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We prove asymptotic normality of the so-called maximum likelihood
estimator of the extreme value index.

1. Introduction. Let X4, Xo,... be independent and identically distributed
(i.i.d.) random variables (r.v.'s) from some unknown distribution function (&f.)
Denote the upper endpoint &f by x*, wherex* = supgx: F(x) < 1} < o0, and
let

F(t+x)—F()
1 F; =P(X< X>t)= ,
(1) () =P(X <t+x|X>1) 1-F O
with 1— F(¢) > 0,7 < x™ andx > 0, be the conditional d.f. X — ¢ givenX > ¢.
Thenitis well known [see Balkema and de Haan (1974) and Pickands (1975)] that
up to scale and location transformations the generalized Pareto d.f. given by

) H,(x)=1— 14 yx)" V7,

x>0ify>0and 0O<x <—1/y if y <0 [for y =0 read(1+ yx)~" as
exp(—x)], can provide a good approximation tiee conditional probabilities (1).
More precisely, it has been proved that there exists a normalizing function
o (t) > 0, such that

z”m* Fy(xo (1)) > Hy(x)

for all x, or equivalently

(3) lim  sup |Fi(x) — H,(x/o(1))| =0,

I=>X" 0<x <x*—t
if and only if F is in the maximum domain of attraction of the corresponding
extreme value d.fG, (x) = exp(—(1 + yx)~Y7) [Gnedenko (1943)], commonly
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1180 H. DREES, A. FERREIRA AND L. DE HAAN

denoted byF € D(G,). The parametey < R is the extreme value index and is
the same in botlt/, andG, approximations.

Under this set-up, it turns out that a major issue for estimating extreme events is
the estimation of the extreme value indexA variety of procedures to estimage
are now available in the literature [e.qg., Hill (1975), Dekkers, Einmahl and de Haan
(1989) and Smith (1987)], although there are still open problems. Quite often the
accuracy of these estimators relies heavily on the choice of some threshold, but it
is not our aim here to address this type of optimality questions.

Instead, in this paper we present a relatively simple direct proof of the
asymptotic normality of the maximum likelihood estimators (m.l.e.’sy @ndo .
It is based on some recent approximations to the tail empirical quantile function
established by Drees (1998). Proofs of the asymptotic normality of the m.l.e’s
of y ando were given by Smith (1987), and also by Drees (1998) in thezasé@.
Nonetheless we consider some proofs not easily understandable. Moreover, some
of the conditions used in the aforementioned papers are unnecessarily restrictive.

For an i.i.d. sample of size, let X1, < X, <--- < X,,, be the as-
cending order statistics. In view of (3) we can expect that observations above
some high threshold are approximately generalized Pareto. This motivates that
inferences ony should be based on some set of high order statistics, say
(Xn—k.n> Xn—k+1.ns ---» Xn.n), OF, €quivalently, on

YO = Xn—k,n’

Y1 = Xn—k—l—l,n - X}’l—k,l’lv

Yk = Xn,n - Xn—k,na

where in the asymptotic setting = &, is an intermediate sequence, that is,
k, — oo andk,/n — 0 asn — oo. Since it is plausible that asymptotically the
information contained ity is negligible ask, — oo, we apply a conditional
likelihood approach [see, e.g., Cox and Hinkley (1974), page 17] in that we
consider the conditional distribution of thi&, ..., Y;) given Yy = yg. According

to Theorem 2.4.1 of Arnold, Balakrishnan and Nagaraja (1992), it equals the
distribution of the order statistiqyﬁk, e Y,jk) of ani.i.d. samplgYy, ..., Y)

with common distributionFy, defined by (1). Hence, in view of convergence (3),
the conditional distribution of thér, ..., Y;) givenYy = yg can be approximated

by the distribution of an ordered sample /ofi.i.d. generalized Pareto random
variables with d.f.x — H,(x/0). This suggests to estimate the unknown
parametersy ando by a maximum likelihood estimator in the approximating
generalized Pareto model; that is, given the sangple..., x,) [or rather the
largest observationéy,—x ., ..., Xp.0)], We maximizel‘[flehy’g(yi) with y; =
Xn—itln — Xn—kn 1=<1 <k, andhy,a )= aHy (y/o)/dy.
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Note that this approximative conditional likelihood function tendsotoif
y <—landy/o | —1/(xy.n — Xn—k.n), @nd so a maximum over the full range of
possible values fofy, o) does not exist. Since, moreover, the maximum likelihood
estimator behaves irregularlyf < —1/2, we look for a maximum of the approx-
imative likelihood function only in the regiofy, o) € (—1/2, c0) x (0, 00).

The likelihood equations are then given in terms of the partial derivatives

M=%|Og<l+z)}>_<l+l> y/G
)4 o

dy % 1+ (y/o)y’
dloghy o () _ 1 ( 1, 1) ~(y/o?)y
do o \y 1+ (y/o)y’

where fory = 0 these terms should be interpreted as

dloghy+(y)| }(1)2_ y
dy y=0 2\o o’

8loghy,a()’) _l y
do y:O_ o 0?2

The resulting likelihood equations in terms of the exces§es.41., — Xn—k.n are
as follows:

k

1 Y
> " Iog<1+ ;(X,,_,-H,n — Xn—k,n))
i=1

(4) — <l 1) (1/0)(Xn—i+l,n - Xn—k,n) -0
4 1+ (V/U)(Xn—i—i-l,n - Xn—k,n) '
i( 1, ARUZLIL RIS PR

i=1 Y 1+ (V/G)(Xn—i+1,n — Xn—k,n)

(with a similar interpretation whep = 0), which fory £ 0 can be simplified to

x|

k
14
E |Og<1+ ;(Xn—i+1,n - Xn—k,n)) =V,
i=1

1 Xk: 1 1
k i=1 1+ (V/U)(Xn—i—i-l,n - Xn—k,n) Y+ 1

with (y,0) € (—1/2, o0) x (0, 00). The numerical problem to find a solution of
these equations which maximizes the approximative likelihood was discussed by
Grimshaw (1993).

From the above reasoning it follows that the m.l.e.yofs shift and scale
invariant, and the m.l.e. af is shift invariant and scale equivariant.



1182 H. DREES, A. FERREIRA AND L. DE HAAN

Next we sketch the proof of the asymptotic normality. Under standard second-
order conditions [see (7)] we have for an intermediate sequghe&N

a(ky/n) 1€[0,1] Y0 1€[0,1]

where (Q,(#))/e0,17 is a distributionally equivalent version of the process

(Xn—k,1.m)eef0,1], (Y (1))ier0,17 IS an asymptotically Gaussian process of known

mean and covariance function (Lemma 33%y,is the true parameter andis a

suitably chosen positive function [see (16)]. Hence for &l[0, 1] and ally ando,

an(t)—Qn(l)):1+(V )1—t”°
0

R O e T PR

wheres = o /a(k, /n). Now if the sequence of solutionig, &) satisfies
Yy —v=0,(k"Y% and &—1=0,k,"?),

+ tyogk,:l/ZYn ),

one can prove, using a construction similar to (5), that
: 1) — 1
o ty(,(“an(N) On( ))
1/(2kn)<t<1 o a(k, /n)
is stochastically bounded away from zero (Lemma 3.2). This implies

10
— Iog(l + (E — yo) + zyoﬁkn—l/zy,, (t))
o Yo o2

10
= (? - yo) + 0L Y27, (1) + 0, (k 2)
o Y0 o

and

1

1+ (y/0)(Qn() — On(L))/alky/n)
1— ¥
= (1= (£ =) = L2004 0,0 ).

o Y0 o

where thev ,-term is uniform for ¥(2k,) <t < 1 (proof of Proposition 3.1).

Hence, up to a)p(kn_l/z)-term, (4) are equivalent to linear equations which

can be solved readily. The proof in Cage= 0 requires longer expansions but is
similar.

The precise statement about the asymptotic normality is given in Theorem 2.1.
In Theorem 2.2 an equivalent explicit estimator is constructed in theygas®.

Throughout the pape# < denotes the generalized inverselb,f—d> conver-
gence in distribution and> convergence in probability.
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2. Asymptotic normality of the maximum likelihood estimators. Assume
that there exist measurable, locally bounded function® : (0, 1) — (0, o) and
¥ : (0, o0) — R such that

(FTQ—tx)—F~(1-1)/a®) = (x7"° = 1)/yo

@ lim 50 =),

for someyp > —1/2, for allr € (0,1) andx > 0, wherex — W(x)/(x~7 — 1)
is not constant () not changing sign eventually anbl(z) — 0 ast | 0. Then,
according to de Haan and Stadtmuller (199@) is —p-varying at O for some
p <0, thatis, lim o ®(tx)/®(t) =x~* forall x > 0, and

(=00t 1) /(o +p),  p <0,
(8) W (x) =1 —x""log(x)/yo, vo# p =0,

log?(x), yo=p=0,
provided that the normalizing functianand the functiord are chosen suitably.
Condition (7) isa second-order refinement &f € D(G,,). Still, it is a quite
general condition, satisfied for all usual distributions satisfying the max-domain
of attraction condition.

We assume throughout thigt is an intermediate sequence, thakjs,—~ oo and

k,/n — 0 asn — oo.

THEOREM 2.1. Assume condition (7) for some yp > —1/2 and that the
intermediate sequence k,, satisfies
9 @ (ky/n) = O (k;, /7).

Then the system of likelihood equations (4) has a sequence of solutions (7, 6,,)
that verifies

ky'?(Pn — v0)
(vo+1)? 1/2 (kn) ! 2
SRSy VT ) w_ (2 D)W (1) d
0 2o /O(z 2y0 + D0V (1) di
2 s
4 o+ D7 / (170 — 2y0 + D20 (W(D) — 1=+ Dw (1)) dr,
Y0 0
k1/2<7&" —1)
" a(kn/n)
1
(11) —W—“k,}/zcb(k_") / (Yo + D (2y0 + Dr?° — )W (r) dt
yo n 0
1
Ly cha || o+ D@y + Di2® =) (Wit =~ w ) ar
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as n — oo, and the convergence holds jointly with the same standard Brownian
motion W. For yo = 0 these equations should be interpreted as their limits when
yo — 0; that is,

k29, +k1/2d>< )/ (2+logn)W(t)dt

(12) 1
d -1
—>—/0 (2+logn)(W(@Q) —t W (1)) dt
1/2(  On 1/2
. b <a<kn/n> 1)~ q’( )/(P’*'Og”q’(”“’t

a (L _
_>/0 (3+logt)(W(Q) — 1w (1)) dr.

Moreover, any sequence of solutions (y,", ,7) which is not of the type (10)«(13)
must satisfy k' %9 — yo| 500 of kn'?|67* Ja(ky/n) — 1|5 0.

REMARK 2.1. Condition (9) is satisfied it, — oo not too fast. The bias
term (yo + 1%k (k, /n) [2(t70 — (2y0 + 1)120)W (1) dt /yo in (10) vanishes if
k,}/2d>(kn/n) — 0. A similar remark applies to (11)—(13).

REMARK 2.2. Note that the likelihood equations are satisfied withk O if
and only if

1 & 2
Z(Xn z+ln_Xn kn) —( Z(Xn z+ln_Xn kn))

i=1

ando = Zizl(Xn_,-H,n — Xn—k.n)/ k. Hence, the m.l.e. fop will a.s. not be
equal to 0 if, for exampleF possesses a density.

COROLLARY 2.1. Under the conditions of Theorem?2.1and if

k
(14) k,}/2q><—”) —> L eR,
n
the solutions (10)13) verify
12| Yn — Y0 d
(15) i [O_n/a(k iy ]a NG, %),
where N denotes the bivariate normal distribution, u equals
p(ro+1) 1-20+w-—pr]" .
, if p<0O,
A=-pPo—p+DH A=p)ro—p+1
[17 Vo_l]T, if )/0#,0=0,

(2,017, if yo=p=0,
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and

E=[(14-3/0)2 —(1+Vo)}
~A+y0) 24200+ ¥E]

REMARK 2.3. Smith (1987) examined a slightly different version of the m.l.e.
that is based on the excesses ovdetrministic thresholdu = u,, instead of the
excesses over the random threshx)d ;. ,,. For the comparison of Smith’s results
with Corollary 2.1, we focus on the casg £ 0, p < 0 andi = 0, when there
is no asymptotic bias, since in the other cases the more restrictive second-order
conditions used by Smith are not directly comparable to our setting.

Let K denote the (random) number of exceedances over the threslaold let

:{VOM, y0>0,
" 1Ivl(F-@ —u), y<DO.

Then it was shown that the standardized m.|.€X2(y, — yo, 6, /0, — 1) based
on the exceedance$ — u converge to a centered bivariate normal distribution
with covariance matrix

<(1+Vo)2 —(1+Vo)>
—14+y) 2Q+y) /)

At first glance, it seems peculiar that we obtain a different asymptotic variance
for the scale estimator in Corollary 2.1, namelfl 2 yp) + ),02_ However, the
following heuristic reasoning shows that in fact the increase in the variance is due
to the slightly different standardization.

To make the results about the asymptotic behavior comparable, in our setting
one has to condition at the evekf,_, , = u. Then Smith’s result claims that
conditionallys,, = o, (1 + kn_l/ZZ,,) for some asymptotically centered normal r.v.

Z, with asymptotic variance(2 + yp). Hence conditionally ak,,_x, , = u,

k,}/z(—a" - 1) g +k,}/2(—a" - 1).

a(kn/n) a(kn/n) a(kn/n)

Because, in the restrictive setting considered hapg,/n) = yoF < (1—k, /n) for

yo > 0 anda(k,/n) = |yol(F (1) — F< (1 —k,/n)) for y5 < 0, unconditionally
(i.e., whenu is replaced withX,,_x, ,) o /a(k,/n) — 1 in probability, so that the
first term tends to a normal random variable with variangeg 2 1). According to
the approximation of the tail empirical quantile function [cf. (18)], unconditionally
the second term converges $@W(1). Since asymptoticallyX,_, , and the
excesseX,—i+1.n — Xn—k,.n, 1 < i < k,, are independent, so ai, and W(1).
Hence the two variancesd + 1) andy02 add up, leading to the variance given in
Corollary 2.1.
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We now show that ifyp = 0, the m.l.e.’s are asymptotically equivalent in some
sense to explicit estimators. Define

k
. 1 . )
m,(/) = k_ Z(Xn—i—i—l,n - Xn—kn,n)]a J = 12,
mi=1

; :1_1(1_m”>2)‘1

2 mﬁ,z)
and
; (k_ ) _20m?)®
* n m'sz)

It can be shown, using Corollary 3.1, that these estimators are consistent and
asymptotically normal ify < 1/2. Let (pmLe, omLE) be a sequence of solutions
of (4) as described in Theorem 2.1.

THEOREMZ2.2. If Fisintheclassof distributionsthat satisfy (7) with 9 =0
andif (9) holds, then

kY29, — pme) 5 0

and

k1/2<&*(kn/n)_6'MLE)_P>O
" a(kn/n) '
REMARK 2.4. If, in addition, (7) holds witho < 0, sugx|F(x) <1} >0

andk, = 0(|ngn), then we have an analogous result for the moment estimator
introduced by Dekkers, Einmahl and de Haan (1989):

kY2(Pvom — PmLe) > 0,
where

R 1
mom =MD 41— —<1—

: )

M?
with M,(,j) = é Zf"zal(logxn_i,n - Ioan_kn,n)f, j =1,2. A similar statement
holds for the scale estimator
1
; (k_) _2AM)3

The conditionk, = o(log?n) ensures that the bias vanishes asymptotically. We
prove this remark in Section 3.
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3. Proofs. Given (7) withyg > —1/2 and (9), from Theorem 2.1 in Drees
(1998) one can find a probability space and define on that space a Brownian
motion W and a sequence of stochastic proces3gssuch that (i) for each,

(Qn())1ef0.1] 4 (Xn—k,11.n)ref0.17, and (ii) there exist functionsi(k,/n) =
a(ky/n)(1+ o(® (k,/n))) andd(k, /n) ~ & (k,/n) such that, for alt > 0,

On() = F~ (A —ka/n)

sup t)/o+l/2+e

1€[0.1] a(kn/n)
(16) _ (’_V;O‘ L 0oty Wi" f) cI>< ) )W(t))‘

- (k
= op(kn—l/Z) +o0p (cb(;")) asn — oo.

A similar expansion is also valid fofg < —1/2 whenF < (1 — k, /n) is replaced
with a suitable random variable.
Define

(17) Y, (t) = kl/z(Qn(f) Qn(l) t 7/0_1)
" a(k,/n) Y0

[read(r~"0 —1)/yp as—logt, whenyg = 0]. Hence we have the following lemma.

LEMMA 3.1. Suppose (7) holds and that the intermediate sequence k;,
satisfies (9). Then, for all ¢ > 0,

(18) Y, (1) = W, (1) — ¢t~ oty (t)+kl/2CI><k )IIJ(I)—l—o (1)t~ ot1/2+e)

asn — oo, where W, (1) = _1/2

op-termisuniformfor ¢ € [0, 1].

W (k,t) is a standard Brownian motion and the

From this lemma the following corollary follows easily.

COROLLARY 3.1. Under the conditions of Lemma 3.1, for all ¢ > 0,
(19) V(1) = Op(1yp~ 00+ /24
asn — oo, wherethe O ,-termisuniformfor ¢ € [0, 1].
Given the previous results, to prove Theorem 2.1 it is sufficient to consider

the likelihood equations withX,,_(x,1.» — Xn—x,.») replaced byQ, (t) — 0, (1),
t € [0, 1]. It is convenient to reparametrize the equations in termgyoé) =



1188 H. DREES, A. FERREIRA AND L. DE HAAN

(y,o/a(k,/n)). Then we have the equations
1r1 Y On(t) — 0n(1)
J (ﬁ og(1+% (/) )
B ( 1, 1) (1/6)(0n(t) = Qu(D)/alkn/m) ) di—o.
14 1+ (y/o)(Qn(t) — Qu(D)/a(k,/n)
/1<1 + 1) (y/0)(Qn(t) — Qu(L))/a(ky,/n)
0 \y 1+ (y/o)(Qn(t) — Qu(1)/a(k,/n)

(20)

LEMMA 3.2. Assume conditions (7) and (9). Let (y, ) = (vu, 6,) be such
that

(21) ly/& — yol = O, (k, Y/?).
Then, if —1/2< yp<0or yp> 0,

Y On(t) — 0n(1)
(22) P<1+ gW

for somer.v.’sC, > Osuchthat 1/C, = Op(1). If =0,

Yy On() — 0p(D) 1 1
(23) P(1+ET/}Q)ZE,IE|:%,]{|)—>1, n— 00,

1
>C,t ", te [i’lb — 1, n— 00,

n

and

(24) sup On(1) — 0n(1)

— = 0, (logk,), n — oo.
tef0,1]  alkn/n) P "

ProOF It suffices to prove the assertions with, (r) replaced withX,, _x, /.-
Without loss of generality, one may assutkig, = F (1 — U;,) for uniform
L . d d

order statisticsU; , since (X, _[k,r.n)re[0,1] = (F(1 - Uik, n+1.n)tef0,1) =

(Qn(t))te[o,l]-
Note that, by Shorack and Wellner [(1986), Chapter 10, Section 3, page 416,
inequality 2],

U, kt
(25)  sup I _ o), sup T = 0p(D),
1/(2ky)<t<1 knt 0<t<1 Uk, 11+1,n

asn — oo. Also note that (7) implies, for some functiorgs) ~ a(s) and
D(s) ~d(s),s | 0, forall xg > 0 ande > 0,

lim sup x7ot® (FA—sx) - F7(A—s))/als) -« —1)/yo
Si00<x§xo ci)(s)

—Yx)|=0
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[Drees (1998), Lemma 2.1]. Combining these two results, we obtain

sup tVO"rS (Fe(l B U[knl‘]+1,n) - F(_(l — kn/n)
t€[1/(2kn),1] a(k,/n)
(26) _ ((n/k) Uliyt141,0) 7 — 1)
Y0

() "ot ot
X — — — =0 .

n k» [knt]+1,n r

Next use this approximation simultaneously fa [1/(2k,), 1] ands = 1. In view
of the special constructioX,, ., = F~ (1 — Uk,r1+1.n), We then have, for
—1/2<ypy9<0o0ryp>0,

Xn—[k,,t],n - Xn—k,,,n
a(kn/n)
_ F(_(l - U[knt]—i—l,n) - F(_(l - Ukn+l,n)
a(kn/n)

1 n ] 1 n ]
U - =(Zvu
() (P
~ (ky n ~ [k, n
—(vot+e) G ki
‘Jl‘Op t b ; .

147 Z X [kptl,n — Xn—k,,,n

Hence

a(ky/n)
n ~%0 y 1/n %0
= (1— <_Ukn+1,n) ) - <? - VO)_<_Ukn+1,n>
kn o Yo kn
e e B L G M ey
5 7o\k, [knt]4+1,n Fad s [knt]+1.1
B g&)<kn) ( Up i1 n) (1= 00t ~1/2)
o n

=1+ +1+1V+V4 VL

By (25), 0lll is bounded away from zero uniformly fere [(2k,)~2, 1]. We
will show that all the other terms tend to O uniformly when multiplied wgh
so that assertion (22) follows wit@, := inf, [ y-1.1;2"°1ll — ¢, for a suitable
sequence,, | 0.
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By the asymptotic normality of intermediate order statistics, par0 , (k, Y 2).
Hencer”l = 0,(1), which is trivial if yo > 0; for —1/2 < y9 < 0 note that
t7’0k_1/2 2‘Vf>1<n_”°_1/2 — 0 ask, — oo. By (25) and assumption (21), pattis
Op(ky, 1/2) so that by the same arguments as abo®él, = op (1).

Next note that”W(r) = o(r~Y/2) ast | 0. This combined with (9) and (25)
gives that’°1V and:"V areo,(1). Finally, 1"Vl = 0,(1), provided one chooses
e<1/2.

Now consider the casg = 0. Since (26) is still valid whenyg = 0, with the
obvious changes, we get

Xn—[knt],n - Xn—kn,n
a(ky/n)

Iog( U[knt]—i-ln) + |09< Ukn—i-ln)
n kn [kyt]+1,n n kn kn+1,n
- [k,
o — ) ).
+0p( (n ))

(27)

Hence

1+ g Xn—[knj],n - Xn—kn,n
o a(ky/n)

n
lo 9<k Uk,,-‘rl,n)

Yoz

_1—_|ng—_|09< Ulk, t]+1n>

~ [k,
o} U, —
(%)w (k kit
( ek 1/2)
o

Hence by (25) and assumptions (9) and (21), all the terms but the 1 in the last
equality tend to O in probability uniformly for € [1/(2%,), 1] so that (23) is
obvious.

Finally, to verify (24) just note that, far= 1/(2k,), the expression (27) is of the
orderO,(logk,), provided O< ¢ < 1/2. SinceX,,_(x,s1,» < X, forall r € [0, 1]
the assertion (24) follows.d

?\N Q1|*<

+

o

Q=
QIIY
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ProOPOSITION3.1. Assumeconditions(7)and (9). Any solution (y, &) of (20)
satisfying (21) and loge = Op (1) admits the approximation

2 sl
kH2(y — yo) — o+ 17 / (17° — yo + 1)t?0) Y, (1) dt = 0,(1),
(28) o Jo

1
ki/2(5 11— Yo+

1
fo (o + 1)(2y0 + D2 — 10) Y, (1) dt = 0,(1),

as n — oo. For yp = 0 these equations should be interpreted as their limits for
yo — 0, that is,

1
kY/2y +f (2+10g0) Y, (1) dt = 0,(1),
(29) °

1
k26 —1) — /0 (3+logn) Y, (1) dt = 0,(1).

Conversely, there exists a solution of (20) which satisfies (28), respectively (29),
and hence also (21).

REMARK 3.1. Foryg # 0 the condition on log is not needed.

PROOF OFPROPOSITION3.1. We consider the cases> 0,—-1/2<y9<0
andyp = 0 separately.

CASE y0 > 0. In view of assumption (21), we may assumeZ 0. Hence,
system (20) can be simplified to

1 y Ou®) — QDY ,
A '09(“ _W)d’ =
1 1 Jt — 1
0 14+ (/&) (Qu(t) — On(L)atky/n) y+1

Next we will find expansions for the left-hand side of both equations.
Rewrite the first one as

(2kn) ™1 Y On(t) — 0,(D) -
/0 Iog<1+; T ) +f logi77) d1

1
o Y On(0) — Qn(l)))
+/(2kn)1log(t <1+ a(ky/n) a

= I1 + yo(1— Ok, logk,)) + I2.
First we prove thatl; is negligible. Sincer — Q,(¢t) is constant when
t € [0, (2k,)~1], Lemma 3.2 implies that, with probability tending to 1,

(31) 1+ ZM_1+ZQn(1/(2kn))_ 0n(1)
& ake/ny G a(kn/n)

(30)

> (2kn)"°Ch
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for all ¢ € [0, (2k,)~1] with C, stochastically bounded away from 0, so that
—I1 < (2k,)~YOp(logk,). On the other hand, from (17), (19) and (21),

Y On(1/(Zkn)) — On(D)

143 D)

2k, )70 —1
=1+ (w+ 0p<k;1/2>)(%

+ Op(k,{0+8)) = Op(k0H?).

Hence, it follows that; = op(k,,_l/z).
Next we turn to the main terrfp. We will apply the inequality G< x — log(1 +
x) <x2/(2(A A (14 x)), valid forallx > —1, to

‘= ty0<1+ 4 Qn(f) — Qn(l)> 1
(32) o a(kn/n)
y 1—  y _
_ (_ — y0>7 + Lk Y0y, ).
o Y0 o

Then, from Lemma 3.2 it follows that@ 1/(1A (14+x)) <1v 1/C, = 0p(1)
with probability tending to 1. Moreover, note that relation (19) implies

(k)
/ My, () dt = 013(/
0 0

for e € (0, 1/2). Hence from (17) and (19), as— oo,

1
~ ) ZQn(t)—Qn(1)>_ )
12_/<zkn>—1<’ 0(”6 (k) 1)dr

cor([, ({1 Z G R) 1) )

1 1— Yo
= e )l<(g — yo) - + gk;l/ztyOYn(l)) dt

1 1— Yo 2
+ 0, / Lo, + Lk Y20y, 1)) di
(k)" \\O Y0 o

_((Y _ 1 —1/2 _1>
—(( Vo)y0+l+0p(kn 2k

o
V., —1/2 1 70 —-1/2
+ | =k, Y, (t)dt + op(k, 7%)
o 0
+ Op(kn_l +kn_1(2kn)2€ +k"—1(2kn)—1/2+6)

14 1 14 —1/2/1 172
=< — ~k t"Y, (1) dt k ,
(5 yo)yo+l+&” o 1 I op(k, T

-1 (2kn)~

1
t—1/2—€ dt) — Op((zkn)—l/z-HS) :Op(l),
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where for the last equality we toagk< 1/4. To sum up, we have proved that

/01I0g<1+ g%ﬁ)"m) dt

Y 1 Y _1/2'/1 ~1/2
= LA “k Y, (t)dt k .
Vo+(& )/o)y0+1+5 V2 [T Y, @) di -+ 0,04

This means that the first equation of (30) is equivalent to

=+ (5=
y=r+(5-n) "3

1
+ Vg2 / 1Y, (1) dt + 0, (k, Y/?).
o 0

Now we deal with the left-hand side of the second equation in (30). Applying
the equality

1 1 . x2
=1—x
1+x 1+x
valid for x # —1, tox defined in (32), we get, for/{2k,) <t <1,

1
14+ (y/0)(Qn (1) — Qu(D)/alkn/n)

1o
=0 [1 - (E — y0> — Y12y, o)
o Y0 o

((7/5 = yo) (L= 179) /yo + 17°(y /& ko 2V, <r>>2]
A+ (y/o)(Qn(t) — On(1))/alkn/n)) '
Hence the left-hand side of the second equation in (30) equals

+

(k)1 1
d
./o 15 (7/3)(Qn (1) — On()/atkn/m)

1 Yo — 127/0
9 o [ (G o) g Ja

1/2

s L (/5 — o) (L— 1) /y0 + (v /6 e Y20, (1))?
Gt 1+ (7/3)0n ) — On(D)/alkn/m)

From (31) it follows easily that the first integralag (k,,_l/z). Direct calculations
and (19) show that the second integral equals

1 14 ) 1 Y. _1/2 1 5

“\s — =k //tonntdt
vo+1 <0 ) D@t 5" Jo ®
+ 0 () 707 o ky M2 (k) O ey 2 2y IO,
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Here, fore < 1/2, the O,-term is op(k,,_l/z). By Lemma 3.2, the last integral

of (33) is bounded by

1 1— Yo 2
0, (/ ﬂo((% - yo)i + zkn_l/thOYn(t)> dt)
(k)1 o Y0 o

= 0, (kT + kY14 (2k,) 77012 4 kL (2,) OV = 0, (k7 Y2),

if e <1/4+ yo/2. Therefore we have proved

1

1
d
./o 15 (7/5)(0n (D) — On (D) athnm) '
1

1 y )
= —|=—7%
Yo+ 1 (a ") o+ D2y + 1)

1
— L2 / 1207, (1) dt + 0, (k; 2.
o 0

Hence, under the given conditions, system (30) is equivalent to

H(E-m)
Y0 2 Y0 VO+1
1
+ L2 [Ciov, i+ o, 1D =y,
(34) 7 °
1 <y ) 1
(Y _,,
Yo+ 1 ") o+ D2y + 1)
1

o
— Zk_l/zfltzon (1) dt +o0,(k;Y?) =
n 0 n pP\*n y+1

o
Next we prove that (34) implies (28). First note that, in view of (19) and (21), (34)

implies

Y 1
+ (T — )
Yo 5 Yo o+ 1

1
1ok V2 /O 0%, () di + 0, (k) =,

(35) 1 ) <Z ) ) 1
w+1 6 )+ D@w+D
1

o
1
- k‘l/zf 120y, (1) dt )
YOK, 0 n() +Op( n ) y 1

The first equation and (21) show that — yo| = Op(kn_l/z), hencely — yo|?
-1/2
)

0, (kn /%), Therefore ¥(yo + D— 1/(y + 1) = (¥ — )/ + 12 + ok,
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and so (35) implies

(5=
Y =Y 2 J/Oy0+1

1
=20 [0, 00t 40,67 =0,

r=r (z - VO) !
(Yo + 1)2 o (Yo+D 2y +1)
1
Y2y, /O 120V, (1) di + 0, (k: /?) = 0,

Now straightforward calculations show that a solution of this linear system in
y —yo andy /o — yp satisfies (28).

Since conversely a solution of type (28) obviously satisfies the condition (21),
it is easily seen that it also solves (34) and thus (20).

CASE —1/2 < yp < 0. Again, in this case system (20) simplifies to (30).
Rewrite the left-hand side of the first equation as

Sn Yy On() — 0,1 1 _
/0 Iog<1+ EW) dt+/sn log(z =) dr

+ Kllog<t7’°<1+ g%)) dt

=J1+ (Yo + O(sullogs,])) + J2

and chooseg,, = kn—‘s, with § € (1/2, (4¢)~1) for somee € (0, 1/2).

Now we prove that/; is negligible. Note that since— Q, () is constant
whent € [0, (2k,)~1], (22) is trivially extended ta € [0, 1] whenyg < 0. By
definition Q,,(t) — 0,,(1) > 0, for all r € [0, 1] anda(k,,/n) > 0. Since by (21)
P{y <0} — 1, Lemma 3.2 implies

Z On(t) — 0,1 —y
P(‘Iog(l-i— = —Zz(k,,/n) )‘ <|log(C,t7 1), € [0, 1]) — 1,

asn — 00, SO thatfg" [log(C,t~7)|dt = Op(sy|logs,|) = o,,(kn_l/z) givesJi =
—-1/2
Op(kn ).
Next we approximatd,. Check that 0< x — log(1 + x) < x2/[2(1 A (14 x))]
holds for allx > —1. Hence, in view of (17) and Lemma 3.2, choosing 1 =

t[1+ (y/5)(Qn(t) — 0n(1)/a(k,/n)], we obtain

1 1—tY0
Jo = / ((Z — yo) + Ekn—l/zzyoyn(z)) dt
Sn o Yo o
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1 1—Y0 2
+ OP(/ [(E — yo) + £ k Yeproy, (t)] )
Sn (e} )/0
14 1 ~1/2 yot+d
+ (Ekn—l/zf Y, (6) di + op( 1/2f —1/2—%”))
o 0 0
1 1—Y0 2
+0, ( / [(Z - )/o) + ?k;l/thOYn(t)] dt)
o L\ v |6

and from the choice of,,, Corollary 3.1, (21) angg € (—1/2, 0), it follows that
the O, -terms are, (k, . */%). Hence we proved that

/ Iog(1+ g—Q"(azkn/%(l)> dt

14 1 1/2/ —1/2
=y+|=— + = k Y, (t)dt + o,k .
=0 ( Vo) —— 5 n(1) pky 79)
Now we turn to the second equatlon in (30). Use a similar decomposition as in

the casey > 0 of the left-hand side:
1

d
1+ (7/6)(0n () — On(D)/athn/m) "
+ /l<t}’o _ (g _ VO)M _ zkn_l/zl‘zonn(t)) dt
Sp (o o

)40]
+ / L((y/6 — yo) (L — 170) /yo + (v /& ko Y/ 2170Y,,(1))2

Sn 1+ (y/0)(Qn(t) — Qn(D)/alky/n)
=K1+ K>+ K3,
with s, = k% for somes € ((2y0 + 2)72, (4e — 2y0)~1) ande € (0, yo + 1/2).
Then by Lemma 3.2K1 = O, (s;° = 0p(kn /2y "Moreover,
1 Y 1 Y, 12 [~ .2
“otl (5 B VO) T D@TD 5 /o ARCYS
+0, (sr}l/o—kl + k’1—1/2S3V0+1 + kn—1/2sl)1/0+1/2—e)

and, by the choice o8, we have that theD ,-term is op(k,,_l/z). Finally from
Lemma 3.2 and the definition &f,

1 110 2
K3=0p</ tVO[G—Vo) +;kn_1/zfy°yn(f)} d’)
Sn o Y0 o

= Op(kn_l(SnBVOJrl V1) k(57072 4 1) 4 k(5227 )
=0, (k; V2.
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Hence, the proof can be concluded by the same arguments as iCate

CASEyo=0. Inthis case we use (20). Apply (twice) the equalityll+ x) =
1—x+x2/(1+x), the inequalitylx —log(14x) —x2/24x3/3| < x*/[4(1A (1+
x)H], valid for all x > —1, tox = (y/6)(Qn(t) — On(1))/a(k,/n), and use (23)
in Lemma 3.2 to obtain for the left-hand side of the first equation

1 (1) — Ou(D)
ﬁ/ 'Og(”z i (ln /) )
0 /5)(Qn0) = 010 fathn/w)
T4 (7/8)(Qn(0) — On(L)/aitkn/m)
_ / 10,0-0,0
" atk/n)

+./ ( )(fz(%/%z(l))zdt
[y

Lyro.mn— 0.7 v3ro.mn - 0.7
+0”</o (F[ ik /1) ] +ﬁ[ (k1) ] )‘”)'
By (17) the first integral in the right-hand side of the last equation equals

el gy Y? fol Y, (t)dt + op(kn_l/z). For the second integral in the right-
hand side of (36) consider

/OS" (% T V)%(%/%(l))zdt

171 1 (Qu(0) — 0n(1)\?
. (= =) g
*/Sn <2 ”)62< k1) ) t
with s, = k%, 8 € (1/2, (4e)™Y), & € (0, 1/2). Then the first of these last two

integrals |So,,(k_1/2) by (24). In view of (17), (19) andly /6| = O (k_l/z) the
second integral equals

-A+y)

(36)

142 1 —
L — k2 [ ogn Tt dr + 0,42,

Using a similar reasoning but witth € (1/2,3(4e)~1 A 4(1 + 6¢)7D),
e € (0,1/2), the third integral of (36), equals4ys 3+ o p(ky 1/2) Finally the
O ,-term of (36) is clearly, (k, 1/2) by (24).
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Hence we have that (36) equals
1 1+2y A4y

o &2 63
1 10 ! 1 _1p ! -1/2
— —k, /Y,,(t)dt—~—2kn /(Iogt)Y,,(t)dt+o,,(kn ).
o 0 o 0

To deal with the left-hand side of the second equation of (20), use again the
aforementioned equality for/11 + x) and (23) in Lemma 3.2 to get

1 _ 1 _ 2
1+V[ an(f) 0,(1) dt_/ (Z Qn(f) Qn(l)) dt
14 oo aky,/n) o \o a(k,/n)

co ([ 22000 ]

_ 1.1 gt (1000 = 0D
=@ip|z 4 [ noa- [T(2 (kr /) )

_ /1 (1 On (1) = On(D)

2
-1 3
5 atn) ) dt + O0,(k, ~(logky,) )],

where for theO,-term we used (24) and = Op(k,,_l/z). Next we consider the
second and third integral in the last equality,and L, say. As forL1, it follows
from (24) that

L1 = 0,(say (I0gky)?) = 0, (k; Y/,
if s, =k, %, 8 (0,1). As for Ly, from (19) withe € (0, 1/2), we get

L= —2% + 0,k 3% 4 k) = —2% + 0,k Y2,

Hence, we proved that
/1<1 n 1) (y/6)(Qn(t) — Qn(1))/alky/n)
0 \y 1+ (y/0)(Qn() — Qn(D)/a(kn/n)
1+y 2y
o 62
Therefore, under the given conditions, a solution of (20) must satisfy

- 4
1-6)+2y — =~
el

1 1
+ g"n_l/zfo Yo (1) dt + 0,k Y/?).

1 1
— Gk Y2 / Yo (t)dt —k;1/? / (logn) Y, (t) dt + 0, (k; %) =0,
0 0

i 2 :
A=5) 4y =T+ Y2 [0+ op; ) =0
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Next note that the first equation impliégs = 1 + Op(k,,_l/z), and soy/o =

y + op(kn_l/z). Simplifying the above equations, we arrive at (29).
The converse assertion is proved as in Gase 0. [

PrRoOOF OF THEOREM 2.1. Recall that in the previous proofs we used the
second order approximation (16). Becaus& @, /n)/a(k,/n) — 1= o(k, l/2)
Proposition 3.1 shows that, under the conditions (7) and (9), any solytjoia,”)
of the likelihood equations such thlai/zl)?,j‘ — ol andk,%/zlc},j‘/a(k,,/n) — 1| are
stochastically bounded, must satisfy (28) and (29). Hence, in view of Lemma 3.1,
® (kn/n) ~ ®(k,/n) and

ok A A *

On

O'
alka/n) — akn/n) a(k/ )
also (10)—(13) hold.
Conversely, according to Proposition 3.1, there exists a solution of (20)
satisfying (28) [resp. (29)]. This solution corresponds to a solution of the likelihood
equations satisfying (10)—(13)

O(k 1/2) —O(k 1/2)

PROOF OF COROLLARY 2.1. According to Theorem 2.1, the components
of the left-hand side of (15) minus deterministic bias terms converge to cer-
tain integrals of a Gaussian process, that is, to normal random variables.
If k,}/2d>(k,,/n) — A, the bias term oki/z()?,, — y0) tends tor((vo + 1)2/y0) x
[Ol(ﬂ’o — (2y0+1)1?0)W(r) dt. Using (8) the result follows by simple calculations.
Similarly, the asymptotic bias of the second component can be derived.

To calculate the variance of the limiting normal random variable corresponding
0 ki “(Ga — y0). let X(®) = (o + D2/y0) (7 — @yo + Do) (W(D) —
t—(V0+1)W(t)). Then straightforward calculations show that (\férX(t)a’t) =
JE[FEX ()X (0)]ds df = (vo+ D2

Likewise, to obtain the asymptotic covarlancekéf (Pn — yo) With k" (6, /
atke/n) — 1), let Y1) = ((vo + 1/v0) (vo + D2y + D20 — 170)(W (1) —
=t DW(r)). Then covf3 X (s)ds, [y Y(1)dr) = J§ [ E[X(s)Y (t)]dsdt =
—(1+ yp). The limiting variance of the scale estimator is obtained similariy.

1/2

PROOF OFTHEOREM 2.2. Integration of the various terms of (18) yields, for
v0=0,

@
kl/z(L _ 1)
" Na(k/n)

1 1
_ 12 0n(t) — 0n(D) )
=k, (/o —é(k ) dt+/ logr dt

_/ (W, (1) — 171w, (t))a’t+k1/2d>( )/ W(t)dt +o0p(1).
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Similarly, we obtain

k1/2<i _ 2) _ —/12I0 (W (D) — 17 2W, (1)) dr
"\ G2~ ) T Jo 209 '

ko\ [
+k,}/2d>(—)/ 2logtW(t)dt + op(L).
n/Jo
Now, using Taylor expansions, straightforward calculations give

1
KY2p, — _/o (2+10g1) (W (1) — 17 W, (1) dt

k 1
+k,}/2cb<—") ./o 24 logH)W(t)dt +op(1),
n
and hence by (12)
k2D, — puLe) > 0.
The proof of the second statement is similar]

PROOF OFREMARK 2.4. Under the stated conditions the following analogue
of (18) holds:

kl/z( log 0, (t) —log 0, (1)
" Nak,/n)/F<=(1—ky/n)

+ Iogt)

2

log*¢

k
= Wn(l) - t_]-Wn(l‘) — ki'/ZQ)*(;n) + Op(l)t—l/z—s’

for some functiond* such that

* ky N a(k,/n) _ —1/25.
37 ()~ = 0
see Draisma, de Haan, Peng and Pereira [(1999), Appendix]. Now the results by
de Haan and Stadtmdller (1996) imply thk&k, /»n) tends to a positive constant,
while F (1 —k,/n) behaves like a multiple of lag/%,). Hence the bias term is
asymptotically negligible ik, = o(log?n), and the assertion can be concluded by
the same reasoning as in the proof of Theorem 2(2.
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