

C∩J f η(df ) of
Lemma 5.2. Then, according to Fubini’s theorem,∫

gf0 dµ ≥ inf
f ∈suppη

∫
gf dµ,

so that there must also be a minimizer inC ∩ J.
(d) According to the argument in the proof of part (b), uniqueness of

solutions inC ∩ J implies uniqueness inC. Moreover, by Proposition 2.5, every
σ(ϕ)-measurable solutionX∗ is of the form X∗ = f ∗(ϕ) for some function
f ∗ ∈ C. �
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