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ON THE NEYMAN-PEARSON PROBLEM FOR LAW-INVARIANT
RISK MEASURES AND ROBUST UTILITY FUNCTIONALS 1
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Technische Universitat Berlin

Motivated by optimal investment problems in mathematical finance, we
consider a variational problem of Neyman—Pearson type for law-invariant
robust utility functionals and convex risk measures. Explicit solutions
are found for quatile-based coherent risk @asures andefated utility
functionals. Typically, these solutions exhibit a critical phenomenon: If
the capital constraint is below some critical value, then the solution will
coincide with a classical solution; above this critical value, the solution is
a superposition of a classical solution and a less risky or even risk-free
investment. For general risk measures and utility functionals, it is shown
that there exists a solution that can be written as a deterministic increasing
function of the price density.

1. Introduction. Suppose an economic agentwishes to raise the capitél
today by issuing a contingent claim with a fixed maturity. Suppose furthermore
that the (discounted) liability at maturity shall be bounded by some con&tant
There are many ways of constructing such contingent claims; for instance, the
agent could just take out a loan of sizewhich would lead to the certain liability
—v at maturity. Here, our goal is to find a contingent claim such thatigkeof
the terminal liability is minimal among all claims satisfying the issuer’s capital
constraints.

In a mathematical model, the payoff of a contingent claim is usually described
as a random variabl& on a probability spacés2, £, P), and we assume that
the price ofX is given by the expectatioB[¢X], where the price density is
a P-a.s. strictly positive random variable witfi[¢] = 1; for the purpose of this
introduction, we will also assume thathas a continuous distribution. The risk of
the liability —X will be measured in terms of a certain risk measprdhus, we
are interested in the following problem:

minimize p (—X) under the constraints

(1) that 0< X < K andE[¢pX] > v.
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Problems of this type arise in various contexts such as in statistical test theory
for composite alternatives or in the construction of Arrow—Debreu equilibria in
mathematical economics; see, for example, [15] and Chapter 3 of [13]. Our
original motivation stems from the problem of finding risk-minimizing hedging
strategies in dynamic financial markets. It is well known that such an optimal
strategy can be constructed by hedging a solution to a static problem of type (1);
see[3, 9, 10, 18, 19 and 22].

For the choiceo(—X) = E[X], the solution to (1) is given by the classical
Neyman—Pearson lemma, and for this reason we will call our problem (1) the
Neyman—Pearson problefar the risk measure. The case in whiclp(—X) =
—E[u(—X)] for a strictly concave utility functiom is also standard. In this article,
our main goal is to solve (1) for cases in which the simple expectdohin the
two preceding examples is replaced by a supremum (or infimum) of expectations,
taken over a nontrivial se® of absolutely continuous probability measures. Thus,
we are interested in risk measures of the form

@) p(—X) = SUpEg[X]
Qe@

or, for a utility functionu,
—X)=—inf E —X)].
3) p(=X)=— Inf Eglu(=X)]

The choice of (2) is motivated by the theory of coherent measures of risk as
initiated by Artzner, Delbaen, Eber and Heath [1] and further developed by
Delbaen [6, 7]. Robust utility functionals of the form (3) arise as a robust Savage
representation of preferences on payoff profiles and were suggested by Gilboa
and Schmeidler [14]. Both approaches can be brought together by introducing the
notion of a convex measure of risk [11, 12], an example being

4) p(—X) =inf {meR‘ QinEQEQ[u(m—X)]Zu(O)}.

We will also obtain results for risk measures of this type. We refer to [13] for
surveys on robust Savage representations and risk measures, as well as for standard
facts on problems like (1).

The study of general Neyman—Pearson problems for risk measures of the
form (2) was initided by Huber and Strassen [18hd recently continued by
Cvitanic and Karatzas [4]. Kirch [17] extended the latter results to robust utility
functionals. On the one hand, these articles deal with very general settings, in
particular with nonlinear pricing rules of the typér— infp:c» E*[X], and they
yield an interpretation of solutions as classical solutions with respect to “least
favorable pairs”Q, P (which in [4] and [17] need not be probability measures).

On the other hand, these results rely on essentially nonconstructive methods and
typically do not yield explicit solutions. Only a few special cases were solved by
Osterreicher [21], Rieder [23] and Bednarski [2].
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Here, our goal is to obtain explicit solutions to (1) and to point out certain
critical phenomena that arise as a consequence of taking suprema (or infima) of
expectationsin (2) and (3). To this end, we consider a more specific setting with the
linear pricing ruleX — E[¢X] and make the key assumption that the risk measure
p is law-invariantin the sense thai(—X) = p(—Y) wheneverX andY have the
same law unde. While this assumption might be somewhat restrictive from
the point of view of theoretical economics, it is satisfied for most risk measures
used by practitioners and allows for some interesting mathematical structure. It is
satisfied, for instance, if the s@tin (2) and (3) is of the form
a0 _ 1}
dP — A
for some given € (0, 1] (note that@; = {P}). In Section 3, we will solve the
Neyman—Pearson problem for

(6) pi(=X) =~ min Eglu(~X)],

©) a.=fo<r|

whereu : [0, K] — R is a strictly concave and continuously differentiable utility
function. In particular, we will show that there existgitical value v, € (0, K)
such that the solutiorX} to the Neyman—Pearson problem fps coincides
with the classical solutiod’l? for p1 as long asv < v,. Forv > v;, however,

a diversification effecbccurs: X} is now a superposition of a risk-free loan of
size € (0, v) and a classical solutioﬁf for p1 but with modified upper bound
K — B and pricev — 8. Thus, the solution is of the form

. Yl?, for v <wy,

7 =
0 v ﬂ—{—Yl’?, for v > v;.

We will see that, intuitively, this effect is related to an “aversion” of the investor to
accept risky bets outside a region of the fofgn> y}, so that capital that cannot
be raised by issuing a risky bet on high-price scenati@s{¢ > y} must instead
be obtained via a risk-free loan. We also get a similar result for the translation
invariant modification (4) op;..

In the case:(x) = x, the problem reduces to the Neyman—Pearson problem for
the coherent risk measure

8 AVaR; (—X) = max Ep[X],
(8) i (—X) fnax olX]
that will be called theaverage value at riskt is also known as “conditional value

atrisk” or “expected shortfall,” and coincides, for atomless probability spaces, with
the worst conditional expectation

WCE, (—X) =SugE[X|A]| P[A] > A}.

WCE, was suggested by Artzner, Delbaen, Eber and Heath [1] as a coherent
alternative to the practitioner’s value at risk. The Neyman—Pearson problem for
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AVaR, is relatively easy and closely related to results in [2] and [23], as will be
explained in Remark 4.7. The solutidfj is of the same type as (7), with® now
denoting the optimal statistical test as provided by the classical Neyman—Pearson
lemma. Thus, we havé’f = K - Ij4,~p), Which can be interpreted as a digital
option that pays off in high-price scenarios. Moreover, the critical vajuean

be characterized in terms of the distribution @f and it turns out thaIYf =

(1 p)Y2, thus determining as(v — v)/(1— v3).

This solution for AvaR will be obtained as a corollary to the more general
Theorem 4.1. It solves the Neyman—Pearson problem for the claggamitile-
based coherent measures of riblat was introduced by Kusuoka [20]. Such a risk
measure is of the form

1
9) pe(X) = /0 k(t)q_x (1) dt,

wherek:[0,1) — [0, o0) Is an increasing right-continuous function such that
[Olk(t)dt =1, and whergyx denotes a quantile function of the random variable
X € L*°. AvaR,; corresponds to the choiée= %H[l_m). Moreover, Kusuoka [20]
showed that all law-invariant coherent risk measures which admit a representa-
tion (2) can be constructed from this class of quantile-based coherent risk mea-
sures. The maximal representing geffor p;, has been described by Dana and
Carlier [5].

The Neyman—Pearson problem fgr of (9) admits a solution of the form

X* =B Tup (@) + K - Ljp.oo) (@),

where the parameters © 8 < K and 0<a < b < oo can be obtained via
a nonlinear variational problem, which involves only two real parameters and
which can be solved in a straightforward manner. In contrast to the case of
AVaR;, one may encounter the casec@ < b < oo, which now corresponds to a
diversification into théwo digital options(K — B) - I1p,00)(¢) and g - I14. o0\ (¢),
the latter being less risky than the former but no longer risk-free.

Our method in obtaining these results is different from the ones used by Huber
and Strassen [16], Cvitamiand Karatzas [4], Kirch [17] and others. It is based
on the key observation that, for a large class of law-invariant risk meagyres
there exists a deterministic increasing functigi: (0, co) — [0, K] such that
X*:= f*(p) solves (1). Thus, we are able to reduce the original problem for
risk measures such as (6) or (9) to a semiclassical problem of Neyman—Pearson
type, but with the additional constraint that the solution must be an increasing
function of the price density. Ib involves the set?, of (5), then this auxiliary
problem can be solved directly. In the case of a general quantile-based coherent
risk measure, the auxiliary problem is first transformed into a moment problem
for subprobaliity measures, which then can be solved by using general integral
representation results.
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This paper is organized as follows. In Section 2, we will look at general
properties of solutions to the Neyman—Pearson problem (1), assuming only that
our risk measure satisfies certain “axioms.” We will comment on the existence and
(non)-uniqueness of solutions, and we will prove our key result on the existence of
a deterministic increasing function that yields a solution when applied to the price
densityg. In Section 3, we will solve the Neyman—Pearson problem for robust
utility functionals (6) and their translation invariant modification. In Section 4, we
will consider quantile-based coherent risk measures of the form (9). In a first step,
we will show that solving a simple moment problem within a small class of two-
step functions yields also solutions to our Neyman—Pearson problem. In a second
step, we further reduce the moment problem to a two-dimensional variational
problem. Section 5 contains the proof of the first reduction theorem in Section 4.

2. The general structure of solutions. In this section we discuss the general
structure of solutions to the Neyman—Pearson problem (1), where weptake
as a real-valued functional oh® := L*°(Q2, ¥, P) that satisfies the following
properties for allX, ¥ € L°:

(10) Monotonicity: If X <Y, thenp(—X) < p(-7Y).
(11) Convexity: p(AX + 1A —1)Y) <ip(X)+ @A —1)p¥)forO<ir <1

Law invariance: IfX andY have the same law undé&r, then
p(X)=p().

For simplicity, we will also assume that

(12)

(13) R>m+— p(—m) is continuous and strictly increasing g K.
Clearly, this property holds ip satisfies the additional axiom of
(14) Translation invariances (X +m) = p(X) —m form e RandX € L*°,

in which casep is a law-invariantconvex measure of rigd, 11, 13]. We also
suppose thap is continuous from above:

(15) X,\\ X, Pas. = p(Xy) /pX).

It is straightforward to check that, given the monotonicityeofcontinuity from

above is equivalent to the so-callEdtou property

p(X) <liminf p(X,)

(16) nfoo .
for all bounded X,,),,eny C L>®with X,, — X P-a.s;

see, for example, Lemma 4.16 in [13]. Standard arguments such as those in
Remark 3.39 of [13] then show:
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LEMMA 2.1 (Existence of solutions).Under conditiong10), (11)and (15),
there exists a solution to the Neyman—Pearson prolflem

We will also assume throughout this paper that the underlying probability space
(2, F, P) is atomless. This condition guarantees &t defined on a sufficiently
large domain, and it is equivalent to the existence of a random variable with a
continuous distribution.

REMARK 2.2 (Nonuniqueness of solutions). The solution to the Neyman—
Pearson problem need not be unique. Take, for examygle X) = E[X] and
consider the solution

(17) X* =K -ig=c} + ¥ - Lip=c)

for certain constants > 0 andy € [0, K] as provided by the classical Neyman—
Pearson problem. If the distribution @f is not continuous at, one typically
hasy € (0, K), and the usual randomization &f* yields another solutiorX
which takes only the values 0 and 1. More precis&ycoincides withX* on

{¢ # c}; otherwiseX is either O or 1, according to an independent Bernoulli
experiment with success mbability y. If one insists ono(p)-measurable
solutions, then (17) is the only such solution. But uniqueness may also fail in the
class ofo (p)-measurable solutions as will be shown in Remark 4.3. On the other
hand, uniqueness in the classofy)-measurable solutions implies uniqueness
in the class ofF -measurable solutions, provided that the price density has a
continuous distribution; see Proposition 2.7.

We continue with the following general lemma that was suggested by Hans
Follmer and that is of independent interest.

LEMMA 2.3. Letg C ¥ be a countably generateg-algebra Then
p(X) > p(E[X]4)) forall X e L*°.
In particular,

(18) p(X) = p(E[X]).

PROOE Lemma 4.45 in [13] states that
(19) p(X) > p(X -Tpe + E[X|A] - T4)

for any setA € & with P[A] > 0 (note that the proof of the cited lemma
does not use the translation invariancef Let B1, Bo, ... be a sequence of
sets in¥ such that4 = o(B1, B2, ...), and denote by,,..., A, the atoms
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in G, :=o(B1,...,By). Applying (19) successively withd := A1, Ao, ..., Ay,
yields

p(X) = p(ZE[XIAi] ‘HAi) = p(E[X[Gn]).

i=1
Thus, by the martingale convergence theorem and the Fatou property (16),

P(E[X|$] = Iim(i)gf P(E[X|§n]) = p(X).
Finally, (18) follows by takingg = {@, 2}. O

The first consequence of the preceding lemma is that the price constraint in
problem (1) can be reduced to an equality:

LEMMA 2.4. Any solutionX™* of the Neyman—Pearson problem with capital
constraintv € [0, K] satisfiesE[p X*] = v.

PrROOF The casev € {0, K} is trivial, and so it is enough to consider
v € (0, K). Note that (18) implies that any solutiof* satisfieso(—X*) > p(0).
Indeed, sinceE[¢X*] > v > 0 and X* > 0, we must haveE[X*] > 0, and
(18) and (13) vyieldp(—X*) > p(0). Now suppose by way of contradiction
that E[¢X*] > v. Then we defineX := a X*, wherewa := v/E[pX*] < 1. The
convexity of p implies that

o(—X) = p(—aX*— (1 —a)0)
<ap(=X")+ (1L —a)p(0)
< p(=X"),
which, in view of E[¢ X] = v, contradicts the optimality ak*. [
Another immediate consequence of Lemma 2.3 is the following:*Ifsolves
the Neyman—Pearson problem (1), then so db¥&s= E[X*|¢]. In particular,
there always exists a(gp)-measurable solution. The following key proposition

states a crucial property of such solutions. Note that we always use the term
“increasing function” synonymously to “nondecreasing function.”

PROPOSITION 2.5. Everyo (p)-measurable solutiork™* can be written as
X* = f*(¢) for some deterministic increasing functigif.

The proof of this proposition is based on the following version of the classical
Hardy-Littlewood irequalities, which we recall herfor the convenience of the
reader. See, for example, Theorem 2.76 of [13] for a proof.
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THEOREM 2.6 (Hardy—Littlewood). LetX andY be two nonnegative random
variables and letgx andgy denote quantile functions &f andY. Then

1 1
(/ QX(l-0QYO)dthELXY]SL/ ax (Day () dt.
0 0

If X = f(Y), then the lower(uppel) bound is attained if and only if can be
chosen as a decreasilfigicreasing function

We will also need the following property of quantile functions: fifis an
increasing function antl is a nonnegative random variable, then the quaatile,
of f(Y) satisfies

(20) qro (@)= f(gy(®)  foraere(01);
see, for example, Lemma 2.77 in [13].

PROOF OF PROPOSITION 2.5. Since the underlying probability space is
atomless, there exists a random varialdlevith a uniform distribution on(0, 1)
such thaty = ¢, (U). Now let X* be any solution to the Neyman—Pearson problem
[for further application of this argument in Proposition 2.7, we do not yet assume
that X* is o (¢)-measurable]. Denote b¥, the distribution function ofp, and
define
gx+(Fy(x)), if F, is continuous at,

f@) = 1 Fo(x)
Fo(x) — Fp(x—) JF,x-)

Then f is increasing, an& := f(¢) satisfies
(21) X = Elgx=(U)lqe(U)] = Elgx=(U)l¢l,

sinceFy,(q,(1)—) <t < Fy(q,(t)) for all . Lemma 2.3 and the law-invariance of
p imply that

gx+(t)dt, otherwise.

p(=X) < p(—qx+(U)) = p(=X").
Moreover, the upper Hardy—Littlewood inequality and (21) yield that

1
v = ElpX'1 < [ gp0qx-(0ds
(22) °
= Elg,(U)gx+(U)] = E[pX],
and soX solves the Neyman—Pearson problem, too. In view of Lemma 2.4, all
inequalities in (22) must be identities. Hence Xif is o (¢)-measurable, then
the “only if” part of Theorem 2.6 shows th&* = f*(¢) for some increasing
function f*. O

The argument in the preceding proof also yields the following uniqueness result
for price densities with a continuous disution. Remark 2.2 shows that this
condition canot be dropped.
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PrROPOSITION 2.7. If ¢ has a continuous distributignthen uniqueness
in the class ofo (p)-measurable solutions implies uniqueness in the class of
F-measurable solutions

PROOF Let X* be an arbitrary solution and define
fi=qx~oF, and X := f(¢p).

Then X has the same distribution a*. As in the proof of Proposition 2.5,
we get thatX is a o(¢)-measurable solution. MoreoveE[X*|¢] is also a

o (p)-measurable solution by Lemma 2.3. Uniqueness gKes E[X*|¢], and

soX* has the same law &[X*|¢]. Hence,

0= E[(X*)?] — E[E[X*|¢]%] = E[(X* — E[X*|¢])?],
and we get thaP-a.s.X* = E[X*|¢]. O

Finally, we will need some elementary properties oftiaimal risk
(23)  Ry(v):=min{p(=X)|0< X <K, E[pX]>v}, O0=<v<K.

LEMMA 2.8. v~ R,(v) is a continuous convex function that strictly
increases fronp (0) to p(—K) asv increases frond to K.

ProoFr.  Clearly,R,(0) = p(0) andR,(K) = p(—K), due to our assumption

Py > 0] =1. Itis also clear thaR, (v) is increasing irv. Butif R, (v) = R, (v")
for somev’ > v, then a solution for the Neyman—Pearson problem wittvould
also be a solution fop, a contradiction to Lemma 2.4. Therefore, the function
v = Ry (v) is strictly increasing. Convexity easily follows from (11) and in turn
implies continuity in the interior of0, K]. Using (13), right-continuity ab = 0
follows from R, (v) < p(—v), while left-continuity atv = K follows from (18).

O

3. Robust utility functionals defined in terms of density bounds. For X e
(0, 1], let

@A:{Q <<P‘d—Q<}P-a.s}
dP — A

and note that21 = {P}. In this section, we solve the Neyman—Pearson problem
for risk measures derived from robust utility functionals of the form

U (X)= min E X1,
2 (X) o olu(X)]
whereu is a utility function. Such utility functionals arise in a natural way from

a robust Savage representation of preferences on asset profiles; see [14] and
Section 2.5 in [13]. We will assume throughout this section thas concave,
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strictly increasing and continuously differentiable on its domain, which shall
contain[0, K. When measuring risk rather than utility, it is natural to switch signs

and to introduce the convex increasing loss functigr) := —u(—x). Thus, we
will consider the risk measure
(24) pr(=X) 1= =Up(=X) = max Eg[£(X)].

0eqQ,;

If £(x) =x for all x, thenp, reduces to the average value at risk Ayait (8).
The terminology “average value at risk” stems from the crucial fact that AvaR
can be represented as an average of the upper values of the quantile fygction
(the “value at risk™) ofX € L°°:

1 r1
25 AVaR, (—X)= max Ep[X :—/ t)dt;
(25) H(—X) = max Eg[X] = | ax(®)

see, for example, Theorem 4.39 in [13] and recall that we have assumed that
(R, F, P) is atomless. Thus, both AVaRand p, are law-invariant and satisfy
the general assumptions of Section 2.

We will first consider the Neyman—Pearson problem for the risk measure
of (24) in the case where the loss functiéns strictly convex on[0, K]; the
Neyman—Pearson problem for AvaRvill be considered in the next section. For
simplicity, we will assume that the price densjtys unbounded from above. Under
our assumptions on the loss functibyits derivativel’ is a bijective function from
its domain to some intervadkh, b) C (0, o). We extend its inverse function to all
of R by setting

+00, forx > b,
I(x)=1{ &) 1), fora <x <b,
—00, forx <a.

In the classical case= 1, we have21 = { P}, and it is well known that the unique
solution of the Neyman—Pearson problem fertakes the form

X;=0VI(c1p) AK = (I(c1(¢ V y1)) — I (c1y1)) A K,

where c; is the unique constant such th#@t{pX7] = v; see, for example,
Section 3.3 of [13]. The parameter = ¢/(0)/c1 can be interpreted as that level
of prices at which the investor starts taking risky bets since the solipis
supported oy > y1}. Clearly,c1 = c¢1(v) increases continuously from 0 tgoco
andy; = y1(v) decreases continuously frosroo to 0 asv increases from 0 t& .
For 0< A < 1, we will see in the following theorem th&] also solves the
Neyman—Pearson problem fpy, but only as long as the capital constrairdoes
not exceed a certagritical valuev, . Forv > v, , adiversification effeavill occur:
the optimal solution will be a combination of a constgnt (0, v) and a classical
solutionX with upper bound — g and capital constraint— 8. Moreover, for all
values ofv, the classical paiX will be concentrated on a subset{gf> ¢}, where

q:=qe(1—21).
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Viewing the constanB as a risk-free loan an& as a risky bet, we see that this
effect is related to an “aversion” of the investor to accept risky bets on scenarios
corresponding to prices(w) which are not high enough. Hence, capital that
cannot be raised by issuing a risky bet on high-price scenarios must instead be
obtained via a risk-free loan. Note our shorthand notation of wriiig; ¢ € A]

for E[XH{(peA}]-

THEOREM 3.1. Suppose that the distribution functiong@ifs continuous and
strictly increasing on0, co). Then

(a) The Neyman—Pearson problem fpg of (24) has a unique solutiork™
which is P-a.s. of the form

(26) X* =B+ (I(clpVy) —1(cy)) A(K —B),

wherepB, y andc are constants such th@t> 0,y > g andc=¢'(B)/y.

(b) For everya € (0, 1), there exists a critical value; € (0, KE[¢; ¢ > q])
suchthat8 =0if v <v), and0< 8 < v forv > vy.

(c) The parameterg, ¢ andy are increasing functions af.

PROOF (a) By Proposition 2.5, we may concentrate on random variables
that are of the formX = f(¢) for an increasing functiory. Then (20) and (25)
imply that

1
A max Epll(X)] = t)dt
nax ole(X)] /1_ qe(f () (1)

—/ (o)) d
(27)

=/0 e(f (e )i, 1)=q) dt

=E[L(f(p); o >q],

where, in the third identity, we have used our assumptiong.oHenceX™* =
f*(e) will solve the Neyman—Pearson problem provided tfasolves

minimize E[£(f (¢)); ¢ > q] among all increasing functiorfs

(28) withO< f < K andE[¢f (p)] = v,

and vice versa. In particular, (28) admits a solution. It is clear that any such solution
f* must satisfyf*(x) = f*(¢g+) for all x < g. Taking := f*(g) as given, the
restriction of f* to [¢, co) is the unique solution to the following problem:

minimize E[£( f (¢)); ¢ = g] among all increasing functiongon [g, co)

(29) with 8 < f < K andE[¢f(¢); ¢ = gl=v — BE[p; ¢ <ql =
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If we drop the condition thay in (29) is increasing, then it is well known (see,
e.g., Section 3.3 of [13]) that (29) is solved by the function

(30) fg(x):ﬂ\/l(cx)/\l(, x>q,

wherec is such thatE[cpfg(q)); ¢ > q] =vg. But f; is increasing and hence
solves (29). Sincg = f*(q) = f*(g+), we getf*(x) =B Vv I(cx) A K for all
x > 0. Moreover, there must be some> ¢ such thaig = I (cy). Thus, f* can be
written asf*(x) =8+ (I(c(x vV y)) — I(cy)) A (K — B).

As for the unigueness of solutions, we have just shown that(all-measurable
solutions are of the form (30) and can be parameterizedsviBut a different
B needs a different, so that twoo (¢)-measurable solutions must differ almost
everywhere. The strict convexity @f hence implies uniqueness of (28) and in
turn uniqueness of the(¢)-measurable solution of the Neyman—Pearson problem.
General uniqueness follows from Proposition 2.7.

Part (b) is obtained by combining Lemmas 3.2-3.4. Part (c) follows from
Lemma 3.2 and the fact that< v as proved in Lemma 3.4.00

LEMMA 3.2. The solutions if{26) are pointwise increasing in.

PROOFE Let v and v’ be such that 6< v < v < K, and consider the
corresponding solution*(v) andX*(v"). We want to show thaP-a.s.X*(v') >
X*(v). To this end, defineX := X*(v) A X*(v'), ¥ := X*(v) — X and Z :=
X*(v') — X. Thenvg := E[¢X] < v, and there exista € (0, 1] such that(1 —
a)E[9Z] = E[pY] = v — vg. Clearly, we have/ = 0 on{Z > 0} and hence, by
the convexity of?, P-a.s.,

(X +A—a)Z+aZ)— (X +Y +aZ)
(31)
>¢X+(1-a)Z)— (X +7Y).

Both X*(v) and X*(v’) are increasing functions of the price densityand one
easily checks that the same is truedf+ Y + «Z and of X 4+ (1 — @) Z. Hence,

multiplying (31) withI,~,, taking expectations with respect g and using (27)
yields

E X*(')] - E X* Z
max Eol¢(X" ()] — max o[¢(X*(v) +aZ)]
(32) > maxEg[¢(X + (1—a)Z)] — max Eg[(X*(v))]
Qe 0eQ,
>0,
where the latter inequality follows from the fact thBfp(X + (1 — «)Z)] = v.

Moreover,E[¢(X*(v) + aZ)] = v/, which in view of (32) and the uniqueness of
solutions implies thaP-a.s.X*(v') = X*(v) +aZ > X*(v). O
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LEMMA 3.3. Foreverya € (0, 1), there existg > O such thai = Oforv <e.

PROOF  Fix v € (0, K) for the first step. Fory € [0,v), let f, (x) :=y V
I(cyx) N K, wherec, € (0,00) is such thatE[¢f, (¢)] = v. We denote by
vy’ :=¥{'(y)/c, the point at whichf, starts being larger thap. Suppose that

y'>7y.Thenyl:=y¥ A yV/ > 0 and
Elp-(v'VI(cy9) AK)ip>y']

=v—y'Elp;p <y']

< Elofy (9); ¢ > ¥

<E[p-(y'VIcyp) ANK):p>y'].
It follows thaty — ¢, = ¢, (v) is strictly decreasing and that— y” = y¥(v) is
strictly increasing as long asis fixed.

Now let L(y) := E[£(f,(¢)); ¢ = q]. It follows from the proof of Theorem 3.1

thatd=0org =vif
(33) L(y)—L0O) >0 forall y € (0, v).

But (33) also implies thaL(v) := £(v)P¢ > g] =lim, 4, L(y) > L(0), for the
caseL (v) = L(0) is excluded by the unigueness of the solution (26). Hence, (33) is
equivalent to3 = 0.

In addition toy”, we will also need the poing, := ¢'(y)/co < y¥ at which
foleaves the level. Letting A := £(f}, (¢)) — £(fo(¢)), we have

L(y)—LO)=E[A;9>y, ]+ E[A;yo<¢ <y,]
+ E[A; g < ¢ < yol.
On{y >y, }, we get from the first step that, (¢) < fo(¢) andin turn

A= (folp)lfy (@) — fo(@)] = copl fy (9) = fole)].

Moreover,A > 0 on{yg < ¢ < y,}, and on{g < ¢ < yo} we havey = f, (¢) >
fo(p) = 0. Therefore,

L(y) = L(0) = coE[¢ - (fy (9) — fo(@)); ¢ = yy]
+ (y) — €0)) Plg < ¢ < yol
> co(v—y Plp < yy] —v) + v (0)Plg < ¢ < yo
>y ('(0)Plg < ¢ < £'(0)/co] — co).

By our assumption thap has a continuous and strictly increasing distribution
function, the factokg = co(v) tends continuously from 0 ta-co asv increases
from O to K, and so the right-hand side will be strictly positive as soow &s
small enough angt is between 0 and. [
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LEMMA 3.4. We have < v forall ve (0,K) and g8 > 0 for v > KE[g;
»=ql

PROOF As to the first part of the assertion, it follows from Lemma 3.3 that
X = v is not optimal for small enough > 0. That is, R,(v) < p(=X) = v,
whereR,(v) is as in (23). The convexity of — R, (v) — v, which follows from
Lemma 2.8, hence implies that= 0 andv = K are the only two points ifi0, K]
with R, (v) =v. Thus,X = v cannot be optimal for any € (0, K).

The second part of the assertion follows immediately from the fact that the
parametew in Theorem 3.1 has been shown to be larger than or egyal tal

Let us now briefly comment on the translation invariant modification
P (—=X) = inf{m € R‘ max Eg[€(X —m)] < xo}
Qe

of p,, which is a convex measure of risk in the sense of [11]. In addition to the
assumptions made at the beginning of this section, we assumé thatefined

on all of R, andxg is a fixed interior point of¢(R). Clearly, p, is law-invariant
and satisfies the properties (10) through (16). We denot®& y := R, (v) the
minimal risk for p,, as defined in (23). Recall thatdenotes th€l — A)-quantile

of ¢.

COROLLARY 3.5. Suppose that the distribution function @fis continuous
and strictly increasing on0, co). Then the Neyman—Pearson problem farhas
a unique solutiony* that is P-a.s. of the form

X*=a+(I(yl¢Vva)—I1y2)A (K —a),

wherea, z and y are constants such thdi<a <v, z>¢g andy = ¢/(« —
R())/z. Moreover for everya € (0, 1), there exists a critical valu@; € (0, K)
such thaiw =0if v <7y.

PROOF Take a solutionk* at levelv and letlg,)(x) := £(x — R(v)). Then
we see that Maxeq, E[€rw)(X™)] = xo. On the other hand, if & X < K and
E[¢X]> v butX is nota solution, then we must hayg (—X) > R(v) and hence
maxpeq, E[Lrw)(X)] > xo. SO0 X* solves the Neyman—Pearson problem gor
at levelv if and only if X* minimizes maycq, E[£rw)(X)] among allX with
0< X < K and E[¢X] > v. For fixedv, this problem is of the same type as
the one of Theorem 3.1, and so we get a representation of solutions in terms of
the inverselg(,) of K/R(U). But Irw)(x) = I(x) + R(v), and we obtain the first
part of the assertion. The existence of the critical valydollows by the same
arguments as in Lemma 3.3 when one replacey E/R(U) and/ by Ig); only
minor modifications are needed.]
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From the proof it is clear that, for given > 0, the parameters, y and
z will generally be different from the corresponding parameijgrg andy in
Theorem 3.1, because the problem now involves the loss funéfign(x) :=
£(x — R(v)) rather thant itself. Also, in the case in whiclk =0 buti < 1,
the solutionX; := X* typically doesnot coincide with the solutionXj to the
Neyman—Pearson problem for the “classical” risk measure

p1(=X) =inf{m e R| E[£(X —m)] < xo}

[with the exception of an exponential loss functio@) = ¢**]. To see this, note
first that

max Eg[l(X —m)] > E[£(X —m)]
0e@,

unlessX is constant. This in turn implies th&(v) = p,(—X}) > p1(—X}) =:
R(v) for otherwisep:(—X3;) would be strictly less thapi(—X7). But X7 is of
the form

X5i=0Vv (I(ynp) + R(v)) AK,
while

Xi=0v (I(y10) + R*()) A K,
which shows thay, < y1.

4. Quantile-based coherent risk measures.A quantile-based coherent risk
measure is of the form

1
pe(—X) = fo KOgx(di, X eL™,

wherek:[0,1) — [0, 00) is an increasing right-continuous function such that
folk(t) dt =1, and whereyy denotes a quantile function of a random variable
The average value at risk AVaRof (25) is thus the particular quantile-based
coherent risk measure with = %I[[l_m). For generak, let i be the positive
Radon measure g, 1) such thatc(¢z) = ([0, 7]). Thenu(dr) = (1 — L) (dr)

is a probability measure df, 1) such that

pe(—X) = /[ oy AVARL (=X )p(an)

Since AvVaR is a coherent measure of risk which is continuous from below and,
hence, from above (see, e.qg., [20] or Theorem 4.39 in [13]), the same is true of
the quantile-based risk measuysg In particular, o, satisfies the properties (10)
through (16) and can be represented in the form

pr(—X) = max Eg[X],
Qe@k
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where@* is a set of probability measures, which has been described by Dana and
Carlier [5].

Let us now turn to the Neyman—Pearson problem gpr By the positive
homogeneity of;, there is no loss in generality if we assume thiat 1. Our first
result in this section will show that the Neyman—Pearson problernp;faan be
reduced to the minimization of an ordinary expectation over a very limited glass
of functions. This clasg consists of all increasing step functioyis (0, co) —

[0, 1] that take at most one value i, 1). More precisely, eaclf € 4 can be
written as

f = IBHJO + Hll

for someg € (0, 1) and two disjoint intervaldp, J1 C (0, o) such that/y is either
empty or satisfie®[p € Jo] > 0. Here and in the sequel, we use the term interval
in a broad sense: an interval may also be empty or consisting of a single element.
Since f must be increasingj; must either be empty or unbounded to the right.
If both Jp andJ; are nonempty, then the right-hand endpoinfgmust coincide
with the left-hand endpoint af;.

Recall thatF, denotes the distribution function af under P and let us
introduce the function

k(Fy(x)), if F, is continuous at,
gr(x) = 1 Fo®
Fy(x) — Fp(x—) JF,(x-)

Consider the following variational problem:

k(t)dt, otherwise.

minimize E[gx(¢) f (¢)] among all increasing functionfs

(34) with 0< f < 1 andE[ef (¢)] = v.

It would be tempting to apply the classical Neyman—Pearson lemma to solv-
ing (34), but this approach would only work if the functigp(x) /x weredecreas-
ing in x, because otherwise we might not obtainmereasingsolution f.

THEOREMA4.1.

(@) If f* solves(34),then X* := f*(¢p) solves the Neyman—Pearson problem
for pg.

(b) There exists a functiofi* € g that solveg34).

(c) If f*is such thatf*(¢) solves the Neyman—Pearson problem gpythen
f* solveq(34).

(d) Ifthe solutionf* e ¢ of part(b)is unique withing up to(P o ¢~ 1)-nullsets
thenX* = f*(¢) is the P-a.s. uniqueos (¢)-measurable solution to the Neyman—
Pearson problem fopy.
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The proof of Theorem 4.1 is deferred to Section 5. Here we will first illustrate
how this result leads to explicit solutions of the Neyman—Pearson problem for
gquantile-based coherent risk measures. In order not to complicate the presentation,
we assume for the rest of this section that the distribution fundfjois continuous
and strictly increasing ofix > 0| F,(x) < 1}. Then the corresponding quantile
functiong, will also be continuous and strictly increasing. Wedgt0) := 0 and
gy (1) :=|lgllL~ < oo, and we define two function® andI” by

X X
®(x) ::/ go(t)dt and T'(x) ::/ k(t)dt, O0<x<1l
0 0
Then we take the unigug such that
CD(ZU) = l -V,

and define two functiong andR on A, :={(x,y) |0<x <z, <y <1} U
{(zv, 20)} by

0’ |f X=Zv=Y),
B(x,y) = { w, otherwise,
O(y) —P(x)

R(x,y) =B, MIC'(y) —T®)]+1-T).

COROLLARY 4.2. Suppose that the paix™*, y*) minimizes the functiom®
over the domaim\,, and letg* := B(x*, y*), a := q,(x*) andb := g, (y*). Then
X* := f*(¢) solves the Neyman—Pearson problemdprwhere

(35) 5= B"Tap) + Lip,o0)-

Converselysuppose thaf € ¢ is a.e. of the form(35) and solveg34). Then the
pair (x*, y*) := (Fy(a), F,(b)) minimizesk on A,. In particular, the Neyman—
Pearson problem fop, has a unigue solution if and only iR has a unique
minimizer onA,.

PrROOF  Itis straightforward to verify that a functiofi = Bllj, ») + Ijp,00) € §
satisfies the constraints in (34) if and only(if, y) := (F,(a), F,(b)) € A, and
B = B(x,y). An analogous computation shows th#tg; (¢) f(¢)] = R(x, y), SO
that the assertion flows from Theorem 4.1 and Proposition 2.7

The preceding corollary implies tha{p)-measurable solutions to the Neyman—
Pearson problem need not be unigue, even for genuinely nonadditive risk measures
and for price densities with a continuous distribution.

REMARK 4.3. In the casé = ¢,, we haveR(x,y) =v for all (x,y) € A,.
Hence eachfunction

=80, ap +1p oo fora=q,(x), b=qy(y)
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solves the Neyman—Pearson problem dgrand so does every convex combina-
tion of these functions.

Below, we will use Corollary 4.2 to obtain an explicit solution for the Neyman—
Pearson problem for AVgR As one may guess from Theorem 3.1, we will find
the dichotomyx™ = y* =z, or x* = 0 andy™ > z,. But before doing so, let us
show in the following example that the case:G* < y* < 1 can also occur.

EXAMPLE 4.4. Letus consider the case in whiglhas a uniform distribution
on (0, 2), so thalg, (t) = 2, ®(x) = x? andz, = ~/1 — v. We take

k=310 + Mljz,1),

wheret € (%, 1) andx is such that integrates to 1. With this choicE(x) < x2 =
@ (x) for all x € (3, £]. ConsequentlyR (zy, zy) = 1 —I'(z,) > v = R(0, 1) for all
1— &2 < v < 3/4. It follows that(z,, z,) does not minimizeR for those values
of v. Let (x*, y*) be a minimizer ofR on A,. Then the right-hand derivative of
x> R(x,y*)isequalto

I'(y*) —T'(x) )

ﬂ(xv y*)<2x (y*)z_xz —k(X)

Since this expression is strictly negative for small enougtihe optimalx* must
be larger than 0.

Let us now show that the case€ = 1 cannot occur if the parametéris
sufficiently close to% and 1— 52 <v< %. To this end, one verifies first that the
left-hand derivative of — R(x*, y) aty = 1 is given by

1-TI(x*
__gzz_k)
1— (x*)2
For 0< x < z, and z, < &, the function (1—TI'(x))/(1—x?) has a global
minimum atx = %, where it takes the valugf. On the other hand, tends to3

whené& goes to%. Thus, (36) must be strictly positive§fis not too large, and we
conclude thay = 1 cannot be optimal.

(36) (1 pt 1) 2

Let us now turn to the Neyman—Pearson problem for AVaRhere are various
ways of handling this special case. For instance, one can use the arguments of
the proof of Theorem 3.1 to reduce the problem to the variational problem (29)
for £(x) = x, which can then be solved via the classical Neyman—Pearson lemma.
Here we will use instead a computation based on Corollary 4.2.

As in Theorem 3.1, we will find a critical valug, such that the solution reduces
to the solution forp (—X) = E[X] as long a® < v,. Thatis, the solution provided
by the classical Neyman—Pearson lemma is optimal for capital levelsv; .
For v > v;, the solution will be a nontrivial convex combination of the classical
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solution at leveb, and of a risk-free unit investment. This critical value will be of
the form

v =1-=®(y),
wherey; € (1 — A, 1] is defined as the unique maximizer of the function
y+ir-1
@ (y)

Thus, ifg, (1) = llellL~ > 171, theny, € (1 — 1, 1) is the unique solution to the
equation

0,1]2y+—

Go () +A =1 =D(yy).

COROLLARY 4.5. The Neyman—Pearson problem fAvaR; has a unique
solutionX*. If v < v, then
X" =Tipy,00) (),
wherebg := q,(z,). If v > v, then the solution is given by
X* =%+ (1= )by, 00) (9),
whereg* = B(0, y;) andby = g, (y;). Moreoverwith C; := (y;, +A — 1)/ P (yy),
the minimal risk(23)is given by
(L—2zy)/A, if v <,

R(p(v)={l_ck(1_v)/)\’ if v>v,.

ProoFE It suffices to consider the case<Qv < 1. Fork = %I[[l_m), we have
AR(x,y) =B, M(y+A-DVO—-(x+1-1) VO]
+A—(y+r—1Vo0.
Let (x*, y*) be a minimizer ofR on A,, and suppose first th&t*, y*) # (zy, zu)-
Theny* > z, and
qu(x)

O(y*) — P (x)
Thus, we see tha(x, y*) and, henceR (x, y*) are strictly increasing im as long
asx < 1— A.If, onthe other hand; > 1 — A, then

%p(x)(y* —X) _ 1) <0
O (y*) — P(x) .

0
E Bx,y")=Bx,y")
x

a * *
ROy = ey
dx
Sox™ must be equal to either 0 g.
Let us now look for the optimat*, given thatx* = 0. We have
y+r—-1)vO

AR(O,y) =1 — (1—v) 50)
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Fory <1 — A, this yieldsR(0, y) = 1, which according to Lemma 2.4 cannot
be optimal. Fory > 1 — A, the choicgx*, y*) = (0, y,) will be optimal—but only
if y» > z, and unless the alternative choig€, y*) = (zy, zy) gives a better result.

If v, <zy, theny — R(O, y) has no minimizer or{z,, 1], and it follows that
(x*, y*) = (zy, zv) Must be the optimal choice. Note that > z, if and only
if v>uv,.

Finally, let us compare (0, y,) againstR(z,, z,) in case thaty, > z,. Since
vy > 1— A, we have

yit+a—1 yit+a—1

AR(O, =A—-(1-v)—=A—P(g))—
©.22) =750 o0

and
)\'R(Zva Zv) =)\' - (ZU +)\ - 1) V 0

Sincey; is the unique maximizer of the function— (x + A — 1)/ ®(x), we thus
see thatrR (0, y,) is strictly better tharR (z,, z,) and hencex*, y*) = (0, y,) as
long asy;. > z,. An application of Corollary 4.2 concludes the proof]

REMARK 4.6 (Comparison with value at risk). Consider the value at risk at
level A € (0, 1),

VaR, (—X) =inf{m e R| P[X > m] < A},

which is a quantile-based risk measure that satisfies all the assumptions of
Section 2 except for convexity (11). Denoti®y (v) the corresponding minimax

risk (23), we see thak™ solves the Neyman—Pearson problem for YaR

P[X* > Ry(v)] <X andE[pX*] > v. Thus, forv with z, > g :=g,(1 - 1), any

X that is concentrated ofp > ¢} and satisfies & X <1 andE[¢X] > v solves

our problem and has risk, (v) = VaR,(—X) = 0. Forz, < g, there is a unique
solution of the form

X*= I’]I[O,q)(([)) + H[q,oo) (9),

wherer = R, (v) is determined by the budget constraiifpX*] = v. This
solution is similar to the one for AVaR but involves different parameters.

REMARK 4.7. It follows from the results of Kusuoka [20] and Delbaen [7]
that, for a quantile-based coherent risk measyyethe set functionv,(A) :=
or(—14) is a 2-alternating Choquet capaticity. Therefore, the Neyman—Pearson
problem forpy falls within the range of the Neyman—Pearson lemma for capacities
as proved by Huber and Strassen [16], and our results can be interpreted in terms of
the Radon—Nykodym derivative of the measuré P* := ¢ d P with respect to the
capacityvg. In the case of AVaR we get forf|g|| L~ > A~ thatr =c- ¢V g, (1)
for some constant > 0. It is shown in [16] thair = df’/on for someQqp € @;,
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and we getc - ¢ V q,(yx) = ¢ - dP/dQ. Using our formulae fory,, one easily
obtainsc = 4, that is,

7w =x(p Vv ap()).
This extends earlier results by Rieder [23] and Bednarski [2].

5. Proof of Theorem 4.1.

PROOF OF PARTHa) AND (c). As in the proof of Proposition 2.5, we see that
gk(qy) = Exlklg,], wherel denotes the Lebesgue measurg@l). Hence, for
any increasing functiorf : [0, co) — [0, 1],

1
p(—f (@) = fo k(1)q 7 () (1) dt

1
- fo 2@y (1) £(qu (1)) dr

= Elgr() f (p)],

where we have used (20) in the second step. Applying Lemma 2.4 and Proposi-
tion 2.5 yields (a) and (c). O

The proof of parts (b) and (d) requires some preparation. To illustrate our idea
of solving (34), suppose first that the price density has a continuous distribution.
Then we may, without loss of generality, restrict our attention to right-continuous
increasing functiong : [0, o) — [0, 1] in (34). Via f(x) = v([0, x]), any such
function f can be identified with a unique subprobability measuren [0, co)
and vice versa. Fubini’'s theorem implies that

Elgu(@) f(@)] = / G (v (dx)
and
Elof ()] = / G p(X)V(dx),

where Gi(x) = E[gi(p); ¢ = x] and Gy(x) = E[p; ¢ > x]. Thus, (34) is
equivalent to minimizing the integrgl G (x)v(dx) over the convex sef of all
subprobadility measures on [0, co) that satisfy the constraint

/ Gy(x)v(dx) =v.

Our strategy of solving this moment problem is to identify the extreme poins of
as those subprobability measures that correspond to functi@ha ghand to show
that it suffices to minimizg G (x)v(dx) among such extreme measures
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If the distribution ofy is not continuous, the problem becomes slightly more
involved. This is mainly due to the fact that we may no longer pass to a right-
continuous (or left-continuous) version 6f We may only suppose thdtis right-
continuous on the s¢0, co) \ D, whereD denotes the set of discontinuity points
of F,. Nevertheless, it will be possible to identif§ with a certain measure
living on a larger spacé D [0, co), in which each point inD occurs twice. Our
problem (34) will then turn out to be equivalent to a certain moment problem for
these measuras Once this identification has been achieved, the extreme points
of the set defined by the moment constrainvaran be identified by using general
results like those proved by Winkler [25]. In our simple situation, however, we will
avoid using the general theory. Instead, we will give a short and straightforward
argument in identifying the extreme points.

Define a probability measuge on [0, co) by

u(A):=Elgp; p € A],

and denote by the convex set of all increasing functioris [0, co) — [0, 1] that
are right-continuous o®*“ and satisfy the constrairftf du = v.

LEMMA 5.1. The set of extreme points Gfis given by

(37) extC=CnNg.

PROOF  First we show the inclusiom in (37). So suppose thgte C N ¢,
is of the form f = g1, + I, and can be written ag = Af; + (1 — 1) f> for
certainf; € C andx € (0, 1). Since 0< f; <1, we getimmediately thaf; =0 on
(JoU J1)¢ and f; = 1 on J1. This proves thaf is an extreme point ifly is empty.
Now suppose thafp is nonempty. Them(Jo) > O by the definition off. Since
both f1 and f> are increasing, eacfi must be equal to some constahte [0, 1]
on Jp. But then the conditiong f; djx = v andu(Jp) > 0 imply g1 = B2 = 8 and
inturn f1 = fo = f.

For the proof of the inclusiort in (37), it will be convenient to identify a
function f € C with a suitable subpbability measurer. To this end, we first
define a subprobability measurg on D by

vp =Y (fx+) — f(x))8s.
xeD

Then we let

fp(x):=vp([0,x)) and fe(x):=f(x)— fp(x),  x=0.

Note thatf, is right-continuous and increasing. Hence, there exists a subprobabil-
ity measurev. on [0, oo) such thatf.(x) = v.([0, x]).

Now think of the setD as beingseparatefrom [0, co), and consider the set
S :=1[0, 00) U D, on which every discontinuity point gf is representedwice.



1420 A. SCHIED

Our function f gives rise to a subprobability measureon S defined for Borel
setsA C S by

V(A) :=v:.(AN0,00)) 4+ vp(AN D).

Conversely, any subprobability measureon the Borel field ofS gives rise to
an increasing functiory’ on [0, co) that is right-continuous except possibly at
discontinuity points ofu: simply let f(x) :=D(Ay), whereA, :=[0,x]U{y €
D]y < x}. Note also thaff = f if and only if v = 7.

By means of Fubini’s theorem, we find thatf du = [ G dv, whereG is the

function onS§ defined by

f 0
(38) ) = w([x, 00)), or x € [0, 00),
u((x,00)),  forxeD.

Hence,C can be identified with the set of all subprobability measuwres S such
that [ G dv =w.

Let us now consider the case in which suyfix) =1, corresponding to
v(S) =1. Supposef takes more than one value i0,1). Then S can be
decomposed into three disjoint setg, A2, A3 such thata; := v(A4;) > 0. Let
alsob; := fA; G dv, and denote by|4, the measure|a, (A) := v(A N A;). For
coefficientsy; > 0, the measure

V1 i=0a1v]a, +a2v|a, +a3v]a,
will correspond to an element @f provided thaty; > 0 and
a1a1 +azaz +azaz =1,
o1b1 + a2bs + azbz = v.

Clearly, this system of linear equations is solved by the vedidt, 1) but admits
also another, different solutio, a2, 3) with 0 < «; < 2. But theny; :=2 — o;
defines yet another solution. Letting

V2 1= y1V|a, + ¥2v|a, + V3V|as,

we have found two measures, v corresponding to two functiong;, f> in C
such that

v =731+ v2)
and, hence,

f=3(fi+ f2).

Thus, f cannot be an extreme point 6f

Next, we turn to the case in whicfi € C satisfies supf(x) < 1. Then the
corresponding measuteis a true subprobability measure(S) < 1. If f takes
more than one value g0, 1), thenv puts positive charge on two disjoint sets
A1, A2, of which we may assume thdt U A> = S. Letting again; :=v(A;) >0
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andbp; = fA’, Gdv, we see thavy := a1v|4, + a2v|a, Will correspond to some
function f1 € C provided thaty; > 0 and

a1a1 +oazaz =m,
(39)

a1b1 + axbz = v,
wherem may be any number between 0 and 1. The ve¢iod) solves (39)
for m = v(S) < 1. If (39) admits also other nonnegative solutions, then we can
argue as in the casgS) = 1 that f is not an extreme point af . If the solution
to (39) is unique, we take > 0 such that the numbers,. := v(S) + ¢ belong to
[0, 1] and such that the solutior@sf, azi) corresponding taz+ have nonnegative
components. Then the measures= OlitV|Al + a2iv|A2 correspond to functions

f+ € C such thatf = %(f+ + f-), and sof is not an extreme point af .

Finally, consider a functiorf € C of the form f = g1 ;,+1,,, whereg € (0, 1)
but the intervallp is au-nullset. In this casej can be changed arbitrarily without
violating the condition/ f diu = v, and sof cannot be an extreme point6f [

LEMMA 5.2. The setC admits an integral representation with respect to its
extreme pointsFor every functionfp € C, there exists a probability measugeon
C N g, defined on ther-algebra generated by the mags— f(x), x € (0, 00),
such that

fo= /C ).

PrRoor Consider the affine coding of a functighe C by a subprobability
measure on S as introduced in the proof of Lemma 5.1. By adding an additional
point d to S, we can uniquely extend to a probability measure ofi:= S U {3}.

The functionG defined in (38) will be extended tHby letting G (3) := 0. ThenC
can be identified with the séf of all Borel probability measureson S such that

[ Gdv =v. Corollary 3 of [24] states thall enjoys an integral representation,
which then carries over t6 by means of Fubini’s theorem[]

PROOF OF PARTS(b) AND (d) OF THEOREM 4.1. In proving (b), our task
is to minimize E[gx (@) f (¢)] = [ gf du over the seC, whereg(x) = gx(x)/x.
Let fo be a minimizer inC [which must exist, e.g., by Proposition 2.5 and part
(c) of Theorem 4.1] and consider the integral representafica fcmg fn(f) of
Lemma 5.2. Then, according to Fubini’'s theorem,

[sfoan= int [eran.

fesupp
so that there must also be a minimizeldm g.
(d) According to the argument in the proof of part (b), uniqueness of
solutions inC N ¢ implies uniqueness id'. Moreover, by Proposition 2.5, every
o (p)-measurable solutiorX* is of the form X* = f*(p) for some function
ffecC. O
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