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We study a general perturbed risk process with cumulative claims
modelled by a subordinator with finite expectation, with the perturbation
being a spectrally negative Lévy process with zero expectation. We derive
a Pollaczek–Hinchin type formula for the survival probability of that risk
process, and give an interpretation of the formula based on the decomposition
of the dual risk process at modified ladder epochs.

1. Introduction. The classical Cramér–Lundberg model in insurance as-
sumes that the risk process(R(t), t ≥ 0) is given byR(t) = ct − ∑N(t)

i=1 Yi , where
c > 0 is the premium rate,(Yi, i ∈ N) is an i.i.d. sequence of nonnegative ran-
dom variables modelling individual claims, and(N(t), t ≥ 0) is a homogeneous
Poisson process of rateλ > 0, independent of(Yi, i ∈ N). Hence the cumulative
claim process is modelled by the compound Poisson process

∑N(t)
i=1 Yi . Let F de-

note the distribution function ofYi , and letµ = EYi . The central question for the
model is the computation of the ruin probability in infinite time, given initial capi-
tal x > 0, defined by

ϑ(x) := P
(
R(t) + x < 0 for somet > 0

)
.

In casec ≤ λµ, this quantity is identically equal to 1. Hence, one always assumes
the net profit conditionc > λµ, and defines the parameterρ := λµ/c < 1.
Instead of studying the ruin probability, one can equivalently consider the survival
probability θ(x) := 1 − ϑ(x), which is more convenient. One of the few explicit
results for the survival probability is the Pollaczek–Hinchin formula:

θ(x) = (1− ρ)

∞∑
n=0

ρnFn∗
I (x),(1.1)
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where FI (x) = (1/µ)
∫ x
0 (1 − F(t)) dt is the integrated tail distribution. For-

mula (1.1) is usually derived via renewal arguments. The resulting integro-
differential equation forϑ is solved using Laplace transforms. The explana-
tion of the formula is given by considering the supremum of the dual process
R̂(t) := −R(t). By the net profit condition̂R(t) drifts to −∞, hence the supre-
mum is a.s. finite, and clearly,θ(x) = P(sup0≤t<∞ R̂(t) ≤ x). It is easy to see that
sup0≤t<∞ R̂(t) is a sum of geometrically many i.i.d. random variables. It is not,
however, quite as easy to determine the distribution of these variables. Usually
fluctuation theory is used. We refer the reader to [1] and [9] for details.

In this paper we are interested in generalizations of the Cramér–Lundberg
model, which lead to the same type of the Pollaczek–Hinchin formula for
the survival probability, and which admit an explanation of the formula by
decomposition of the supremum of the dual process in the random sum of ladder
heights. One possible generalization of the model is to allow for additional
uncertainties in the cumulative claims and/or in the premium income. These
uncertainties may be the result of fluctuations in the claim arrival intensity, the
number of insurees, inflation or surplus investment (see [9], page 568). Dufresne
and Gerber [3] considered the risk process(R(t), t ≥ 0) perturbed by a multiple
of standard Brownian motion(W(t), t ≥ 0), and definedX(t) := R(t) + ςW(t),
ς > 0. Using renewal arguments, they derived the formula

θ(x) = (1− ρ)

∞∑
n=0

ρn
(
G(n+1)∗ ∗ Fn∗

I

)
(x).(1.2)

The parameterρ and the distribution functionFI are the same as in the unperturbed
model, whileG is an exponential distribution function with parameter 2c/ς2. They
also gave the following interpretation of the formula (1.2): Letσ1, σ2, . . . be the
moments when a new supremum of the dual processX̂(t) := −X(t) is reached
by a jump of the claim process

∑N(t)
i=1 Yi . Then the number of such moments

has geometric distribution with parameterρ, G is the distribution function of the
supremum ofX̂(t) just beforeσ1, andFI is the conditional distribution of the
overshoot over the previous supremum, givenσ1 < ∞.

Furrer [5] considered the processX(t) = R(t)+Zα(t), whereR is the classical
risk process, andZα is anα-stable Lévy process with no positive jumps, 1< α < 2.
He used the explicit formula for the Laplace exponent of the infimum ofX(t) due
to Zolotarev [13] to obtain formula (1.2) for the survival probability ofX(t). The
distribution functionG is explicitly identified as the Mittag–Leffler distribution
given by 1− G(x) = ∑∞

n=0(−cxα−1)n/�(1+ (α − 1)n).
Schmidli [11] gives a nice interpretation ofG as the distribution of the

supremum of the dual procesŝX just before the first time the procesŝX exceeds its
previous supremum by a jump of the cumulative claim process. His setting is more
general in the sense that the cumulative claim process is generated by a stationary,
ergodic, marked point process.
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Another possible generalization of the classical risk process is to allow a
different cumulative claim process. Dufresne, Gerber and Shiu [4] considered the
model in which the claim process was modelled by a Gamma process. Such a
process has infinitely many jumps in finite intervals. Yang and Zhang [12] studied
this model perturbed by a Brownian motion. Using the approach in [5], they
derived a formula of the type (1.2) withFI replaced by an exponential integral
type distribution, andG is again the exponential distribution.

The goal of this paper is twofold: (1) to extend the Pollaczek–Hinchin formula
to the more general setting of the spectrally negative Lévy processes while
retaining the risk insurance theory interpretation; (2) to give a unified and
transparent approach to the problem by use of well-developed and powerful
fluctuation theory for Lévy processes. We will consider a general perturbed risk
processX(t) = ct − C(t) + Z(t), where (C(t), t ≥ 0) is a cumulative claim
process, and(Z(t), t ≥ 0) is a perturbation. Note that the cumulative claim process
has to be increasing. Therefore, if one wants to stay in the realm of processes with
stationary independent increments, the only choice for modelling(C(t), t ≥ 0)

is subordinators. Hence, we assume that(C(t), t ≥ 0) is a subordinator (without
drift) having finite expectation satisfying the net profit conditionc − EC(1) > 0.
The perturbation is modelled by a Lévy process(Z(t), t ≥ 0) with no positive
jumps, having zero expectation. The assumption that the expectation is zero is
inconsequential, sinceEZ(1) can always be moved to the premium rate. In the
analysis of the risk process(X(t), t ≥ 0), we will rely heavily on fluctuation theory
for general Lévy processes, which is particularly explicit for processes with no
positive jumps. For background on these results, we refer the reader to the book by
Bertoin [2].

Our first result is the formula for the survival probability for the processX

which is proved in Section 3:

θ(x) := P

(
inf

0≤t<∞ X(t) > −x

)
= (1− ρ)

∞∑
n=0

ρn
(
G(n+1)∗ ∗ Hn∗)

(x).
(1.3)

We essentially follow the approach from [5], and obtain explicitly the parame-
terρ and the distribution functionsG andH appearing in the formula. It turns out
thatG can be identified as the distribution function of the absolute supremum of
the process(−ct − Z(t), t ≥ 0), while H is related to the subordinatorC(t) only,
and can be thought of as the integrated tail distribution of jumps. In Section 4 we
give an interpretation of formula (1.3) by decomposing the supremum of the dual
procesŝX(t) := −X(t) into the random sum of modified ladder heights. In order
to do this, we first show that the times when the new supremum ofX̂(t) is reached
by a jump of the subordinator are discrete. Let 0< σ1 < σ2 < · · · be those times,
and letG̃ be the distribution function of̂S(σ1−), whereŜ(t) := sup0≤s≤t X̂(s).



RUIN FOR PERTURBED RISK PROCESSES 1381

We show that̂S(σ1−) and the overshoot̂S(σ1) − Ŝ(σ1−) are conditionally inde-
pendent givenσ1 < ∞, and identify the conditional distribution of the overshoot
with H . Using the strong Markov property at timesσi , we rederive formula (1.3)
with G̃ instead ofG (and the sameρ). This clearly implies thatG̃ = G, yield-
ing the required interpretation. Our results are more general and cover the results
obtained in [5], [12] and [11] (in Lévy case).

Another interpretation of formula (1.3) is provided by looking at the ladder
height process of̂X. The ladder height process is obtained by time-changingŜ(t)

by the inverse local time at zero of the reflected processŜ(t) − X̂(t). This process
records only values where the new supremum is reached, and consequently,
contains all the relevant information on the distribution of the supremum ofX̂(t).
In Section 5 the results of Section 4 are reinterpreted and improved in terms of the
ladder height process.

We end this Introduction by noting that in a very recent paper Klüppelberg,
Kyprianou and Maller [7] study ruin probabilities for general Lévy insurance risk
process (not necessarily spectrally negative) drifting to−∞. They are mostly
concerned with the asymptotic results for the first passage time and overshoot
behavior at high levels.

2. Setting and notation. Let (	,F ,P) be a probability space on which all
random variables will be defined. As explained in the Introduction, we model the
cumulative claim process by a subordinatorC = (C(t), t ≥ 0) without a drift.
Letν be the Lévy measure ofC; that is,ν is aσ -finite measure on(0,∞) satisfying∫
(0,∞)(x ∧ 1)ν(dx) < ∞. The Laplace exponent ofC is defined by

�C(β) :=
∫
(0,∞)

(1− e−βx)ν(dx)

so that

E[exp{−βC(t)}] = exp{−t�C(β)}.
Note that

EC(1) = �′
C(0+) =

∫
(0,∞)

xν(dx) =
∫ ∞

0
ν(x,∞) dx,

where the last equality follows by integration by parts. As explained in the
Introduction, we assume throughout thatEC(1) < ∞. Let

H(x) := 1

EC(1)

∫ x

0
ν(y,∞) dy.(2.1)

Then H is an absolutely continuous distribution function with densityh(x) =
ν(x,∞)/EC(1). We callH the integrated tail distribution. The Laplace transform
of H is given by

LH(β) :=
∫ ∞

0
e−βxH(dx) =

∫ ∞
0

e−βxh(x) dx = 1

EC(1)

�C(β)

β
.(2.2)



1382 HUZAK, PERMAN, ŠIKIĆ AND VONDRAČEK

Let
C(t) = C(t)−C(t−). It is well known that(
C(t) : t ≥ 0) is a Poisson point
process with characteristic measureν and state space(0,∞) ∪ {∂}. The cemetery
state∂ is added to keep with the standard definition of a Poisson point process
(cf. [8], page 435). It is assumed that the process is in state∂ whenever there is no
jump andν({∂}) = 0. Moreover, one hasC(t) = ∑

0<s≤t 
C(s).
We model the risk processR = (R(t), t ≥ 0) as R(t) = ct − C(t), where

c > 0 is the premium rate. ThenR is a Lévy process with no positive jumps (i.e.,
spectrally negative Lévy process). The Laplace exponentψR of R is defined by
relation

E[exp{βR(t)}] = exp{tψR(β)}.
Clearly,ψR(β) = cβ − �C(β). It is important to note thatR(t) stays positive in
a neighborhood oft = 0, implying that ruin (with zero initial capital) does not
occur immediately. This follows from the fact that limt→0 C(t)/t = 0 ([2], page
84 or 192). From now on we assume that the net profit conditionc > EC(1) holds,
and letd := c − EC(1). It follows thatER(1) = ψ ′

R(0+) = d > 0, which implies
thatR drifts to +∞. We also introduce the parameterρ := EC(1)/c ∈ (0,1).

The perturbationZ = (Z(t), t ≥ 0) of the risk processR will be modelled by a
spectrally negative, mean zero, Lévy process. Its Lévy measure�Z is an infinite
σ -finite measure on(−∞,0) satisfying the usual condition∫

(−∞,0)
(x2 ∧ 1)�Z(dx) < ∞,(2.3)

and the additional condition∫
(−∞,−1)

|x|�Z(dx) < ∞,(2.4)

which ensures finite expectation ofZ. The Laplace exponent ofZ is given by

ψZ(β) := ς2

2
β2 +

∫
(−∞,0)

(eβx − 1− βx)�Z(dx),(2.5)

where ς ≥ 0, and integrability of the integrand follows from condition (2.4).
Further,EZ(1) = ψ ′

Z(0+) = 0 (e.g., [10], page 163). Note that we allowZ to
be identically zero (both�Z = 0 andς = 0). However,Z cannot be compound
Poisson because such processes cannot haveEZ(t) = 0. Let us point out that
our setting includes the Brownian perturbation (ς > 0, �Z = 0), and also the
perturbation byα-stable spectrally negative Lévy process forα ∈ (1,2) (ς = 0,
�Z(dx) = (a/|x|α+1)1(−∞,0) dx).

Finally, we define the general perturbed risk processX = (X(t), t ≥ 0) as

X(t) := R(t) + Z(t) = ct − C(t) + Z(t),

whereC andZ are independent processes. The processX is a spectrally negative
Lévy process with finite positive expectationEX(1) = c − EC(1) = d > 0.
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Therefore, limt→∞ X(t) = +∞ a.s., that is,X drifts to infinity. Let F 0(t) :=
σ(C(s),Z(s), 0 ≤ s ≤ t), and letF = (F (t), t ≥ 0) be the filtration obtained
in the usual way by augmentingF 0(t). Clearly,X(t) is F (t)-measurable. The
Laplace exponentψ of X, defined by the relation

E[exp{βX(t)}] = exp{tψ(β)},
is, due to independence ofC andZ, given by

ψ(β) = cβ − �C(β) + ψZ(β), β ≥ 0.

Sinceψ is strictly convex andψ ′(0+) = EX(1) > 0, ψ is strictly increasing on
[0,∞), and therefore has a strictly increasing inverse� : [0,∞) → [0,∞). Since
ψ(0) = 0, it follows that�(0) = 0.

In the sequel, we will be interested in the functionθ : [0,∞) → [0,1] defined
by

θ(x) := P
(
X(t) ≥ −x, for all t ≥ 0

)
.(2.6)

This function is the survival probability of the general perturbed risk process
X starting with the initial capitalx ≥ 0. The initial behavior ofX determinesθ at
zero. If there is no perturbation, that is, ifX = R, then, as said before,X remains
positive (a.s.) for an initial period of time, and henceθ(0) > 0. On the other hand, if
Z 
= 0, thenX is of unbounded variation, hence the point 0 is regular for(−∞,0)

([2], page 192). ThusX hits the interval(−∞,0) immediately, implyingθ(0) = 0.

3. Laplace transform approach. In this section we derive the Pollaczek–
Hinchin formula for the survival probability using the explicit form of the Laplace
transform of the absolute infimum ofX. Let I (∞) := inf0≤s<∞ X(s) andI (t) :=
inf0≤s≤t X(s). The fluctuation theory for Lévy processes provides the following
formula for the Laplace transform of the infimum evaluated at an independent
exponential timeτ (q) with parameterq > 0 (see [2], page 192):

E[exp{βI (τ (q))}] = q(�(q) − β)

�(q)(q − ψ(β))
, β > 0.

Lettingq ↓ 0, and usingI (τ (q))
P→ I (∞), it follows that

E[exp{βI (∞)}] = ψ ′(0+)
β

ψ(β)
= d

β

ψ(β)
, β > 0.(3.1)

Let us introduce for a moment the following notation:Y (t) = ct + Z(t) and
ψY (β) = cβ + ψZ(β). By the same argument as above it follows that

E

[
exp

{
−β

(
− inf

0≤t<∞Y (t)

)}]
= ψ ′

Y (0+)
β

ψY (β)
= c

β

ψY (β)
, β > 0.(3.2)
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Let G denote the distribution function of− inf0≤t<∞ Y (t) = sup0≤t<∞(−ct −
Z(t)). Then the last formula says that

LG(β) :=
∫ ∞

0
e−βxG(dx) = c

β

ψY (β)
, β > 0.(3.3)

Recall formulae (2.1) and (2.2) from Section 2:

H(x) := (
1/EC(1)

) ∫ x

0
ν(y,∞) dy and LH(β) = �C(β)

/(
EC(1)β

)
.

Also recall thatρ = EC(1)/c, henced/c = (c − EC(1))/c = 1 − ρ. Now we
computedβ/ψ(β) in terms ofρ, LG andLH . This idea comes from [5]:

d
β

ψ(β)
= d

1

ψY (β)/β − �C(β)/β

= d
1

c/LG(β) − EC(1)LH(β)

= d

c

LG(β)

1− ρLG(β)LH(β)

= (1− ρ)LG(β)

∞∑
n=0

(
ρLG(β)LH(β)

)n
.

By inverting the Laplace transform, we obtain the following theorem.

THEOREM 3.1. The survival probability of the general perturbed risk process
X is given by

θ(x) = P
(
I (∞) ≥ −x

)
= (1− ρ)

∞∑
n=0

ρn
(
G(n+1)∗ ∗ Hn∗)

(x), x ≥ 0.
(3.4)

We point out thatH depends only on the subordinatorC, while G depends
on the premium ratec and the perturbationZ. Brownian perturbations were
considered in [5] andα-stable ones in [3] and [12]. In both cases the distribution
G is given explicitly. If there is no perturbation,Z = 0, thenLG(β) = 1, and
consequently, the distribution functionG can be omitted from formula (3.4).

4. Decomposition of the supremum of X̂. Let X̂(t) := −X(t) = −ct +
C(t) − Z(t) denote the dual process ofX. Let

Ŝ(t) := sup
0≤s≤t

X̂(s) and Ŝ(∞) := sup
0≤s<∞

X̂(s).



RUIN FOR PERTURBED RISK PROCESSES 1385

SinceX̂ drifts to −∞, Ŝ(∞) < ∞ a.s. Introduce the following notation:̂I (t) :=
inf0≤s≤t X̂(s) and S(t) := sup0≤s≤t X(s). Clearly, −Î (t) = S(t). By a time

reversal argument,−Î (t)
d= Ŝ(t) − X̂(t), and hence

Ŝ(t) − X̂(t)
d= S(t).(4.1)

In this section we give a decomposition of̂X at certain stopping times which,
following Schmidli [11], we call modified ladder epochs.

Let P (F ) be the predictableσ -algebra onR+ × 	 with respect to the filtra-
tion F introduced in Section 2. LetB∂ be the Borelσ -algebra on(0,∞) ∪ {∂}.
If H :R+ × 	 × ((0,∞) ∪ {∂}) → R+ is a nonnegative process measurable with
respect toP (F )⊗B∂ , then the following compensation formula is valid (e.g., [8],
page 439, or [2], page 9):

E

( ∑
0≤t<∞

H
(
t,ω,
C(t,ω)

))

= E

(∫ ∞
0

dt

∫
(0,∞)

ν(dε)H(t,ω, ε)

)
.

(4.2)

The first use of this formula will be to compute the expected number of times the
new supremum of̂X is attained by a jump of a subordinatorC over the previous
supremum. Note that this is the case if and only if
C(t) > Ŝ(t−) − X̂(t−).

THEOREM 4.1. The following formula is valid:

E

( ∑
0≤t<∞

1{
C(t)>Ŝ(t−)−X̂(t−)}

)
= EC(1)

c − EC(1)
.(4.3)

PROOF. Take H(t,ω, ε) := 1(Ŝ(t−,ω)−X̂(t−,ω),∞)(ε) in the compensation
formula. The left-hand side in (4.2) is then precisely the left-hand side in (4.3).
For the right-hand side in the compensation formula, compute

E

(∫ ∞
0

dt

∫
(0,∞)

ν(dε)1(Ŝ(t−)−X̂(t−),∞)(ε)

)

= E

(∫ ∞
0

dt ν
(
Ŝ(t−) − X̂(t−),∞))

(4.4)
=

∫ ∞
0

E
[
ν
(
Ŝ(t) − X̂(t),∞)]

dt

=
∫ ∞

0
dt E

[
ν
(
S(t),∞)]

,
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where the third line follows by continuity in probability of̂X, and the fourth line
by (4.1). Clearly, the last expression is equal to the monotone limit

lim
q→0

∫ ∞
0

e−qt dt E
[
ν
(
S(t),∞)]

= lim
q→0

1

q

∫ ∞
0

qe−qt dt E
[
ν
(
S(t),∞)]

.

(4.5)

Let τ (q) be an exponential time with parameterq independent ofC andZ, and
let F denote the distribution function ofS(τ (q)). ThenF is exponential with
parameter�(q). It follows that∫ ∞

0
qe−qt dt E

[
ν
(
S(t),∞)]

= E

[∫ ∞
0

qe−qt dt ν
(
S(t),∞)]

= E
[
ν
(
S(τ (q)),∞)]

(4.6)

=
∫ ∞

0
ν(x,∞)F (dx)

=
∫ ∞

0

(
1− e−�(q)x

)
ν(dx),

where the last equation follows by integration by parts. Further,

lim
q→0

1− e−�(q)x

q
= lim

q→0

�(q)

q
x = 1

ψ ′(0+)
x = x

d
.

By the monotone convergence theorem,

lim
q→0

∫ ∞
0

e−qt dt E
[
ν
(
S(t),∞)]

= lim
q→0

∫ ∞
0

1− e−�(q)x

q
ν(dx)

(4.7)
= 1

d

∫ ∞
0

xν(dx)

= EC(1)

c − EC(1)
.

This proves formula (4.3).�

REMARK 4.2. We would like to emphasize a very important and somewhat
subtle point which is a consequence of Theorem 4.1. Namely, the epochs when
a new supremum of̂X is reached by a jump ofC are discrete, and, in particular,
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neither time 0 nor any other time is an accumulation point of those epochs. More
precisely, let us define

σ1 = σ := inf
{
t > 0 :
C(t) > Ŝ(t−) − X̂(t−)

}
,(4.8)

and inductively,

σn+1 := inf
{
t > σn :
C(t) > Ŝ(t−) − X̂(t−)

}
(4.9)

on{σn < ∞}. Theorem 4.1 implies thatσ > 0 a.s. andσn < σn+1 a.s. on{σn < ∞}.
As a consequence, we can order the epochs when a new supremum is reached by a
jump of a subordinator as 0< σ1 < σ2 < · · · a.s. The decomposition of̂X and the
ensuing derivations will depend on this result in a crucial way.

For y > 0, let τ̂y := inf{t > 0 :X̂(t) > y} be the entrance time of̂X in (y,∞),
and, similarly,τy := inf{t > 0 :X(t) > y}. Note thatŜ(t−) ≤ y if and only if
t ≤ τ̂y . We need the expected occupation time formula for the reflected process

Ŝ − X̂ beforeσ ∧ τ̂y .

PROPOSITION4.3. For x > 0 and y > 0, the following formula is valid:

E

∫ σ∧τ̂y

0
1(Ŝ(t)−X̂(t)≤x) dt = P(σ = ∞, τ̂y = ∞)

x

d
.(4.10)

PROOF. We first compute the expected occupation time ofŜ − X̂ belowx:

E

∫ ∞
0

1(Ŝ(t)−X̂(t)≤x) dt =
∫ ∞

0
P

(
Ŝ(t) − X̂(t) ≤ x

)
dt

=
∫ ∞

0
P

(
S(t) ≤ x

)
dt(4.11)

= Eτx.

Since(τx, x > 0) is a subordinator with the Laplace exponent�, it follows that
Eτx = (Eτ1)x = �′(0+)x = x/d .

Now we compute the expected occupation time ofŜ − X̂ below x after time
σ ∨ τ̂y :

E

∫ ∞
0

1(Ŝ(t)−X̂(t)≤x)1(t>σ)1(Ŝ(t)>y) dt

= E

[∫ ∞
σ∨τ̂y

1(Ŝ(t)−X̂(t)≤x) dt, σ ∨ τ̂y < ∞
]

= P(σ ∨ τ̂y < ∞)E

[∫ ∞
σ∨τ̂y

1(Ŝ(t)−X̂(t)≤x) dt
∣∣σ ∨ τ̂y < ∞

]
(4.12)

= P(σ ∨ τ̂y < ∞)E

∫ ∞
0

1(Ŝ(t)−X̂(t)≤x) dt

= P(σ < ∞, τ̂y < ∞)
x

d
.



1388 HUZAK, PERMAN, ŠIKIĆ AND VONDRAČEK

To justify the passage from the third to the fourth line, note thatσ ∨ τ̂y is a
stopping time at whicĥX reaches a new maximum, and hence by the strong
Markov property, the reflected processŜ − X̂ starts afresh from 0. Similarly,

E

∫ ∞
0

1(Ŝ(t)−X̂(t)≤x)1(Ŝ(t)>y) dt = P( τ̂y < ∞)
x

d
.(4.13)

Subtracting (4.12) from (4.13), it follows that

E

∫ ∞
0

1(Ŝ(t)−X̂(t)≤x)1(t≤σ)1(Ŝ(t)>y) dt = P(σ = ∞, τ̂y < ∞)
x

d
.(4.14)

One can prove similarly that

E

∫ ∞
0

1(Ŝ(t)−X̂(t)≤x)1(t≤σ) dt = P(σ = ∞)
x

d
.(4.15)

Finally, (4.10) follows by subtracting (4.14) from (4.15).�

Note that the proposition says that the expected occupation time measure for
Ŝ − X̂ beforeσ ∧ τ̂y is proportional to the Lebesgue measure on[0,∞). Hence,
formula (4.10) is by definition of the expected occupation time measure equivalent
to

E

∫ σ∧τ̂y

0
f

(
Ŝ(t) − X̂(t)

)
dt = P(σ = ∞, τ̂y = ∞)

d

∫ ∞
0

f (u) du,(4.16)

wheref is a nonnegative Borel function on[0,∞).
Let J := (
C(σ) − (Ŝ(σ−) − X̂(σ−)))1(σ<∞) be the overshoot at timeσ . In

the next proposition we compute the preliminary version of the joint distribution
of the vector(Ŝ(σ−), J, Ŝ(σ−) − X̂(σ−)) on {σ < ∞}.

PROPOSITION4.4. For x, y, z > 0,

P
(
Ŝ(σ−) ≤ y,J > x, Ŝ(σ−) − X̂(σ−) > z, σ < ∞)

(4.17)
= P(σ = ∞, τ̂y = ∞)

d

∫ ∞
x+z

ν(u,∞) du.

PROOF. We use the compensation formula with

H(t,ω, ε)

:= 1(Ŝ(t−,ω)≤y)1(Ŝ(t−,ω)−X̂(t−,ω)>z)1(t≤σ(ω))1(x+Ŝ(t−,ω)−X̂(t−,ω),∞)(ε).

Then

E
∑

0≤t<∞
H

(
t,ω,
C(t,ω)

)
= P

(
Ŝ(σ−) ≤ y, Ŝ(σ−) − X̂(σ−) > z,J > x, σ < ∞)

.
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On the other hand,

E

(∫ ∞
0

dt

∫
(0,∞)

ν(dε)H(t,ω, ε)

)

= E

(∫ σ

0
dt 1(Ŝ(t−)≤y)1(Ŝ(t−)−X̂(t−)>z)

×
∫
(0,∞)

1(x+Ŝ(t−)−X̂(t−),∞)(ε)ν(dε)

)

= E

(∫ σ∧τ̂y

0
dt 1(Ŝ(t)−X̂(t)>z)ν

(
x + Ŝ(t) − X̂(t),∞))

= P(σ = ∞, τ̂y = ∞)

d

∫ ∞
0

1(z,∞)(u)ν(x + u,∞) du

= P(σ = ∞, τ̂y = ∞)

d

∫ ∞
x+z

ν(u,∞) du,

where the fourth line follows from (4.16) withf (u) = 1(z,∞)(u)ν(x + u,∞). �

From formula (4.17) we can easily derive several useful corollaries.

COROLLARY 4.5. The following formulae are valid:

P(σ < ∞) = ρ,(4.18)

P(J > x|σ < ∞) = 1

EC(1)

∫ ∞
x

ν(u,∞) du = 1− H(x).(4.19)

PROOF. Let x → 0, y → ∞ andz → 0 in (4.17). It follows that

P(σ < ∞) = P(σ = ∞)

d
EC(1).

Solving forP(σ < ∞), we get (4.15). To obtain (4.19), lety → ∞ andz → 0 in
(4.17). It follows that

P(J > x,σ < ∞) = P(σ = ∞)

d

∫ ∞
x

ν(u,∞) du.

By conditioning,

P(J > x|σ < ∞) = 1− ρ

ρd

∫ ∞
x

ν(u,∞) du

= 1

EC(1)

∫ ∞
x

ν(u,∞) du. �

In the next corollary, we interpret̂S(σ−) as the absolute supremum̂S(∞) in
caseσ = ∞.
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COROLLARY 4.6. The event {σ < ∞} and the random variable Ŝ(σ−) are
independent. As a consequence, the conditional distribution of Ŝ(σ−) given
σ < ∞ is equal to the unconditional distribution of Ŝ(σ−).

PROOF. Let x → 0 andz → 0 in (4.17). It follows that

P
(
Ŝ(σ−) ≤ y,σ < ∞)

= P(σ = ∞, τ̂y = ∞)
EC(1)

d
(4.20)

= P
(
σ = ∞, Ŝ(∞) ≤ y

)EC(1)

d
.

Clearly,

P
(
Ŝ(σ−) ≤ y,σ = ∞) = P

(
Ŝ(∞) ≤ y,σ = ∞)

.

Adding up,

P
(
Ŝ(σ−) ≤ y

) =
(

EC(1)

d
+ 1

)
P

(
Ŝ(∞) ≤ y,σ = ∞)

= c

d
P

(
Ŝ(∞) ≤ y,σ = ∞)

.

Therefore,

P
(
Ŝ(σ−) ≤ y

)
P(σ < ∞) = c

d
P

(
Ŝ(∞) ≤ y,σ = ∞)EC(1)

c

= EC(1)

d
P

(
Ŝ(∞) ≤ y,σ = ∞)

= P
(
Ŝ(σ−) ≤ y,σ < ∞)

by (4.20). �

It follows that

P(σ = ∞, τ̂y = ∞) = P
(
σ = ∞, Ŝ(∞) ≤ y

)
= P

(
σ = ∞, Ŝ(σ−) ≤ y

)
(4.21) = P(σ = ∞)P

(
Ŝ(σ−) ≤ y|σ = ∞)

= P(σ = ∞)P
(
Ŝ(σ−) ≤ y

)
.

Let G̃ denote the distribution function of̂S(σ−). Proposition 4.4 can be now
improved as:
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THEOREM 4.7. The distribution of the vector (Ŝ(σ−), J, Ŝ(σ−) − X̂(σ−))

on the set {σ < ∞} is given by

P
(
Ŝ(σ−) ≤ y,J > x, Ŝ(σ−) − X̂(σ−) > z, σ < ∞)

(4.22)
= P

(
Ŝ(σ−) ≤ y

)( 1

EC(1)

∫ ∞
x+z

ν(u,∞) du

)
P(σ < ∞).

Moreover, Ŝ(σ−) and J are conditionally independent given σ < ∞, and

P
(
Ŝ(σ−) ≤ y,J > x|σ < ∞) = G̃(y)

(
1− H(x)

)
.(4.23)

REMARK 4.8. Formula (4.22) considerably extends the severity of ruin
formula (see, e.g., [9], page 168).

It is now possible to write the absolute maximum ofX̂ as a random sum of
modified ladder heights. Recall thatσ1 = σ and

σn+1 = inf{t > σn :
C(t) > Ŝ(t−) − X̂(t−)}
on {σn < ∞}. Let L0 := Ŝ(σ1−), J1 := Ŝ(σ1) − Ŝ(σ1−) and L1 := Ŝ(σ2−) −
Ŝ(σ1) on{σ1 < ∞}, and so on. We callL0, J1,L1, . . . the modified ladder heights.
Let alsoN := max{n :σn < ∞}. By strong Markov property of̂X, N has geometric
distribution with parameterP(σ1 = ∞) = 1− ρ. Clearly,

Ŝ(∞) = L0 + J1 + L1 + · · · + JN + LN.(4.24)

See Figure 1.
Note thatP(L0 ≤ x,N = 0) = P(Ŝ(σ−) ≤ x,σ = ∞) = G̃(x)(1 − ρ). For

everyn ∈ N, by the strong Markov property atσn, and by (4.23), we have

P(L0 + J1 + L1 + · · · + Jn + Ln ≤ x,N = n)

= (1− ρ)ρn
(
G̃(n+1)∗ ∗ Hn∗)

(x).

This leads to the Pollaczek–Hinchin formula for the distribution function ofŜ(∞).

THEOREM 4.9. For x ≥ 0,

P
(
Ŝ(∞) ≤ x

) = (1− ρ)

∞∑
n=0

ρn
(
G̃(n+1)∗ ∗ Hn∗)

(x).(4.25)

Equating this formula forθ(x) = P(Ŝ(∞) ≤ x) and (3.4), one obtains

(1− ρ)

∞∑
n=0

ρn
(
G(n+1)∗ ∗ Hn∗)

(x) = (1− ρ)

∞∑
n=0

ρn
(
G̃(n+1)∗ ∗ Hn∗)

(x).
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FIG. 1. A trajectory of the dual process X̂(t) = −ct + C(t) + ςW(t), where C(t) is a compound
Poisson process, W(t) is a standard Brownian motion and ς > 0.

By computing Laplace transforms of both sides, we get that

(1− ρ)LG(β)

1− ρLG(β)LH(β)
= (1− ρ)LG̃(β)

1− ρLG̃(β)LH(β)
, β > 0,(4.26)

from which it immediately follows that̃G = G. Thus we have proved the following

COROLLARY 4.10. The random variables

sup
0≤t<∞

(−ct − Z(t)
)

and sup
0≤t<σ

(−ct + C(t) − Z(t)
)

have equal distributions.

5. Decomposition of the ladder height process. In the previous section
we looked at the procesŝX at the modified ladder epochsσ1 < σ2 < · · ·, and
essentially decomposed thêX at these epochs. In this section we consider the
ladder height procesŝH of X̂ obtained by time-changing the supremum processŜ

by the inverse local time at zero of the reflected processŜ − X̂. The excursion
representation of the procesŝS − X̂ will be combined with fluctuation identities
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and results from Section 4 to give a detailed description of the ladder height
process.

Let us first briefly recall that̂S − X̂ is a strong Markov process, and hence it
admits a local time process at 0,L̂ = (L̂(t), t ≥ 0). The procesŝL is continuous
and nondecreasing, and increases only whenŜ − X̂ is at zero, or in other words,
when X̂ reaches a new supremum. More precisely, the support of the measure
L̂(dt,ω) is the zero set of̂S(t,ω) − X̂(t,ω). If L̂−1(t) := inf{s > 0 :L̂(s) > t} is
the inverse of̂L and one defines

Ĥ (t) :=
{

Ŝ
(
L̂−1(t)

)
, L̂−1(t) < ∞,

+∞, otherwise,
(5.1)

it is well known that the process((L̂−1(t), Ĥ (t)), t < L̂(∞)) is a two-dimensional
subordinator killed at rateq := 1/EL̂(∞) ([2], page 156). In particular,̂H =
(Ĥ (t), 0 ≤ t < L̂(∞)) is a subordinator killed at rateq = 1/EL̂(∞). Clearly,

Ĥ
(
L̂(∞)− ) = sup

0≤t<L̂(∞)

Ĥ (t) = sup
0≤t<∞

Ŝ(t) = Ŝ(∞),(5.2)

and hence, the distribution function ofŜ(∞) is equal to the distribution function of
Ĥ (L̂(∞)−). Fluctuation identities give a formula for the Laplace exponent ofĤ .

LEMMA 5.1. The Laplace exponent κ̂ of Ĥ = (Ĥ (t),0 ≤ t < L̂(∞)), with L̂

suitably normalized, is given by the following formula:

κ̂(β) = ψ(β)

β
= d + EC(1)

∫
(0,∞)

(1− e−βx)H(dx) + ψZ(β)

β
,(5.3)

where H is the finite measure defined in (2.1).

PROOF. The bivariate Laplace exponent̂κ(α,β) of ((L̂−1(t), Ĥ (t)), t <

L̂(∞)) is defined by

exp{−κ̂(α,β)} = E
[
exp−{

αL̂−1(1) + βĤ (1)
}]

, α,β > 0.

The explicit formula for̂κ comes from fluctuation theory:

κ̂(α,β) = k
α − ψ(β)

�(α) − β
,(5.4)

wherek is a constant depending on the normalization of the local time. We take
k = 1. By lettingα = 0 in (5.4), we obtain the Laplace exponent ofĤ :

κ̂(β) = κ̂(0, β) = ψ(β)

β

= c − �C(β)

β
+ ψZ(β)

β
, β > 0.

(5.5)
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Further, integrating by parts, we get

c − �C(β)

β
= c +

∫ ∞
0

(1− e−βx)ν(x,∞) dx −
∫ ∞

0
ν(x,∞) dx

= c + EC(1)

∫ ∞
0

(1− e−βx)H(dx) − EC(1).

Together with (5.5), this gives (5.3).�

REMARK 5.2. Note that the same argument shows that the ladder height
process of(−Z(t), t ≥ 0) has the Laplace exponent equal toψZ(β)/β.

Let L̂ be the local time of̂S−X̂ normalized by the choicek = 1 in formula (5.4).
The excursion process(es : s > 0) of the reflected procesŝS − X̂ can be viewed
as the superposition of three independent Poisson point processes: finite duration
excursions that end with a jump of the subordinator, finite duration excursions that
do not end with a jump of the subordinator, and excursions of infinite duration.
Note that one can include the jump, if any, that concludes an excursion as part of
that excursion and retain a Poisson point process. Also one needs to “carry along”
the information about which jumps come fromC and which fromZ, but that is a
question of choosing a suitable filtration.

The excursion process and with it the ladder height process is killed at the time
of the arrival of the first excursion of infinite duration. From the excursion picture
we know that̂L(∞) is an exponential random variable with parameter equal to the
killing rate of the ladder height process. By convention,Ĥ (t) = ∞ after killing. It
is easily shown that the killing rate can be obtained from the Laplace exponent as
ψ(0+). SinceEZ(t) = 0, we know thatψZ(β)/β → 0 asβ → 0. The measureH
is finite, so by dominated convergence,∫

(0,∞)
(1− e−βx)H(dx) → 0

asβ → 0. Using the explicit formula (5.3) one finds that the killing rate equals
d = c − EC(1), or in other words,̂L(∞) ∼ exp(c − EC(1)).

Recall thatσ is the first modified ladder epoch. On the local time scaleL̂(σ )

corresponds to the time of the first arrival of an excursion that ends with a jump
of the subordinatorC unless the excursion process is killed first. The probability
P(σ < ∞) is therefore equal to the probability that the first excursion that ends
with a jump of the subordinator arrives before the first excursion of infinite
duration. We are thus computing the probability that one of the two independent
Poisson processes will “claim” the first arrival. It is well known that we can
compute

ρ = P(σ < ∞) = P
(
L̂(σ ) < L̂(∞)

)
,
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whereL̂(σ ) andL̂(∞) are two independent exponential random variables. Since
we know the rate of̂L(∞), a simple calculation shows that the rate of arrival of
excursions that end with a jump ofC equalsEC(1).

Let us turn to the ladder height procesŝH . The jumps ofĤ are a Poisson point
process. These jumps, however, can be seen as a mapping of the “bigger” processe

of excursions. By the mapping theorem (see [6], page 17) the jumps ofĤ are
a superposition of two independent Poisson processes killed at an independent
exponential time of rated = c − EC(1). The mapping theorem is applied in such
a way that the image ofes is ∂ if the excursion ends without a jump. The jumps
coming from excursions that end with a jump ofC contribute a pure jump process
to Ĥ . The other excursions contribute jumps and possibly a deterministic drift. But
the jumps coming fromZ are an independent Poisson process. Hence the process
Ĥ is a sum of two independent subordinatorsη and ζ killed at an independent
exponential timeτ := L̂(∞).

The subordinatorη corresponds to increases ofŜ due to jumps ofC. As the set
of times when̂S increases by a jump ofC is discrete, the processη is compound
Poisson with arrival rate equal toEC(1). Jumps ofη have the same distribution
as the overshootJ which is given by the formula (4.19):P(J ∈ dx|σ < ∞) =
ν(x,∞) dx/EC(1). This means thatη contributes exactly

EC(1)

∫
(0,∞)

(1− e−βx)H(dx)

to the Laplace exponent of the ladder height processĤ given in (5.3).
The subordinatorζ arising from increases of̂H not due to jumps ofC is

independent ofη. This leaves us with the conclusion, given that the killing rate is
c − EC(1), that the Laplace exponent ofζ is ψZ(β)/β. This way the groundwork
in Section 4 has been translated into a decomposition of the ladder height process:

THEOREM 5.3. Let X̂(t) = −ct +C(t)−Z(t) and let Ĥ be the ladder height
process of X̂. The following assertions are valid:

(i) Ĥ is killed at rate d = c − EC(1).
(ii) The ladder height process is the sum of two independent subordinators

(Ĥ (t) = η(t) + ζ(t) : 0 ≤ t < L̂(∞)). The subordinator η corresponds to jumps of
Ŝ due to the claim process C. It is compound Poisson with Lévy measure EC(1)H .
The subordinator ζ corresponds to increases of Ŝ not arising from jumps of C. Its
Laplace exponent is ψZ(β)/β.

The decomposition of̂H gives some insights into the structure of the processĤ .
From the form of the Laplace exponent ofζ , we find that the distribution ofζ does
not depend in any way on the distribution ofC, which is a remarkable conclusion
given thatC is a subordinator with a dense set of times of jumps. Many other
conclusions from Section 4 can be recast in terms of the ladder height process.
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As an example, consider Corollary 4.6. Recall thatτ = L̂(∞). Defineγ :=
L̂(σ ) if σ < ∞ and∞ else. The event{σ < ∞} is equal to{γ < τ }. It is easily
seen that

Ŝ(σ−) = ζ(γ ∧ τ ).

Note that Ŝ(σ−) = Ŝ(∞) on {σ = ∞}. Combining Corollary 4.6 and the
conclusion following (4.26), we know that the distribution function ofŜ(σ−) is G.
The decomposition of̂H gives further information aboutG. Since the random
variablesγ andτ are independent ofζ , andγ ∧ τ ∼ exp(c), the distribution of
Ŝ(σ−) is that of a subordinator taken at an independent exponential time and hence
infinitely divisible with Lévy measure� given by

�(dx) =
∫
(0,∞)

e−ct

t
P(ζt ∈ dx) dt.(5.6)

See [2], page 162. However, a direct computation using the Laplace exponent
of ζ yields

E
(
exp(−βζγ∧τ )

) =
∫
(0,∞)

E
(
exp(−βζt )

)
ce−ct dt(5.7)

= c

∫
(0,∞)

exp
(−tψZ(β)/β

)
e−ct dt

= cβ

cβ + ψZ(β)
.(5.8)

Comparing this formula to (3.2) gives an independent proof of Corollary 4.10.
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