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RANDOM ORIENTED TREES: A MODEL
OF DRAINAGE NETWORKS

BY SREELA GANGOPADHYAY, RAHUL ROY1 AND ANISH SARKAR2
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Consider thed-dimensional latticeZd where each vertex is “open” or
“closed” with probability p or 1 − p, respectively. An open vertexv is
connected by an edge to the closest open vertexw such that thedth co-
ordinates ofv and w satisfy w(d) = v(d) − 1. In case of nonuniqueness
of such a vertexw, we choose any one of the closest vertices with equal
probability and independently of the other random mechanisms. It is shown
that this random graph is a tree almost surely ford = 2 and 3 and it is an
infinite collection of distinct trees ford ≥ 4. In addition, for any dimension,
we show that there is no bi-infinite path in the tree and we also obtain central
limit theorems of (a) the number of vertices of a fixed degreeν and (b) the
number of edges of a fixed lengthl.

1. Introduction. Leopold and Langbein (1962) introduced a geometric model
of natural drainage network which they described as

using a sheet of rectangular cross-section graph paper, each square is presumed to
represent a unit area. Each square is to be drained, but the drainage channel from each
square has equal chance of leading off in any of the four cardinal directions, subject
only to the condition that, having made a choice, flow in the reverse direction is not
possible. Under these conditions it is possible for one or more streams to flow into
a unit area, but only one can flow out.

Subsequently Scheidegger (1967) introduced a direction of flow. In his study of
Alpine valleys, he imposed conditions on the Leopold and Langbein model by
requiring that the drainage paths be in the “direction of high gradients between
watershed and main valleys.” Thus the drainage forms an oriented network, with
a square emptying to one of its two neighbors in a preferred direction. Howard
(1971) removed the restriction of drainage to a neighboring square and modelled
a network to include “headward growth and branching in a random fashion.”
Rodriguez-Iturbe and Rinaldo (1997) present a survey of the development of this
field.

The random graph we study here follows the one described by Howard (1971)
with the caveat that a stream is not permitted to terminate or become inactive.
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Thus we consider thed-dimensional latticeZd where each vertex is “open” or
“closed” with probabilityp or 1− p, respectively. The open vertices represent the
water sources. An open vertexv is connected by an edge to the closest open vertex
w such that thed th co-ordinates ofv andw satisfyw(d) = v(d) − 1. In case of
nonuniqueness of such a vertexw, we choose any one of the closest vertices with
equal probability and independently of the other random mechanisms. These edges
represent the channels of flow in the drainage network.

Our main result (Theorem 2.1) is that, ford = 2 and 3, all the tributaries connect
to form one single delta, while ford ≥ 4, there are infinitely many deltas, each
with its own distinct set of tributaries. In this connection it is worth noting that
(Theorem 2.2) there is no main river, in the sense that there is no bi-infinite river;
instead, each tributary has its own distinct source. In addition, for any dimension,
we obtain central limit theorems of (a) the number of sites where a fixed number
ν of tributaries drain, as well as of (b) the number of channels of a fixed lengthl.

Similar tree–forest dichotomies have been studied for the uniform spanning tree
model by Pemantle (1991) and for the minimal spanning tree model by Newman
and Stein (1996). Ferrari, Landim and Thorisson (2002) have obtained similar
results for a continuous version of this model.

In two dimensions we obtain the main result by showing that the distance
between two streams starting at two different sites forms a martingale and thereby
invoking the martingale convergence theorem. For three dimensions we employ
a technique based on Lyapunov functions, while in four or higher dimensions
we couple the streams starting at two different sites with two independent and
identically distributed random walks starting at these two sites. To show that there
are no bi-infinite paths in the graph we utilize the stationarity of the model and use
a Burton–Keane type argument. The limit theorems are obtained by checking that
the random processes satisfy the conditions needed to apply Lyapunov’s central
limit theorem.

The formal details of the model and the statements of results are in the next
section.

2. The model and statement of results. Let � = {0,1}Z
d

and letF be the
σ algebra generated by finite-dimensional cylinder sets. On(�,F ) we assign
a product probability measurePp which is defined by its marginals as

Pp{ω :ω(u) = 1} = 1− Pp{ω :ω(u) = 0} = p

for u ∈ Z
d and 0≤ p ≤ 1.

Let {Uu,v :u, v ∈ Z
d, v(d) = u(d)− 1} be i.i.d. uniform(0,1] random variables

on some probability space(�,S,µ). Here and subsequently we express the co-
ordinates of a vectoru asu = (u(1), . . . , u(d)).

Consider the product space(�× �,F × S,P := Pp × µ). For(ω, ξ) ∈ �× �,
let V(= V(ω, ξ)) be the random vertex set defined by

V(ω, ξ) = {u ∈ Z
d :ω(u) = 1}.
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Note that ifu ∈ V(ω, ξ) for someξ ∈ �, thenu ∈ V(ω, ξ ′) for all ξ ′ ∈ � and thus
we say that a vertexu is open in a configurationω if u ∈ V(ω, ξ) for someξ ∈ �.

Foru ∈ Z
d , let

Nu = Nu(ω, ξ)

=
{
v ∈ V(ω, ξ) :v(d) = u(d) − 1 and

d∑
i=1

|v(i) − u(i)| = min

{
d∑

i=1

|w(i) − u(i)| :w ∈ V(ω, ξ),

w(d) = u(d) − 1

}}
.

Note that forp > 0,Nu is nonempty almost surely and thatNu is defined for allu,
irrespective of it being open or closed. Foru ∈ Z

d , let

h(u) ∈ Nu(ω, ξ) be such that
(1)

Uu,h(u)(ξ) = min{Uu,v(ξ) :v ∈ Nu(ω, ξ)}.
Again note that forp > 0 and for eachu ∈ Z

d , h(u) is open, almost surely unique
and h(u)(d) = u(d) − 1. On V(ω, ξ) we assign the edge setE = E(ω, ξ) :=
{〈u,h(u)〉 :u ∈ V(ω, ξ)}.

Consider that graphG = (V,E) consisting of the vertex setV and edge setE .
For p = 0, V = ∅ almost surely, and, forp = 1, 〈u, v〉 ∈ E if and only if
u(i) = v(i) for all i �= d and |u(d) − v(d)| = 1. Also, for a vertexu ∈ V(ω, ξ),
there is exactly one edge “going down” fromu; that is, there is a unique edge
〈u, v〉 with v(d) ≤ u(d). Thus the graphG contains no loops almost surely. Hence,
for 0 < p < 1, the graphG consists of only trees. Our first result is

THEOREM 2.1. Let 0 < p < 1. For d = 2 and d = 3, G consists of one single
tree P-almost surely, while for d ≥ 4, G is a forest consisting of infinitely many
disjoint trees P-almost surely.

Regarding the geometric structure of the graphG, we have

THEOREM 2.2. Let 0 < p < 1. For any d ≥ 2, the graph G contains no bi-
infinite path P-almost surely.

Now for ν ≥ 0, letSn be the number of vertices inV ∩ ([1, n]d) of the graphG
with degreeν + 1. Also, forl ≥ 1, letLn be the number of edges ofL1-lengthl in
the graphG with one end vertex inV ∩ ([1, n]d).
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THEOREM 2.3. As n → ∞:

(a) Sn−E(Sn)

nd/2 converges weakly to a normal random variable;

(b) Ln−E(Ln)

nd/2 converges weakly to a normal random variable.

Finally, for d = 2, given that a vertexv is open, the following proposition gives
the exact distribution of the degree ofv.

PROPOSITION 2.1. Given that a vertex v is open, the degree of the vertex
in the graph G has the same distribution as that of 1 + Y + X1 + X2, where Y ,
X1 and X2 are independent nonnegative random variables such that

Y =
{0, with probability 1− p,

1, with probability p,

P(X1 ≥ r) = P(X2 ≥ r) =



1, for r = 0,

(1− p)2r−1(2− p)

2(3− 3p + p2)r
, for r ≥ 1.

Thus the expected degree of a vertex, given that it is open, is 2.

REMARK 2.1. As in Lemma 7 of Aldous and Steele (1992), using the
ergodicity of the process, it may be shown that in any dimension, the expected
degree of a vertex, given that it is open, is 2.

3. Proof of Theorem 2.1. We fix 0 < p < 1 and foru, v ∈ Z
d−1 consider

thed-dimensional vectorsu := (u,0) andv := (v,0) and let(Xn
u,−n) := hn(u),

where hn denotes then-fold composition of h defined in (1). ForZn(=
Zn(u, v)) := Xn

u − Xn
v , we first observe that it is a time-homogeneous Markov

chain with state spaceZd−1; indeed, this follows on writing{Zn+1 = zn+1,

Zn = zn, . . . ,Z0 = z0} = ⋃
xn+1,...,x0∈Zd {Xn+1

x0
= xn+1,X

n+1
x0+z0

= xn+1 + zn+1,

Xn
x0

= xn,X
n
x0+z0

= xn + zn, . . . ,X
0
x0

= x0,X
0
x0+z0

= x0 + z0} and using the
Markovian property of the process{(Xn

u,Xn
v ) :n ≥ 0}.

The connectedness or otherwise of the graphG is equivalent to whether or not
Zn is absorbed at the origin. Ford = 2 and 3, we show thatZn gets absorbed at
the origin,0 ∈ Z

d−1 with probability 1; while ford ≥ 4, Zn is a transient Markov
chain and hence has a positive probability of not being absorbed. In this connection
observe that instead of the aboveZn, if we had considered a modified Markov
chainZ̃n, where0 is no longer an absorbing state, but from0 we move in one step
to some fixed vertexu �= 0 with probability 1 and the other transition probabilities
are kept unchanged, then to show that the original processZn is absorbed at0
almost surely, it suffices to show that the modified Markov processZ̃n is recurrent.
A more formal argument for this would requireZn andZ̃n to be coupled together
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until they hit the origin, which occurs almost surely if the modified process is
recurrent. For the cased = 3, we will show thatZ̃n is recurrent. The proof is
divided into three sections according asd = 2, d = 3 andd ≥ 4.

3.1. d = 2. Fix i < j and observe thatXn
i ≤ Xn

j for every n ≥ 1, where
Xn

i andXn
j are as defined earlier. Thus the Markov chainZn := Xn

j −Xn
i with Z0 =

j − i has as its state space the set of all nonnegative integers. Since the marginal
distributions of the increments ofXn

i and Xn
j are identical with finite means,

{Zn :n ≥ 0} is a nonnegative martingale. Hence, by the martingale convergence
theorem [see Billingsley (1979), Theorem 35.4, page 416],Zn converges almost
surely asn → ∞. Since{Zn :n ≥ 0} is also a time-homogeneous Markov chain
with 0 as the only absorbing state, we must haveZn → 0 as n → ∞ with
probability 1. Since this is true for alli < j , we have the result ford = 2.

3.2. d = 3. Throughout this section the lettersu, v in bold font denote vectors
in Z

3, u, v in roman font denote vectors inZ2 andu, v in italic font denote integers.
Fix two vectorsu := (u,0) and v := (v,0) in Z

2 × {0} and letZ̃n(= Z̃n(u,v))

be the time-homogeneous Markov chain with state spaceZ
2 as defined at the

beginning of this section. We shall exhibit, by a Lyapunov function technique,
that this Markov chaiñZn is recurrent, thereby showing thatZn is absorbed at the
origin with probability 1.

Consider the functionf :R2 → [0,∞) defined byf (x) :=
√

log(1+ ‖x‖2
2)

where ‖ · ‖2 is the standardL2 norm (Euclidean distance). Sincef (x) → ∞
as ‖x‖2 → ∞, by Foster’s criterion [see Asmussen (1987), Proposition 5.3 of
Chapter I, page 18] the following lemma implies thatZ̃n is recurrent.

LEMMA 3.1. For all n ≥ 0, there exists T ≥ 0 such that, for all ‖x‖2 ≥ T , we
have

E
(
f (Z̃n+1) − f (Z̃n) | Z̃n = x

)
< 0.

PROOF. Let g : [0,∞) → [0,∞) be defined asg(x) := √
log(1+ x). Clearly

g(x) ≥ 0 for all x ≥ 0 andg(x) → ∞ asx → ∞. Also, for x, y ≥ 0, the Taylor
series expansion yields

g(x) − g(y) ≤ (x − y)g(1)(y) + (x − y)2

2
g(2)(y) + (x − y)3

6
g(3)(y),(2)

which holds because the fourth derivative

g(4)(s) = − 3

(1+ s)4g(s)
− 11

4(1+ s)4(g(s))3

− 18

8(1+ s)4(g(s))5 − 15

16(1+ s)4(g(s))7 < 0 for s > 0.
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The first three derivatives ofg, which we will be needing shortly, are

g(1)(s) = 1

2(1+ s)g(s)
,

g(2)(s) = − 1

2(1+ s)2g(s)
− 1

4(1+ s)2(g(s))3
,

g(3)(s) = 1

(1+ s)3g(s)
+ 3

4(1+ s)3(g(s))3 + 3

8(1+ s)3(g(s))5 .

Note that, for alls large,

g(3)(s) ≤ 3

(1+ s)3g(s)
.

Assuming for the moment that (we will prove this shortly), for someα > 0,

E(‖Z̃n+1‖2
2 − ‖Z̃n‖2

2 | Z̃n = x) = α + o(‖x‖−2
2 ),(3)

E
(
(‖Z̃n+1‖2

2 − ‖Z̃n‖2
2)

2 ∣∣ Z̃n = x
) ≥ 2α‖x‖2

2,(4)

E
(
(‖Z̃n+1‖2

2 − ‖Z̃n‖2
2)

3 ∣∣ Z̃n = x
)= O(‖x‖2

2),(5)

as‖x‖2 → ∞, and using the above estimates and expression for derivatives, we
have, for allβ := ‖x‖2

2 large and for some nonnegative constantsC1 andC2,

E
(
f (Z̃n+1) − f (Z̃n)|Z̃n = x

)
≤ α + C1/β

2(1+ β)
√

log(1+ β)
− 2αβ

4(1+ β)2
√

log(1+ β)

− 2αβ

8(1+ β)2
√

(log(1+ β))3
+ 3C2β

(1+ β)3
√

log(1+ β)

= 1

8(1+ β)2
√

log(1+ β)

[
4α + 4C1 + 4C1

β
+ 24C2β

1+ β
− 2αβ

log(1+ β)

]
.

The term inside the square brackets tends to−∞ asβ → ∞; therefore, for all
sufficiently largeβ, the term is negative. Thus to complete the proof of the lemma
we need to show (3)–(5).

Let Dk := {v ∈ Z
2 :‖v‖1 ≤ k} denote “L1-diamond” of radiusk and δDk :=

{v ∈ Z
2 :‖v‖1 = k} its boundary, where‖ · ‖1 denotes theL1 norm. Consider the

probability distribution of the step size of the random walk, associated with the
tree generated by one particle, that is, the distribution ofX1

o:

pu := P(X1
o = u)

(6)
=



p, if u = o,

(1− p)#Dk−1(1− (1− p)#δDk)

#δDk

, for u∈ δDk, k ≥ 1,
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where o:= (0,0) is the origin and #A denotes the cardinality of the setA. For any
k ≥ 1 andi, j ≥ 0, define

mi(k) := ∑
u:=(u1,u2)∈Dk

ui
1 pu

and

mi,j (k) := ∑
u:=(u1,u2)∈Dk

ui
1u

j
2 pu.

Since(−u1,−u2) ∈ Dk whenever(u1, u2) ∈ Dk , it is clear that, for everyk ≥ 1
we have

mi(k) = 0 for all oddi and
(7)

mi,j (k) = 0 whenever eitheri or j is odd.

Further, since #Dk = 1+ 2k(k + 1) and #δDk = 4k, we have that, for all eveni,

0 < mi := lim
k

mi(k) = ∑
u:(u1,u2)∈Z2

ui
1pu

≤
∞∑

k=1

(#δDk)
(
max{ui : (u1, u2) ∈ Dk})i (1− p)#Dk−1(1− (1− p)#δDk)

#δDk

=
∞∑

k=1

ki(1− p)1+2k(k−1)
(
1− (1− p)4k

)
< ∞.

Similarly, when bothi and j are even,mi,j (k) → mi,j as k → ∞, where 0<
mi,j := ∑

u∈Z2 ui
1u

j
2pu < ∞. Further,pu being the same for every u onδDk , the

various quantitiesmi andmi,j remain unchanged if in their definitions we had
consideredu2 instead ofu1.

Moreover,

k2(m2 − m2(k)
)≤ k2

∑
u:(u1,u2)/∈Dk

u2
1pu

≤
∞∑

j=k+1

j4(1− p)1+2j (j−1) → 0

ask → ∞ since the sum
∞∑

j=1

j4(1− p)1+2j (j−1) < ∞.

A similar result holds form0(k) and so we have

m2(k) = m2 + o(k−2) and m0(k) = m0 + o(k−2) ask → ∞.(8)
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Now we proceed to compute the expectations:

E(‖Z̃n+1‖2
2 − ‖Z̃n‖2

2 | Z̃n = x)

= ∑
a,b∈Z2

(‖x + a− b‖2
2 − ‖x‖2

2)

× ∑
w∈Z2

[P{Xn+1
u = Xn

u + a,

Xn+1
v = Xn

v + b | Xn
v = w,Xn

u = w + x}](9)

× [P{Xn
v = w,Xn

u = w + x | Z̃n = x}]

= ∑
a,b∈Z2

(‖x + a− b‖2
2 − ‖x‖2

2)

× P{X1
x = x + a,X1

o = b | X0
o = o,X0

x = x},

where we have used the translation invariance of the model.
To calculate the above sum we letk := ‖x‖2/4. Note, for a,b ∈ Dk , we have

P{X1
x = x + a,X1

o = b | X0
o = o,X0

x = x}0= papb; thus, using (7) and (8),

T1(1) := ∑
a,b∈Dk

(‖x + a− b‖2
2 − ‖x‖2

2)

× P{X1
x = x + a,X1

o = b | X0
o = o,X0

x = x}

(10) = ∑
a,b∈Dk

[(a1 − b1)
2 + 2x1(a1 − b1)

+ (a2 − b2)
2 + 2x2(a2 − b2)]papb

= 4m2(k)m0(k)

= 4m2 + o(k−2) ask → ∞.

Also, if b /∈ Dk , then, taking‖b‖1 = k + l for somel ≥ 1, the occurrence of the
event{X1

o = b} requires that all the vertices in the diamondDk+l−1 be closed and
that at least one vertex ofδDk+l be open—an event which occurs, with probability
(1 − p)1+2(k+l−1)(k+l) − (1 − p)1+2(k+l)(k+l+1). Moreover, if {X1

o = b} occurs,
thenX1

x must lie in the smallest diamond centered at x which contains the vertex b;
thus‖X1

x −X1
o‖2 ≤ ‖X1

x‖1+‖X1
o‖1 ≤ (‖x‖1+‖b‖1)+‖b‖1 = 6k+2l. Now noting

that there are 4(k + l) vertices onδDk+l and that an argument similar to the above
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may be given when a/∈ Dk , we have

T2(1) := ∑
a/∈Dk or b/∈Dk

(‖x + a− b‖2
2 − ‖x‖2

2)

× P{X1
x = x + a,X1

o = b | X0
o = o,X0

x = x}
(11)

≤ 2
∑
l≥1

4(k + l)
(
(6k + 2l)2 + (4k)2)(1− p)1+2(k+l−1)(k+l)

× [
1− (1− p)4(k+l)

]= o(k−2) ask → ∞.

This establishes (3) withα = 4m2.
For (4), calculations as in (9) show thatE((‖Z̃n+1‖2

2 − ‖Z̃n‖2
2)

2 | Z̃n = x) ≥
T1(2) where, performing calculations as in (10),

T1(2) := ∑
a,b∈Dk

(‖x + a− b‖2
2 − ‖x‖2

2)
2
P{X1

x = x + a,X1
o = b | X0

o = o,X0
x = x}

= ∑
a,b∈Dk

[(a1 − b1)
2 + 2x1(a1 − b1) + (a2 − b2)

2 + 2x2(a2 − b2)]2papb

= 8m2(k)m0(k)‖x‖2
2 + 4m4(k)m0(k) + 16

(
m2(k)

)2 + 4m2,2(k)m0(k).

Now, as k → ∞, from (8) we havem2(k)m0(k)‖x‖2
2 − m2‖x‖2

2 = 16(m2 +
o(k−2))(1 + o(k−2))k2 − 16m2k

2 = 16k2o(k−2) + o(k−2) = o(1); also
4m4(k)m0(k) + 16(m2(k))2 + 4m2,2(k)m0(k) → 4m4 + 16m2

2 + 4m2,2 > 0. This
establishes (4).

Finally, for (5), we writeE((‖Z̃n+1‖2
2 − ‖Z̃n‖2

2)
3 | Z̃n = x) = T1(3) + T2(3),

where

T1(3) := ∑
a,b∈Dk

(‖x + a− b‖2
2 − ‖x‖2

2)
3
P{X1

x = x + a,X1
o = b | X0

o = 0,X0
x = x}

= ∑
a,b∈Dk

[(a1 − b1)
2 + 2x1(a1 − b1) + (a2 − b2)

2 + 2x2(a2 − b2)]3papb

= ∑
a,b∈Dk

papb
[
(a1 − b1)

3(2x1 + a1 − b1)
3

+ 3(a1 − b1)
2(2x1 + a1 − b1)

2(2x2 + a2 − b2)(a2 − b2)

+ 3(a1 − b1)(2x1 + a1 − b1)(2x2 + a2 − b2)
2(a2 − b2)

2

+ (a2 − b2)
3(2x2 + a2 − b2)

3]
= T1,1(3) + T1,2(3) + T1,3(3) + T1,4(3) (say).
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Now,

T1,1(3) := ∑
a,b∈Dk

papb(a1 − b1)
3[(a1 − b1)

3 + 6x1(a1 − b1)
2

+ 12x2
1(a1 − b1) + 8x3

1
]

= ∑
a,b∈Dk

papb(a1 − b1)
6 + 12x2

1

∑
a,b∈Dk

papb(a1 − b1)
4

= C3(k) + C4(k)x2
1,

whereC3(k) andC4(k) are both polynomials inmi(k) andmi,j (k), each of which
converges to the corresponding polynomial inmi andmi,j as k → ∞. Similar
calculations show thatT1,4(3) :=∑

a,b∈Dk
papb(a2 − b2)

3[(a2 − b2)
3 + 6x2(a2 −

b2)
2 + 12x2

2(a2 − b2) + 8x3
2] = C3(k) + C4(k)x2

2.
Also,

T1,2(3) = 3
∑

a,b∈Dk

papb(a1 − b1)
2[(a1 − b1)

2 + 4x1(a1 − b1) + 4x2
1]

× [2x2(a2 − b2) + (a2 − b2)
2]

= 3
∑

a,b∈Dk

papb(a1 − b1)
4(a2 − b2)

2

+ 12x2
1

∑
a,b∈Dk

papb(a1 − b1)
2(a2 − b2)

2

= C5(k) + C6(k)x2
1,

where, as above,C5(k) andC6(k) are both polynomials inmi(k) andmi,j (k), each
of which converges to the corresponding polynomial inmi andmi,j ask → ∞.
Similar calculations show thatT1,3(3) := 3

∑
a,b∈Dk

papb(a2 − b2)
2[(a2 − b2)

2 +
4x2(a2 − b2) + 4x2

2][2x1(a1 − b1) + (a1 − b1)
2] = C5(k) + C6(k)x2

2.
Finally, calculations similar to (11) yieldT2(3) := ∑

a/∈Dk or b/∈Dk
(‖x + a −

b‖2
2 − ‖x‖2

2)
3
P{X1

x = x + a,X1
o = b | X0

o = 0,X1
x = x} = o(k−2) ask → ∞. This

establishes (5) and completes the proof of Lemma 3.1.�

3.3. d ≥ 4. For notational simplicity we present the proof only ford = 4.
Throughout this section the lettersu, v in bold font denote vectors inZ4, u, v in
roman font denote vectors inZ3 andu, v in italic font denote integers. We first
show that onZ4, the graphG admits two distinct trees with positive probability,
that is,

P{G is disconnected} > 0.(12)
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Consider a random vectorX ∈ Z
3 defined as follows: fork ≥ 0, let 
k :=

{v ∈ Z
3 :‖v‖1 ≤ k} denote the three-dimensional diamond of radiusk and let

δ
k := {v ∈ Z
3 :‖v‖1 = k} denote its boundary. As in (6), the distribution of the

random vectorX is given by

P(X = v) =



p, if v = o,

(1− p)#
k−1(1− (1− p)#δ
k)

#δ
k

, for v ∈ δ
k, k ≥ 1,
(13)

where o:= (0,0,0) and #A denotes the cardinality of the setA. It may easily be
checked that

∑
v∈Z3 P (X = v) = 1.

Next, for a fixed vectoru := (u(1), . . . , u(4)) ∈ Z
4, consider the graphH :=

(V ∪ {u},E ∪ {〈u, h(u)〉}). Forn ≥ 0, let hn(u) := (gn(u), t) for gn(u) ∈ Z
3 and

t = u(4) − n ∈ Z. Here we takeh0(u) = u. Observe that for fixedu, gn(u) has
the same distribution as(u(1), u(2), u(3)) +∑n

i=1 Xi , whereX1,X2, . . . are i.i.d.
copies ofX. Hence{gn(u) :n ≥ 0} is a symmetric random walk starting atg0(u) =
(u(1), u(2), u(3)), with i.i.d. steps, each step size having distributionX. However,
for v ∈ Z

4 with v(4) = u(4), in the graph(V ∪ {u,v},E ∪ {〈u, h(u)〉, 〈v, h(v)〉})
the processes{gn(u)}n≥0 and{gn(v)}n≥0 are not independent and so, to obtain our
theorem, we cannot use the fact that, with positive probability, two independent
random walks onZ3 do not intersect. Nonetheless, ifu andv are sufficiently far
apart, their dependence on each other is weak. In the remainder of this section we
formalize this notion of weak dependence by coupling two independent random
walks and the processes{gn(u), gn(v) :n ≥ 0} and obtain the desired result.

For v = (v,0), givenε > 0 define the event

An,ε(v) := {
gn4

(v) ∈ gn4
(0) + (


n2(1+ε) \ 
n2(1−ε)

)
,

(14)
gi(v) �= gi(0) for all i = 1, . . . , n4},

where0 := (0,0,0,0).

LEMMA 3.2. For 0 < ε < 1/3, there exist constants C,β > 0 and n0 ≥ 1 such
that, for all n ≥ n0,

inf
g0(v)∈


n1+ε\

n1−ε

P
(
An,ε(v)

)≥ 1− Cn−β.

Assuming the above lemma, we proceed to complete the proof of (12). We shall
return to the proof of the lemma later.

For i ≥ 1 andn ≥ n0, let τi(= τi(n)) := 1+n4+ (n4)2 +· · ·+ (n4)2i−1
and take

τ0 = 1. For fixedv, we define

B0 = B0(v) := {
g(v) ∈ g(0) + (
n1+ε \ 
n1−ε )

}
,
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and having definedB0, . . . ,Bi−1, we define

Bi = Bi(v) := {
gτi (v) ∈ gτi (0) + (



n2i (1+ε) \ 


n2i (1−ε)

)
andgj (v) �= gj (0) for all τi−1 + 1 ≤ j ≤ τi

}
.

Clearly,

P{gj (v) �= gj (0) for all j ≥ 1}

≥ P

( ∞⋂
i=0

Bi

)

(15)

= lim
i→∞ P

(
i⋂

j=0

Bj

)

= lim
i→∞

i∏
l=1

P

(
Bl

∣∣∣∣
l−1⋂
j=0

Bj

)
P(B0).

SinceP(B0) > 0, from (15) we have thatP(gj (v) �= gj (0) for all j ≥ 1) > 0 if∑∞
l=1 1− P(Bl|⋂l−1

j=0Bj ) < ∞.
For fixedl ≥ 1, let u1 := hτl (0) andv1 := hτl (v). Now {(hn(0), hn(v)) :n ≥ 0}

being a Markov process and, sinceg0(v1)(ω, ξ) ∈ g0(u1)(ω, ξ) + (

n2l (1+ε) \



n2l (1−ε) ) for (ω, ξ) ∈ Bl(v), we have

P

(
Bl+1

∣∣∣∣
l⋂

j=0

Bj

)

≥ inf
1

P

{
g(n4)2l

(v1) ∈ g(n4)2l

(u1) + (



n2l+1(1+ε) \ 

n2l+1(1−ε)

)
,

gk(u1) �= gk(v1) for all k = 1,2, . . . , (n4)2l
}

(16)

= inf
2

P
(
A

n2l
,ε
(u)

) ≥ 1− C
(
n2l )−β

,

where inf1 is the infimum over allu1,v1 ∈ Z
4 with g0(v1) ∈ g0(u1) + (


n2l (1+ε) \



n2l (1−ε) ) and inf2 is the infimum over allu with g0(u) ∈ (

n2l (1+ε) \


n2l (1−ε) ) and

the last inequality follows from Lemma 3.2. Thus
∑∞

l=1(1 − P(Bl|⋂l−1
j=0Bj )) ≤

C
∑∞

l=1(n
2l

)−β < ∞, thereby completing the proof of (12).
To prove Lemma 3.2, we have to compare the trees{hn(0)} and {hn(v)} and

independent “random walks”{0+(
∑n

i=1 Xi,−n)} and{v+(
∑n

i=1 Yi,−n)}, where
{X1,X2, . . . } and {Y1, Y2, . . . } are independent collections of i.i.d. copies of the
random variableX given in (13).
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We now describe a method to couple the trees and the independent random
walks. Before embarking on the formal details of the coupling procedure, we
present the main idea.

From a vertex0 we construct the “path”{0 + (
∑n

i=1 Xi,−n)}. Now consider
the vertexv with v = (v1, v2, v3,0). In case the diamondD := {u ∈ Z

3 :‖u‖1 ≤
‖X1‖1} is disjoint from the diamondD′ := {u ∈ Z

3 :‖u− (v1, v2, v3)‖1 ≤ ‖Y1‖1},
then we takeh1(v) = {v + (Y1,−1)}. If the two diamonds are not disjoint, then we
have to defineh1(v) taking into account the configuration inside the diamondD.
Similarly, we may obtainh2(v) by considering the diamonds{u∈ Z

3 :‖u−X1‖1 ≤
‖X2‖1} and{u ∈ Z

3 :‖u − g1(v)‖1 ≤ ‖Y2‖1}. Note that if, for eachi = 1, . . . , n,
the two diamonds involved at theith stage are disjoint, then the growth of the
tree {(hi(0), hi(v)) : 0 ≤ i ≤ n} is stochastically equivalent to that of the pair of
independent “random walks”(0 + (

∑n
i=1 Xi,−n),v + (

∑n
i=1 Yi,−n)).

We start with two verticesu := (u,0) and v := (v,0) in Z
4 with u,v ∈ Z

3.
Let {Uu

1 (z) : z∈ Z
3}, {Uu

2(z) : z∈ Z
3} and{Uv

1 (z) : z∈ Z
3}, {Uv

2(z) : z∈ Z
3} be four

independent collections of i.i.d. random variables, each of these random variables
being uniformly distributed on[0,1].

Let ku andlv be defined as

ku := min{k :Uu
1 (z) < p for some z∈ (u+ 
k)},

lv := min{l :Uv
1 (z) < p for some z∈ (v + 
l)}.

Now definemv as

mv := min
{
m : eitherUv

1 (z) < p for some z∈ (v + 
m) \ (u+ 
ku

)
or Uu

1(z) < p for some z∈ (v + 
m) ∩ (
u+ 
ku

)}
.

Also, define the sets

Nu := {
z ∈ (u+ 
ku

)
:Uu

1 (z) < p
}
,

N1
v := {

z ∈ (v + 
lv

)
:Uv

1 (z) < p
}
,

N2
v := {

z ∈ (v + 
mv

) \ (u+ 
ku

)
:Uv

1(z) < p
}

∪ {
z∈ (

v + 
mv

)∩ (
u+ 
ku

)
:Uu

1 (z) < p
}
.

We pick:

(a) φ(u) ∈ Nu such thatUu
2 (φ(u)) = min{Uu

2 (z) : z∈ Nu};
(b) ζ(v) ∈ N1

v such thatUv
2 (ζ(v)) = min{Uv

2(z) : z∈ N1
v };

(c) ψ(v) ∈ N2
v such thatUv

2 (ψ(v)) = min{Uv
2(z) : z∈ N2

v }.
Taking φ0(u) = u, φn(u) = φ(φn−1(u)), and similarly forζ n(v) and ψn(v),

we note that the distribution of{((φn(u),−n), (ζ n(v),−n)) :n ≥ 0} is the
same as that of{((u + ∑n

i=1 Xi,−n), (v + ∑n
i=1 Yi,−n)) :n ≥ 0}, that is, two
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independent “random walks,” one starting from(u,0) and the other starting
from (v,0). Also the distribution of{(hn(u,0), hn(v,0)) :n ≥ 0} and that of
{((φn(u),−n), (ψn(v),−n)) :n ≥ 0} are identical. Thus, the procedure described
above may be used to construct the trees from(u,0) and(v,0).

Now observe that{(φn(u),−n)} describes both the random walk and the tree
starting from(u,0). Also if 
ku ∩ 
mv = ∅, thenmv = lv and, more importantly,
ζ(v) = ψ(v). Hence the “random walk” and the tree from(u,0) are coupled and
so are the “random walk” and the tree from(v,0). In particular, this happens when
both ku < [‖u − v‖1/2] andmv < [‖u − v‖1/2]. Let k0 = ‖u − v‖1/2. From the
above discussion, we have

P
({ζ(v) �= ψ(v)}) ≤ P

({(
Uu

1 (z)
)
> p for all z ∈ (u+ 
k0

)}
∪ {(

Uv
1 (z)

)
> p for all z∈ (

v + 
k0

)})
= 2P

({(
Uu

1(z)
)
> p for all z∈ (

u+ 
k0

)})
= 2(1− p)#
k0 .

Since(1/2)k3 ≤ #
k ≤ 2k3, the above inequality gives

P
({ζ(v) = ψ(v)})≥ 1− C1 exp(−C2‖u− v‖3

1)(17)

for constantsC1 = 2 andC2 = (1/2)| log(1− p)|.
With the above estimate at hand, we look at the process{(φn(u), ζ n(v)) :n ≥ 0}.

Without loss of generality we take u= o. For ε > 0 and constantK > 0 (to be
specified later), define

Bn,ε(v) := {
ζ n4

(v) ∈ φn4
(o) + (


n2(1+ε) \ 
n2(1−ε)

)
,

(18) ‖ζ i(v) − φi(o)‖1 ≥ K logn for all i = 1, . . . , n4}.
This event is an independent random walk version of the eventAn,ε(v,0) defined
in (14), except that here we require that the two random walks come no closer than
K logn at any stage.

We will show that there existsα > 0 such that

sup
v∈(


n(1+ε)\
n(1−ε) )

P
((

Bn,ε(v)
)c)

< C3n
−α(19)

for some constantC3 > 0.
Since(Bn,ε(v))c ⊆ En,ε(v) ∪ Fn,ε(v) ∪ Gn,ε(v), where

En,ε(v) := {‖ζ i(v) − φi(o)‖1 ≤ K logn for somei = 1, . . . , n4},
Fn,ε(v) := {

ζ n4
(v) /∈ φn4

(o) + 
n2(1+ε)

}
,

Gn,ε(v) := {
ζ n4

(v) ∈ φn4
(o) + 
n2(1−ε)

}
,

to prove (19) it suffices to show the following.
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LEMMA 3.3. There exist α > 0 and constants C4,C5,C6 > 0 such that, for
all n sufficiently large, we have:

(a) supv∈(

n(1+ε)\
n(1−ε) )

P(En,ε(v)) < C4n
−α,

(b) supv∈(

n(1+ε)\
n(1−ε) )

P(Fn,ε(v)) < C5n
−α,

(c) supv∈(

n(1+ε)\
n(1−ε) )

P(Gn,ε(v)) < C6n
−α .

PROOF. First we fix v∈ (
n(1+ε) \ 
n(1−ε) ). Since{(φn(o), ζ n(v)) :n ≥ 0} and
{(∑n

i=1 Xi,v +∑n
i=1 Yi) : n ≥ 0} have the same distribution, we have

P
(
En,ε(v)

)= P

{∥∥∥∥∥
i∑

j=1

Xj −
(

v +
i∑

j=1

Yj

)∥∥∥∥∥
1

≤ K logn for somei = 1, . . . , n4

}

= P

{
i∑

j=1

Xj −
i∑

j=1

Yj ∈ (v + 
K logn) for somei = 1, . . . , n4

}

≤ P

{
i∑

j=1

Xj −
i∑

j=1

Yj ∈ (v + 
K logn) for somei ≥ 1

}

= P

( ⋃
z∈(v+
K logn)

{
i∑

j=1

Xj −
i∑

j=1

Yj = z for somei ≥ 1

})
.

Now
∑i

j=1(Xj −Yj ) is an aperiodic, isotropic, symmetric random walk whose
steps are i.i.d. with each step having the same distribution asX − Y , where
Y is an independent copy ofX. Since Var(X − Y ) = 2 Var(X) = 2σ 2I [where
σ 2 := Var(X(1)) and Var(X) denotes the variance-covariance matrix ofX] and∑

u∈Z3 |u|2P(X−Y = u) < ∞, by Proposition P26.1 of Spitzer [(1964), page 308],

lim|z|→∞ |z| P
{

i∑
j=1

Xj −
i∑

j=1

Yj = z for somei ≥ 1

}
= (

4π Var(X(1))
)−1

.(20)

For v ∈ (
n(1+ε) \ 
n(1−ε) ) and z∈ v + 
K logn, we must have that, for all
n sufficiently large,|z| ≥ n1−ε/2. Thus for alln sufficiently large and for some
constantsC7,C8,C9 > 0, we have, using (20),

P
(
En,ε(v)

)≤ ∑
z∈(v+
K logn)

P

{
i∑

j=1

Xj −
i∑

j=1

Yj = z for somei ≥ 1

}

≤ C7(K logn)3C8
(
n−(1−ε))

≤ C9n
−(1−ε/2).

This completes the proof of Lemma 3.3(a).
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For the next part of the lemma, observe that, for sufficiently largen and all
v ∈ 
n(1+ε) \ 
n(1−ε) ,

P
(
Fn,ε(v)

)= P

{
v +

n4∑
j=1

(Xj − Yj ) /∈ 
n2(1+ε)

}

= P

{∥∥∥∥∥v +
n4∑

j=1

(Xj − Yj)

∥∥∥∥∥
1

> n2(1+ε)

}

(21)

≤ P

{∥∥∥∥∥
n4∑

j=1

(Xj − Yj )

∥∥∥∥∥
1

> n2(1+ε) − n(1+ε)

}

≤ P

{∥∥∥∥∥
n4∑

j=1

(Xj − Yj )

∥∥∥∥∥
1

> n2(1+ε)/2

}
.

To estimate the above probability letX − Y = Z = (Z(1),Z(2),Z(3)), where
E(Z(i)) = 0 and Var(Z(i)) = 2σ 2. Then, letting

∑k
j=1(Xj − Yj)(i) denote the

ith co-ordinate of the process
∑k

j=1(Xj − Yj) and using Chebyshev’s inequality,
we have

P

{∥∥∥∥∥
n4∑

j=1

(Xj − Yj )

∥∥∥∥∥
1

>
n2(1+ε)

2

}

≤ P

{ 3⋃
i=1

{∣∣∣∣∣
n4∑

j=1

(Xj − Yj )(i)

∣∣∣∣∣> n2(1+ε)

6

}}

≤ 3P

{∣∣∣∣∣
n4∑

j=1

(Xj − Yj)(1)

∣∣∣∣∣> n2(1+ε)

6

}

≤ 3n4 Var(Z(1))

(n2(1+ε)/6)2

≤ C11

n4ε
,

for some constantC11 > 0. Combining the above inequality with that obtained in
(21), we have

sup
v∈(


n(1+ε)\
n(1−ε) )

P
(
Fn,ε(v)

)≤ C11

n4ε
,

which proves Lemma 3.3(b).
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Finally, for the last part of the lemma, we have that if 0< ε < 1/3 and
v ∈ 
n(1+ε) \ 
n(1−ε) , for all sufficiently largen, ‖v‖1 < n2(1−ε). Therefore,

P
(
Gn,ε(v)

)≤ P

{∥∥∥∥∥v +
n4∑

j=1

(Xj − Yj )

∥∥∥∥∥
1

< n2(1−ε)

}

≤ P

{∥∥∥∥∥
n4∑

j=1

(Xj − Yj )

∥∥∥∥∥
1

< ‖v‖1 + n2(1−ε)

}

≤ P

{∥∥∥∥∥
n4∑

j=1

(Xj − Yj )

∥∥∥∥∥
1

< 2n2(1−ε)

}
(22)

≤ P

{ 3⋃
i=1

{∣∣∣∣∣
n4∑

j=1

(Xj − Yj )(i)

∣∣∣∣∣< 2n2(1−ε)

3

}}

≤ 3P

{ |∑n4

j=1(Xj − Yj )(1)|
n2

<
2n−2ε

3

}
.

By the central limit theorem, asn → ∞,
∑n4

j=1(Xj − Yj )(1)/(
√

2σn2)

converges in distribution to a random variableN (say) with a standard normal
distribution. Thus

P

{ |∑n4

j=1(Xj − Yj )(1)|
n2 <

2n−2ε

3

}
− P

{
|N | <

√
2n−2ε

3σ

}
(23)

≤
∣∣∣∣∣P
{ |∑n4

j=1(Xj − Yj )(1)|√
2σn2

<

√
2n−2ε

3σ

}
− P

{
|N | <

√
2n−2ε

3σ

}∣∣∣∣∣.
Of the terms in the above inequality, we have

P

{
|N | ≤

√
2n−2ε

3σ

}
=
∫ √

2n−2ε(3σ)−1

−√
2n−2ε(3σ)−1

1√
2π

exp
(
−x2

2

)
dx

(24)

≤ 2
√

2n−2ε(3σ)−1

√
2π

,

and we use Berry–Essen bounds [see Chow and Teicher (1978), Corollary 9.4,
page 300], to obtain∣∣∣∣∣P

{ |∑n4

j=1(Xj − Yj )(1)|√
2σn2

<

√
2n−2ε

3σ

}
− P

{
|N | <

√
2n−2ε

3σ

}∣∣∣∣∣
≤
∣∣∣∣∣P
{∑n4

j=1(Xj − Yj )(1)√
2σn2

<

√
2n−2ε

3σ

}
− P

{
N <

√
2n−2ε

3σ

}∣∣∣∣∣
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+
∣∣∣∣∣P
{∑n4

j=1(Xj − Yj )(1)√
2σn2

≤ −
√

2n−2ε

3σ

}
− P

{
N ≤ −

√
2n−2ε

3σ

}∣∣∣∣∣(25)

≤ 2 sup
x∈R

∣∣∣∣∣P
{∑n4

j=1(Xj − Yj)(1)√
2σn2

≤ x

}
− P {N ≤ x}

∣∣∣∣∣
≤ C12E(Z4

1)

n4σ 4
,

for some constantC12 > 0. Combining (22)–(24), we have Lemma 3.3(c).�

PROOF OF LEMMA 3.2. Let v := (v,0) ∈ Z
4. Observe thatAn,ε(v) ⊇

Bn,ε(v) ∩ {gi(0) =∑i
j=1 Xj , gi(v) = v +∑i

j=1Yj for all 1 ≤ i ≤ n4}. Hence

P
(
An,ε(v)

)

≥ P

{
Bn,ε(v) ∩

{
gi(0) =

i∑
j=1

Xj , gi(v) = v +
i∑

j=1

Yj for 1 ≤ i ≤ n4

}}

= P

{
Bn,ε(v) ∩

{
gi(0) =

i∑
j=1

Xj , gi(v) = v +
i∑

j=1

Yj for 1 ≤ i ≤ n4 − 1

}}

× P

{
gn4

(0) =
n4∑

j=1

Xj ,g
n4

(v) = v +
n4∑

j=1

Yj

∣∣∣∣

Bn,ε(v) ∩
{
gi(0) =

i∑
j=1

Xj ,g
i(v) = v +

i∑
j=1

Yj for 1≤ i ≤ n4 − 1

}}

≥ P

{
Bn,ε(v) ∩

{
gi(0) =

i∑
j=1

Xj ,g
i(v) = v +

i∑
j=1

Yj for 1 ≤ i ≤ n4 − 1

}}

× (
1− C1 exp

(−C2(K logn)3)),
where the last inequality follows from (17) after noting that, givenBn,ε(v),
gi(0) =∑i

j=1Xj andgi(v) = v +∑i
j=1Yj hold for all 1≤ i ≤ n4 − 1, we have

‖gn4−1(0) − gn4−1(v)‖1 ≥ K logn. The above argument may be used iteratively
for i = 1, . . . , n4 − 1, and together with (19), we have

P
(
An,ε(v)

) ≥ (
1− C1 exp

(−C2(K logn)3))n4
P
(
Bn,ε(v)

)
≥ (

1− C1n
4 exp(−C2K

3 logn)
)
(1− C3n

−α)

≥ (
1− C1n

4n−C2K
3)

(1− C3n
−α)

= (
1− C1n

−C2K
3+4)(1− C3n

−α).
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TakingK such thatC2K
3 > 4 [i.e.,K3 > 8| log(1− p)|−1], we have

P
(
An,ε(v)

)≥ 1− C1n
−C2K

3+4 − C3n
−α

≥ 1− Cn−β,

for some constantC > 0 andβ := min{α,C2K
3 − 4} > 0. This completes the

proof of Lemma 3.2. �

Finally, to complete the theorem we need to show thatG admits infinitely
many trees almost surely. Fork ≥ 2, defineDk(n, ε) := {(u1,u2, . . . ,uk) : ui ∈ Z

4

such thatn1−ε ≤ ‖g0(ui ) − g0(uj )‖1 ≤ n1+ε for all i �= j}. Define the event

A(n, ε,u1,u2, . . . ,uk) := {n2(1−ε) ≤ ‖gn4
(ui )−gn4

(uj )‖1 ≤ n2(1+ε) andgt (ui) �=
gt (uj ) for all t = 1, . . . , n4 and for all i �= j}. Using Lemma 3.2, we can easily
show, for 0< ε < 1/3 and for all largen,

inf
{
P
(
A(n, ε,u1,u2, . . . ,uk) : (u1,u2, . . . ,uk) ∈ Dk(n, ε)

)}≥ 1− Ck

nβ
,(26)

where Ck is a constant independent ofn (depending onk) and β is as
in Lemma 3.2. We may now imitate the method following the statement of
Lemma 3.2 to obtain

P{gt (ui) �= gt(uj ) for all t ≥ 1 and for 1≤ i �= j ≤ k} > 0.

Thus, by translation invariance and ergodicity, we have that, for allk ≥ 2,

P{G contains at leastk trees} = 1.

This shows thatG contains infinitely many trees almost surely.

4. Geometry of the graph G. We now prove Theorem 2.2 ford = 2; with
minor modifications the same argument carries through for any dimensions. The
idea behind this proof was suggested by the referee.

For t ∈ Z, consider the setNt := G ∩ {y = t}, the set of open vertices on the
line {y = t}. Forx ∈ Nt andn ≥ 0, letBn

t (x) := {y ∈ Nt+n :hn(y) = x} be the set
of the nth-order ancestors of the vertexx ∈ Nt . Now consider the set of vertices
in Nt which haventh-order ancestors, that is,M(n)

t := {x ∈ Nt :Bn
t (x) �= ∅}.

Clearly,M(n)
t ⊆ M

(m)
t for n > m and soRt := limn→∞ M

(n)
t =⋂

n≥0 M
(n)
t is well

defined. Moreover, this is the set of vertices inNt which have bi-infinite paths. We
want to show thatP(Rt = ∅) = 1 for all t ∈ Z. Since{Rt : t ∈ Z} is stationary, it
suffices to show thatP(R0 = ∅) = 1.

First note that by the translation invariance of the model,P({#R0 = 0}∪ {#R0 =
∞}) = 1. Now supposeP(#R0 = ∞) > 0. A vertexx ∈ Rt is called abranching
point if #(B1

t (x)∩Rt+1) ≥ 2, that is,x has at least two distinct infinite branches of
ancestors. Note that this notion of “branching point” is similar to that of “encounter
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point” of Burton and Keane (1989). As in their proof of the uniqueness of the
percolation cluster, our proof essentially uses the fact that it is impossible to embed
a tree in a lattice.

We first show that

P(Origin is a branching point) > 0.(27)

SinceP(#R0 = ∞) > 0, we may fix two verticesx = (x1,1) andy = (y1,1) such
that

P
(
x, y ∈ (B1

0(0) ∩ R1
))

> 0.

Thus the eventE1 := {Bn
1(x) �= ∅,Bn

1 (y) �= ∅ for all n ≥ 1} has positive
probability. Further, this event depends only on sites{u := (u1, u2) :u2 ≥ 1}. Now,
consider the eventE2 := {(i,0) is closed for alli �= 0 with −2 max{|x1| + 1,

|y1| + 1} ≤ i ≤ 2 max{|x1| + 1, |y1| + 1} and(0,0) is open}. ClearlyP(E2) > 0.
SinceE1 andE2 depend on disjoint sets of vertices, we have

P(Origin is a branching point) ≥ P(E1 ∩ E2) = P(E1)P(E2) > 0.

Now, we definer0(n) := #(R0∩([−n,n]×{0})) andr1(n) := #(R1∩([−n,n]×
{1})). We arrange the points ofR0 ∩ ([−n,n] × {0}) as u1, . . . , ur0(n), in an
increasing order of thex coordinates. By our construction ofG, neitheru2 nor
ur0(n)−1 nor any of the vertices between them can be connected to a vertex onN1
which lies outside[−n,n] × {1}. Thus, each of the verticesu2, u3, . . . , ur0(n)−1
will have at least one ancestor in the setR1 ∩ ([−n,n] × {1}). Moreover, each of
the branching points inu2, . . . , ur0(n)−1 has at least two distinct ancestors in the

setR1 ∩ ([−n,n] × {1}). Thus, if r
(2)
0 (n) is the number of branching points in

[−n,n] × {1}, we must have

r1(n) − (
r0(n) − 2

)≥ r
(2)
0 (n) − 2.(28)

But, by stationarity, we haveE(r1(n)) = E(r0(n)) for all n ≥ 1. Thus, forn
sufficiently large, from (27) we have

0 = E
(
r1(n) − r0(n)

)≥ Er
(2)
0 (n) − 4

= (2n + 1)P(Origin is a branching point) − 4 > 0.

This contradiction establishes Theorem 2.2.

5. Limit theorem. We first prove Theorem 2.3(a). The proof of the next part
of the theorem is similar and thus omitted. For simplicity in notation we shall prove
the result ford = 2; however, our method is also valid for higher dimensions.

Fix ν ≥ 0. LetBn := [1, n]×[1, n] be a box of widthn and, for(i, j) ∈ Bn ∩Z
2,

define random variablesYi,j as

Yi,j :=
{

1, if the degree of the vertex(i, j) in Bn ∩ V is ν + 1,

0, otherwise.
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Note for a vertex(i, j), Yi,j = 1 if and only if there are exactlyν edges “going up”
from (i, j) and one edge “going down” from it.

Let Y
(n)
j :=∑n

i=1(Yi,j − E(Yi,j )) andSn :=∑n
j=1 Y

(n)
j . To prove Theorem 2.3

we need to show that the distribution ofSn/n is asymptotically normal.
Towards this end, first observe that, for fixedj , {Yi,j }i≥1 is an α-mixing

sequence of random variables; that is, for allm ≥ 1, A ∈ σ(Y1,j , Y2,j , . . . , Ym,j )

andB ∈ σ(Ym+n,j , Ym+n+1,j , . . .), we have|P(A ∩ B) − P(A)P(B)| ≤ αn, where
αn → 0 asn → ∞. Indeed, givenA andB as above, define

E :=
{

there exists an open vertex in each of the sets

{
(i, j) :m + n

4
≤ i ≤ m + 3n

8

}
,

{
(i, j + 1) :m + 3n

8
≤ i ≤ m + n

2

}
,

{
(i, j + 1) :m + n

2
≤ i ≤ m + 5n

8

}
,

{
(i, j) :m + 3n

8
≤ i ≤ m + 3n

4

}}
.

Now P(E) = (1 − (1 − p)n/8)4 → 1 as n → ∞. Also, given E, the event
A depends only on the configuration of the vertices{(i, j − 1) : i ≤ m + n

4},
{(i, j) : i ≤ m} and {(i, j + 1) : i < m + n

2}, while the eventB depends on the
vertices{(i, j − 1) : i ≥ m + 3n

4 }, {(i, j) : i ≥ m + n} and{(i, j + 1) : i > m + n
2}.

These sets of vertices being disjoint, givenE, A and B are conditionally
independent, a simple conditioning argument now yields that, forn large enough,

|P(A ∩ B) − P(A)P(B)| ≤ 5P(Ec) ≤ C1 exp(−C2n)
(29)

for constantsC1,C2 > 0.

Also observe that, for fixedi, {Yi,j }j≥1 is a one-dependent sequence of random
variables; that is, for fixedi, Yi,j is independent ofYi,j ′ for j ′ �= j − 1, j, j + 1.

Now, for some 0< δ < 1 to be chosen later and for 0≤ k < rn, where
rn := � n

�nδ�+1
�, let

W
(n)
k+1 := Y

(n)

k�nδ�+k+1 + · · · + Y
(n)

(k+1)�nδ�+k
,

η
(n)
k+1 := Y

(n)

(k+1)�nδ�+k+1,

En := Y
(n)

rn(�nδ�+1)+1 + · · · + Y (n)
n .

First we show that, for anyr ≥ 1, there exists a constantC > 0 such that

E
(
Y

(n)
1 + · · · + Y (n)

r

)4 ≤ Cr2n2.(30)

Indeed note that, as in the proof of the first part of Theorem 27.5 of Billingsley
(1979), we haveE(Y

(n)
i )4 = E(Y

(n)
1 )4 ≤ Kn2 for some constantK > 0. Now

E

(
r∑

k=1

Y
(n)
k

)4

=
r∑

k,l,s,t=1

E
(
Y

(n)
k Y

(n)
l Y (n)

s Y
(n)
t

)
,(31)
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and using the fact that{Y (n)
k }k≥1 is a one-dependent sequence of random variables,

the Cauchy–Schwarz inequality and thatEY
(n)
1 = 0, we obtain after some

elementary calculations

E

(
r∑

k=1

Y
(n)
k

)4

≤ 2rE
(
Y

(n)
1

)4 + r2
E
(
Y

(n)
1

)4
.

Here the term 2rE(Y
(n)
1 )4 comes from the terms in the sum

∑r
j,k,s,t=1 E(Y

(n)
j Y

(n)
k ×

Y
(n)
s Y

(n)
t ) whenj, k, s, t are close to each other so as to have dependence among all

the four random variables making the product, while the termr2
E(Y

(n)
1 )4 comes

from the terms of the sum whenj, k are close to each other,s, t are close to
each other, but there is independence between(Y

(n)
j , Y

(n)
k ) and(Y

(n)
s , Y

(n)
t ). This

proves (30).
Now takingr = �nδ�, and using the fact thatW(n)

1 ,W
(n)
2 , . . . are i.i.d. random

variables, we have from (30) thatE(W
(n)
k )4 ≤ Cn2+2δ for all k ≥ 1.

Also

Var
(
W

(n)
1

)= E

( �nδ�∑
j=1

Y
(n)
j

)2

= �nδ�E(Y (n)
1

)2 + 2
�nδ�−1∑
j=1

Cov
(
Y

(n)
j , Y

(n)
j+1

)
(32)

= �nδ�E(Y (n)
1

)2 + 2(�nδ� − 1)Cov
(
Y

(n)
1 , Y

(n)
2

)
.

In the above expression,

E
(
Y

(n)
1

)2 = nVar(Y1,1) + 2
n−1∑
s=1

n−s∑
t=1

Cov(Ys,1, Ys+t,1)

= nVar(Y1,1) + 2
n−1∑
s=1

(n − s)Cov(Y1,1, Y1+s,1)

= O(n) asn → ∞,

where the lastequality follows becausefrom the α-mixing of the sequence
{Yt,1}t≥1 we have

∑∞
t=2 Cov(Y1,1, Yt,1) ≤ C

∑∞
t=2 αt < ∞ for some constant

C > 0. Moreover, by the Cauchy–Schwarz inequality,

Cov
(
Y

(n)
1 , Y

(n)
2

)≤ E
(
Y

(n)
1

)2
.

Thus, from (32), we have Var(W
(n)
1 ) = O(n1+δ) asn → ∞ and

Var

(
rn∑

k=1

W
(n)
k

)
= O

(
n(1−δ)+(1+δ)

)= O(n2) asn → ∞.(33)
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Finally, for 0< δ < 1,

lim
n→∞

rn∑
k=1

1

(Var
∑rn

k=1 W
(n)
k )2

E
(
W

(n)
k

)4

≤ lim
n→∞

rn∑
k=1

C
n2+2δ

n4 = lim
n→∞Cnδ−1 = 0.

Thus by Lyapunov’s central limit theorem [see Billingsley (1979), Theorem

27.3, page 312] we have that, for 0< δ < 1, 1/(
√∑rn

k=1 Var(W(n)
k ))

∑rn
k=1W

(n)
k

converges in probability to a standard normal random variable.
Now letηn :=∑rn

k=1η
(n)
k . We will show that

ηn/n → 0 in probability as n → ∞.(34)

Indeed,

E
(
η

(n)
k

)2 ≤
n∑

i=1

Var(Yi,k) + 2n

n∑
i=2

Cov(Y1,k, Yi,k)

≤ nVar(Y1,1) + 2n

∞∑
i=2

C1 exp(−C2i)

≤ Mn for some constantM > 0.

Thus, using the fact thatrn = O(n1−δ) asn → ∞, we have, forε > 0,

P(|ηn| > nε) ≤ E(η2
n)

n2ε2 = MnO(n1−δ)

n2ε2 → 0 asn → ∞.

This proves (34).
To complete the proof, we have to show thatEn

n
→ 0 in probability asn → ∞.

First observe that number of terms inEn is at most�nδ�. Therefore takingδ = 1/2,
from (30) we haveE(E4

n) ≤ Cn3. Hence, forε > 0,

P(|En| > nε) ≤ E(E4
n)

n4ε4 → 0 asn → ∞.(35)

Theorem 2.3(a) now follows by combining equations (34) and (35) and the fact
that

∑rn
k=1Wk

(n)/n has asymptotically aN(0, s2) distribution, where

s2 = Var(Y1,1) + 2
∞∑
i=2

Cov(Y1,1, Yi,1)

+ 2
∞∑
i=1

Cov(Y1,1, Yi,2) + 2
∞∑
i=2

Cov(Y1,2, Yi,1).

Note that to computes2 we use the fact that{(Yi,j , Yi,j+1)}i≥1 is anα-mixing
sequence.
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6. Degree of a vertex. To prove Proposition 2.1, observe that, given the vertex
(0,−1) is open, let

Y =
{

1, if the vertex(0,0) is open,

0, otherwise,

X1 = #{(i,0) : i ≤ −1 :(i,0) is connected by an edge to(0,−1)},
X2 = #{(i,0) : i ≥ 1 :(i,0) is connected by an edge to(0,−1)}.

Clearly the degree of(0,−1) equalsY + X1 + X2. Now given the vertex(0,−1)

is open, the probability that the vertex(−l,0) is connected to(0,−1) and that
there are exactlyr − 1 vertices in{(i,0) :−l + 1 ≤ i ≤ −1} which are connected
to (0,−1) equals

(
l − 1
r − 1

)
pr(1 − p)l−r (1 − p)2l−1((1 − p) + 1

2p). ThusP(X1 ≥
r) = ∑∞

l=r

(
l − 1
r − 1

)
pr(1 − p)l−r (1 − p)2l−1((1 − p) + 1

2p). An easy calculation
now completes the proof of the proposition.

Similarly, in two dimensions, given that a vertexv is open, the distribution of
the number of edges of lengthl “going up” from v is binomial with parameters 2
and(1− p

2 )(1− p)2l−1.

REMARK 6.1. From the above distributions we may calculate the quantities
E(Sn), Var(Sn), s2 and the related quantities involvingLn required in Theorem 2.3
for two dimensions.

Acknowledgments. We are grateful to Professor S. Popov for his suggestions
regarding the proof ford = 3 and to an anonymous referee for suggesting that the
Burton–Keane argument would yield Theorem 2.2.
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