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RANDOM ORIENTED TREES: A MODEL
OF DRAINAGE NETWORKS
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Indian Satistical Institute

Consider the/-dimensional latticeZ? where each vertex is “open” or
“closed” with probability p or 1 — p, respectively. An open vertex is
connected by an edge to the closest open vestesuch that theith co-
ordinates ofv and w satisfy w(d) = v(d) — 1. In case of nonuniqueness
of such a vertexw, we choose any one of the closest vertices with equal
probability and ndependently of the other random mechanisms. It is shown
that this random graph is a tree almost surelydee 2 and 3 and it is an
infinite collection of distinct trees faf > 4. In addition, for any dimension,
we show that there is no bi-infinite path in the tree and we also obtain central
limit theorems of (a) the number of vertices of a fixed degresnd (b) the
number of edges of a fixed length

1. Introduction. Leopold and Langbein (1962) introduced a geometric model
of natural drainage network which they described as

using a sheet of rectangular cross-section graph paper, each square is presumed to
represent a unit area. Each square isto be drained, but the drainage channel from each
square has equal chance of leading off in any of the four cardinal directions, subject
only to the condition that, having made a choice, flow in the reverse direction is not
possible. Under these conditions it is possible for one or more streams to flow into
a unit area, but only one can flow out.

Subsequently Scheidegger (1967) introduced a direction of flow. In his study of
Alpine valleys, he imposed conditions on the Leopold and Langbein model by
requiring that the drainage paths be in the “direction of high gradients between
watershed and main valleys.” Thus the drainage forms an oriented network, with
a square emptying to one of its two neighbors in a preferred direction. Howard
(1971) removed the restriction of drainage to a neighboring square and modelled
a network to include “headward growth and branching in a random fashion.”
Rodriguez-Iturbe and Rinaldo (1997) present a survey of the development of this
field.

The random graph we study here follows the one described by Howard (1971)
with the caveat that a stream is not permitted to terminate or become inactive.
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Thus we consider thé-dimensional latticeZ? where each vertex is “open” or
“closed” with probabilityp or 1— p, respectively. The open vertices represent the
water sources. An open vertexs connected by an edge to the closest open vertex
w such that theith co-ordinates ob andw satisfyw(d) = v(d) — 1. In case of
nonuniqueness of such a vertexwe choose any one of the closest vertices with
equal probattity and indep@dently of the other random mechanisms. These edges
represent the channels of flow in the drainage network.

Our main result (Theorem 2.1) is that, #oe= 2 and 3, all the tributaries connect
to form one single delta, while faf > 4, there are infinitely many deltas, each
with its own distinct set of tributaries. In this connection it is worth noting that
(Theorem 2.2) there is no main river, in the sense that there is no bi-infinite river;
instead, each tributary has its own distinct source. In addition, for any dimension,
we obtain central limit theorems of (a) the number of sites where a fixed number
v of tributaries drain, as well as of (b) the number of channels of a fixed léngth

Similar tree—forest dichotomies have been studied for the uniform spanning tree
model by Pemantle (1991) and for the minimal spanning tree model by Newman
and Stein (1996). Ferrari, Landim and Thorisson (2002) have obtained similar
results for a continuous version of this model.

In two dimensions we obtain the main result by showing that the distance
between two streams starting at two different sites forms a martingale and thereby
invoking the martingale convergence theorem. For three dimensions we employ
a technigue based on Lyapunov functions, while in four or higher dimensions
we couple the streams starting at two different sites with two independent and
identically distributed random walks starting at these two sites. To show that there
are no bi-infinite paths in the graph we utilize the stationarity of the model and use
a Burton—Keane type argument. The limit theorems are obtained by checking that
the random processes satisfy the conditions needed to apply Lyapunov’s central
limit theorem.

The formal details of the model and the statements of results are in the next
section.

2. The model and statement of results. Let Q@ = {0, 1}Zd and let¥ be the
o algebra generated by finite-dimensional cylinder sets.(Qn¥) we assign
a product probability measui, which is defined by its marginals as

Plo:wow)=1}=1-P,{w:wu)=0}=p
forueZ¢and0< p <1.

Let{U,,:u,veZ? v(d) =u(d) — 1} bei.i.d. uniform(0, 1] random variables
on some probability spaceE, 4, 1). Here and subsequently we express the co-
ordinates of a vectar asu = (u(1), ..., u(d)).

Consider the product spac@ x 8, ¥ x §,P:= P, x u). For(w,§) e @ x g,
let V(= V(w, &)) be the random vertex set defined by

V(w, &) ={ueZ wu)=1).



1244 S. GANGOPADHYAY, R. ROY AND A. SARKAR

Note that ifu € V(w, &) for somet € E, thenu € V(w, &) for all ¢’ € E and thus
we say that a vertex is open in a configuration if u € V(w, &) for somet € E.
Foru € 74, let

Ny =Ny(w,§)
=iveV(w,§&):v(d)=u(d) —1and

d d

> @) —u@l=mind > " jw(i) —u@)]:w € V(w, §),

i=1 i=1
w(d)=u(d) — 1”

Note that forp > 0, N,, is nonempty almost surely and th} is defined for alk,
irrespective of it being open or closed. koe Z¢, let

h(u) € Ny(w, &) be such that
Uu,h(u)(g) = mln{Uu,v(E) BURS Nu(a)7 5)}

Again note that fop > 0 and for each € Z¢, h(u) is open, almost surely unique
andh(u)(d) = u(d) — 1. On V(w, £) we assign the edge sét= & (w, &) :=
{{u, h(u)) :u € V(w, §)}.

Consider that grapB = ('V, &) consisting of the vertex sétf and edge sef.
For p =0, V = @ almost surely, and, fop = 1, (u,v) € & if and only if
u(i) =v(@i) forall i #d and|u(d) — v(d)| = 1. Also, for a vertext € V(w, &),
there is exactly one edge “going down” from that is, there is a unique edge
(u, v) with v(d) < u(d). Thus the grapl contains no loops almost surely. Hence,
for 0 < p < 1, the graphg consists of only trees. Our first result is

(1)

THEOREM2.1. LetO< p <1.Ford=2andd = 3, § consists of one single
tree P-almost surely, while for d > 4, g is a forest consisting of infinitely many
digoint trees P-almost surely.

Regarding the geometric structure of the grgphve have

THEOREM 2.2. LetO0< p < 1. For any d > 2, the graph 4 contains no bi-
infinite path P-almost surely.

Now for v > 0, let S, be the number of vertices i N ([1, n]¢) of the graphg
with degreev + 1. Also, for! > 1, letL,, be the number of edges af-length/ in
the graphg with one end vertex i N ([1, nl?).



RANDOM ORIENTED TREES 1245

THEOREM2.3. Asn — oo:
(a) =% convergesweakly to a normal randomvariable;

(b) L2=2iEn) convergesweakly to a normal random variable.

Finally, ford = 2, given that a vertex is open, the following proposition gives
the exact distribution of the degreewf

PrRoPOSITION2.1. Given that a vertex v is open, the degree of the vertex
in the graph G has the same distribution asthat of 1 + Y + X1 + X2, where Y,
X1 and X are independent nonnegative random variables such that

0, with probability 1 — p,

1, with probability p,

1, for r =0,
P(X1=r)=P(X2=r)=1 (1-p?¥12-p)
23-3p+p?r’
Thus the expected degree of a vertex, given that it is open, is 2.

Y =

for r > 1.

REMARK 2.1. As in Lemma 7 of Aldous and Steele (1992), using the
ergodicity of the process, it may be shown that in any dimension, the expected
degree of a vertex, given that it is open, is 2.

3. Proof of Theorem 2.1. We fix 0 < p < 1 and foru,v € 74-1 consider
the d-dimensional vectors := («, 0) andv := (v, 0) and let(X}}, —n) := A" (u),
where 4" denotes then-fold composition of 2 defined in (1). ForZ,(=
Zy,(u,v)) == X}, — X", we first observe that it is a time-homogeneous Markov
chain with state spac&‘~!; indeed, this follows on writing{Z, 11 = z,11,

X0 = Xns Xygrzo = Xn + Zn, - ..,Xgo = X0, XSO+ZO

Markovian property of the proce$6X’;, X') :n > 0}.
The connectedness or otherwise of the gr@ph equivalent to whether or not

Z, is absorbed at the origin. Fdr= 2 and 3, we show thaZ,, gets absorbed at

the origin,0 e Z¢~1 with probability 1; while ford > 4, Z, is a transient Markov

chain and hence has a positive probability of not being absorbed. In this connection

observe that instead of the aboigg, if we had considered a modified Markov

chainZ,, whereQ is no longer an absorbing state, but frGrwe move in one step

to some fixed verten # 0 with probability 1 and the other transition probabilities

are kept unchanged, then to show that the original proZgsis absorbed a0

almost surely, it suffices to show that the modified Markov pro@ss recurrent.

A more formal argument for this would requi#, andZ, to be coupled together

= xg + zo} and using the
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until they hit the origin, which occurs almost surely if the modified process is
recurrent. For the cas¢ = 3, we will show thatZ,, is recurrent. The proof is
divided into three sections accordingds- 2,d = 3 andd > 4.

3.1.d =2 Fixi < j and observe thak < X'} for everyn > 1, where
X! andX'} are as defined earlier. Thus the Markov chajin= Xf/? — X! with Zg =
j — i has as its state space the set of all nonnegative integers. Since the marginal
distributions of the increments of} and X! are identical with finite means,
{Z,:n > 0} is a nonnegative martingale. Hence, by the martingale convergence
theorem [see Billingsley (1979), Theorem 35.4, page 4Zf]converges almost
surely asn — oo. Since{Z, :n > 0} is also a time-homogeneous Markov chain
with 0 as the only absorbing state, we must h&e— 0 asn — oo with
probability 1. Since this is true for all< j, we have the result faf = 2.

3.2. d =3. Throughout this section the lettausv in bold font denote vectors
in Z3, u, viin roman font denote vectors#f andu, v in italic font denote integers.
Fix two vectorsu := (u,0) andv := (v, 0) in Z2 x {0} and letZ,(= Z,(u, v))
be the time-homogeneous Markov chain with state sp#fcas defined at the
beginning of this section. We shall exhibit, by a Lyapunov function technique,
that this Markov chair¥,, is recurrent, thereby showing thzj, is absorbed at the
origin with probability 1.

Consider the functionf : R? — [0, c0) defined by f(x) := ,/log(1+ [x]|3)
where || - ||2 is the standard., norm (Euclidean distance). Singg&(x) — oo
as ||x|l2 — oo, by Foster’s criterion [see Asmussen (1987), Proposition 5.3 of
Chapter |, page 18] the following lemma implies th&tis recurrent.

LEMMA 3.1. For all n > 0,thereexists T > 0 such that, for all ||x|2 > T, we
have

E(f(Zns1) — f(Zn) | Zy =x) <O.

PROOF Letg:[0, c0) — [0, c0) be defined ag(x) := /log(1+ x). Clearly
g(x)>0forall x >0 andg(x) - oo asx — o0. Also, forx, y > 0, the Taylor
series expansion yields

(x — y)? (x —y)?3
2 g —g<Ex—-—»egPy)+ Tyg(z)(y) + Tyg@(y),
which holds because the fourth derivative
3 11
@y — _ _
$ ) =Tl e a0+ 9 ee)?
18 15

0 fors > 0.

T 8(1L+9)4g()® 161+ 9)3(g(s)
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The first three derivatives @f, which we will be needing shortly, are

1
@ (o) —
8 = S 986
@)=~ - :
21+5)%(s)  AL+9)%(g(s)¥
3
g% () =

11 9%0)  A1153506)°  B8L19)3@0)°
Note that, for alls large,

)
$T = %G
Assuming for the moment that (we will prove this shortly), for same 0,

©) E(| Zns1ll5 = 1Za 13| Zn = %) = + o(|IX]52),
4) E((1Zns1l13 = 1 Z113)? | Z = X) = 2a||X||3,
(5) E((| Zns1l15 = 1Z2113)3| Zn = %) = O(IX[13),

as||x|l2 — oo, and using the above estimates and expression for derivatives, we
have, for allg := ||x||§ large and for some nonnegative constafitandCo,

E(f (Zns1) — f(Zu)| Zn =X)

- a+C1/B B 208
2+ pB)J/Iogd+pB) 41+ p)2/logd+ B)
- 20 N 30,8
81+ p)2/dogd + g2 1+ A*VI0GT+E)
1 4C,  24C,B 20 ]
- do +4C1 + 2 - .
8(L+ B)2Iog(L+ B) [ At T T T o1+ p)

The term inside the square brackets tends-t® as 8 — oo; therefore, for all
sufficiently largeg, the term is negative. Thus to complete the proof of the lemma
we need to show (3)—(5).

Let Dy := {v € Z2:|v||1 < k} denote ‘Li-diamond” of radiusk and§ Dy, :=
{v e Z2?:||v|l1 = k} its boundary, wheré - ||1 denotes the., norm. Consider the
probability distribution of the step size of the random walk, associated with the
tree generated by one particle, that is, the distributiol bf

pui=P(Xi=u)

(6) 2 ifu=o,
=1 (1— p)*P-1(1— (1 — p)PPr)
#5 Dy, ’

forueéDy, k>1,
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where o= (0, 0) is the origin and # denotes the cardinality of the sét For any
k>1andi, j >0, define
mi(k):== Y. wuipy

U:=(u1,u2)€Dy

and
m; j(k) := Z Mll“é Pu-

U:=(uq,u2)€Dy
Since(—u1, —u2) € Dy wheneven(ui, uz) € Dy, it is clear that, for everg > 1
we have

m;(k)=0 foralloddi and
m; j(k)=0 whenever eitheror j is odd.

()

Further, since ®;, = 1+ 2k(k + 1) and # D, = 4k, we have that, for all even
0 ;=i (k) = :
< m; Illrcn m; (k) Z uqpy
U:(uq,up)eZ?
i (1= p)P1(1— (1— p)PPr)
#5 Dy,

< ) #Dy)(max{u; : (u1, uz) € Dy})
k=1

— Zkl (1 _ p)l+2k(k—l) (1 _ (1 _ p)4k)
k=1

< Q.

Similarly, when bothi and j are evenm; j(k) — m; j ask — oo, where O<
mi j =) 72 u"luépu < o00. Further,p, being the same for every u @Dy, the
various quantitiesn; andm; ; remain unchanged if in their definitions we had
considered:, instead ofuq.

Moreover,

KP(ma—ma(k)) <k Y uip,
u:(u,u2)¢ Dy

o
< ) jfa-ptFiTh o
j=k+1

ask — oo since the sum

m . .

Zj4(1_ p)1+2/(4/—1) < 00.

j=1
A similar result holds forng(k) and so we have

(8) mak)=ma+ok™? and mok)=mo+ok™?  ask— oco.
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Now we proceed to compute the expectations:
B Zns1ll5 = 1241151 Zn =)

= Y (x+a—blZ—xI3)
a bez?

x Y [PXIT=XI+a,

weZ2

9) X=X 4 b| X! =w, X! =w +x}]
X [PXE=w, X" =w+X| Z, =x}]

= 3 (x+a—DblZ—Ix3)

a,bez?

xP{Xi=x+a X=b|x%2=0,x0=x],

where we have used the translation invariance of the model.
To calculate the above sum we let= ||x||2/4. Note, for ab € D, we have
P{X:=x+a X =b|X3=0, X2 =x}0= papp; thus, using (7) and (8),

(D)= Y. (Ix+a-bl3—[xI3)

a,be Dy
xP{Xt=x+a Xxt=b|x0=0,x%=x
(10) = Y [(a1 —b1)?+2x1(a1 — by)
a,be Dy
+ (a2 — b2)? + 2x2(az — b2) 1 papn
= 4m(k)mo(k)

=4my+o(k™®  ask — oco.

Also, if b ¢ Dy, then, taking||b|l1 = k + [ for somel > 1, the occurrence of the
event{ X = b} requires that all the vertices in the diamobgl,,_; be closed and
that at least one vertex 6D;.; be open—an event which occurs, with probability
(1 — p)tH2UH=D+D _ (1 — p)IF2k+D*+H+D Moreover, if { X3 = b} occurs,
thenX} must lie in the smallest diamond centered at x which contains the vertex b;
thus|| X — X3ll2 < I Xgll1+ 1 X312 < (IXll1+ [Ibll2) + Ibll1 = 6k +-2/. Now noting

that there are & + 1) vertices o Dy; and that an argument similar to the above
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may be given when @ Dy, we have

D= Y  (x+a-bl3— x|}
a¢ Dy, or b¢ Dy,

xP{X}=x+axt=b|x0=0x0=x

11
) < 2 Ak + D((6k + 20)% + (4k)?) (1 — p)tr2dr=Dl+D
>1

x[1—@A—p**+D]=0k™2)  ask— oco.

This establishes (3) with = 4m. 5 5 5
For (4), calculations as in (9) show thlE((||Zn+1||§ — ||Zn||§)2 | Z, =X) >
T1(2) where, performing calculations as in (10),

1= Y (Ix+a—blj3— [XI3)?P{X;=x+a Xsg=b| X0 =0, X7 =X}
a,be Dy
= Y [(a1—b1)? + 2x1(a1 — b) + (a2 — b2)? + 2x2(az — b2)* papp
a,be Dy
= 8mo(k)ymo(k) |1 x 113 + dma(kymo(k) + 16(mz(k))2 +4m2 2(k)mo(k).
Now, ask — oo, from (8) we havema(k)mo(k)||x|13 — ma|x|3 = 16(m2 +
ok™2) (1 + ok 2)k? — 16mok? = 16k%0(k~2) + o(k™2) = o(1); also
Ama(kymo(k) + 16(ma(k))? + 4mo 2(k)mo(k) — 4ma + 16m3 + 4ma 2 > 0. This
establishes (4).

Finally, for (5), we WriteE((|| Z,+1l13 — 11Z,113)2 | Zy = X) = T1(3) + T2(3),
where

Ti(3):= Y (Ix+a—bj3— [xI3°P{Xi =x+a X:=b| X2=0,x0=x)

a,be Dy

= 3 [(a1—b1)? + 2x1(a1 — b) + (a2 — b2)? + 2x2(az — b2) P papb
a,be Dy

= Y papo[(a1 —b1)*@2x1+ a1 — b1)?
a,be Dy

+ 3(a1 — b1)?(2x1 + a1 — b1)2(2x2 + a2 — bo) (a2 — by)
+ 3(a1 — b1)(2x1 + a1 — b1)(2xz + ap — bp)?(az — by)?

+ (a2 — b2)3(2x2 + ap — bp)]
=T1.1(3) + T1,2(3) + T1,3(3) + T1,4(3) (say)
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Now,

1113 := Z Papb(al — b1)3[(a1 — b1)® 4 6x1(a1 — b1)?
a,be Dy

+ 12x%(ag — b1) + 8x3]

= > papplar —b)®+122 Y papplar —by)*
a,be Dy a,be Dy

= Ca(k) + Ca(k)x,

whereC3(k) andCy(k) are both polynomials im:; (k) andm; ;(k), each of which
converges to the corresponding polynomial#n andm; ; ask — oo. Similar
calculations show théfy 4(3) := 35 pe p, PaPblaz — b2)3[(az — b2)2 + 6xz(az —
b2)? + 12x3(az — b2) 4 8x3] = C3(k) + Ca(k)x3.

Also,

T12(3)=3 Y papolar— b1)?[(a1 — b1)® + 4x1(a1 — ba) + 4xf]
a,be Dy

x [2x2(az — bp) + (a2 — b2)?)

=3 Y papplar — b)) *az — b2)?
a,be Dy

+12¢2 Y papplar — b1)?(az — b2)?
a,be Dy

= Cs(k) + Ce(k)x?,

where, as abové&s(k) andCg(k) are both polynomials im; (k) andm; ;(k), each
of which converges to the corresponding polynomiakinandm; ; ask — oo.
Similar calculations show thafy 3(3) := 3Y_ pe p, PaPblaz — b2)*[(az — b2)? +
dxz(az — bp) + 4x31[2x1(a1 — b1) + (a1 — b1)?] = Cs(k) + Ce(k)x3.

Finally, calculations similar to (11) yield2(3) := > a¢p, or ben, (X + a—
b2 — Ix[12)3P{XL =x+a X =b| X3=0, X} =x} = 0(k~2) ask — oco. This
establishes (5) and completes the proof of Lemma 31.

3.3.d > 4. For notational simplicity we present the proof only @r= 4.
Throughout this section the letteus v in bold font denote vectors i@A4, u, vin
roman font denote vectors i#° andu, v in italic font denote integers. We first
show that orZ*, the graphg admits two distinct trees with positive probability,
that is,

(12) P{4 is disconnected> 0.
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Consider a random vecto¥ € Z3 defined as follows: fok > 0, let A; :=
{v € Z3:|lv|l1 < k} denote the three-dimensional diamond of radiuand let
8Ax = {v e Z3:||v|1 = k} denote its boundary. As in (6), the distribution of the
random vectoX is given by

p, ifv=o,
(13) P(X =v)=1{ (1— p)* 11— (1 — p)#2k)
HEA ’

forvedAy, k>1,

where o= (0,0, 0) and #4 denotes the cardinality of the sét It may easily be
checked thap .73 P(X =v)=1.

Next, for a fixed vectou := (u(1), ..., u(4)) € Z*, consider the grapli¢ :=
(V U {u}, & U {(u, h(u))}). Forn > 0, leth”(u) := (g"(u), t) for g"(u) € Z2 and
t =u(4) —n € Z. Here we také:%(u) = u. Observe that for fixed;, ¢" (u) has
the same distribution a@& (1), u(2), u(3)) + >_'_; X;, whereXy, Xo, ... are i.i.d.
copies ofX. Hence{g” (u) : n > 0} is a symmetric random walk startingglt(u) =
(D), u(2),u(3)), with i.i.d. steps, each step size having distributorHowever,
for v e Z* with v(4) = u(4), in the graph('vV U {u, v}, & U {(u, h(U)), (v, h(V))})
the processeg” (u)},>0 and{g" (v)},>0 are notindependent and so, to obtain our
theorem, we cannot use the fact that, with positive probability, two independent
random walks or?3 do not intersect. Nonethelessifandv are sufficiently far
apart, their dependence on each other is weak. In the remainder of this section we
formalize this notion of weak dependence by coupling two independent random
walks and the processés’ (u), g" (v) :n > 0} and obtain the desired result.

Forv = (v, 0), givene > 0 define the event

" Ane(V) = {g"" (V) € 8" (0) + (A, 2010 \ A, 20-0),
g £g Oforalli=1,...,n%,

where0:= (0, 0, 0, 0).

LEMMA 3.2. For 0 < ¢ < 1/3,thereexist constants C, 8 > 0 and ng > 1 such
that, for all n > ng,

inf P(Ape(V))>=1—CnP.
PWeA 14:\A 1

Assuming the above lemma, we proceed to complete the proof of (12). We shall
return to the proof of the lemma later.

Fori > 1 andn > no, lett;(= t:(n)) := 1+ n*+ %2+ -+ %2 " and take
10 = 1. For fixedv, we define

Bo=Bo(v) :={g(V) € (0) + (A,1e \ Aj1-0)},
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and having define®,, ..., B;_1, we define
Bi =Bi(v):={g"(V) €g7(0) + (A »1ie) \ A 2is))
andg’/(v) #g/(0) forallt;_; +1< j <7}
Clearly,
P{g’ (v) # g/ (0) for all j > 1)

(15)

i
= lim Pl B,
ieoog_ ( !

-1
N B‘,-)IP(BO).
j=0

SinceP(By) > 0, from (15) we have thd®(g’/ (v) # g/ (0) forall j > 1) > 0 if
> 1-PBINZyB)) < o0

For fixed! > 1, letu; := A" (0) andvy := A" (v). Now {(A"(0), A" (V)) :n > 0}
being a Markov process and, sing8(vi)(®, &) € g% (@, &) + (A ya,, \
A da ) for (w, &) € B;(v), we have

h B/)

IP’(Bl+1
j=0

. 42 42
= quIP’[g( ) (V1) € g( ) (up) + (Anzl+1(1+s) \ An21+1(1—g))v
(16) gfuy) #£ ghvp) forallk=1,2, ..., (n4)211
. [\
=infP(4,, (W) 21-C(n?) k,

where inf is the infimum over allig, vy € Z* with g%(v1) € g%(U1) + (A ya..) \
A Ja-) anding is the infimum over alu with o) e (A 2@ \ A 2a ) and
the last inequality follows from Lemma 3.2. Th¥&°; (1 — P(Bi|(;Zy B;)) <
C Z;’il(nzl)‘ﬁ < 00, thereby completing the proof of (12).

To prove Lemma 3.2, we have to compare the trgé€$0)} and {4"(v)} and
independent “random walk$0+ (3"7_; X;, —n)} and{v+ (3_}_, ¥;, —n)}, where
{X1, X2,...} and{Yq, Yo, ...} are independent collections of i.i.d. copies of the
random variableX given in (13).
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We now describe a method to couple the trees and the independent random
walks. Before embarking on the formal details of the coupling procedure, we
present the main idea.

From a vertex0 we construct the “path{0+ (3", X;, —n)}. Now consider
the vertexv with v = (v1, vo, v3, 0). In case the diamond := {u e Z3: |ju|1 <
| X1]l1} is disjoint from the diamond’ := {u € Z3: Ju — (v1, v2, v3)|l1 < | Y21},
then we takei1(v) = {v + (Y1, —1)}. If the two diamonds are not disjoint, then we
have to definéi!(v) taking into account the configuration inside the diamand
Similarly, we may obtaim?(v) by considering the diamonds € Z3: |ju— X1||1 <
1 X2]l1} and{u e Z3:|ju— gX(v)|l1 < ||Y2]|l1}. Note that if, for eachi = 1,...,n,
the two diamonds involved at thih stage are disjoint, then the growth of the
tree {(h'(0), h'(v)):0 < i < n} is stochastically equivalent to that of the pair of
independent “random walkg0 + 3" X;, —n), v+ Q11 Yi, —n)).

We start with two verticesi := (u, 0) andv := (v, 0) in Z* with u,v € Z3.

Let (UY(2):ze Z%), {US(2) :ze Z3) and{U} (z) : z € Z3}, (U} (2) : z € Z3)} be four
independent collections of i.i.d. random variables, each of these random variables
being uniformly distributed of0, 1].

Let ky, and/y, be defined as

ky := min{k: Uj'(z) < p for some ze (U+ Ay)},
Iy :=min{l: Uy (z) < p for some z= (v + A))}.
Now definem, as
my ;= min{m : eitherUy (z) < p for some ze (v+ Ay) \ (U+ Ag,)
or Uj(z) < p for some ze (Vv + A,,) N (U+ Ag)}-
Also, define the sets
Ny:={ze (Uu+ Ay):U{ (@ < p}
N}l:={ze (v+ Ay):UY (@ < p)},
NG :={ze (V+An)\ (U+A): U{@ < p)

U{ze (V4 Ap,) N (U+ Ax,):U{(2) < p}.

’

We pick:
(@) ¢(u) € Ny such thatlyy (¢ (u)) = min{U5(2) : 2 € Ny};
(b) ¢(v) € N} such thatUy (¢ (v)) = min{Uy(2) :ze N3};
(€) ¥(v) € N2 such that/y (y(v)) = min{Uy (2) :ze N2}.
Taking ¢°(u) = u, ¢"(U) = ¢ (¢"1(u)), and similarly forz”(v) and " (v),

we note that the distribution of((¢"(u), —n), (¢"(v), —n)):n > 0} is the
same as that of((u+ X" 4 X;, —n), (v + X1 Y;,—n)):n > 0O}, that is, two
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independent “random walks,” one starting frofun, 0) and the other starting
from (v, 0). Also the distribution of{(4,(u,0), i,(v,0)):n > 0} and that of
{((@" (W), —n), (Y¥"(v), —n)) :n > 0} are identical. Thus, the procedure described
above may be used to construct the trees ftan®) and(v, 0).

Now observe thaf(¢" (u), —n)} describes both the random walk and the tree
starting from(u, 0). Also if A, N Ay, = @, thenmy = [y and, more importantly,
¢(v) = ¥ (v). Hence the “random walk” and the tree fraim 0) are coupled and
so are the “random walk” and the tree fram 0). In particular, this happens when
bothky < [|lu —V||1/2] andmy < [||lu — V]||1/2]. Let kg = |Ju — Vv||1/2. From the
above discussion, we have

P({c(v) £y W)}) <P({(Uj'(2) > pforallze (U+ Ax,)}
U{(U{(2)) > pforallze (v+ Ag)})
=2P({(Uj'(2)) > pforallze (u+ Ag,)})

=2(1— p)*™o.
Since(1/2)k3 < #A; < 2k3, the above inequality gives
(17) P({t(v) =¥ (W)}) = 1— Crexp(—Callu—vI13)

for constants”; =2 andC> = (1/2)|log(1 — p)|.
With the above estimate at hand, we look at the prop@ggu), ¢"(v)) :n > 0}.
Without loss of generality we take+ 0. Fore > 0 and constanK > 0 (to be

specified later), define
g Brei= (e (v) € " (0) + (Apzare \ Ayaas),
128 (v) — ¢'(0)l1 = K logn foralli =1, ..., n%.

This event is an independent random walk version of the edgntv, 0) defined
in (14), except that here we require that the two random walks come no closer than
K logn at any stage.

We will show that there exisig > 0 such that

(19) sup P((By.e(V))) < Can™®
VE(A, (1+6)\A, (1-¢))

for some constanfs > 0.
Since(B,,: (V) C Ey (V) U Fy (V) U G ¢ (V), Where

Ene():={lI'(v) — ¢ (0)]|1 < K logn for somei =1, ..., n%},
FreW) = (¢ (V) ¢ 6™ (0) + Ayonin ],
Gre () = {¢" (V) € 9" (0) + A, 200 ).

to prove (19) it suffices to show the following.
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LEMMA 3.3. Thereexist « > 0 and constants Cg4, Cs, Cg > 0 such that, for
all n sufficiently large, we have:

(a) SUQE(A,,(1+£)\A"(1_3)) ]P)(En,e(v)) < C4n—(l’
(b) Sup/e(An(1+g)\An(1_g)) ]P)(Fn,e(v)) < C5n—(l’
(C) Sup/e(An(l+S)\An(l—g)) ]P)(Gn,e(v)) < CG”l_a-

PROOF  Firstwe fix ve (A, a+ \ A, a-¢). Since{(¢"(0), ¢"(v)) :n > 0} and
{71 Xi, v+ 271 Y) :n > 0} have the same distribution, we have
DX - (V +2Y j)
j=1 j=1

P(Epc(v)) =P < K logn forsomei =1, ..., n4}

1

i i
=P ZXJ'—ZY/'E(V—{-AKN)Q,,) forsomei:l,...,n4}
=1 =1

i i
<P{> X;—> Y;je(V+ Agiogn) for somei > 1}
j=1 j=1

=]P’< U {ZX]-—Zszzforsomeile.
ze(V+Akiogn) Lj=1 Jj=1

Now Zf'/.:l(X‘,- — Y;) is an aperiodic, isotropic, symmetric random walk whose
steps are i.i.d. with each step having the same distributioX as Y, where
Y is an independent copy of. Since VatX — Y) = 2Var(X) = 2021 [where
o2 :=Var(X(1)) and VarX) denotes the variance-covariance matrixxjfand
D ouezd lul?P(X —Y = U) < oo, by Proposition P26.1 of Spitzer [(1964), page 308],

(20) lim |z| ]P’{Z X;— Y Y;=zforsome > 1} = (47 Var(x (1)) L.
|z] =00 = =1
For ve (A,a+o \ A,a-) and ze v+ Agjogn, We must have that, for all

n sufficiently large,|z| > n1=¢/2. Thus for alln sufficiently large and for some
constant<”7, Cs, Cg > 0, we have, using (20),

P(Epe(V) < Y, IP’{ZXJ—ZY/:Zforsomeizl}

ze(V+Aklogn) LJj=1 Jj=1
< C7(K logn)®Cg(n=17)
< an—(l—s/Z)'

This completes the proof of Lemma 3.3(a).
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For the next part of the lemma, observe that, for sufficiently largend all

VEAae \Aya-o,

o
P(F, (V) =P{v+ 3 (X; - ¥)) ¢ Anmﬂ)}
j=1
4
=PlIV+ ) (X;—-Y)| > n2<1+e>}
j=1 1
(21) 4
<P Z(Xj — Y/) - n2(1+e) _ n(1+5)}
j:]- 1
o
=P Z(Xj =Y > n2(1+5)/2}.
j:l 1

To estimate the above probability I&t — Y = Z = (Z(1), Z(2), Z(3)), where
E(Z(i)) =0 and VafZ(i)) = 202. Then, Iettingz’;zl(xj — Y;)(i) denote the

ith co-ordinate of the procegl;:l(Xj —Y;) and using Chebyshev’s inequality,

we have

n21+e) }
>

j=1

A

i=1

nt

DX = Y)G)

j=1

n2(1+e)
>
)

4

> X -YH@)

j=1

3n*Var(Z(1))
= (200 /6)2

n2(1+e) }
>

6

53]P’[

- C11
— n48 9

for some constanf'1; > 0. Combining the above inequality with that obtained in

(21), we have
C
sup  P(Fuev) < .

VE(A, (1+8)\ A, (1-¢))

which proves Lemma 3.3(b).
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Finally, for the last part of the lemma, we have that if<Os < 1/3 and
Ve A ae \ A,a, for all sufficiently largen, |v||1 < n?X~9). Therefore,
4

P(Gye(V)) <PV + Z(X —Y; )

j=1

< nZ(l—e) }

Vl
<Py D (X;=Yp| < ||V||1+n2(1_5)}
j 1

(22) <P Y X;-1) <2n2(1—e)}

1
n 2(1-¢) } }
<
3

{IZ LiX; — V) 2n‘25}

<
n? 3

iY@

|9l

By the central limit theorem, as — oo, Z”_l(X Y; )(1)/(x/§an2)
converges in distribution to a random varlatNe(say) with a standard normal
distribution. Thus

X;—Y)Qa —2 -2
[|z LG =)@ 20 }_P{|N|<¢§; |
o}

2 <
n 3
@ X —Y)H(D 2 2
n LY —2¢ —2¢
S]P |Z]:1( ] ] |<«/§n —]P’{|N|<ﬁn }
ﬁanz 30’ o}
Of the terms in the above inequality, we have
—2&‘ \/En 25(30.) 1 x2
N < d
(24) {l = } —V/2n=2%(30)~ 1\/ 2) *
_ 2v2n%(30) 71
p— /—277: 9

and we use Berry—Essen bounds [see Chow and Teicher (1978), Corollary 9.4,
page 300], to obtain

IZ 1(X Yj)(1)|<ﬁn—28 —P{INI JEn—ZS}
ﬁanz 30 = 30

4
X YA % NG
= ‘P{ N <3, —IP{N <3, }




RANDOM ORIENTED TREES 1259

n —2¢ —2¢
P{ X =Y 22 }_P{Nf_x/_Zn 2 }

(25) + \/éo’nz = 30 30
4
21X =Y
2supP{ =< —P
< xsgﬂﬁ { N SX} {N <x}

4
- C12E(Z7)

I’l40'4
for some constanti, > 0. Combining (22)—(24), we have Lemma 3.3(c)J

PROOF OF LEMMA 3.2. Letv := (v,0) € Z*. Observe that4,, .(v) 2
Bu (V)N {g'(0)=X"_1 X;j, g'(v) =v+>_ ¥ forall 1 <i <n*. Hence

P(Ane(V))

zP{Bn,em N {g"<0> =Y Xj, g =v+) ¥ forl<i §n4”
j=1 j=1

P[Bn,e(v)m {gi(O): Y X, gvy=v+ > v;for1<i §n4—1”

j=1 j=1

n4 n4
4 4
X P{g” O =) X;,8" (V=v+>_Y;
j=1 j=1

B,(V)N {gi(0)=ZX,~,gl’(v)=v+ZYj for1§i§n4—1”
j=1 j=1

zP{Bn,e(v) N {gf(O) =Y Xj. g =v+)Y vforl<i=<n®- 1”
j=1 j=1
x (1 — Crexp(—Ca(K logn)3)),
where the last inequality follows from (17) after noting that, givBp.(v),
g0 =3X"_1X;andg'(v)=v+3_;Y; holdforall 1<i < n*— 1, we have

lg" ~1(0) — ¢"*~1(v)|l1 > K logn. The above argument may be used iteratively
fori =1,...,n* — 1, and together with (19), we have
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Taking K such thatC2K2 > 4 [i.e., K3 > 8|log(1 — p)|~1], we have
P(Aps(V)) > 1 — Cin~C2K*H4 _ g
>1-Cnb,

for some constan€ > 0 and 8 := min{a, C2K3 — 4} > 0. This completes the
proof of Lemma 3.2. (J

Finally, to complete the theorem we need to show tHaadmits infinitely
many trees almost surely. Fbre= 2, defineD¥(n, ¢) := {(u1, Uo, ..., Ux) 1 u; € Z*
such thatn'= < [1g%u;) — ¢%u;) 1 < n1*® for all i # j}. Define the event
A(n e, U, g, ... up) 1= (02079 < lg"" (up) — g™ (uj) [l < n?@+) andg! (u;) #
g'(uj) forallr=1,. ..,n* and for alli # j}. Using Lemma 3.2, we can easily
show, for O< ¢ < 1/3 and for all largex,

. C
(26) inf{P(A(n,&,ug, Uz, ..., Ur) (UL, Uz, ..., Ug) € DX (n, &)} >1- —g
n

where C; is a constant independent of (depending onk) and g is as
in Lemma 3.2. We may now imitate the method following the statement of
Lemma 3.2 to obtain

P{g'(u;) # g'(u;) forall > 1 and for 1<i # j <k} > 0.
Thus, by translation invariance and ergodicity, we have that, fdralR,
P{4 contains at leagt treeg = 1.

This shows thag contains infinitely many trees almost surely.

4. Geometry of the graph g. We now prove Theorem 2.2 fat = 2; with
minor modifications the same argument carries through for any dimensions. The
idea behind this proof was suggested by the referee.

Fort € Z, consider the seV, := ¢ N {y = ¢}, the set of open vertices on the
line {y =t}. Forx € N; andn > 0, let B (x) := {y € N;4, :h"(y) = x} be the set
of the nth-order ancestors of the vertexc N,. Now consider the set of vertices
in N; which haventh-order ancestors, that i‘M,(”) = {x € N;:B!'(x) # &}.
Clearly, M™ < M™ for n > m and SOR, := lim,_,co M =,20 M" is well
defined. Moreover, this is the set of verticesipwhich have bi-infinite paths. We
want to show thaP(R, = @) = 1 for all t € Z. Since{R; :t € Z} is stationary, it
suffices to show that(Rg = @) = 1.

First note that by the translation invariance of the moBé&l#Ro = 0} U {#Ro =
oo}) = 1. Now suppos@#Rp = o0) > 0. A vertexx € R, is called abranching
point if #(B,l(x) N R,;1) > 2, thatis,x has at least two distinct infinite branches of
ancestors. Note that this notion of “branching point” is similar to that of “encounter
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point” of Burton and Keane (1989). As in their proof of the uniqueness of the
percolation cluster, our proof essentially uses the fact that it is impossible to embed
atree in a lattice.

We first show that

27) P(Origin is a branching point> 0.

SinceP(#Rg = o0) > 0, we may fix two vertices = (x1, 1) andy = (y1, 1) such
that

P(x, y € (B§(0) N Ry)) > 0.

Thus the eventE; := {Bf(x) # @, B (y) # @ for all n > 1} has positive
probability. Further, this event depends only on sfies= (i1, u2) : uz > 1}. Now,
consider the evenks := {(i,0) is closed for alli # 0 with —2maxX|x1| + 1,
[yi] + 1} <i <2maX]|x1| + 1, |y1| + 1} and (0, 0) is oper}. ClearlyP(E>2) > 0.
SinceE; andE> depend on disjoint sets of vertices, we have

P(Origin is a branching point> P(E1 N E2) = P(E1)P(E2) > 0.

Now, we defineg(n) :=#(RoN([—n, n] x {0})) andri(n) :=#(R1N([—n,n] x
{1})). We arrange the points aRo N ([—n,n] x {0}) asuy, ..., Uuym), IN an
increasing order of the coordinates. By our construction gf, neitheru, nor
uron)—1 NOr any of the vertices between them can be connected to a vertex on
which lies outsidg—n, n] x {1}. Thus, each of the vertices, us, ..., u;ymn)-1
will have at least one ancestor in the #tN ([—n, n] x {1}). Moreover, each of
the branching points imo, ..., u,»)—-1 has at least two distinct ancestors in the
setRy N ([—n,n] x {1}). Thus, if réz)(n) is the number of branching points in
[—n,n] x {1}, we must have

(28) ri(n) — (ro(n) — 2) = 1 () — 2
But, by stationarity, we havé&(r1(n)) = E(rg(n)) for all n > 1. Thus, forn
sufficiently large, from (27) we have
0=E(r1(n) — ro(n)) > Eréz) n)—4
= (2n + 1)IP(Origin is a branching point- 4 > 0.

This contradiction establishes Theorem 2.2.

5. Limit theorem. We first prove Theorem 2.3(a). The proof of the next part
of the theorem is similar and thus omitted. For simplicity in notation we shall prove
the result ford = 2; however, our method is also valid for higher dimensions.

Fix v > 0. LetB, :=[1, n] x [1, n] be a box of width: and, for(i, j) € B, NZ2,
define random variablel ; as

v { 1, if the degree of the vertef(, j) in B,NVisv+ 1,
J 0, otherwise.
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Note for a vertexi, j), Y¥; ; = 1 if and only if there are exactly edges “going up”
from (i, j) and one edge “going down” from it.

Let Y}") =" 1Y —E(; ;) andsS, := Z’}:l Y/(”) To prove Theorem 2.3
we need to show that the distribution §f/n is asymptotically normal.

Towards this end, first observe that, for fixgd {Y; ;};>1 is an a-mixing
sequence of random variables; that is, formalk 1, A c o (Y1, Y2 j, ..., Vi j)
andB € 0 (Ypqn, j» Ymsn+1,j----), we havelP(A N B) — P(A)P(B)| < an, Where
a, — 0 asn — oo. Indeed, givem and B as above, define

E = {there exists an open vertex in each of the sets

.. n . 3n .. 3n . n
{(l,])im+zfl§m+§},{(l,]+1)im+§§lfm+—},

2
{("+1)- Lt +5nH(. Yo P i< +3n”
i,J 'm 2_l_m 3 [ i,j)im 8_l_m ([

Now P(E) = (1 — (1 — p)"/®* - 1 asn — oo. Also, given E, the event
A depends only on the configuration of the vertidés j — 1):i < m + %},
{G,j):i <m}and{(,j+ 1):i <m+ 3}, while the eventB depends on the
vertices{(i, j — 1) :i >m + 37”}, {G,)):i=m+n}and{@,j+1):i>m+ 5}
These sets of vertices being disjoint, givéh A and B are conditionally

independent, a simple conditioning argument now yields thay farge enough,
(29) IP(AN B) —P(A)P(B)| < SP(E) < C1exp(—Can)
for constants"q, C2 > 0.

Also observe that, for fixed {Y; ;};>1is a one-dependent sequence of random
variables; that is, for fixed, Y; ; is independent of; ;- for j' # j — 1, j, j + 1.

Now, for some O< § < 1 to be chosen later and for € k < r,, where
Fpi= |1, let

[n%]+1
n) . v (n)
Wia = YkLn5J+k+l Tt Y(k+l)Ln5J+k’
n) . yvm)
Met+1 = ¥ (k1) |08 ) +h+1°
—y® (n)
En:=Y" pjsppa T 0"

First we show that, for any > 1, there exists a consta@it> 0 such that
(30) E(Y” 4+ +Y™)* < Ccren?.

Indeed note that, as in the proof of the first part of Theorem 27.5 of Billingsley
(1979), we havéE(Yl.(”))4 = IE(Yl(”))4 < Kn? for some constank > 0. Now

r 4 ;
k=1 kl,s,t=1
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and using the fact thqin’k(”)}k>1 is a one-dependent sequence of random variables,

the Cauchy-Schwarz inequality and th]EY(”) = 0, we obtain after some
elementary calculations

4
p
E( 3 Yk(”)> < 2B + rPEY"M)
k=1
Here the term 2E(Y;")* comes from the terms in the SURY, , ., E(Y (" ¥ x
YS(”)Y,(”)) whenj, k, s, t are close to each other so as to have dependence among all
the four random variables making the product, while the te?E(Yl("))“ comes

from the terms of the sum whep k are close to each other, ¢ are close to
each other, but there is independence betvx(é’é’ﬁ Yk(”)) and (¥, v\"™). This
proves (30).

Now takingr = [»? |, and using the fact thav™”, W™, ... are i.i.d. random
variables, we have from (30) thB(W,"”)* < Cn?*? for all k > 1.
Also

[n°]
Var( W(”) (Z Y(”))

-1
(32) = [ JE({")?+2 ) Cou(r(".¥{"))
j=1

= 10 JE(Y{")? +2(1n° ) — 1) Cov(r{", v3").
In the above expression,

n—1n—s

E(Y{")? =nVar(Yp) +23 > CouYy 1, Yyyr 1)
s=1t=1

n—1
=nVar(Y11) +2 ) _(n—s) Cov(Y1,1, Y145,1)
s=1

where the lastequality follows becausdrom the «-mixing of the sequence
{Y;1};>1 we have) 2,Cov(Y11. Y1) < CY 2ra; < oo for some constant
C > 0. Moreover, by the Cauchy—Schwarz inequality,

Cov(y{”, ¥i) <E(r{M)?.
Thus, from (32), we have V&Wl(”)) = 0(n'*%) asn — oo and

(33) Var( > W,f’”) =0Tt = 0@m?  asn— .
k=1
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Finally, for0<§ < 1,

.
. z 1 4
lim E(W")
2 (Vary L, w2

n 2428
< lim Y Cc——=lm cn’'=0.
n—>ook_1 n n—o0

Thus by Lyapunov’s central limit theorem [see Billingsley (1979), Theorem

27.3, page 312] we have that, for-08 < 1, 1/(,/ X5, Var(w™)) s, w
converges in probability to a standard normal random variable.

Now letn, ==Y ; n,ﬁ”). We will show that

(34) nn/n — 0 in probability as n — oo.
Indeed,

n n
E(n")? < Var(Y; ;) +2n Y Cou(Yrg, Yix)
i=1 i=2

[e.e]
<nVar(Yp1) +2n )  C1exp(—Cai)
i=2
< Mn for some constan¥ > 0.
Thus, using the fact that, = 0(n1—s) asn — 0o, we have, for > 0,
E®m2)  MnO@n'?)

= -0 asn — oo.
n2e? n2g?

P(In,| > ne) <

This proves (34).
To complete the proof, we have to show tl%at—> 0 in probability as: — oo.
First observe that number of termsi is at most n’ |. Therefore taking = 1/2,

from (30) we haveE(E2) < Cn3. Hence, fore > 0,
E(E}
I’l484

(35) P(|E,| > ne) < -0 asn — oo.

Theorem 2.3(a) now follows by combining equations (34) and (35) and the fact
thaty";", Wi /n has asymptotically & (0, s2) distribution, where

o0
s?=Var(Yy1) +2)  Cov(Y11, ¥i,1)
i=2

oo oo
+2) Cow(Y11,Yi2) +2) CouYip, Yi).
i=1 i=2

Note that to compute? we use the fact thall(Y; ;, Y; j+1)}i>1 IS ana-mixing
sequence.
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6. Degreeof avertex. To prove Proposition 2.1, observe that, given the vertex
(0, —1) is open, let

y— { 1, if the vertex(0, 0) is open,
0, otherwise,

X1 =#{(,0):i <—1:(,0) is connected by an edge (0, —1)},

Xo=#{(i,0):i > 1:(i, 0) is connected by an edge (0, —1)}.

Clearly the degree af0, —1) equalsY + X1 + X2. Now given the vertex0, —1)
is open, the probability that the vertéxI, 0) is connected tq0, —1) and that
there are exactly — 1 vertices in{(i, 0): — + 1 <i < —1} which are connected

to (0, —1) equals(~3)p" (1= )" (1= p)2 =@ = p) + }p). ThusP(X1 >

r) =y, (ij)p’(l — )@ - p)Z7X(@ - p) + 3p). An easy calculation
now completes the proof of the proposition.

Similarly, in two dimensions, given that a vertexs open, the distribution of
the number of edges of lengtfgoing up” from v is binomial with parameters 2
and(1- 5)(1— p)?-L.

REMARK 6.1. From the above distributions we may calculate the quantities
E(S,), Var(S,), s2 and the related quantities involvirdg, required in Theorem 2.3
for two dimensions.

Acknowledgments. We are grateful to Professor S. Popov for his suggestions
regarding the proof fo# = 3 and to an anonymous referee for suggesting that the
Burton—Keane argument would yield Theorem 2.2.
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