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We study a general perturbed risk process with cumulative claims
modelled by a subordinator with finite expectation, with the perturbation
being a spectrally negative Lévy process with zero expectation. We derive
a Pollaczek—Hinchin type formula for the survival probability of that risk
process, and give an interpretation of the formula based on the decomposition
of the dual risk process at modified ladder epochs.

1. Introduction. The classical Cramér—Lundberg model in insurance as-
sumes that the risk proce&B(t), ¢ > 0) is given byR(t) = ct — vaz(i) Y;, where
¢ > 0 is the premium rate(Y;, i € N) is an i.i.d. sequence of nonnegative ran-
dom variables modelling individual claims, aQd (z), ¢+ > 0) is a homogeneous

Poisson process of rate> 0, independent ofY;, i € N). Hence the cumulative
claim process is modelled by the compound Poisson progégg Y;. Let F de-
note the distribution function of;, and letu = EY;. The central question for the
model is the computation of the ruin probability in infinite time, given initial capi-
tal x > 0, defined by

¥ (x) :=P(R(t) + x <0 for somer > 0).

In casec < Apu, this quantity is identically equal to 1. Hence, one always assumes
the net profit conditionc > Au, and defines the parameter:= Au/c < 1.
Instead of studying the ruin probability, one can equivalently consider the survival
probability 6 (x) := 1 — ¢ (x), which is more convenient. One of the few explicit
results for the survival probability is the Pollaczek—Hinchin formula:

(1.1) 0(x)=1—p) Y p"Fi*(x),
n=0
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where F;(x) = (1/w) o (1 — F(t))dt is the integrated tail distribution. For-
mula (1.1) is usually derived via renewal arguments. The resulting integro-
differential equation for® is solved using Laplace transforms. The explana-
tion of the formula is given by considering the supremum of the dual process
R(t) := —R(1). By the net profit conditionR(¢) drifts to —oo, hence the supre-
mum is a.s. finite, and clearlg(x) = P(SUR)~; - oo R(t) < x). Itis easy to see that
SURy~; -, R(7) is a sum of geometrically many i.i.d. random variables. It is not,
however, quite as easy to determine the distribution of these variables. Usually
fluctuation theory is used. We refer the reader to [1] and [9] for details.

In this paper we are interested in generalizations of the Cramér—Lundberg
model, which lead to the same type of the Pollaczek—Hinchin formula for
the survival probability, and which admit an explanation of the formula by
decomposition of the supremum of the dual process in the random sum of ladder
heights. One possible generalization of the model is to allow for additional
uncertainties in the cumulative claims and/or in the premium income. These
uncertainties may be the result of fluctuations in the claim arrival intensity, the
number of insurees, inflation or surplus investment (see [9], page 568). Dufresne
and Gerber [3] considered the risk procéRsr), r > 0) perturbed by a multiple
of standard Brownian motiotW (¢), ¢ > 0), and definedX (r) := R() + c W (¢),
¢ > 0. Using renewal arguments, they derived the formula

o0
(1.2) 0(x)=(1—p) Y p"(G"D* 5 F*)(x).

n=0
The parametes and the distribution functiof; are the same as in the unperturbed
model, whileG is an exponential distribution function with parameter 22. They
also gave the following interpretation of the formula (1.2): betoo, ... be the
moments when a new supremum of the dual procéss := —X (1) is reached
by a jump of the claim procesgf\':(i) Y;. Then the number of such moments
has geometric distribution with parameigrG is the distribution function of the
supremum of)?(t) just beforeos, and F; is the conditional distribution of the
overshoot over the previous supremum, giggnr< co.

Furrer [5] considered the proceX¥sr) = R(¢) + Z,(¢), whereRr is the classical
risk process, and,, is ana-stable Lévy process with no positive jumpss r < 2.

He used the explicit formula for the Laplace exponent of the infimuX @§ due
to Zolotarev [13] to obtain formula (1.2) for the survival probabilityXz). The
distribution functionG is explicitly identified as the Mittag—Leffler distribution
given by 1— G(x) = X2 o(—cx* 1"/ T (1 + (a — D)n).

Schmidli [11] gives a nice interpretation a& as the distribution of the
supremum of the dual proceXsjust before the first time the proce¥sexceeds its
previous supremum by a jump of the cumulative claim process. His setting is more
general in the sense that the cumulative claim process is generated by a stationary,
ergodic, marked point process.
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Another possible generalization of the classical risk process is to allow a
different cumulative claim process. Dufresne, Gerber and Shiu [4] considered the
model in which the claim process was modelled by a Gamma process. Such a
process has infinitely many jumps in finite intervals. Yang and Zhang [12] studied
this model perturbed by a Brownian motion. Using the approach in [5], they
derived a formula of the type (1.2) with; replaced by an exponential integral
type distribution, and; is again the exponential distribution.

The goal of this paper is twofold: (1) to extend the Pollaczek—Hinchin formula
to the more general setting of the spectrally negative Lévy processes while
retaining the risk insurance theory interpretation; (2) to give a unified and
transparent approach to the problem by use of well-developed and powerful
fluctuation theory for Lévy processes. We will consider a general perturbed risk
processX (t) = ct — C(t) + Z(¢), where (C(¢), t = 0) is a cumulative claim
process, andZ(z), t > 0) is a perturbation. Note that the cumulative claim process
has to be increasing. Therefore, if one wants to stay in the realm of processes with
stationary independent increments, the only choice for modellihg), r > 0)
is subordinators. Hence, we assume i{@at), r > 0) is a subordinator (without
drift) having finite expectation satisfying the net profit conditior EC (1) > 0.

The perturbation is modelled by a Lévy proc&€gsr), ¢+ > 0) with no positive
jumps, having zero expectation. The assumption that the expectation is zero is
inconsequential, sincBZ (1) can always be moved to the premium rate. In the
analysis of the risk procesX (¢), r > 0), we will rely heavily on fluctuation theory

for general Lévy processes, which is particularly explicit for processes with no
positive jumps. For background on these results, we refer the reader to the book by
Bertoin [2].

Our first result is the formula for the survival probability for the procéss
which is proved in Section 3:

6(x) ::P( inf X(@) > —x)
O<t<oo
1.3) 00
=1—p) Y p"(G"V* 5 H™)(x).
n=0

We essentially follow the approach from [5], and obtain explicitly the parame-
ter p and the distribution function§ and H appearing in the formula. It turns out
that G can be identified as the distribution function of the absolute supremum of
the process—ct — Z(t), t > 0), while H is related to the subordinat6r(z) only,
and can be thought of as the integrated tail distribution of jumps. In Section 4 we
give an interpretation of formula (1.3) by decomposing the supremum of the dual
processX () := —X () into the random sum of modified ladder heights. In order
to do this, we first show that the times when the new supremufmjfis reached
by a jump of the subordinator are discrete. Let 01 < o2 < - -- be those times,
and letG be the distribution function of(o1—), whereS(r) := supy.,, X(s).
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We show thatS(c1—) and the overshodf(c1) — S(o1—) are conditionally inde-
pendent giverr; < oo, and identify the conditional distribution of the overshoot
with H. Using the strong Markov property at times we rederive formula (1.3)

with G instead ofG (and the same). This clearly implies thaG = G, yield-

ing the required interpretation. Our results are more general and cover the results
obtained in [5], [12] and [11] (in Lévy case).

Another interpretation of formula (1.3) is provided by looking at the ladder
height process ok'. The ladder height process is obtained by time-chan§iiny
by the inverse local time at zero of the reflected proc®ss— X (¢). This process
records only values where the new supremum is reached, and consequently,
contains all the relevant information on the distribution of the supremukn(of.

In Section 5 the results of Section 4 are reinterpreted and improved in terms of the
ladder height process.

We end this Introduction by noting that in a very recent paper Kluppelberg,
Kyprianou and Maller [7] study ruin probabilities for general Lévy insurance risk
process (not necessarily spectrally negative) drifting—tso. They are mostly
concerned with the asymptotic results for the first passage time and overshoot
behavior at high levels.

2. Setting and notation. Let (2, ¥, P) be a probability space on which all
random variables will be defined. As explained in the Introduction, we model the
cumulative claim process by a subordinatd= (C(z), t > 0) without a drift.
Letv be the Lévy measure @f; that is,v is ac -finite measure o0, co) satisfying
f(o,oo) (x ADv(dx) < oo. The Laplace exponent @f is defined by

bc(p) = / (1— e Pyu(dx)
(0,00)
so that

Elexp{—BC(1)}] = exp{—tDc(B)).
Note that

EC(1) = ®-(0+) =/(0 xv(dx) :/OOOv(x,oo)dx,

,00

where the last equality follows by integration by parts. As explained in the
Introduction, we assume throughout tiaf (1) < oco. Let

1 X

Then H is an absolutely continuous distribution function with dengity) =
v(x, 00)/EC(1). We call H the integrated tail distribution. The Laplace transform
of H is given by
_ 1 9B

EC(1) B

(2.2) LHB) = /Oooe_ﬁxH(dx)=/(;ooe_’3xh(x)dx
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LetAC(t) = C(t) — C(t—). ltis well known thatt AC(¢) : t > 0) is a Poisson point
process with characteristic measurand state spac@®, co) U {3}. The cemetery
stated is added to keep with the standard definition of a Poisson point process
(cf. [8], page 435). It is assumed that the process is in statbenever there is no
jump andv({d}) = 0. Moreover, one ha€ (1) = > g_,; AC(s).

We model the risk proces = (R(r), t > 0) as R(t) = ¢t — C(t), where
¢ > 0 is the premium rate. TheR is a Lévy process with no positive jumps (i.e.,
spectrally negative Lévy process). The Laplace expoiignof R is defined by
relation

E[exp(BR(1)}] = exp{tyr(B)}.

Clearly, ¥ g (B) = ¢ — ®c(B). It is important to note thak(¢) stays positive in
a neighborhood of = 0, implying that ruin (with zero initial capital) does not
occur immediately. This follows from the fact that limg C(r)/t = 0 ([2], page
84 or 192). From now on we assume that the net profit conditierfEC (1) holds,
and letd :== ¢ —EC(1). It follows thatER (1) = ¥;(0+) = d > 0, which implies
that R drifts to +o00. We also introduce the paramejer=EC(1)/c € (0, 1).

The perturbatior¥ = (Z(¢), t > 0) of the risk proces® will be modelled by a
spectrally negative, mean zero, Lévy process. Its Lévy med$yris an infinite
o -finite measure oi—oo, 0) satisfying the usual condition

2.3) / (x2 A D4 (dx) < o0,
(—00,0)
and the additional condition
(2.4) / |x|TTz(dx) < o0,
(—OO,—l)

which ensures finite expectation Bf The Laplace exponent ¢f is given by

S.2
(2.5) V2B =S B2+ / (¥ —1— )Tz (dx).
(—00,0)

where ¢ > 0, and integrability of the integral follows from condition (2.4).
Further,EZ(1) = ¥/, (0+) = 0 (e.g., [10], page 163). Note that we allavto
be identically zero (bothl; = 0 and¢ = 0). However,Z cannot be compound
Poisson because such processes cannot Bae) = 0. Let us point out that
our setting includes the Brownian perturbation= 0, I1y; = 0), and also the
perturbation byw-stable spectrally negative Lévy process &€ (1,2) (¢ =0,
Mz(dx) = (a/Ix|*™)1(c00) dx).
Finally, we define the general perturbed risk procgss (X (), t > 0) as

X(@):=R(O)+Z({t)=ct —C() + Z(),

whereC andZ are independent processes. The proéegsa spectrally negative
Lévy process with finite positive expectatidX (1) = ¢ — EC(1) =d > 0.
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Therefore, lim_ o X (1) = +o0o a.s., that is,X drifts to infinity. Let #9(¢) :=
o(C(s),Z(s),0<s <1), and letF = (¥ (t), t > 0) be the filtration obtained
in the usual way by augmenting®(r). Clearly, X (1) is F (1)-measurable. The
Laplace exponent of X, defined by the relation

Elexp(BX (1)}] = explty (B)},

is, due to independence 6fandZ, given by

V(B)=cf —Pc(B)+vz(p), B =0.

Sincey is strictly convex and)’(0+) = EX (1) > 0O, ¥ is strictly increasing on
[0, 00), and therefore has a strictly increasing invetsg0, co) — [0, 00). Since
¥ (0) =0, it follows that® (0) = 0.

In the sequel, we will be interested in the functi®n0, co) — [0, 1] defined
by

(2.6) 0(x) :=P(X(t) > —x, forallz>0).

This function is the survival probability of the general perturbed risk process
X starting with the initial capitat > 0. The initial behavior ofX determine® at
zero. If there is no perturbation, that is Xf= R, then, as said beforé&, remains
positive (a.s.) for an initial period of time, and hem®g®) > 0. On the other hand, if

Z # 0, thenX is of unbounded variation, hence the point 0 is regulaxfeso, 0)

([2], page 192). ThugX hits the interval—oo, 0) immediately, implyingd (0) = 0.

3. Laplace transform approach. In this section we derive the Pollaczek—
Hinchin formula for the survival probability using the explicit form of the Laplace
transform of the absolute infimum &f. Let 7 (0co0) :=info<s<co X (s) andI () :=
info<s<; X (s). The fluctuation theory for Lévy processes provides the following
formula for the Laplace transform of the infimum evaluated at an independent
exponential timer (¢) with parameter; > 0 (see [2], page 192):

q(@(q)—B)

E I = , 0.
[exp{B1(z(g))}] @) G —vB) B>
Lettingq | 0, and using (t(q)) £ 1(00), it follows that
/ B B
3.1 E 1 =y'(0+)—— =d——, 0.
(3.1) [exp{B1(c0)}] =¥ ( +)w(ﬂ) ) p >

Let us introduce for a moment the following notatioxi(+) = ¢t + Z(¢) and
Yy (B) =cB + ¥z(B). By the same argument as above it follows that

@2 E[exs| (-~ nr vo)}] =i (OHwyﬂ(ﬂ):Cvfyﬂ(ﬁ)’ p=0
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Let G denote the distribution function of info<; oo Y (1) = SUR)</ <00 (—Ct —
Z(1)). Then the last formula says that

e o —Bx _ 18
(3.3) LG(B) .—/0 e "G (dx) _CWY(ﬂ)’

Recall formulae (2.1) and (2.2) from Section 2:
H(x):= (1/IEC(1))/0 v(y,00)dy and LH(B)=dc(B)/(ECQ)B).

Also recall thatp = EC(1)/c, henced/c = (¢ — EC(1))/c =1 — p. Now we
computedp /v (B) in terms ofp, LG andL H. This idea comes from [5]:

d p =d !
v(B)  Yr(B)/B—Ddc(B)/B
1
=d
¢/LG(B) —EC(L)LH(B)
_d LG(B)
~ c1-pLGB)LH(B)

=(1—p)LGB) Y. (pLGB)LH(B))".

n=0

By inverting the Laplace transform, we obtain the following theorem.

THEOREM3.1. Thesurvival probability of the general perturbed risk process
X isgiven by
6(x) =P(I(c0) > —x)
(3.4)

o0
=1—-p) Y p"(G"D* % H™)(x), x>0.
n=0

We point out thatd depends only on the subordinator while G depends
on the premium rate and the perturbatiorZ. Brownian perturbations were
considered in [5] and-stable ones in [3] and [12]. In both cases the distribution
G is given explicitly. If there is no perturbatior, = 0, thenLG(8) = 1, and
consequently, the distribution functi@n can be omitted from formula (3.4).

4. Decomposition of the supremum of X. Let X(1) := —X(t) = —ct +
C(t) — Z(¢) denote the dual process &f Let

S(t):= sup X(s) and S(co):= sup X(s).

O<s=<t O<s<oo



RUIN FOR PERTURBED RISK PROCESSES 1385

SinceX drifts to —oo, S(c0) < oo a.s. Introduce the following notatiod(r) :=
info<s<; X(s) and S(7) := sup,, X(s). Clearly, —1(z) = S(t). By a time

reversal argument; 1(1) < S(r) — X(t), and hence
(4.1) St — X)L s(1).

In this section we give a decomposition &f at certain stopping times which,
following Schmidli [11], we call modified ladder epochs.

Let 2(F) be the predictable-algebra onR x © with respect to the filtra-
tion F introduced in Section 2. LeB; be the Boreb -algebra on(0, oo) U {3}.
If #6:R; x Q x ((0,00) U{d}) — R, is a nonnegative process measurable with
respectto? (£) ® By, then the following compensation formula is valid (e.g., [8],
page 439, or [2], page 9):

E( Yo H( o, AC(LM))

0<t<oo

:E(/O dt/(ovoo)v(a'e)ﬂ(t,w,s)).

The first use of this formula will be to compute the expected number of times the
new supremum oK is attained by a jump of a subordinatGrover the previous
supremum. Note that this is the case if and onl& @ (z) > St—) — X (t—).

(4.2)

THEOREM4.1. Thefollowing formulais valid:

) _ ECc()

(4.3) E( > Yacoh»3u-)-Xao) c—EC)’

O<t<oo
PROOF  Take #(t,w, &) := L5 w)—R(1—.w).00) (&) IN the compensation

formula. The left-hand side in (4.2) is then precisely the left-hand side in (4.3).
For the right-hand side in the compensation formula, compute

E( /0 di /( O’OO)v(ds)]l(g(t_)_)?(,_)’oo)(5))
» :E(/O dzu(S(t—)—X(t—),OO))
— [TEpGS0-X
/O [(S(r) — X (1), 00)] dt

_ /O T AE[(S(), 0],
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where the third line follows by continuity in probability of, and the fourth line
by (4.1). Clearly, the last expression is equal to the monotone limit

. o0 _qt
qlanO e dtE[v(S(1), 00)]

t
_q“Lan/ ge " dtE[v(S(1), 00)].

(4.5)

Let 7(g) be an exponential time with parametgindependent o andZ, and
let F denote the distribution function df(z(g)). Then F is exponential with
parameterb (q). It follows that

/OOO ge " dtE[v(S(1), 00)]

= E|:/Oooqe_q’dt v(S(), oo)]

(4.6) =E[v(S(r(¢)), o0)]
o0
:/ v(x, 00)F(dx)
_/ d>(£1)x v(dx)
where the last equation follows by integration by parts. Further,
— o P(@)x
jim 2= i 2@, 1
q—0 q -0 ¢ v'(0+) d

By the monotone convergence theorem,
o0
lim e " dtE[v(S(1), 00)]
q—0Jo
001 — e—d)(q)x

= lim —v(dx)
q—0J0 q

1 roo
= 5/0 xv(dx)
EC1)

T c—EC)
This proves formula (4.3).O

(4.7)

REMARK 4.2. We would like to emphasize a very important and somewhat
subtle point which is a consequence of Theorem 4.1. Namely, the epochs when
a new supremum oX is reached by a jump af are discrete, and, in particular,
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neither time 0 nor any other time is an accumulation point of those epochs. More
precisely, let us define

(4.8) or=o0:=inf{r>0:AC@t) > S(1—) — X(t—)},
and inductively,
(4.9) ont1:=inf{t >0, AC(r) > S(t—) — )A((t—)}

on{o, < co}. Theorem4.1limplies that > 0 a.s. and, < 0,11 a.S. oo, < 00}.

As a consequence, we can order the epochs when a new supremum is reached by a
jump of a subordinator asQ o1 < 02 < --- a.s. The decomposition of and the
ensuing derivations will depend on this result in a crucial way.

Fory >0, let?, :=inf{t > 0:X(t) > y} be the entrance time of in (y, c0),
and, similarly,t, := mf{t > 0:X(t) > y}. Note thatS(z—) < y if and only if
t <7,. We need the expected occupation time formula for the reflected process

S — X befores A 7.
PROPOSITION4.3. For x > 0andy > 0, thefollowing formula is valid:

ONTy _ x
PROOF  We first compute the expected occupation timé ef X belowx:
o0 o —~ —~

(4.12) —/ P(S(r) < x)

=Ert,.

Since(ty, x > 0) is a subordinator with the Laplace expondntit follows that
Et, = (Etp)x = ®'(0+)x = x/d.

Now we compute the expected occupation timeSof X below x after time
oV Ty

0
E /O 13w-2m<0le=0 10>y 9t
o0
()'\/Ty
0
(4.12) =PloVvT < oo)E[/ 1 E0-%w<ndtlo VT < oo]
(7\/‘1,’}v
. 0
=Plo VT < oo)E/o L54)-%@)y<x) 4t

=P(oc <00,7y < oo)g.
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To justify the passage from the third to the fourth line, note tat 7, is a
stopping time at whichX reaches a new maximum, and hence by the strong
Markov property, the reflected proce$s- X starts afresh from 0. Similarly,

o0 . X
Subtracting (4.12) from (4.13), it follows that
o0 R X
(4.14) E fo 1502020 Loz LSy 4t = P0 = 00,8, <00) .
One can prove similarly that

o b
Finally, (4.10) follows by subtracting (4.14) from (4.15)1

_Note that the proposition says that the expected occupation time measure for
S — X beforeo A 7, is proportional to the Lebesgue measure[0o). Hence,
formula (4.10) is by definition of the expected occupation time measure equivalent
to

UA?,V o~ —~ ]P = A, =
(4.16) E/O F(3@ - X)) dr = ¢ ooc} Ty =00)

where f is a nonnegative Borel function @A, co).

Let J := (AC(0) — (S(0—) — X(6—)))1(s <o) be the overshoot at time. In
the next proposition we compute the preliminary version of the joint distribution
of the vector(S(c—), J, S(c—) — X(c—)) on{o < oo}.

[ s,

PrRoPOSITION4.4. For x,y,z >0,

P(S(c—)<y,J >x,5(c—) - X(0—) >z, 0 < 00)
(4.17)

_ P(o=00,7y =00)

[e.e]
v(u,o00)du.
d —/x+z ( )

PrROOF We use the compensation formula with
H(t,w, )
=10 020 LBu— 0~ —0)>0Le=0@) L1450 0) - R 1—0),00) ()
Then
E Y H(t.0,AC(, »))

0<t<oo

=P(S(c—)<y.S(6—)—X(c—)>2z,J >x, 0 <00).
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On the other hand,
o0
IE(/ dt/ v(de)ﬂ(t,w,g))
0 (0,00)
o
- E(/O dt E(E(f—)f)‘)]l(§(z—)_)?(,_)>z)
X/ ]l(x+§(t—)—)?(t—),oo)(E)U(de))
(0,00)

O ATy R R

_ P(o=00,7y =00)

0
/0 L(z,00) () v(x +u, 00) du

d
]P) — A,: ¢}
— (0 =007 oo)/ v(u, 00)du,
d x+z

where the fourth line follows from (4.16) witlfi(u) = 1(; o0)(u)v(x +u, 00). O
From formula (4.17) we can easily derive several useful corollaries.

COROLLARY 4.5. Thefollowing formulae are valid:
(4.18) P(o < 00) = p,

1 00
(4.19) IP’(J>x|a<oo):m/x v(u,00)du=1— H(x).

PROOF Letx — 0,y — oo andz — 0in (4.17). It follows that

P(c < 00) = @EC(D.

Solving forP(o < o0), we get (4.15). To obtain (4.19), let— oo andz — 0 in
(4.17). It follows that

P(o = o0
P(J >x,0 <o0) = u/ v(u,o0)du.
d x
By conditioning,

1—p [
]P’(J>x|a<oo)=—/ v(u, o0)du
pd Jx

_i/w( Vd
_EC(l) i v(u,o00)du. ]

In the next corollary, we interpref(c—) as the absolute supremusitoo) in
cases = 0.



1390 HUZAK, PERMAN, SIKIC AND VONDRACEK

COROLLARY 4.6. The event {o < oo} and the random variablg S(oc—) are
independent. As a conseguence, the conditional gistribution of S(o—) given
o < oo isequal to the unconditional distribution of S(o—).

PROOFE Letx — 0andz — 0in (4.17). It follows that

]P’(E(a—) <y,0 <00)

(4.20) =P(oc=00,7) = oo)@
=P(o = o0, S(o0) < y) EC;]-).
Clearly,
P(S(o—) <y,o0 =00) =P(85(c0) < y, 0 = 00).
Adding up,
P(S(o-)<y)= (@ + 1)P(§(oo) <y,0 =)

= 2]P’(§(oo) <y,0 =00).
Therefore,

P(S(o—) < y)P(o < 00) = 2[[”(§(oo) <y, 0 =00) IECC(l)
= @P(E(oo) <y,0 =00)
=P(S(c—) <y,0 <o)

by (4.20). O

It follows that

P(o = 00, Ty = 00) =P(0 = 00, S(o0) < y)

=P(o = o0, S(o—) < y)
(4.21) N
=P(oc = 00)P(S(o—) < ylo =00)
=P(0 = c0)P(S(oc—) < ).
Let G denote the distribution function of(c—). Proposition 4.4 can be now
improved as:
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THEOREM 4.7. The distribution of the vector (S(o—), J, S(c—) — X(o—))
onthe set {o < oo} isgiven by

P(S(o—) <y,J >x,8(06—) = X(0—) >z, 0 <00)

1 00
EC() Jx+-

(4.22)

= P(§(U—) < y)( v(u, 00) du)IP’(cr < 00).

Moreover, S(o—) and J are conditionally independent given o < oo, and
(4.23) P(S(oc—)<y,J >xlo <o0)=G(y)(1— H(x)).

REMARK 4.8. Formula (4.22) considerably extends the severity of ruin
formula (see, e.g., [9], page 168).

It is now possible to write the absolute maximum ®fas a random sum of
modified ladder heights. Recall that = o and
Opr1=inf{t > 0, : AC(t) > S(t—) — X (1—)}

on {o, < 00}. Let Lg := S(o1—), J1 := S(o1) — S(o1—) and L1 := S(op—) —
S(o1) on {o1 < 00}, and so on. We callg, J1, L1, ... the modified ladder heights.
LetalsoN := maxn : o, < 0o}. By strong Markov property of , N has geometric
distribution with parametdP(o1 = 00) = 1 — p. Clearly,

(4.24) S(e0)=Lo+Ji+Li+--+Jy+Ly.

See Figure 1. R N
Note thatP(Lg < x, N =0) =P(S(c—) <x,0 =o0) = G(x)(1 — p). For
everyn € N, by the strong Markov property af,, and by (4.23), we have

P(Lo+Ji+Li+-+J,+L, <x,N=n)
= (1= p)p" (G H™) ().

This leads to the Pollaczek—Hinchin formula for the distribution functiosi(e®).

THEOREM4.9. For x >0,

(4.25) P(S(00) <x) = (1—p) Y p"(G" V% % H™)(x).
n=0

Equating this formula fof (x) = P(S(c0) < x) and (3.4), one obtains

(1—,0) an(G(n+l)* % Hn*)(x) — (1—,0) an(é(n—i—l)* *Hn*)(x)
n=0 n=0
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8(c0)
L2 8(c,)
J2 |
8(c,")
L1
8,)
. A
8(,-) . |
LO 1 \vAuM f ‘
OW\W\/H\J o, M\\M/\ G, t

Fic. 1. Atrajectory of the dual process X(t)=—ct+C@#t)+ cW(), where C(¢) isa compound
Poisson process, W (¢) is a standard Brownian motion and ¢ > 0.

By computing Laplace transforms of both sides, we get that

A—p)LGB)  (A—=pLGPB)

(4.26) = ~ :
1-pLGBLHPB) 1—pLGB)LH(P)

B >0,

from which itimmediately follows that: = G. Thus we have proved the following

COROLLARY 4.10. Therandomvariables

sup (—ct —Z(r)) and  sup (—ct+ C(r) — Z(1))

0<t<oo O<t<o

have equal distributions.

5. Decomposition of the ladder height process. In the previous section
we looked at the procesk at the modified ladder epocks < o7 < ---, and
essentially decomposed th at these epochs. In this section we consider the
ladder height procesS of X obtained by time-changing the supremum procgss
by the inverse local time at zero of the reflected processX. The excursion
representation of the proce§s— X will be combined with fluctuation identities
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and results from Section 4 to give a detailed description of the ladder height
process.

Let us first briefly recall thaf — X is a strong Markov process, and hence it
admits a local time process atD,= (L(¢), r > 0). The proces4. is continuous
and nondecreasing, and increases only whenX is at zero, or in other words,
when X reaches a new supremum. More precisely, the support of the measure
L(dt, w) is the zero set 05 (1, w) — X (1, w). If L71(t) :=inf{s > 0:L(s) > t} is
the inverse of. and one defines

S(L71), L) < oo,

(5.1) H(@) = _
+00, otherwise,

it is well known that the proces$L~1(¢), H (1)), t < L(00)) is a two-dimensional

subordinator killed at ratg := 1/EL(c0) ([2], page 156). In particularf =
(H(t), 0<t < L(00)) is a subordinator killed at ratg= 1/[EL(c0). Clearly,

(5.2) H(L(co)=)= sup H(@)= sup 5(1)=5(c0),

0<t<L(0c0) 0<t<oo

aAndAhence, the distribution function E)Goo) is equal to the distribution functioAn of
H (L(o00)—). Fluctuation identities give a formula for the Laplace exponer of

LEMMA 5.1. The Laplace exponent @ of H = (H(1),0 <t < L(c0)), With L
suitably normalized, is given by the following formula:

63 =p="P 4 +EC(1)/ (1 — e Py H(dx) + V2P
B (0,00) B

where H isthe finite measure defined in (2.1).

__ PrROOR  The bivariate Laplace exponeRic, 8) of (L0, H®), t <
L(00)) is defined by
exp—<(a, B)} =E[exp—{aL~1(D) + BHD)]], a, B> 0.
The explicit formula forc comes from fluctuation theory:
o —y(B)
D (a)—p’

wherek is a constant depending on the normalization of the local time. We take
k = 1. By lettinga = 0 in (5.4), we obtain the Laplace exponentrdf

#(p) =r(0.5) =

_ . %cB) | ¥z(B)
=c 5 + B

(5.4) R, B) =k

(5.5)
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Further, integrating by parts, we get

q)C(ﬁ) +/ (1 ﬁx)v(x’oo)dx—/;)oov(x,OO)dx

=c+EC(D) / (L—e P YH(dx) — EC(D).
0
Together with (5.5), this gives (5.3)

REMARK 5.2. Note that the same argument shows that the ladder height
process of —Z(¢), t > 0) has the Laplace exponent equaklitg(s)/8.

Let L be the local time of — X normalized by the choide= 1 in formula (5.4).
The excursion procesg; :s > 0) of the reflected proces%— X can be viewed
as the superposition of three independent Poisson point processes: finite duration
excursions that end with a jump of the subordinator, finite duration excursions that
do not end with a jump of the subordinator, and excursions of infinite duration.
Note that one can include the jump, if any, that concludes an excursion as part of
that excursion and retain a Poisson point process. Also one needs to “carry along”
the information about which jumps come frathand which fromZ, but that is a
question of choosing a suitable filtration.

The excursion process and with it the ladder height process is killed at the time
of the arrival of the first excursion of infinite duration. From the excursion picture
we know that (co) is an exponential random variable with parameter equal to the
killing rate of the ladder height process. By conventifi(y) = oo after killing. It
is easily shown that the killing rate can be obtained from the Laplace exponent as
¥ (0+4). SinceEZ(t) = 0, we know thatyz(8)/8 — 0 asg — 0. The measurél
is finite, so by dominated convergence,

f 1—ePYH@dx)—> 0
(0,00)

asp — 0. Using the explicit formula (5.3) one finds that the killing rate equals
d =c —EC(1), or in other wordsL (c0) ~ expic — EC(1)).

Recall thats is the first modified ladder epoch. On the local time sdale)
corresponds to the time of the first arrival of an excursion that ends with a jump
of the subordinato€ unless the excursion process is killed first. The probability
P(o < o0) is therefore equal to the probability that the first excursion that ends
with a jump of the subordinator arrives before the first excursion of infinite
duration. We are thus computing the probability that one of the two independent
Poisson processes will “claim” the first arrival. It is well known that we can
compute

p=P(o <o00)=P(L(0) < L(c0)),
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whereL (o) andL(c0) are two independent exponential random variables. Since
we know the rate of (c0), a simple calculation shows that the rate of arrival of
excursions that end with a jump 6fequalsEC (1).

Let us turn to the ladder height proceds The jumps ofH are a Poisson point
process. These jumps, however, can be seen as a mapping of the “bigger” process
of excursions. By the mapping theorem (see [6], page 17) the jumpﬁ.‘. afe
a superposition of two independent Poisson processes killed at an independent
exponential time of ratd = ¢ — EC(1). The mapping theorem is applied in such
a way that the image af; is 9 if the excursion ends without a jump. The jumps
coming from excursions that end with a jump@fontribute a pure jump process
to H. The other excursions contribute jumps and possibly a deterministic drift. But
the jumps coming fronZ are an independent Poisson process. Hence the process
H is a sum of two independent subordinatgrand ¢ killed at an independent
exponential timer := L (c0).

The subordinaton corresponds to increases$flue to jumps of. As the set
of times whenS increases by a jump af is discrete, the processis compound
Poisson with arrival rate equal C (1). Jumps ofy have the same distribution
as the overshoaf which is given by the formula (4.19P@(J € dx|o < o0) =
v(x, 00)dx/EC(1). This means thaj contributes exactly

EC(1) /(O )(1— e P¥YH (dx)

to the Laplace exponent of the ladder height prodésgiven in (5.3).
The subordinator arising from increases off not due to jumps ofC is
independent ofy. This leaves us with the conclusion, given that the killing rate is
¢ —EC(1), that the Laplace exponent ofis vz (8)/8. This way the groundwork
in Section 4 has been translated into a decomposition of the ladder height process:

THEOREMS5.3. Let X(1) = —ct +C(t) — Z(1) and let H betheladder height
process of X. The following assertions are valid:

(i) Hiskilledatrated =c —EC(1).

(i) The ladder height process is the sum of two independent subordinators
(H(t) =n(1) + (1) :0 <t < L(00)). The subordinator 7 correspondsto jumps of
S due to the claim process C. It is compound Poisson with Lévy measure EC (1) H.
The subordinator ¢ correspondsto increases of S not arising from jumps of C. Its
Laplace exponentis vz (B8)/8.

The decomposition off gives some insights into the structure of the prodéss
From the form of the Laplace exponent@gfwe find that the distribution af does
not depend in any way on the distribution@f which is a remarkable conclusion
given thatC is a subordinator with a dense set of times of jumps. Many other
conclusions from Section 4 can be recast in terms of the ladder height process.
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__As an example, consider Corollary 4.6. Recall that L(c0). Definey :=
L(o) if o < 0o andoo else. The evenfo < oo} is equal to{y < t}. It is easily
seen that

Se—) =ty A).

Note that S(c—) = S(c0) on {o = oo}. Combining Corollary 4.6 and the
conclusion following (4.26), we know that the distribution functiorsos —) is G.

The decomposition off gives further information about. Since the random
variablesy andt are independent of, andy A t ~ exp(c), the distribution of
S(o—) is that of a subordinator taken at an independent exponential time and hence
infinitely divisible with Lévy measuré given by

e—ct

(5.6) Adx) = / P(¢, € dx)dr.

(0,00) 1

See [2], page 162. However, a direct computation using the Laplace exponent
of ¢ yields

(5.7) E(exp(—BLyar)) = /(o oo)E(exp(—ﬁ(,))ce‘“dt

= C/(O,oo) exp(—tyz(B)/B)e " dt

_ <P
B+ Yz(B)

Comparing this formula to (3.2) gives an independent proof of Corollary 4.10.

(5.8)

REFERENCES

[1] AsMUSSEN S. (1996)Ruin Probabilities. World Scientific, Singapore.
[2] BERTOIN, J. (1996)Lévy Processes. Cambridge Univ. Press.
[3] DUFRESNE F. and GRBER, H. U. (1991). Risk theory for a compound Poisson process that is
perturbed by diffusionlnsurance Math. Econom. 10 51-59.
[4] DUFRESNE F., GERBER H. U. and $i1u, E. W. (1991). Risk theory with Gamma process.
Astin Bull. 21 177-192.
[5] FURRER H. (1998). Risk processes perturbed dnstable Lévy motionScand. Actuar. J.
59-74.
[6] KINGMAN, J. F. C. (1995)Poisson Processes. Oxford Univ. Press.
[7] KLUPPELBERG C., KYPRIANOU, A. E. and MALLER, R. A. (2003). Ruin pobalilities and
overshoots for general Lévy insurance risk processes. Appl. Probab. 14(4).
[8] REvuz, D. and YOR, M. (1991). Continuous Martingales and Brownian Motion. Springer,
Berlin.
[9] RoLskl, T., SCHMIDLI, H., SCHMIDT, V. and TEUGELS, J. (1998).Sochastic Processes for
Insurance and Finance. Wiley, New York.
[10] saTO, K.-I. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Univ.
Press.
[11] ScHmibLI, H. (2001). Distribution of the first ladder height of a stationary risk process
perturbed byy-stable Lévy motionlnsurance Math. Econom. 28 13—20.



RUIN FOR PERTURBED RISK PROCESSES 1397

[12] YANG, H. and ZHANG, L. (2001). Spectrally negative Lévy processes with applications in risk
theory.Adv. in Appl. Probab. 33 281-291.

[13] ZoLoTAREV, V. M. (1964). The first passage time of a level and behavior at infinity for a class
of processes with independent incremefiitgeory Probab. Appl. 9 653—-661.

M. HuzAK M. PERMAN

H. SkiIc INSTITUTE FORMATHEMATICS,
Z.VONDRACEK PHYSICS AND MECHANICS
DEPARTMENT OFMATHEMATICS UNIVERSITY OF LJUBLJANA
UNIVERSITY OF ZAGREB JADRANSKA 19

BIJENICKA C. 30 1000 LyUBLJANA

10000 ZAGREB SLOVENIA

CROATIA E-MAIL : mihael@valjhun.fmf.uni-lj.si

E-mAIL : {huzak, hsikic, vondra}@math.hr



