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We consider the problem of scheduling a queueing system in which many
statistically identical servers cater to several classes of impatient customers.
Service times and impatience clocks are exponential while arrival processes
are renewal. Our cost is an expected cumulative discounted function, linear or
nonlinear, of appropriately normalized performance measures. As a special
case, the cost per unit time can be a function of the number of customers
waiting to be served in each class, the number actually being served, the
abandonment rate, the delay experienced by customers, the number of idling
servers, as well as certain combinations thereof. We study the system in
an asymptotic heavy-traffic regime where the number of senversd the
offered loadr are simultaneously scaled up and carefully balaneed:

r 4+ B./r for some scalag. This yields an operation that enjoys the benefits
of both heavy traffic (high server utilization) and light traffic (high service
levels.)

We first consider a formal weak limit, through which our queueing
scheduling problem gives rise to a diffusion control problem. We show that
the latter has an optimal Markov control policy, and that the corresponding
Hamilton—Jacobi—Bellman (HJB) equation has a unique classical solution.
The Markov control policy and the HIB equation are then used to define
scheduling control policies which we prove are asymptotically optimal
for our original queueing system. The analysis yields both qualitative and
quantitative insights, in particulaon staffing levels, the roles of non-
preemption and work conservation, and the trade-off between service quality
and servers’ efficiency.
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1. Introduction. We analyze a queueing system that consists of several
customer classes and a large pool of independent statistically identical servers
(see Figure 1). Customer arrivals for each class follow a renewal process. Each
server can serve customers of all classes, and service durations are exponentially
distributed with class-dependent means. In addition, some customers abandon
the system while waiting to be served, and abandonments arise according to
exponential clocks with class-dependent rates. This work addresses the stochastic
control problem of system scheduling: how to optimally match customers and
servers. The cost criterion we consider is an expected cumulative discounted
function of the (appropriately normalized) number of customers waiting to be
served and the number actually being served, for each class. Special cases for
the cost per unit time are the number of customers in the system (or increasing
functions of it), the number of abandonments per unit time, the delay experienced
by the customers, the number of idling servers and certain combinations of these
costs. Since our scheduling problem is too complex for direct analysis, we resort to
heavy-traffic asymptotics. The goal is to identify the asymptotics with a diffusion
control problem, then rigorously justify this identification and finally gain insight
from it.
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Fic. 1. A many-server multiclass queueing system

1.1. Motivatiort the QED regime. The asymptotic heavy-traffic regime that
we consider is the one analyzed by Jagerman [24], Halfin and Whitt [17] and
Fleming, Stolyar and Simon [12]. Here, the number of servers and the arrival
rates are large and carefully balanced so that the traffic intensity is moderately
close to unity. Economies of scale then enable an operation that is both efficiency-
driven (high servers’ utilization) and quality-driven (high service levels), hence the
terminology QED: both Quality- and Efficiency-driven.

An important motivating application for our model is the modern telephone
call center, where a large heterogeneous customer population seeks service from
many flexible servers. In this context, the QED regime was identified in practice
first by Sze [36], and more recently and systematically in Garnett, Mandelbaum
and Reiman [15]. The QED regime captures the operational environment of
well-run moderate-to-large call centers, where servers’ utilization is high yet a
significant fraction of the customers is served immediately upon calling. The last
two statements are in fact equivalent for single-class many-server systems [15, 17].
They are further equivalent to “square-root safety staffing,” which also applies to
the model under study here: iifdenotes the offered load amdthe number of
servers, them ~ r + B./r for some constang. (See [13] for more elaboration,
motivation and references.)

For a single-class quey&l/M/n) in the QED regime, one subtracts from the
number of customers in the system the number of servers and then divides by the
square root of the latter. The resulting stochastic process, when positive, models
the (scaled) queue-length, and when negative models the (scaled) number of idle
servers. Halfin and Whitt [17] proved that this process converges in distribution,
as the number of servers)(grows without bound, to a diffusion process with
a fixed diffusion coefficient and a piecewise linear state-dependent drift, under
appropriate assumptions on system parameters. The result was extended in [15] to
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accommodate abandonment from the queue (but arrivals were assumed Poisson).
Further extensions were carried out by Puhalskii and Reiman [34] to cover a
multiclass queue, phase-type service time distributions and priority scheduling
policies, giving rise in the limit to a multidimensional diffusion process.

1.2. Diffusion control problems and queueing systeniEhere has been a
considerable amount of research on diffusion control problems in the context
of queueing systems, specifically on asymptotic optimality when approaching a
diffusive limit. We refer the reader to [38] for a summary and further references.
Most of this research, however, has been within the “conventional” heavy-
traffic regime which, in the terminology introduced above, corresponds to an
efficiency-driven regime of operation: servers’ utilization approaches 100%, with
essentially all customers being delayed in queue for service. To wit, our model in
“conventional” heavy traffic was analyzed by Van Mieghem [37], who considered
a single server (or equivalently,fexed number of servers) with traffic intensity
converging to unity. (One could, alternatively, increase the number of servers to
infinity, which entails an acceleration of the convergence to unity; see the last
section of [30].)

Following Harrison [18], there has been a stream of research that produced
schemes for determining “good” scheduling policies for queueing systems, in
an asymptotic sense. These have been based on exact analytic solutions to
corresponding diffusion control problems, formally obtained as “conventional”
heavy traffic limits. For rigorous proofs of asymptotic optimality, see [3, 26, 27,
29-32 and 37].

Recently, Armony and Maglaras [1], Harrison and Zeevi [21] and the present
authors [2] have considered stochastic control problems in the QED regime.
The first [1] models and analyzes rational customers in equilibrium, and the
last [2] served as a pilot for the present paper. The analysis in [21] is that of
the diffusion control problem associated with our queueing system with linear
costs. Specifically, Harrison and Zeevi show in [21] that this control problem
has an optimal Markov control policy (cf. [11]) which is characterized in terms
of its underlying HIB equation. Then, they use the diffusion control problem to
propose a scheduling control policy for the original queueing system, conjecturing
that it is asymptotically optimal in the QED regime. In the current paper we use
that same approach, with yet a significant broadening of modeling scope: we
identify a sequence of HIB-based scheduling policies (for a general and natural
cost structure) and we prove their asymptotic optimality (within a broad family of
nonanticipating preemptive or nonpreemptive policies).

1.3. Main results and scope.Our main results are as follows. First, we
formally take a heavy-traffic limit in the QED regime (Section 2.3). Then we
show that the diffusion control problem associated with this limit has an optimal
Markov control policy, and that its HIB equation has a unique classical solution
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(see Theorem 3). This extends the results of [21] to cover a large class of cost
functions. As is often the case in stochastic control of diffusions, proving existence
of optimal Markov control policies is coupled with establishing the existence
and uniqueness of solutions for the underlying HIB equation. In the case of
bounded cost, existence and uniqueness for this equation follow from the theory
of optimal control of diffusions [6, 11] and of nonlinear elliptic PDEs [23]. Since
our cost is not assumed to be bounded, finer information on the model needs to
be exploited, and in particular moment estimates on the controlled processes are
required [Propasion 4(ii)].

Having studied the diffusion control problem and the HJB equation, we use
them to propose a scheme for determining scheduling control policies of two
types: preemptive and nonpreemptive (see Section 2.6). After defining a notion of
scheduling control policies that do not anticipate the future, we prove that among
them, our proposed policies are asymptotically optimal in the QED heavy-traffic
limit (Theorems 2 and 4). (More precisely, asymptotic optimality is proved among
work conserving policies; more on that in the sequel.) The asymptotic optimality
is in the sense that, under the proposed policies, the cost converges to the optimal
cost of the diffusion control problem, and that the latter is a lower bound for the
limit inferior of costs under any other sequence of policies.

Our approach for deriving the diffusion control problem follows Bell and
Williams [3] in that the system of equations and the cost are represented in terms
of the system’s primitives. The controlled diffusion then arises as a formal weak
limit. In obtaining the asymptotic results, this direct relation between the queueing
system control problem and the diffusion control problem is convenient.

The policies that we establish as asymptotically optimal are feedback controls.
By this we mean that the action at each time depends only on the “state” of the
system, namely on the number of customers waiting to be served and the number
of customers being served, for each class. The family of policies among which
they are proved asymptotically optimal contains all policies that observe all system
information up to decision time. In fact, the family we consider is slightly broader
in that the policies are allowed to exploit some information on the future, namely
the time of the next arrival for each class. We comment below that this is a natural
class to consider in the presence of renewal arrivals (cf. Section 2.2).

Under a preemptive scheduling control, service to customers can be interrupted
at any time and resumed at a later time. Consequently, the class-fractions of
the customers waiting to be served provide natural candidates for control. The
diffusion control problem is formulated with such a preemptive model in mind,
and the control process corresponds to these fractions (as suggested in [21]).
When restricting to scheduling control policies that are nonpreemptive, one must
constrain the processes that count the number of customers routed to the server
pool to be nondecreasing. The diffusion control problem that arises from such
a model resides in a higher dimension. However, here we demonstrate that the
nonpreemptive scheduling control problem is asymptotically governed by the
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simpler diffusion control problem and its HIB equation; to this end, the preemptive
HJB equation is used to construct a nonpreemptive scheduling control policy that
is asymptotically optimal (in fact, within the class of preemptive policies).

Work-conserving policies are typically not optimal among nonpreemptive
scheduling control policies. This can be seen in a simple example, where there are
two customer classes, and the cost takes the fBrf§” =" Yiz126i®i(t)dt:
®; (1) is the number of classcustomers waiting to be served at timeConsider
the event that when the first class-1 customer arrives, there is exactly one free
server, and no class-2 waiting customers. If the customer is routed to the free
server, then there is a positive probability that the class-2 customer that arrives
next will be delayed by at least one unit of time. If the ratigc1 is large enough,
it is clear that the cost paid for delaying this individual class-2 customer can be
larger than the cost of delaying all class-1 customers that ever arrive (due to the
discountin the cost). As a result, a good policy will leave a free server to idle until
a class-2 customer arrives, or until additional servers become idle.

On the other hand, when allowing preemptive policies, for most costs of interest
it is intuitively clear that work conservation is optimal. We refer to such costs as
work encouragingsee Section 5). While there is no attempt here at a rigorous
analysis of work encouragement (this seems to require a different modeling
framework), our results do reduce the problem of asymptotic optimality (under
preemption or nonpreemption) to verifying that work conservation is optimal
among preemptive policid€orollary 1). For example, when optimality of work-
conserving preemptive policies holds for the prelimit problems, our results, which
establish asymptotic optimality of a nonpreemptive policy that is work conserving,
imply that the phenomenon described in the previous paragraph is negligible on the
diffusive scale.

We comment that, to prove asymptotic optimality, it is not necessary to establish
weak convergence of the controlled processes to a controlled diffusion, but only
convergence of the costs. However, under appropriate regularity conditions of the
coefficients (such as Lipschitz continuity of the function used to define the optimal
Markov control policy; see Theorem 3), convergence of the controlled processes
follows from our analysis.

Diffusion control problems that arise in “conventional” heavy traffic often have
a particularly simple solution, in the form of a static priority policy. Moreover,
these policies typically exhibit pathwise minimality of the associated workload
processes. Such a simplification is a consequencestdita-space collapsd9,

35] namely that these multidimensional diffusion control problems reduce to one-
dimensional problems: in conventional heavy traffic, the many servers work in
concert as though they constitute a single “super-server.” While such collapse
prevails in the special case studied in [2], simulations and intuition indicate that,
in general for the QED regime, an analogous phenomenon is unlikely to occur.
Significantly, though, our analysis does yield some state-space collapse: it is
manifested through the asymptotic optimality of nonpreempting work-conserving
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feedback controls, within the far broader class that allows nonpreemption, idleness
in the presence of waiting customers and the use of all past information.

1.4. Organization and notation. In Section 2 we describe the model, introduce
a notion of scheduling control policies that do not anticipate the future and specify
the heavy-traffic assumptions and scaling. We state our first main result regarding
the diffusion control problem (Theorem 1). We then use the diffusion control
problem to construct two sequences of scheduling control policies (preemptive
and nonpreemptive) for the queueing system, and state our second main result
on asymptotic optimality of these sequences of policies (Theorem 2). Section 3
treats the diffusion control problem, proving existence and uniqueness for the
underlying HIB equation, and existence of optimal Markov control policies.
The asymptotic optimality results are proved in Section 4. In Section 5 we discuss
the implications of our main result to sequences of policies that are not necessarily
work conserving, and chart possible directions for further research. Finally, some
auxiliary results are proved in the Appendix.

Forx e R* we let|x|| = Y, |x;|. Associated with the parametérandn of the
gqueueing system are the séfs={1,...,k} andN ={1,...,n}. We write N =
{1,2,..., Z8 ={0,1,2,.. }*, Rk = [0,00)* andSF = {x e RX : 3°¥_, x; = 1}.

We denote byB(m, r) an open Euclidean ball of radiusaboutn. 8(A) denotes
Borel o-field of subsets ofA. C"™¢(D) [resp. C"(D)] denotes the class of
functions onD ¢ R* for which all derivatives up to ordet are Holder continuous
uniformly on compact subsets dd [continuous onD]. Cpo|(Rk) denotes the
class of continuous functiong onR¥, satisfying a polynomial growth condition:
there are constants and r such that| f(x)| < c¢(1 + |x||"), x € Rk, We let
CF’)’gf = Cpol N C™*. For E a metric space, we denote By E) the space of all
cadlag functions (i.e., right continuous and having left limits) fr&m to E.

We endowDD(E) with the usual Skorohod topology. All processes we consider
are assumed to have sample path®{iE) (for appropriateE, mostly E = R¥).

If X", neNandX are processes with sample path®i(E), we write X" = X

to denote weak convergence of the measures induceld”bjon D(E)] to the
measure induced by . For any cadlag patlX, let X;_ = limy; X, for r > 0,

Xo— = Xp, and AX; = X; — X,_. If X is a process (or a function oR.),
X7 = sup< IX(s)ll, and if X takes real values,X|f = sugy,-, |X(s)l.

X (1) and X, are used interchangeably. VectorsRA are considered as column
vectors. We writel = (1, ..., 1)’ € R¥. For vectors:, v € R¥, letu - v denote their
scalar product. Finally; denotes a positive constant whose value is not important,
and may change from line to line.

2. The controlled system in the QED regime and its diffusion approxima-
tion. We consider a queueing system which consisté ofistomer classes and
n multiskilled servers (see Figure 1). Service to any customer can be provided by
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any of the servers indifferently. The service time distribution depends on the cus-
tomer class, but not on the individual server (or customer). We say that a customer
is in queue at timer if the customer is of clasg and at timer it is in the sys-

tem and is not being served (although it possibly received partial service prior to
time ). Customers enter the system at one of the queues, and leave the system in
one of two ways: either when their service is completed, or while they are waiting
at their gueue and decide to abandon the system without being served.

2.1. The stochastic model.Let a complete probability spacé, F, P) be
given, on which all the stochastic processes below are defined. Expectation with
respect toP is denoted byE. The parametet, denoting the number of servers,
which is particularly significant in our analysis, will appear (as a superscript) in
the notation of all basic stochastic processes associated with the queueing system.
Fori € K, the number of classeustomers in the queue at time- 0 is denoted
by @7 (1), and ®"(r) = (P4 (1), ..., P} (r))'. The number of class-customers
being served at time is denoted byw”(r) and W"(r) = (W] (), ..., V(1))
Clearly these processes take integer values, and

(1) (), V') eRy, Y W'@)<n, t>0.

The initial conditions of the system are assumed to be deterministic and are
denoted byd"(0) = d%" = (@1, ..., @21y and w(0) = WO = (wi", ..,

0,1/
\IJk ) .

Let A?, i € K, be independent renewal processes defined as follows. For
i € K, let there be a sequend®;(j), j € N} of strictly positive i.i.d. ran-
domvvariablesv with mearEU;(1) = 1 and squared coefficient of variation
Var(U;(1))/(EU;(1))? = C} ; € [0, 00). Let

1.
(2) Uln(])zﬁUl(]L i€ K7 j€N7

]

whereA? > 0. With the convention{j? =0, define

m
(3) Al (1) =supim =0:) U!(j) <ty, iekK,t>0.
=1

The valueA? (¢) denotes the number of arrivals of classustomers up to time.
Note that the first class-customer arrives at/;'(1), and the time between the
(m — 1)standmth arrival of class-customers id//'(m), m = 2,3, ....

The service time of a clagssustomer is assumed to be exponentially distributed
with parameteru?, regardless of the service provider. This is captured in the
following description. Fo¥ € K, let S be a Poisson process of rat¢ € (0, c0),
and assume that the process¥¥sare independent of each other and of the
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processed”, i € K. LetT!"(¢) denote the time up tothat a server has devoted to

i

classi customers, summed over all servers. Clearly,
t
n n .
Ti(z):/otlfi(s)ds, iek,t>0.

ThenS*(T/"(t)) = S ([5 Vi (s)ds) denotes the number of service completions of
classt jobs, by all servers, up to time Our assumptions ofi” will ensure that,
for eachr, T"(¢) is independent of any increment of the foSt(T"(¢) + s) —
S™(T"(¢)), s > 0 (cf. Definition 2).

Fori € K, individuals abandon queueat rates;" € [0, o). Let R!' be Poisson
processes of rat#, independent of each other and of the procegeﬂ?, jeK.

Note that the time up tothat a class-customer spends in the queue, summed over
all customers, is equal t} ®” (s) ds. ThenR?(J§ ®7(s) ds) denotes the number
of abandonments from queueup to timer. Under an appropriate assumption
on [ ®"(s)ds, similar to that ori™” (cf. Definition 2), this describes abandonment
of class# customers according to independent mjteRoisson clocks, each run as
long as the customer is in the queue.

We would like to have equations that hold for both nonpreemptive and
preemptive resume policies. Consider the proce#€s), i € K, described as
follows. B! (0) = 0; B}' increases by 1 each time a clageb is assigned to a server
(to start or resume service), and decreases by 1 each time such a job is moved back
to the queue (in a preemptive-resume policy). Note that in a nonpreemptive policy,
B} (t) is the number of typé-customers that have been routed to the server pool at
any time up ta. In fact, we do not assume that these processes only jurdglby
their increments can take arbitrary value&ir-ollowing are the system equations:

t
@7 (1) = D" + AT () — BI'(1) — R{’(/ d>;?(s)ds), icK,t>0,
0

(4) ‘
\I—‘l-"(t)zlllg’"—i—Bf(t)—S?(/ wf(s)ds), icK. >0,
0

These equations hold regardless of assumptions on the policy as to whether it is
preemptive or not, and work conserving or not (these terms are, in fact, made
precise later in this section). Note that the representations above in terms of
Poisson processe$ andR;' exploit the exponential assumptions on service times
and abandonment.

Assume that there is a fult -measure set under which al' (r) < oo for ¢+ > 0,
A? increases to infinityAA? (¢) € {0, 1} for all ¢+, and where similar statements
hold for S and R;. Then, without loss, we omit from subsequent discussions
all realizations (sample paths) of these processes that do not adhere to these
conditions.

Let

(5) X" (t)=®" (1) + V" (1)
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and denotex®" = ®%" + w0 Then X (1) is equal to the number of clags-
customers in the system at timeThe constraints (1) can be written in terms of
X" andy” as

(6) X"(1) — W' (1) e RX, v eR, Y W' <a,  t>0,
i
while the system equations (4) imply that

ney _ yon Ny _ pn gy T _qn L un
Xi®)=X;" +A/(1t) — R; <‘/(; (Xi (s) =, (S))ds) S </(; W (S)ds),

(7)
iek, >0

2.2. Scheduling control policies.We define two types of control problems,
one where scheduling is preemptive and one where it is nonpreemptive. Equa-
tion (7) serves as the description of the system dynamics. The scheduling control
policy (SCP) will be identified with the proceds’, and it will be assumed that it is
such that the constraints (6) are satisfied. Apart from a nonanticipating assumption
on ¥" (Definition 2), there will be no further restrictions for preemptive schedul-
ing control problems. For nonpreemptive scheduling control problems, a further
constraint will be that the proce®' is nondecreasing in each component.

For the following definition, note that, given a proceB§, if there exists a
processX” so that (7) holds, then it is unique (as can be argued by induction on
the jump times of the processag, R"” andS™). Thus (5) uniquely determines”,
and either part of (4) then uniquely determirs Also, finiteness of the integrals
appearing in (4) and (7) follows from the fact théf are bounded by, while
X (1) — Wi(t) = O (1) < XO" + AT (1).

DEFINITION 1. (i) We say that” is apreemptive resume scheduling control
policy (P-SCP) if it is a stochastic process with cadlag paths, taking valu’s, in
for which there exists a proce&¥' (referred to as aontrolled processsatisfying
the system equations (7), and such that the constraints (6) are met. Given a P-SCP
W and a controlled process”, denote by®” and B”" the processes uniquely
determined by (4) and (5).

(i) We say that¥” is anonpreemptive scheduling control poligy-SCP) if it
is a P-SCP, and in additiol,’, i € K, have nondecreasing paths.

We collectively refer to P-SCPs and N-SCPssateduling control policies

(SCPs) (although the class of SCPs is simply the class of P-SCPs).
We need a notion of SCPs that do not anticipate the future. To this end, denote

t o t
® = [ vieds.  Tro=[ s,
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and fori € K, let
(1) =inf{u >1: A} (u) — A} (u—) > 0}
stand for the time of the first arrival to queiiao earlier than. Set
) F'=0{Al(s), ST (s)), RN (T (5)), ®(s), W' (s), X' (s):i € K, 5 <t
and

61 = o [ AL (1) + 1) — A (' 1)), SV (T (0) +u) — S (T (1),
(10) o .
RMNT" (t)+u)— R}NT" (t)):i € K,u>0}.

While #/* represents the information available at timeg; constitutes future
information. Since for each A} is a renewal process, its increments of the form
that appears in the definition gf' are independent af{A” (s):s <t}. However,

the time z/' of the next arrival may be anticipated, to some degree, from the
information on the arrivals up to time Therefore, withz;' (¢) replaced by in its
definition, 7 would not be a good candidate to represent innovative information.
Note that an analogous treatment®f and R" is not necessary, since these are
Poisson processes which are memoryless. The following definition refers to both
types of problems.

DEFINITION 2. We say that a scheduling control policyaidmissiblaf:

(i) foreachr, ¥ is independent of};
(i) for eachi andt, the processS! (7' (t) + -) — S;'(T/"(t)) is equal in law
to S7'(-), and the procesB;’(fi” O +)— R{’(fi” (1)) is equal in law toR? (-).

Some SCPs considered in this paper will be constructed by setting
(11) v(t) = F(X" (1)), t>0,

for an appropriate choice of. As the following result shows, this leads to
admissible SCPs.

PROPOSITIONL. Fix n and let a functionF : Z% — ZX be given such that
for X € Z%, one hasX — F(X) € ZX and 1 - F(X) < n. Then the system of
equations(7) and (11) has a unigue solutigrand ¥" is an admissible SCPn
particular, if the procesB”" determined vig4) has nondecreasing pathg” is an
admissible N-SCP

See the Appendix for a proof.
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2.3. QED scaling. We consider a sequence of queueing systems as above
where now the number of serveis= N is used as an index to the sequence. It
is implicitly assumed that there is an SCP associated with each queueing system.
Itis assumed (without loss) that there is one probability sp@zeF, P), on which
the processes associated with #tile system are defined, for adle N. The heavy-
traffic assumptions are as follows (cf. [15, 17, 21, 34]).

ASSUMPTION 1. (i) ParametersThere are constants, u; € (0, 00), 6; €
[0, ), Ai, i €R, i € K, such that

k
D hi/ui=1
i=1
and, as: — oo,
nh >, wi = wi, 0" — 6;
n2m W —a) = A nYPl — ) —

(i) Initial conditions.There are constangs € [0, c0), ¥; € R, i € K, such that
>k ¥i <0, and, withp; = 1; /u;, asn — oo,

20,1 | - 0, 7,0.n . - 0,
QP =P — gy, P =T VAP — pin) — i

REMARK 1. The above scalingis in concert with thatin [12, 15, 17, 24]. Fora
verification, letp” denote the traffic intensity of ourth system. Thep” =r"/n,
where its offered load” is given by

k
= YAl
i=1

From Assumption 1 it now follows, via simple algebra, that

k
VA= p") =Y (pifti — ki) /i
i=1
Denoting this last limit bys, we deduce that

nar 4+ B

QED scaling thus leads to square-root safety staffing [7], which characterizes
the regimes in [12, 15, 17, 24]8(> O was required in the original Halfin—
Whitt regime of [17], to guarantee stability when there is no abandonment. Our
analysis, however, covers all valuesgsince it does not require stability of the
gueueing system. Indeed, the total discounted costs are always finite in view of our
polynomial growth constraints on the cost functions.)

For more details on QED scaling, readers are referred to [15] and [17]. An
instructive comparison of the QED regime with conventional heavy traffic, in the
context of our problem, is provided by [21].
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The rescaled processes are defined as follows:
= -1 \7 -1
Qi (1) =n"®{(1), Vi) =n""W/ (1),
XI(0) = (1) + W (1) = n " 1XI (1),
- 1/25 -1/2
D1(t) =nt20" (1) =n Y207 (1),
Wi ey =n"2(0(0) — pi) = n"2(W (1) — pin),
X1 (1) = DT (t) + (1) =nY2(X1 (1) — p;) =n~V2(X (@) — pin).
The primitive processes are rescaled as
Aty =n~YV2(AM @) = Atr),  8T() =n"Y2(SM(nr) — nullt),
RI(t) = n~Y2(RM(nt) — n6l'r).
Finally,
BM1) =n~Y2(BM1) — nat).
With this notation, the system equations (4) can be written as follows:
o 50, A 1/2,, -1
O (1) = & + AT(t) +nt P — e
. . r_ ‘.
_ B - R{’(/O cpgl(s)ds) - 9,."/0 &7 (s) ds,
12 o
W) =" + BI'(t) — S?(/ wf(s)ds>
0
t A
— i [ ds = pin20a; = o
We have from (12)
A A ~ t o, t,
(13) X/t = Xl-o’n +riW'(t) + 0]t — M?/ Wi (s)ds — 91-"/ o (s)ds,
0 0
where we denote
A ~ N t _ n t_
W) = A1) — sf(/ \Ill-"(s)ds) _ R{’(/ CD?(s)ds),
0 0
(14)
ri = ()\iclzj,i + )u,')l/z
and
e =n"2(n" N = a) — pin™ P} — ).

We now present a formal derivation of the limiting dynamics, as described by
a system of controlled SDEs. The actual relation to the sequence of queueing
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systems (as a limit) will be justified once our results of Section 4 are established.
To this end, we pretend that the convergence

PI(H)=0, W)= p,

holds, and writeA, S, ®, W, X, B for the formal weak limits ofd”, §", &", "
X", B" (without worrying at this point about whether weak limits exist). Fark,

the processegl; and S; are Brownian motions with zero drift and variances
A;C} ; andu;, respectively. We thus obtain

¢K0=@+Aﬂ0+ﬁf—&0%4%[¢dﬂﬂ,
(15) 1/2 !
Vi) =vi+ Bi(t) — ,0,-/ Si(t) — Mi/o i (s)ds — pijiit.

The corresponding constraints are as follows:
; (1) >0, Z‘Pi(t)SO.
i

Writing W = (W1, ..., W), W; = rl-_l(Ai - ,ol.l/ZSl-), the proces®V is a standard
k-dimensional Brownian motion. The proce¥s= & + W then satisfies

t t
(16) Xi(t) = xi + riWilt) + Lit — 6; /0 (Xi(s) — Wi(s)) ds — /0 W, (s) ds.
as well as the constraints

(17) Xi(t) = ¥i(1)=0, Y W) <0,

where
€ =hi — pifii. xi =¢i + V.

2.4. Work conservation and costA policy is work conserving if there can
be no idling servers when there are customers in the queue. For the following
definition, recall thatl - ®" equals the number of customers in all queues, and that
1 - X" equals the number of customers in the system.

DEFINITION 3. We say that an SCP wgork-conservingf

(18) 1L-X"(t)—n)" =1-0"(1), t>0.

Note that equivalently

(19) 1-X"(0)" =1-3"@), t>0.
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For a given SCP, le®” and¥” denote the rescaled processes as before. We
consider the problem of infimizing an expected cumulative discounted cost of the
form

(20) "= Efooo e VIL(®" (1), U (1)) dt,

over all work-conserving admissible SCPs. Under the assumption that SCPs are
work conserving, it is more convenient to work with the functibnR* x S —
R defined as

(21) L(x,u)= Z((ﬂ ) Tu, x —(@-x)Tu).
If work conservation holds(l - X" — n)™ is equal to the number of customers

waiting in all queues, namely- ®". If u" e S¥ denotes the proportion of customers
of the different classes that are waiting in the queues, then

(22) P"=(1-X"—n)"u", U=X"—(1-X"—n)"Tu".

Hence (21) is merely a change of variables fred", ¥") to (X", u"). The
following will be assumed oil. andL.

ASSUMPTION2. (i) L(x,u) >0, (x,u) € RF x Sk,

(i) The mapping(¢, ) — L(¢, ) is continuous. In particular, the mapping
(x,u) = L(x,u) is continuous.

(iii) Thereiso € (0, 1) such that, for any compadt c R¥,

|L(x,u) — L(y,u)| <cllx —yl®
holds foru € Sk andx, y € A, wherec depends only on.

(iv) There are constants> 0 andm; > 0 such thatL(x, u) < c(1+ ||x||"™L),
ucSk x e Rk,

By applying an analogous change of variables to the state equations, both for
the queueing system and for the diffusion, one can obtain these equations in a new
form as follows. Equation (13) fok” under work conservation takes the form

A A ~ t A
(23) Xi = X0 iy + [ bR ds
where
(24) b'(X,u) ="+ (u" — ") (1 - X)) u — "X,

andr =diag(r;;i € K), £" = (04, ..., €)', u* =diagu’;i € K), 6" = diag6}";
i € K). Similarly, (16) for the diffusion model is now given as

(25) XO)=x+rW@) + /otb(X(s), u(s))ds,

where forX € R¥ andu € S,
(26) b(X,u) =L+ (u—0)(1-X) u—puX,
and? = (€1, ...,4;), p=diag(u;; i € K) andd = diag®;;i € K).
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2.5. Diffusion control problem. Below we formulate a stochastic control
problem for the minimization of

c= Efoooe_V’L(X(t), u(t))d,

whereX is a controlled diffusion given by (25) over an appropriate class of control
processes, taking values irf§*. We then state our first main result that there exists
a measurable functioh: RF — Sk such that, upon setting = h(X,), t > 0, the
infimum in the problem is achieved.

DEFINITION 4. (i) We call
T = (Q F,(F), P, u, W)
anadmissible systeiifi

1. (@, F,(F;), P) is a complete filtered probability space,
2. u is aSk-valued, F-measurable(F,)-progressively measurable process, and
W is a standard-dimensional F;)-Brownian motion.

The procesas is said to be @ontrolassociated withr .
(i) We say thatX is acontrolled processssociated with initial data € R¥
and an admissible system= (2, F, (F;), P,u, W), if:

1. X is a continuous process @f2, F, P), F-measurable(F;)-adapted,

2. fé |b(X (s),u(s))|ds < oo for everyt > 0, P-a.s. [recall thatb is defined
in (26)],

3.

(27) X(t):x+rW(t)+/Otb(X(s),u(s))ds, 0<t< o0,
holds P-a.s.

Proposition 2 shows that theredasunique contrited processX associated with
anyx ands. With an abuse of notation we sometimes denote the dependence on
andm by writing PT in place of P andET in place of E. Denote byIl the class
of all admissible systems.

PROPOSITION2. Let initial datax € R* and an admissible systeme IT be
given Then there exists a controlled procesaissociated withr andsr . Moreover
if X and X are controlled processes associated witind sz, thenX () = X (1),
t>0, P-as.

For a proof see the Appendix.
Forx € R¥ andx € I1, let X be the associated controlled process, and consider
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the cost function
0
Clx,m)= Ef/ e V'L(X (1), u())dt.
0

The value functiori for the control problem is defined as
V(x)=inf C(x,n).
mwell

DEFINITION 5. Letx € R be given. We say that a measurable function
h:R¥ — Sk is a Markov control policyif there is an admissible system and
a controlled procesX corresponding tac andxr, such thatu; = h(Xy), s > 0,
P-a.s. We say that an admissible systelis optimalfor x, if V(x) = C(x, ). We
say that a Markov control policy is optimal farif the corresponding admissible
system is.

The following constitutes a part of the first main result of this paper. Its full
version that also characterizes the value functibras the solution to an HIB
equation, Theorem 3, is stated and proved in Section 3.

THEOREM 1. AssumeL is continuous and satisfies Assumptidf), (iii)
and (iv). Then there exists a Markov control polidy. R — S¥, which is optimal
for all x € R,

Throughout/: denotes the function from Theorem 1.

2.6. SCPs emerging from the diffusion control probleriiVe formulate three
SCPs that are based on the functigrand state our second main result, namely
that these policies are, in an appropriate sense, asymptotically optimal.

A P-SCP. For eachy, ¥"(r) will be determined as a function &" (z) only.
Given X" (¢), the diffusion control problem suggests setting

(28) (1) = (1- X" (t) —n) Th(X" (1)),
where as before

X" (1) =n1/2(%X"(t) - ,0).

There are two points, however, to which one must pay attention. First, the
components ofb” must be integer-valued, in order to represent queue lengths;
and second, the componentsbtf = X" — ®" must be nonnegative, so that one
serves only those customers present in the system.

For the first point, we need any measurable ey € R :1 -y € Z} — ZX
that preserves sums of components and introduces an error uniformly bounded by
a constant, so that

(29) " (1) = O[(1- X" (1) —n) "h(X"(1))]
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can be used in place of (28). For concreteness, take the following map <Rf ,
write y; = |y;| + 6;, and set = O(y) defined ag; = |y;],i=1,...,k— 1, and
2k =yk+ Y18 Clearly,1-z =1y, andz € ZX whenevet -y € Z. Moreover,
ly —zll < 2k:

(30) 1©0() -yl <2k,  yeRL.

For the second point, note that (29) might 8&t= X" — ®" in such a way that
Y is not in R’;. For example, ifX" = (n + 1)e; andh(X") = ep, then®’ =1,
which means tha¥; = —1. Such a problem does not occur if

(31) X'"t)>(@1-X"(t)—n)"  VieKk.

When the problem does happen, the policy may be defined quite arbitrarily, subject
only to being work conserving. For concreteness, when (31) is not met, wWe' set

in accordance with a priority policy, where clas®ceives priorityi (the higher,

the higher the priority). When (31) is met, we st(s) as in (29). Finally, set
U() = X"(t) — ®" (1), or equwalently\l!”(z) — X"(t) — ®"(¢). One verifies that

the constraints (6) hold by construction.

We remark that the results of Section 4 will establish that (31) typically holds.
This is basically due to the fact that the RHS, which represents the total number
of customers waiting to be served, behaves at mog? @s/2), while the LHS,
representing the number of customers at each claghyis.

We next describe two alternative rules for determining sequences of N-SCPs.

N-SCP(i). To describe an N-SCP for eaeh one needs to determing”
so that the procesB”(¢) is nondecreasing. We describe a work-conserving SCP.
A customer that arrives when there is a free server is instantaneously routed to a
server. When a server becomes free, and there is at least one customer in the queue,
we use the following scheme to determine which class to route to the server. This
is in fact all that is to be determined. We look again at

M™ (1) := (1- X" (t) —n) Th(X"(1)),
and consider the s&?© of i € K for which o (t) > M (t) v 1. Note that if there
is atleastoné € K with &% > 1, thenk © is not empty. Indeed, suppose tti&lt is
empty, and leK’ = {i € K : ®7(t) > 1}. Then fori € K’, ®¥(¢) < M (t). Hence
by (18),

1-M'=1-9"=> o/ <> M <1-M",
ieK’ ieK’
a contradiction. We now choose the largest K°. Then a customer of clagss
routed to the free server. This procedure is performed instantaneously.

In heuristic terms, the scheme described above attempts to drive the system
towards nearly achieving an equality of the form (28). This is done by sending to
service customers of classe$or which ®? > M, thus obtaining approximate
equality between the quantitiés” and M". A justification of this heuristic is a
part of the proof of the result below.
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N-SCP(ii). The N-SCP is defined precisely as the N-SCP (i), except that, for
eachn, the functionz is replaced by a functioh,,, which may vary withn.

By defining the interarrival time&//" (j) via Ui (j) [cf. (2)], we have assumed
that they have finite variance. Here we strengthen this assumption.

ASSUMPTION 3. Letm, be as in Assumption 2. Then there is a constant
my > 2,my > myg, such thatt (U; (1))"V < oo.

Our second main result is as follows.

THEOREM 2. Let Assumptiong—3hold. Let X% e n~Y/27F be a sequence
converging tax € R*. Let a sequence of work-conserving admissible S€Pbe
given consider the corresponding process$, and let ", U” denote the
corresponding rescaled processes

(i) Letw™*, o™* be asequence as determined by the proposed P-SCP,above
and let®™* and ¥"* be the corresponding rescaled procesSdsen
Oo ~ A A
lim E | e V'L(®V*, W) dt
n—oo 0
(32)
OO ~ A A
<liminf E e VIL(PY, W dt.
n—0o0 0
Moreoverthe left-hand side is finite
(i) Assume that the restriction @f to X := {y e R¢:1 - y > 0} is locally
Holder continuousLet w"*, ®™* be a sequence as determined by the proposed
N-SCP(i) and &™*, &"* be the corresponding rescaled processEsen (32)
holds
(i) Assume that the mapping— L(x, u) is convex orS¥ for eachx e RX.
Then there exists a sequence of functifis with the following propertylLet
wr o™m* be a sequence as determined by the proposed N{8CRIsing the
functions{h, }, and®"-*, &"* be the corresponding rescaled proces3d®en(32)
holds

Iltem (i) of Theorem 2 establishes asymptotic optimality of the proposed
sequence of preemptive SCPs, within all work-conserving SCPs. Item (ii)
establishes asymptotic optimality of the proposed sequence of nonpreemptive
SCPs, within all work-conserving SCPs, under the assumption that the funaction
is locally Holder continuous. In Proposition 3, we show that under some strict
convexity assumptions oh, & is locally Holder continuous, and thus item (i)
applies. However, for linear costs, 4§®, V) = ¢ - & (c € RX a constant), the
resultingk is discontinuous (see [21]), and this part of the theorem does not apply.
Assuming only convexity of.(x, -), for eachx (which certainly holds for linear
costs), item (iii) establishes asymptotic optimality of the proposed nonpreemptive
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SCPs, wheré: is replaced by a sequence of functignsthat are locally Holder
continuous. Indeed, in Section 2.7 we discuss additional costs of interest, where
u+— L(x,u) is convex for each, implying that (i) and (iii) hold.

REMARK 2. The theoremis established by comparing both sides of (32) to the
optimal cost in the corresponding diffusion control problem, denoted in Section 3
by V(x). It is established below that, in fact, the left-hand side of (32) is equal
to V(x).

REMARK 3. As discussed in Section 5 (Corollary 1), for a sequence of
N-SCPs that are not necessarily work conserving, Theorem 2 still holds given that
work conservation is optimal among P-SCPs.

2.7. Costs of interest. The following result provides an example for a family
of costs for which the assumptions armade in Theorem 2(ii) hold. It is proved
in the Appendix.

PROPOSITION3. Let Assumptior? hold, and assume thak is of the form
L(®, W) =Y.k i (®;),whergforeachi € K, g; : [0, 00) — Risin C?([0, 00)),
and there is a constanrp > 0 such thatg;’ > co. Then the restriction of to X is
locally Holder continuous

Note that one can take in the above regulkk) = ¢;x?i, ¢; > 0, p; > 2.

In the sequel we give examples of costs of interest, and specify the assumptions
under which our main results apply. In all the cases belbwand L satisfy
Assumption 2. Hence our results show asymptotic optimality of the proposed
policies amongvork-conservingadmissible policies.

Queue lengths. Let

L(®, ¥) = (D),
wheref is nondecreasing as a function éf, for eachi. It is assumed that > 0
is locally Holder continuous and satisfies a polynomial growth bound. Then
L(X,u)=£((1-X)Tu).

Abandonment. We need the following result, the proof of which is given in
the Appendix.

LEMMA 1. Under the assumptions ofTheorQr,rER{’(f"l.” () =6;E 70"1” ).



1104 R. ATAR, A. MANDELBAUM AND M. I. REIMAN

The number of abandonments from queéws to timer, normalized by,/n, is
given by

RM1) :=n"Y2RI( T (1)).
Consider the cost

0 ~
ch = ZciEfo e 7 dR (1)

(the dependence @t" on the SCP is not indicated in this notation). Integrating by
parts, using "’ ER!(t) — 0 ast — 0 and Lemma 1,

w ~
c" :ZVC’E/O e V'RIMNt)dt
i
00 r
:ZyciQiE/ e_y’/ O (s)dsdt
- 0 0
l

OO A
[ Sendto]a
0 -

This is a special case of the queue-length cost considered in the previous
paragraph.

Delay. For each of the customet®ver present in the system, letigldenote
the class to whichbelongs, and let(/) denote the set of times at which custorher
is in the queue. We are interested in the cost

c" =n_l/2EZcC|(1)/ e Vdt,
] v(l)

wherec; > 0,i € K, are constants. Since clear@;‘(t) =n"12% Lievq), Where
the sum extends over all classustomers,

C" = E/OOO e—’”[z ci&)?(t):| dt.

ieK

This again can be treated within the framework of queue-length costs.

Idling servers. The number of servers that idle at timés given byn — 1 -
W (¢). With an appropriate normalization and discounting, this becomes

OO A
C"= —E/ e VL (1) dt.
0

The corresponding costs atgd, ¥) = —1 - U andL(X,u) = (1L - X) .
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Number of customers in the systenthe cost associated with the weighted
normalized number of customers in the system is

o
Cn=E/ e_ythiXi(t)dt.
0 ,
3. Stochastic control and the HIB equation.

3.1. Moment estimates.We begin with a key estimate for the results of this
section.

PrROPOSITION4. For any admissible system, any x, x € R’_‘, and corre-
sponding controlled processes (associated withx and ) and X (associated
with x andr), the following hold

(i) X, — X/| <|x —X|(L+e7), t>0,

P-a.s., where the constantdoes not depend aon, x, x and:.
(i) Form e N,

ETIXO™ <cm(@+ x"™)@A+1™), t>0,
where the constants, co, ... do not depend om, x andz.
PROOF (i) Note that| X (t) — X (1)| < |x — x| + ¢ J§ | X (s) — X(s)| ds, where
¢ is the Lipschitz constant far — b(x, u). The result follows from Gronwall’s
lemma.

(i) Write W (1) = X — (1- X) " u andW¥; (1) = ¥ (¢) - ¢;. Note thaty; () < X; (1),
and

(33) W) =0A> Xi@).
Then
Xi(t) = x; +r; Wi (1) +/Ot[—9,-X,-(s) — (i —0;)W; (s) + £;1ds, iekK,t>0.

Let K1 be the set of € K, whereu; > 6;, andK; = K \ K;. Define, for eacli,
Y; as the unique solution (cf. Theorems 5.2.5 and 5.2.9 of [25]) to the equation

0 =5+ W0 + [ i) +61ds,
ThenX; — Y; is differentiable X; (0) — Y;(0) =0, and fori € K1,
%(Xi(t) —Yi() =—6;Xi — (ui —0)V; + ;i Y
> — i (X (1) = Yi(1)).



1106 R. ATAR, A. MANDELBAUM AND M. I. REIMAN

Similarly, the reverse inequality holds whéeére K». By comparison of ODEs
(Theorem 1.7 in [5]),

(34) X;(t) = Y;(1), i € K1; Xi(1) <Y, icKy t>0 as.

If z is a vector satisfying the bounds> a; for all i, and}_; z; < A, then its norm
can be bounded as follows:

(35) Izl <) (zi —ai) + lall < A+ 2|all.

We have in (34) inequalities analogouszo> a;, when we considet; = ¢; X;,
wherec; > 0,i € K1, andc; < 0,i € K». Below, we obtain ainequalityanalogous
to ) ; zi < A, by finding an upper bound on the quanfifi) ¢; X;. To this end, note
first that by (33) and (34),

DY (X — ) =—<0/\ in) +> X
K1 K> K K>
(36) =L xi200 ) Xi — Lz, xi<0) ) Xi

K> K1
<Y IMil.
K

Next, letc > 0 be so small that & ¢(1 — 6;/u;) > 0 for all i € K»>. Then also
[14c(1-06;/u)](X; —¥;) >0, and as a result,

0;
(37) c|:——(111i—Xi)-i-qfi]f(Xi—\IJl')-i-CXi, ieKo.
Wi

Hence, denoting% = Yk N — Y, xi, W) = Y, riWit) —
Yk, criWi(t) andl =3 g € — > g, ct;, we have by (34), (36) and (37)

S outXi0) = en X (0)

K1 K>
=5+ W)+ +/ Z i (Wi (s) — Xi(s)) — Wi(s)] ds
4 / Z (Wi () — X, (5)) + Wi ()] ds

(z)+er+/ [Z Wi(s)+ ) [(Xi(s) — \IJ(s))+cX(s)]i|

K>

- - t
<I+W@) + L +/0 [mel +ZC|Ti(S)|:| ds.
K K>
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DenotingZ; = ¢; X;, wherec; = u; %, i € K1, ande; = —cu; t, i € K2, we have
from (34), (35) and the above, that, for some positive constants’s,

o o t
CLIXOI S NZ@)| <X+ W () + Lt +02/O D oIMi(e)lds + C2) i)
K K

It is easy to show thaE|Y;(t)|? < C(1+ |x;|), for some constant, and since
T; are GaussianE |Y; ()" < ¢ (L+ |x;|™) form = 1,2, .... It easily follows
that

EIXOI™ < cm @+ [IxI™)(@41™). O
REMARK 4. We record a consequence of the proof to be used in Section 4.

Recall (23) which holds under the work-conservation condition (19). Arguing
analogously to the proof of Proposition 4, under (19) one obtains

N N N t
(38) IX"MI SC[IIXO’”II + 1WA +t+/o 17" ()l ds + IIT”(t)II},
wherec does not depend onor 7, and whereY” is the unique solution to

R N t
(39) Y1) = X?’" + r Wi (1) +/ (=Y (s) + £7) ds.
0

3.2. Cost and value. Recall that forx € R andr € IT, the cost and value are
defined as

=ET > V(X d
C(x,m) x/0 e (X (@), u))dt,
V()= inf Cx,m).

We assume in this section th&afx, u) satisfies Assumption 2, except that part (ii)

should be understood as the assumption khigtcontinuous (the notatioh is not
needed in this section).

To state the next result, we need to formulate a control problem on a bounded
domain. In the sequel; will denote a bounded open connected subs&*ofvith
smooth (sayC*°) boundary. Leg : R, x o' — R, be a continuous function. For
x € I' andr € I, we define

T
CF,g(xJT):E;T[/ e_ytL(Xlau[)dt—i_g(T’X‘[)}’
0
whereX is the corresponding controlled process, and
t=inf{t: X, ¢ T}.
We also let

Vrg(x) = 7_['2{_[ Crg(x, ).
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PROPOSITION 5. AssumeL is continuous and satisfies Assumptifi),
(ii) and(iv). Then

() Thereis a constantsuch thatV (x) < c(1+ |x|"t), x € R¥.
(i) V is continuous orR*.
(i) LetT’ c R* be a smooth domairLet g(z, x) = e~ 7!V (x) for t > 0 and
x€dl.ThenV =Vr,inT.

PROOF (i) This is immediate from the polynomial growth condition brand
Proposition 4(ii).

(i) Fix an arbitrary open ball of radius 1,= B(y, 1). Letx € v be given, and
fore > 0, letr = (R, F, (F;), P,u, W) be such that

Cx,m)<V(x)+e.

Let X be the controlled process associated withnd. Let X be the controlled
process on the same proliléip space,associated witlhr and somer € v. Denote
m =my (asin Assumption 2). Led(T) = B(y, T?"*3). Letc1(T) be the Hélder
constant forL on A(T'). By Proposition 4(ii),

(40) ET| X" <c(X+1™), >0, z€v,

wherec¢ = ¢(v). Then for anyT € [1, oo) andr € [0, T, Proposition 4(i), (40) and
the Cauchy-Schwarz inequality imply

E|L(X;,u;) — L(X;, uy)|
<ca1(ME[Ly, z,eamylXe — Xill°]
+ CE[Lgitherx, or %, ¢acry L+ I1X" + 1X:1™M)]
<e1(T)A+eT)|x — X[ + clp(T) + p(MIM2e@+T™),
where
p(T) = supP(Xs ¢ A(T)), p(T) = supP()_(S ¢ A(T)).

s<T s<T
The moment bounds ghX, || imply that
p(T) + p(T) < cow)T "2,
wherec,(v) depends omw, but not onx, X € v. Hence, writingez(v) = éca(v)/?2,
Clx,m)—C(x,m)

=E/O' e_yt(L(X;,u;)—L()_(;,u;))dl‘
T
<{en(T)A+eT)|x — X|1° + ccsW) T L1+ Tm)}E/O e Vdt

o0 —
+C/ e A+ ENX A" + ENX ™) dt
T

<ca(D)llx — x| + es(W)a(T),
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where c4(T) depends only o, ¢5(v) depends only o, anda(7T) — 0 as
T — oo. Let T be so large thats(v)a(T) < . Next chooseé > 0 so small that
{0< |lx — x| <8 andx, x € v} impliesc4(T)||x — x||¢ < e. Then for suchy, x
one hasV(x) < C(x,m) < C(x,m) + 2¢ < V(x) + 3¢. Note that the choice of
does not depend on, x (in particular, it does not depend arl). Therefore, the
inequality V (x) < V(x) 4+ 3¢ holds for allx, x € v for which ||x — x| < §. This
shows thatV is continuous.

(i) This is a standard result (the principle of optimality), which, in the current
context, can be proved similarly to the results of [6], Section Il

3.3. The HJIB equation and optimality.The HIB equation associated with the
stochastic control problem is (cf. [11])

(41) Lf+Hx,Df)—yf=0,
whereL = (1/2) ¥, r?32/3x?, and

H(x, p)= inf [b(x,u) - p+ L(x,u)].
ueSk

The equation is considered &f with the growth condition
(42) IC,m,  |f@I=CA+xI™,  xeRE

We say thatf is a solution to (41) if it is of clas€’2, and the equation is satisfied
everywhere irR¥.

THEOREM 3. AssumeL is continuous and satisfies Assumptidfi), (iii)
and(iv). Then there exists a classical solutigre Cé;fl’ (RK) to (41), (42),and this
solution is unique ir(,’gol(]Rk). Moreoverthe valueV is equal tof. Furthermore

there exists a Markov control policy which is optimal for ale RX.

PROOF  We first consider equation (41) on a smooth open bounded connected
domainI", satisfying an exterior sphere condition, with boundary conditions

(43) fx)=Vkx), x earl.

The key is a result from [16] regarding existence of classical solutions in bounded
domains, with merely continuous boundary conditions. To use this result, we verify
the following two conditions:

() |H(x, p)| <c(l+ ||pl) for x e ", wherec does not depend onor p.
(i) H(x, p)eCe(T x R, somes € (0, 1).
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Item (i) is immediate from the local boundednessbgk, u) and L(x, u).
Next we show that item (ii) holds. Fa¥ > O, let v be such thatH (y, ¢) >
b(y,v)-q+ L(y,v) — 3. Write

H(x,p)—H(y,q) <b(x,v) - p+ L(x,v) —b(y,v)-q — L(y,v)+8.

Using the Hdélder property of. in x uniformly for (x,v) € T x Sk, and the
Lipschitz property ob in x, uniformly in (x, v),

H(x,p)— H(y.q) =cllp—qll+cliplllx — yll +cllx — y[I® + 4.

Sinces > 0 is arbitrary, it can be dropped. This shows tHais Holder continuous
with exponentp, uniformly over compact subsets Bfx R¥. Hence (ii) holds.

Defining for (x,z,p) € I' x R x R¥, A(x,z, p) = (1/2)r%p, B(x,z, p) =
H(x, p) — yz, one can write (41) in divergence form as

divA(x, f, Df) + B(x, f, Df) =0.

The hypotheses of Theorem 15.19 of [16] regarding the coefficikemisd B hold

in view of (i) and (ii). Indeed,B is Holder continuous of exponent uniformly

on compact subsets &f x R x R¥. Moreover, witht = 0, v(z) = (1/2) min; 2,

w(i@) =c@+ |zlD, « =2, by = 0 anda; = 0, one checks that the conditions

(15.59), (15.64), (15.66) and (10.23) of [16] are satisfied. Theorem 15.19 of [16]

therefore applies. [We comment that there is a typo in the statement of the

conditions of the theorem in [16]: the reference should be to condition (15.59)

instead of (15.60).] It states that there exists a solution to (4CYi(T) N C(T),

satisfying the continuous boundary condition (43). We denote this solutigh by
Letx € T'. Letw be any admissible system and féthe the controlled process

associated withr andx . Let ¢ denote the first tim& hitsaI". Using Ité’s formula

for the CL2(R. x I') functione™"" £ (x), in conjunction with the inequality

L) +b(y,u)-Df(y)+L(y,u) —yf(») =0, yel, uesk,
satisfied byf, one obtains
INT
fx) < / e " L(Xy,ug)ds
(44) °
+ eV (X np) —/ e VSDf(X,)-rdWs.
0

Taking expectation and then sending> oo, using the monotone convergence
theorem as well as the bounded convergence theorem, we have @jth =
e 7V (x),

fx) < E;T|:/OT e VS L(Xs,ug)ds +e_VrV(X,)] =Cr,o(x,m).

Taking the infimum overr € I, we have
F(&x) = Vrgx) =V(x), xel,
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where the last equality follows from Proposition 5(iii).
In order to obtain the equality = V onT", we next show there exist optimal
Markov control policies for the control problem éh Let

(45) ox,u)=>b(x,u) - Df(x)+ L(x,u), xeTl,ueSk

Note thatp is continuous o™ x SK. For eachy, consider the sét, # @ of u e S
for which

@(x,u) = inf ¢(x, v).
veSk

We show that there exists a measurable selectior/gf namely there is a
measurable functiohn from (I", B(I")) to (S, B(S¥)) with h(x) € Uy, x € T.

Let x, € I" and assume lipx, = x € I'. Let u,, be any sequence such that
u, € Uy,. We claim that any accumulation point of is in Uy, for if this is not
true, then by continuity op, there is a converging subsequemgg converging
to u, and there is @& such that := ¢(x, i) — ¢(x, ) > 0. Hence for alln large,

@ (Xm, um) = @(x, ) +8/2> @ (xm, u) + /4, contradicting,, € Uy, .

As a consequence, the assumptions of Corollary 10.3 in the Appendix of [10]
are satisfied, and it follows that there exists a measurable selgctibn— S*
of (Uy,x elN).

We extendh to RF in a measurable way so that it takes valuesStn(but
is otherwise arbitrary). Clearlyy — b(x, h(x)) is measurable. Consider the
autonomous SDE

(46) X (1) =x+rW(t)+/0tl;(XS)ds,

WhereIS(y) agrees withb(y, h(y)) on I, and is set to zero off". Thenb is
measurable and bounded BA. By Proposition 5.3.6 of [25], there exists a weak
solution to this equation. That is, there exists a complete filtered probability space
on whichX is adapted an® is ak-dimensional Brownian motion, such that (46)
holds forz > 0, a.s. On this probabilitypace, consider the process= h(X;).
Since X has continuous paths and is adapted, it is progressively measurable (see
Proposition 1.13 of [25]) and by measurability bf so isu. Denote byr the
admissible system thus constructed. Thensferz, u, € Ux, and

b(Xs,us) - Df(Xy) + L(Xy, us) = H(Xs’ Df(Xs))
Hence
LX) +b(Xs,us) - Df(Xs) + L(Xs,ug) —yf(Xs) = 0, §<T.

A use of Itd’s formula and the convergence theorems just as before now shows that

T
fx)= E;T|:/o e VL(X,uy)ds +e_VTV(Xr)] =Cr,4(x, 1), xeT,
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with ¢ as above. This, together with the principle of optimality, shows that
f=Vrg=VonI.Summarizing,f =V onT.

In particular, V € C%¢(T") and is a classical solution to the HIB equation.
I" can now be taken arbitrarily large, and this shows that CZ’Q(R"), and that
it satisfies the HIB equation @ . In view of Proposition 5(i), it also satisfies the
polynomial growth condition. As a result, there exists a classical solution to (41)
in C2¢(RK), again denoted by, satisfying (42), and moreove¥, = f.

It remains to show uniqueness Witf(ﬂsol(Rk) and existence of optimal Markov
control policies for the problem oR*. Let f € CZ,(R¥) be any solution to (41).
Then analogously to (44), we obtain

t

Fo < /Ote—“uxs,us)ds e (X)) —/0 eV DF(Xy) - rdWy.

Taking expectation, sending— oo, using the polynomial growth of and the
moment bounds ofiX; |, one has thaf (x) < C(x, ), wherer € IT is arbitrary.
Consequentlyf <V onRR¢,

The proof of existence of optimal Markov policies as well as the inequality
V < f onR*¥ is completely analogous to that & where one replaces by R¥
and uses again the polynomial growth condition fof The weak existence of
solutions to (46) follows on noting thdt satisfies a linear growth condition of
the form||l3(y)|| <x(1+ |y, y € R¥, and using again Proposition 5.3.6 of [25].
HenceV = f onRR*. We conclude thaf is the unique solution im?gol(]Rk), that
V = f, and that there exists a Markov control policy, optimal foradl R*. O

4. Asymptotic optimality. In this section we prove asymptotic optimality of
the proposed SCPs. As in the statement of Theorem 2, all SCPs are assumed
to be work conserving in this section. Recall from Section 2 that the processes
®" and V" represent the number of customers waiting in each queue, and,
respectively, the number of servers working on jobs of each class/Lbe an
S¥-valued process, determined as

4 — O /(1- X" —n)T, 1-X"—n>0,

47
(“47) uo, 1-X"—-—n<0,

whereug is some fixed, arbitrary element 8f. As in the paragraph preceding
Assumption 2u" represents the fraction of customers of each class that are waiting
in the queues (whenever there are such customers). As a result one can determine
®" and¥” from u" andX” as®” = (1 - X")*tu" and¥" = X" — d".

Throughout this section letf denote the unique(?lcz,OI solution to (41)
(cf. Theorem 3). Let

(48)  K'=b(X" u")-Df(X")+ L(X", u") — H(X", Df(X")) > 0.
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A condition that plays a central role in the convergence proof is

(49) /0 .e_”SK;’ ds = 0.

THEOREM4. (i) Let Assumptions—3hold. Let X" € n~1/27* be a sequence
converging tox € R¥. Let a sequence of work-conserving admissible SCPs be

given[namely (19) holdd, let X" be the corresponding normalized controlled
processes starting frof%” and letu” be given by47). Then
Oo A
IiminfE/ e VLX), ulydt > V(x).
n—oo 0
(i) Assumein addition that (49)is satisfiedThen

w A
limsupE e VL(X!, ulydt <V (x).
0

n—oo

In what follows we prove Theorem 4. We treat both parts (i) and (ii) simulta-
neously. Whenever there is a reference to part (ii), we indicate explicitly that (49)
holds. It will be convenient to work with both representations (13) and (23Yfor
in this section. Denote

o t .
(50) Y{‘:/O b" (XY, ub)ds, Z;‘:/O eV L(XY, ul)ds.

Let (£") be the filtration (9). Note that, by definition, the procesiésd”, ¥
are adapted t&". Hence by (47) and (50), so are the procesded” andZ".

LEMMA 2. Under Assumptiof3,
E(IA"[}" <c(1+1"/%),  neN, teRy,
wherec does not depend aonor .

PROOF This is a consequence of Theorem 4 of [26], which, under the
assumptiorE (U; (1)) < oo, my > 2, states that

(1) Esupln2(A} (ns) —niis)[" < L+ 1m0/,
<t
where
m .
Al =supim=0:) Ui(j)<ty, 120,
j=1

andc does not depend om or ¢. Indeed, by (2) and (3)A7(r) = A;(A]1). Let
C =sup,[A!/(nA;)] and note thaC < oo by Assumption 1. Then

|A7]; = supn 2| A;(A's) — Afs|
S<t

< Supn_l/zlAi(nkis) —nkis|.
s<Ct
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The lemma follows from (51). O

LEMMA 3. Under the assumptions of Theordii), the processeX” satisfy
EX"®]™ <c(@+ ||x]™)(1+ ¢™), wherem andc do not depend on, x or ¢.

PROOF Since we are assuming work conservation, (38) applies. Solving
for Y" of (39), we obtain

. 5 - )
Y0 = Xio’ne_yt + Wi @) - Mzr'l/ W (s)e M=) gs,
0
where
WP (@) =ri W' (1) + €1
Hence

~ N ~ t N t Ky N
(52) ||X;l||SC[1+12+||XO’"||+||Wt"||+/o||W§l||ds+/0/0 ||W51||d9ds]

By (14), using¥” (s) < 1 and®” (s) < £”(s) := max[n~1X>" 4+ n=1A7(s)],
(53) IW™ (@) < A" (1) +sup||§"<s>|| + sup IR™(s)].
§< Ss<EN(t

Denotep = my . Apply Burkholder's inequality (cf. [33], page 175) to the (dis-
continuous) martingalé”, denoting by[M] the quadratic variation processes
associated withvf, and recalling that if a procegd taking real values has sam-
ple paths of bounded variation, thém](z) = Mg + ZO<s§z(AMS)2. Denoting
by x/'(r) a Poisson random variable with parametgr’+ and using the conver-
genceu’ — ;, we obtain

Esup| 87 (s)]” < cE([S"())"'?
s<t

— Cn_l’/ZE(Xin(t))l’/z
< cpn PP(mult)P/?
<ectP/?,

where ¢ does not depend om or ¢. Similarly, Esugstlﬁ;’(sw’ < ctP/?,
Therefore, by the independence4f andR" and Assumption 3,
£ sw (Ro =E{E] sup koI o))
s<E"(1) s<&"(1)

< cE(E"(1)"?
<c(1+19),
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whereqg does not depend anor r. Lemma 2 and an application of Minkowski's
inequality to (53) show that there s not depending on or ¢ such that

(54) EIW"®|P <c(d+1™), t>0.

The lemma now follows from (52).

LEMMA 4. Letthe assumptions of Theordi) hold.

(i) (A", 8", R") = (A, S, R), whereA, S and R are independent Brownian
motions with zero drift and variance matricdmg(kiclzj,i)iel(, diag(u)ick, and
respectivelydiag®;);cx .

(i) One has

(55) (P, = (0,00 in (DERH)?

[the process that is constanily, 0)].
(i) The sequenceX”, Y", Z", W") is tight[in (D(R¥))4].

PrROOF (i) By the assumption on the finite second moment and i.i.d. structure
of the interarrival times, and by Assumption 1, the results of [22] imply (i).

(i) Since work conservation (19) is assumed, we can use (38). Note that
X" — p =n~1Y2X" By part (i), n~Y2W" = 0. Also, n=¥2X%" _ 0. Hence
by Gronwall's lemman~Y/2sup_, | Y"(s)|| — O in distribution for anyz, and
thereforen=1/27" = 0. As a resultp~Y/2X" = 0, which implies thatX” = p.
Usingl-p =1andl " = (1-X" — 1)*, we have that - " = 0. Nowd? = 0
follows since®” > 0. UsingX" = " + ¥", we have thatt” = p.

(i) By (i), A" = A.By (i) and (i) and a time change lemma (cf. [4]), it directly
follows thatSl." (Jo \IJ{’ (s)ds) = S;(p; -). A use of (i), (ii) and a time change lemma
also shows thak? (/3 @ (s) ds) = 0. Hence by (14),

(56) Wl-” =rirw=w,

whereW is a standard-dimensional Brownian motion.
SinceW" are relatively compact, they are tight. Hence by [4], Theorem 16.8,
for eacht, lim,, o limsup,_, ., P(|W"|; > m) = 0. By (23) and the Lipschitz

property of the functions +— 5" (x, u), uniformly in x, u andn,
A A A t A
IX" (1 < 1 X" ) + W ()] +c/o A+1X"())ds

By Gronwall’s inequality, using the boundednesskdf°, n € N, we have
(57) X" e < ce" (L4 W l,).
This shows that, for eaah
. . An _
(58) mlgnooll}rin%sogpP(IIX Iy >m) =
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Fix T. It follows from (23) that, for any, ¢ € [0, T] with s < ¢,

A A A A t A
X" (@) — X" () < [IW" () — W ()l +c/ (41X ())ds
)
(59) n n on
< [[WH(@) = W)l + @ =)D+ 1X" 7).
Recall the modulus of continuity defined fore D(RX) restricted td0, 7'] (cf. [4],
page 171) as
/ — i X .
wr(x, 8) =inf max w(x, [ti—1, 1)),

where the infimum is taken over all decompositipgsy, #;), 1 <i <wv, of [0, T)
suchthat; —,_1 >3d8forl1<i <v.Here,forSC[0,T),

w(x, §) = sup|lx(s) —x@)].

s,tes
By tightness o, Theorem 16.8 of [4] implies that, for eackande,
(!im limsupP (w,(W", 8) > &) = 0.

n—oo
Using (59), a similar statement follows f&", namely that, for each< T ande,

(60) im limsupP (w,(X",8) > &) =0,

5|—>0 n—oo
By (59) and (60), and sinc& is arbitrary, the tightness ok” follows from
Theorem 16.8 of [4].

Noting that[|Y" ()|l < ct(1+ [ X"||;), and | Z" ()|l < ct(1 + [ X"|") (m of
the L), and that fors,z < T, |[Y"(t) — Y"(s)| < c|t — s|(L + IX"|l7) and
1Z"(t) — Z"(s)|| < c|t — s|(L+ ||)?”||’7T1), the tightness ot and of Z" follows
from (58) using again Theorem 16.8 of [4]]

We use the following (very special case of a) result of Kurtz and Protter [28].

Let (F;) be a filtration. A cadlag(F;)-adapted proces¥ is a semimartingale

if V.= M+ N, where M is an (F;)-local martingale, and the paths of

are of bounded variation over finite time intervals. RA-valued process is an
(Fy)-semimartingale if each component is a semimartingale. WritedV for
JoU(s—) -dV(s). A cadlag proces¥ has bounded jumps if there is a constant
such that|V(s) — V(s—)| < ¢, s € (0,00), a.s. Denote byM] the quadratic
variation process associated witf, and by 7;(N) the total variation ofN
over[O0, ¢].

LEMMA 5. Foreachn,let (U", V") be an(F;")-adapted process with sample
paths inD((R¥)?) and let V" be an(F/")-semimartingale with bounded jumps
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LetV" = M" + N" be a decomposition df” into an (F/")-local martingale and
a process with finite variatiarBuppose

(61) for eachr > 0, SUPE[[M"]; + T;(N™)] < oc.

If (U",V") = (U,V) in the Skorohod topology ofd)((R¥)2), then V is a
semimartingale with respect to a filtration to whi¢h and V' are adaptedand
", v*, [U"dV") = (U, V, [UdV) in the Skorohod topology di((R¥)3).

ProoOF The proof follows from Theorem 2.2 of [28] on taking, far> 0,
1@ =« + 1, noting thatV? = V,, if § is a fixed large constant.]]

LEMMA 6. Letthe assumptions of Theordif) hold. Denote by X, Y, Z, W)
a limit point of (X", Y", Z", W") along a subsequencéet (F;) denote the
filtration generated by X, Y, W). ThenW is an (F;)-standard Brownian motign
X, Y and Z have continuous sample pathand Y has sample paths of
bounded variation over finite time intervalloreover [ e~ 7*Df (X") - dY! =
[e ""Df(X;) - dYs along the subsequenaghere f is the solution t¢41).

PROOF The processel and Z have continuous sample paths sifd€eand
Z" do (see Theorem 3.10.2(a) of [10]). Sinég = X%" +rW" +Y", and
W™ converges in distribution to a Brownian motion [cf. (56)],=x +rW + Y
has continuous sample paths. To see thabhas sample paths of bounded
variation, write Y = Y™+ — "=, whereY" " (1) = [5(Y" ()t ds, YT (1) =
fé(Yi”(s))— ds. By definition (50) ofY;" and (24) ofv",

t A
YOV Y () < c /O @+ X)) ds.
(Y™ (1) — Y () v (Y (0) — Y () < el — s|(L+ [ K ]0),

(62)

where ¢ does not depend on n. Thus it follows from the tightness ok”
that (Y>+, Y™ ™) is tight. Let (Y*, Y ™) denote any subsequential limit point
in (D(R¥))2. Sincey”* andY”~ have continuous sample paths, so¥b and
Y~, and therefor&’ =Y+ — Y~. SinceY™ andY~ have nondecreasing sample
paths,Y has sample paths of bounded variation d@er] for anyz:.

Next we apply Lemma 5 witlU" = e‘V’Df()?”(t)), Vh=Y", and(F/") =
(¥ of (9). By Definition 2 and the definition ot”, clearly X" and Y"
are adapted tqF;'). We decompose’” = M" + N" as M" =0, N" = Y".
By (62), and Lemma 3, (61) holds. By the continuous mapping theorem,
(e 7' Df(X"(1)), Y"(t)) converges to(e?'Df(X(t)),Y(t)) in the Skorohod
topology on (D(R¥))2. By continuity of the sample paths df”, it follows
that the convergence in fact holds in the Skorohod topologyaiR¥)?) (see
Proposition 6.3.2 of [10]). As a result of Lemmae ™" Df (X" (1)) - dY"(1) =
[e V'Df (X (1)) -dY (1).
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It was shown in the proof of Lemma 4 [cf. (56)] that* converges to a standard
Brownian motion. To see tha¥ is in fact an(F;)-Brownian motion, note that by
definition it is adapted toF;). It remains to show that, for eachF; is independent
of 0{W; 4y — Wy :u > 0}. Fixs > 0,u >0and 0< s <t. Writea” = (X", Y, W")

anda = (X;, Yy, W;). By (14), using the notation (8), and denoting
St =8 T @) = S} (T + ),

Rf =R (0™ 17 () = REe ™ T (1 4 ),

we have
ri (Wit +u) — W(t)) = APt +u) — AP (1) — P — R!
=riBi +67,
where
riBl = AP (e (t) + u) — A (< (1)) — S" — R!
and

8" = At +u) — AM(r) — AT (T (t) + u) + AP (2(0)).

Let f: (R¥)® — R andg : R¥ — R be bounded continuous. By (9) and (18},is
measurable og anda” is measurable otF;". By the admissibility assumption
and Definition 2,

(63) Ef(a")g(B") =Ef(a")Eg(B").

Sincet/ (1) converges in distribution to zero, add converges in distribution to a
continuous process, it follows by a random change of time lemma ([4], page 151)
thats! converges in distribution to zero. As a resyit, converges in distribution

to W,4, — W,. Using (63), the convergenc{é(”, Y”", W”) = (X,Y, W) and the
continuous mapping theorem, it follows that

(64) Ef()gWitu — W) = Ef () Eg(Wiu — Wi).

By approximating indicator functions of closed sets(Bf)3 (and respR¥) by

continuous functionsf (resp.g), it follows that (64) holds whery and g are

replaced by such indicator functions. Singe= 0 ands < ¢ are arbitrary, an
application of the Dynkin class theorem (Theorem 1.4.2 of [9]) showsAh&

independent o {W,, — W, :u > 0}. Since alsa is arbitrary, it follows that¥ is

an (F;)-Brownian motion. O

PROOF OF THEOREM 4. We first prove part (ii). Recall that (49) holds.
Let (X,Y, Z, W) be a weak limit point of X", Y, Z", W") and let(F;) be the
filtration generated byX, Y, W). By Lemma 6 X, = x+rW,+Y;, W is a standard
(F;)-Brownian motion and the sample pathslothave bounded variation over
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finite time intervals. Just as before, an application of 1td’s formula and the fact that
f satisfies the HIB equation (41) give

t
VXD = Fx) + fo ¢V DF(X,) - rdW,

(65) ; ;
+f eV DF(X,) - dY, —/ e VSH(X,, Df (X,))ds.
0 0
By (48),
t t ~
/0 e_VSK?ds:/O e V’Df(X})-dY]
(66) ; ) )
+en<t)+z;1—/0 eV H(X, DF (X)) ds,
where

t A A A

en(t) :/O e (b(XY, ul) —b"(XY, ul)) - Df(XY)ds.
By definition of the function® andb” and by Assumption 1,
Ib(XY ., uf) — " (X2 uD)| < ea(L+IX7 ),

where ¢, — 0. Therefore, Lemma 3 and the continuous mapping theorem
imply thate, = 0. We get from (49) and Lemma 6, using continuity xof—
H(x, Df (x)),

t t
67) / e VSDF(X,) - dYs + Z, — / eV H(X,, Df (Xy))ds = 0.
0 0
Combining (65) and (67),
t
0= f(X)=f)+ [ €7 DFX) - raW, - Z.
0
Hence
(68) Vi, EZ, < f(x).
Fix an arbitrarys > 0. By Lemma 3 and Assumption 2, therefissuch that
Oo A
(69) E—/T e V'L(X7,ul)ds <6

for all n. SinceZ" = Z and Z has continuous sample path&; converges in
distribution toZy. By Jensen’s inequality, Assumption 2 and Lemma 3,

T
E(Zp)Meime < cE [ e Mm@ k1t ds
B 0
(70)

<c

’
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wherec does not depend om. HenceZ’., n € N, are uniformly integrable, and
one hastEZ} — EZr asn — oo. By (68) and (69), we therefore have that

m A
limsupE eV L(XY, ul)ds < f(x)+38.

n— 00 0

Sinces > 0 is arbitrary, it can be dropped, and part (ii) of the theorem follows.
Next we prove part (i). Arguing as in part (ii) but usi&g’ > 0 instead of (49),
we have that (65) holds and

t

fot e VDf(Xy)-dYs + Zy —/O eV H (X, Df(Xs))ds > 0.
Hence
(71) eV f(Xy) = f(x) +fot e "Df (X)) -rdWs — Z,.
By Proposition 5 ad Lemma 3,
Ef(X]) <c(l4+1™),

for t > 0 andn € N. Since for each, f(f(;’) converges in distribution tg (X,),
andf(f(?) are uniformly integrable [arguing as in (70), using the growth condition
of Proposition 5(i)], one haB f (X;) < c¢(1+1"L), where agair does not depend
ont. We therefore have, from (71),

EZ = f(x) —a(),

wherea(r) — 0 ast — oco. Note that as in part (i), gived > 0, (69) holds for
all T large enough, and that, for ea@h Z’., n € N, are uniformly integrable.
Hence

n—oo

m A
liminf E/ L(X!,ul)ds>EZr —8> f(x) —a(T) —34.
0
Part (i) of the theorem now follows on takifg— co andé — 0. O

PROOF OFTHEOREMZ2. We only need to show that the proposed SCPs satisfy
the conditions of Theorem 4(ii). The work-conservation condition (19) holds for
both of the proposed SCPs, by definition. To conclude parts (i) and (ii), it remains
to show that in both cases (49) holds. Part (iii) is treated thereafter.

(i) The P-SCP. Fix T. Let2" denote the eventthat (31) is met forad [0, T'].
Recall that or2", the P-SCP sets

(1) =O[(1L- X" (1) —n)Th(X"(1))], t [0, T].
Let
(72) U"=(1- X" h(X"), V' =9" — U".
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Recall thath satisfies
b(x,h(x))- Df (x) + L(x,h(x)) = H(x, Df (x)), xR

Note that forx with 1 - x <0, b(x, u) is independent of: [see (26)] and so is
L(x,u)=L(1-x)Tu, x — (1-x)"u) [see (21)]. Hence

(73) inf [b(x,u) - p+ Lx,u)] = b(x,v) - p + L(x,v), vesk, 1.x<0.
UeS

For¢ such thatt - f(? <0, (73) and (48) imply thak' = 0. Next consider such
that1 - X* > 0. We have

W =" (@ X t=h&X + v &

By assumption[ is uniformly continuous on compacts. For eagHet o (§) be
such thate*(8) | 0 asé | 0, and |L(¢, V) — L(¢/, ¥')| < «*(8) whenever
loll, ||¢/|L, Il 1Yl <&, andll¢ —'|| VIl —¢'|| < 8. Then using (21), writing
&' =1- X}, the following holds on the evel®™"* := Q" N {||®" |5 + V" |} +
IX" 15 <}

|K" = [(b(X™, ul) — b(X", k(X)) - Df(X™)

+ L(ED U, X~ ED U
(74) i . )
— L(EHThXD), XP — (EDThXD)|
< |V IIDF (X + (| V-

By (30), || V)|l < 2kn~Y/2. As a result,|K" |5 < &, on Q"¢ for somee, — 0.
The events2" have probability tending to 1 as — oo, as follows from the
convergenceX" = p shown in Lemma 4. The tightness af' (see Lemma 4),
(19) and the fact thab} € R imply that
(75) lim liminf P(Q"*) =1

K—>00 n—0o0
Therefore| K" |} converges to zero in distribution. Singeis arbitrary, K" = 0,
and (49) holds.

(i) The N-SCRi). Fix T. LetU™ andV" be defined as in (72). A review of
the previous paragraph shows that, replacing througtuby 2, (74) and (75)
still hold. Fix g > 0. We next estimate, for any> 0,

IimsupP( sup |V ()| >8ke).

1€leg,T]
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Fix i € K. If either V/"(t) <0 or ﬁ)l’.’(t) = 0 holds for allz € [s, r), then within
this time interval, the SCP does not route any clasgstomer to the service pool.
Therefore by (4), for € [s, r),

4 4 -1/2 -1/2
(76) Q1) =D (s)+n / Al(s,t) —n / Al (s, 1),
where we write
Al(s, 1) = Al () — A/ (s),

t N
All(s, 1) = Rl-"(/o CD?(z)dz) — R?(/o d)?(z)dz).
Givene > 0,

(@7  p(,nf, Vi) < —4e) = PU@)) + P@) + P,
where

Q’f“ =Q"* N {Elsofs <r<T:V/(s)>—e,

SUp V(1) < —s, VI (r) < —48},

tels,r)

Qy =Q" N { sup V(1) < —e}.
te[0,¢0]

Using the local Holder property of on X, for any «, there arec, > 0 and
P« € (0, 1] such that, orf2™*,

(UM (1) — Ul(s)| < eI X™ (1) — X" ()P~
+(€/DLg 50 5)<er8 T E/DLg 501y <e/8)
< ce |1 X™(1) — X" (s)|IP< + /2.
Writing
n_l/zA? (s, 1)

N r_ N s _ t _
=R?(/O d)?(z)dz)—R{‘(/o <I>?(z)dz>+nl/20i/ & (2) dz,
S

and using|®" |- < kn~Y2 on Q"*, we have
n~ 2NN (s, )] < 2R, a2 + okt —3).
Hence or2]“, for 7 € [, r),
V() = V] (s) + (] (1) — D} () — (U] (1) — U}(s))
> —s—g/24+n"Y2A%s, 1)

— eI X" (1) = X" ()P = 2| R™||*, 1/ — ck(t —5).
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On Q" we also have/!(r) < —4e. Let 8 > 0 and writef = § + cx. Therefore

(%) P@") < P + P@I5) + P4L5),
where
Qi =E0<s<r<T:in 24", r) < e+ f(r —9)),
Q5 =(30<s <r <TicIX"() = X" @)IP 2 £ + B —5)).

1 3= {2||R”||KTn_1/2 >¢/2}.

Using the monotonicity of the processds and the uniform convergence of
n_lAl’-‘ on [0, T] to A;(r) = A;t, as follows from the convergene@!‘ = A [see
Lemma 4(i)],

IlmsupP(Ql 1)
< IimsupP(EIO§ s<r<T:ir—s> e/,é, n_lA”(s,r) < n_l/ZBT)
n
(79)

<lim SupP(SupHn_lA"(I) — At > c)
t<T

=0.
Also,
PQ15) < PEO<s<r<T,r—s>p V2| X"(r) — X" ()| = BY/?)
+PEO<s<r<T,r—s<B Y2 |X"(r) — X" (s)||P* > &)
< P(ZCKK_ln)znn; > ﬂl/(ZpK)) + P(w(XnHO,T],ﬂ_l/Z) > (E/CK)p;l).

By Lemma 6, the processés” are tight and converge along subsequences to
processes with continuous sample paths. Therefore

(80) I|m lim supP(Ql 5) =

The convergence a@” to a Brownian motion (Lemma 4) implies

(81) lim P($2}5) =
By a similar argument, o5,

V(0) + n~Y2A% (g0) — ¢ || X" (g0) — X" (0)||P* — &/2 — 2| R"||* cKEQ

kTn=12

< V/'(e) < —e.
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Hence, for some constadit,

lim P (23) < lim P(ntA} (e0) < cen Y420 V2R )
=0,

(82)

where the last equality follows from the convergence in distributiom‘ém;?(so)
to A;e0 and of R” to a Brownian motion. Combining (77)—(82) shows that

lim supP( inf V() < —48) <limsupP ((£2")°).
n teleg,T] n

Note that by (19)1 - V" =0. Henceg| V" || =2(1 - V*)~. Sincei € K is arbitrary,
it follows that

lim supP( sup [|[V' ()| > 8ks) <limsupP ((2"*)°).
n teleo, T] n

Combining this with (74) (assuming without loss that, for eacha” is
bounded), (75) and the fact thateg > 0 and T are arbitrary, it follows that
Joe V*K}ds = 0. Therefore (49) holds and this concludes the proof that both
SCPs satisfy the conditions of Theorem 4(i). Parts (i) and (i) of Theorem 2
follows.

(i) The N-SCR(ii). To prove this part, it suffices to show that, for eaich
there is a locally Lipschitz’ such that the N-SCP (i) applied & gives

m A
(83) limsupE A e VLX), ulydt < V(x)+34.

n—oo

Recall from the proof of Theorem 3 that R¥ — SK is a function satisfying
@(x, h(x)) = inf o(x,v) =:¢*(x),
veSk

where
(P(x7 M) = b(-x’ u) . Df(x) + L(-x7 M)'
For eacte > 0, leth? : R — Sk be a function defined as

>y d(x,y,e)h(y)
2 yd(x,y,e)

where both sums extend overe ¢ZF N B(x, ek¥/?), andd(x, y, ) denotes the
Euclidean distance frony to the boundaryd B(x, ek/?). It is easy to check
that #¢ is locally Lipschitz. Writed(x, y,&) = d(x,y,&)/ Y d(x,y &). By
assumptionyg — L(x, u) is convex, and since — b(x, u) is affine,u — ¢(x, u)

hE(x) =
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is convex. Using Jensen’s inequality, uniform continuity:ofu) — ¢(x, u) and
of x — ¢*(x) on compacts, for each> 0, there isc such that

o(x, h*(x)) = w(x, Y dix.y, E)h(y)>
y
<Y dx,y,0)¢(x, h(y))
y
<> dx,y, 09y, h(y)) +8/2
y

= d(x,y,e)¢*(y) +6/2
5

<@ (x) +3.

Everywhere in the above display, the sum extends gversZ* N B(x, ek1/?).

A review of the proof of Theorems 2 and 4 shows that, upon applying N-SCP (i)
with 1%, (83) holds. By taking an appropriate sequetge= h®", it is then
clear that N-SCP (ii) applied ta,, admits the conclusion of Theorem 4, and
therefore (32). [

5. Further research.

5.1. Work-encouraging SCPsWe have restricted our analysis to work-
conserving SCPs. However, our results regarding asymptotic optimality aationg
admissible SCPs hold, in fact, under the additional condition that the cost functions
are work encouraging (cDefinition 6). Recall thewith each admissible SCP we
have associated a cost of the form [cf. (20)]

C" = E/OOO e"”l:(&”(t), U (1))d:t.

DEFINITION 6. We say that the cost functiah (or the corresponding cost
function L) is work encouragingf, for eachn, the infimum of C" over all
admissible SCPs is equal to that over all work-conserving admissible SCPs.

CoROLLARY 1. Let all assumptions of Theore2rapply, except the assump-
tion that the SCPs are work conservifgen the conclusions of Theor@mprevail,
given that the cost functioh is work encouraging

Although in many cases it is intuitively clear that work conservation is optimal
(for P-SCPs, not for N-SCPs), in the presence of abandonments, and in the
generality of our setting, this turns out to be nontrivial to prove. We intend to
treat the issue in a future work. We end this section with a few examples that are
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intended to exhibit some of the subtleties of this point, and to indicate how it can
be dealt with. The arguments should be considered as proof outlines only.

First, consider the expected discounted number of customers of a particular
class, say class 1, present in the systeri; K 11, then class-1 customers leave
the system faster when they are served than when they are in the queue. Hence a
good policy will attempt to serve these customers as much as possible, and will be
work conserving. On the other handgjf> u;, then customers leave the system by
abandoning the queue faster than by being served, and as a result, a policy which
minimizes the cost will not schedule any services at all.

More subtle are the costs associated with queue length and abandonment. We
argue heuristically that #1 > 1, then there are cost functiodis nondecreasing
as a function ofb; for eachi, for which work conservation is actually not optimal.
Suppose that; > 11, and the cost is 0 fob1 < ¢, and 1 ford, > ¢, wherec > 0.

If d31 < ¢, ho cost is incurred, and customers leave faster if in the queue than if
in service. Thus an SCP that keeps customers in the queue would do better than a
work-conserving SCP.

Consider the case wheteis linear in ®;, andg;, u; are arbitrary. We argue
that work-conserving policies are optimal. We use coupling. A sample path is
considered under an SCP that is not always work conserving. The coupling is used
to show that if the SCP is changed to be work conserving, the cost will be no higher
than for the original SCP. In view of the discussion on costs of abandonment, one
can use the relation between abandonment rate and expected queue length to obtain
the result. Consider a sample path under an SCP that leaves customers in the queue
when there are idle servers. Maodify it by moving a customer into service. Keep
that customer in service until the earliest of: (i) it completes its service, (ii) its
“twin” (i.e., the customer in the original system that is in the queue) abandons, or
(iii) the original SCP needs to use the server. In cases (i) and (i), the cost of the
modified SCP will be no larger. In case (jii), it is the same as the original. In the
case where there is a class for which the abandonment rate is zero, the relation
between abandonment and queue lengths cannot be used. However, this can be
treated similarly to the following paragraph.

Consider next the case whefas an increasing function ob;, for all i, with
9; < u; for all i. Here, when a customer is moved into service, its service time is
coupled to the abandonment time of its twin: Pick an exponential random variable
with rateu;, and a Bernoulli random variable that is 1 with probabifityu,;. The
service time is the exponential random variable. If the Bernoulli random variable
is 1, then the abandonment occurs simultaneously; otherwise the original customer
does not abandon at that time and picks a new exponential random variable with
rated;. Again, if the original SCP needs the server, the customer is moved out. It
can be seen that the cost of the modified SCP will be no larger than the original
one.
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5.2. Additional topics. The following is a list of research problems that are
suggested by the present study.

1. Nonlinear waiting costsNonlinear waiting costs are natural for quantifying
human costs of waiting [37, 39]. We believe that it is possible to reduce such
costs to nonlinear costs of queue lengths, and are planning to include this in
future work.

2. Alternative cost structureDiscounted costs are mathematically convenient.
Long-run average costs provide an alternative which is no less, perhaps
more, natural for call center applications. Their analysis, however, would be
mathematically more taxing.

3. Performance analysis in the QED regimia the present study, we are not
analyzing the performance of our queueing system under the proposed SCPs. In
particular, one would like to confirm that the (discounted) probability of delay,
for each class, is nontrivial, as expected in the QED regime. Such analysis might
require numerical supplements, as in [21]. This could also shed further light on
qualitative features of our asymptotically optimal SCPs.

4. More general modeisThe model in Figure 1 is a beginning. Ultimately,
one would like to generalize it to the model surveyed in [38], which has
heterogeneous pools of servers with overlapping service skills. (See [14]
for interesting simulations of such models.) In conventional heavy traffic
(efficiency driven), a simple generaliz€gl control was proved asymptotically
optimal [30]. Here, only the problem of assigning servers who become idle is
relevant, since customers essentially never encounter an idle server upon arrival.
This same simplifying feature applies for our model, under work conservation.
But with heterogeneous pools of servers, and with a nontrivial fraction of
arrivals encountering idle servers (as expected in the QED regime), both the
assignment of servers to customers and the routing of arriving customers to
idle servers become significant. In a call center context, the problem of online
matching customers and servers is called skills-based routing; it is widely
acknowledged as the most important and difficult operational problem next to
staffing, to which we now turn.

5. Staffing insights The staffing problem is to determine the least (optimal)
number of servers that is required to conform to given performance standards.
In the QED regimen ~ R + B+/R, whereR is the offered load ang is a
scalar. The problem can thus be decomposed, as in [7], into two steps: first,
given a QED operation, determine the least (optimal) sq&ldinen, establish
that operating in the QED regime is indeed desirable (optimal). The staffing
problem becomes more interesting and far more difficult in a skills-based
routing environment. ([8] is the single paper on the subject that we are aware
of.)
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APPENDIX

PrROOF OF PROPOSITION 2. Note that(x, u) — b(x,u) is continuous and
x — b(x, u) is Lipschitz uniformly inu. Considei,,, a function that agrees with
b on the ballB(0, m), uniformly Lipschitz and bounded. Then strong existence
and uniqueness for

Xm(t)=x+rW(t)+/0tbm(Xm(s),u(s))ds, 0<t< oo,

holds by Theorem 1.1.1 of [6]. SIndEX,,, )| < ||x||+cl|W @) | +c¢ fé | Xm(s)| ds,
one has|X,, )|l < (x|l + cIW[¥)(1 + ") by Gronwall’s lemma. Thus letting
T, = inf{t: | X,,(®)|| > m}, one hast,, — oo a.s. ThereforeX(¢) = lim,,, X,,,(¢)
for all + defines a process that solves the equation (a strong solutiof)aiid X
are both strong solutions, then, for evety they both agree wittx,, on [0, t,,].
Therefore they agree df, o) a.s. O

PrRooOF OFLEMMA 1. Letn € N andi € K be fixed, and consider for eagh
theo -fields

F=o{1 RN a):u e Ry, o <s},

(T (w)<s)’
Gs=0{R}(B+y)—R!(B):B>s.y >0}
We simplify notation by writingT;, =fi” (u) andR(u) = R (u).

For each ands, one hag7; < s} € Fy, and therefore, for eaghT; is a stopping
time on the filtration(F;). We next show thad/; := R(t) — 6;t is a martingale on
the filtration (F;); hence the lemma follows from the optional stopping theorem.
Indeed, it is clear tha#/, is measurable oy for eachs. Moreover,M, — M; is
measurable ol for eachs andr > s. It remains to show thak; is independent
of G, for eachs. Fixs. Fixé,andu >0,0<a <s<s+ Ké=p8,y > 0. Let

H,, = {Tm(S =s< T(m+1)8}-
Note thatP (U,, H,) = 1. Let
Hy,={T, >s; T <K on[0,r]}.
Let also
Hyx ={T <K, on[ms, (m + 1)8]}.
For measurable boundegtig (denote by a bound onfyg),
Crg = E[f(Lir,=). R(@)g(R(B+y) — R(B))]

[r/8]
=2 E[ly o,/ Uzizs. R@)S(R(B+y) = R(B))] + ea.

m=0
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where [e1] < cP(Hg ). Under the eventt, N Ay x, Tns < 5 < Tnt1)s <
s + K§ = B. DenoteA,, = B — Tou+1)s, @and note that & A,, < K§ under the
same event. Then

[r/3]
Cre= 2 E{ly,nn,  f Qzizs R@)(R(Tonss + Am +y)
m=0
= R(Tm+ps + Am))} + €1
Let Hy s denote the event that there are no jumps of the prodessithin
[s,s+ KS|U[s+y,s+y + K]
[r/é]

Cre= . E{ly ng, cnig,f Utizsy R@)g(R(Tun+ns +v) = R(Tonr1)))

m=0
+e1+teo
/5]
=D E{1y, 04, o f Ltz R@)8(R(Tont1s +¥) = R(Tim+1s)) )

m=0

+e1+ex+e3,
wherelez|, le3] < cP(FI,%va). Recall that by Definition 2(i)7 " (r) and4" (r) are in-
dependent. Since undék,, o <s < T(;,+1)s, it follows thatlemﬁm Kf(l{TMSS},

R(e)) € F"((m + 1)8). Also, R(Tim+1)s +v) — R(Tm+1)5) € §"((m +1)5), and,
using Definition 2(ii), it has the same law &%y ). Hence

[r/8]
Creg=EgRH) Y. E{l, oi oS Utizs): R@)} +e1+e2+e3

m=0

=Eg(R(y) Y E{ly, f(Lz, =) R(@))} +e1+ e+ e3+ es
m=0

=Eg(RY)E{f(Li1,<5)» R(@))} + €1+ e2+ e3+ ea,

where |eq| < cP(HIC(,r). It follows from Lemma 2 thatE||®"|F < oo. Since
T = @, one has that

lim liminf P(Hg )= 1.

r—-o00 K—oo

Note also thaP(I:If(’g) < ¢1K$ for some constant;. Takingé — 0 andK — oo
such thatk § — 0, and then taking — oo, we conclude that

E[f(L1,<s)» R(@))g(R(s +¥) — R(5))]
= E[f (Y1, <5}, R(@)]E[g(R(y))]
= E[f (L7, =), R@)]E[g(R(s +¥) = R())].
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Sincea, s andy are arbitrary (subjectto @ « <s <s + y), and so aref, g, it
follows thatF; andG, are independent for any The result follows. [

PROOF OFPROPOSITION1 (SKETCH).

Existence and uniqueness for the system (7) and (11) are easily obtained by
induction on the jump times of the processgs R andS;'. By the assumptions
on the functionF, the constraints (6) are met. We next need to show that
Definition 2 holds. For part (i) of the definition it suffices to show that, for any
bounded measurable

E[g(A7 (/' (0) +u) — Al (' ), ST () +u) — S} (T (1)),
(84) RI (T (1) +u) = RY (17 (0); i € K)| 7]
=Eg(A”(u), S!'(u), R!'(u); i € K)
whereu > 0, and for part (ii) is suffices to show that
E[g(S/(T" @) +uj) — ST (@),

(85) RI(T! (1) +uj) = RI(T O): i € K. j=1)|%"]
= Eg(S] (uj). R (u)): i € K, j=1),
where O< uq1 < up < e In what follows we suppress from the notation, fix
i andr and, denotingy’ = T;"(¢), show that, fou > v > 0,
(86) E[g(Si(T} +u) — Si(T} +v))|F] = Eg(Si(u —v)),
(87) E[g(Ai(ti(t) +u) — Ai(ti(t) +v))|F] = Eg(Ai(u — v)).

Since the notation is quite complicated, we do not give the full details on proving
(84), (85), but only comment that the argument is similar to the one we use in
proving (86) and (87).

To show (86), fors > 0, let H,, = {T} € [m$§, (m + 1)8)} and

H,, = {S; has no jumps ofms + v, (m + 1)8 + v] U [m8 + u, (m + 1) + u]}.
Then
E[g(Si(T} 4+ u) — Si(T} +v))|#]

=" E[Lu, 8(Si(T/ +u) = Si(T} +v))| ]
m=0

= Z E[1g,8(Si((m + D& +u) — Si((m + DS + v))|F] + e1

= Z g, E[g(Si((m 4+ D)8 +u) — S;((m + 18 + v))| F] + ex,
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where

0
(88) lex] < > P(Hyu N HGF).

m=0

Note that on the evenT,i < n, the quantities(X (s), ¥ (s), ®(s);s < 1) only
depend oM, R, S;, j #i,andS;(¢'),  <n. Sinces; is Poisson and independent
of the processed, R andS;, j # i, using the definition ofF; and H,, we obtain
that

E[g(Si(T} +u) — S«(T)))|#]
= Z 1y, Eg(Si((m 4+ 13 +u) — Si((m +1)8)) +e1
m=0

= Eg(Si(u)) + e1.
By (88), and sincéd,, depends only o6 (s); s > ms8 + v,

o0
lerl <¢ Y 1p, P(HY) < cs,
m=0
wherec does not depend dhne (0, 1). As aresult, (86) holds. An equivalent of (86)
for the processeg; is proved analogously. Equality (87) is proved analogously,
where one conditions otf; v o{z;(t)} and uses the fact that; is a renewal
process. [

PrRoOF oFPROPOSITION3. Throughout, fix a compact subsétof X, and
let ¢ denote a positive constant that depends onlydgrand whose value may
change from location to location. Recall from the proof of Theorem 3 that, for
eachx € R¥, h(x) satisfiesp(x, h(x)) = inf, s ¢ (x, v), where

ox,u)=b(x,u)- Df(x)+ L(x,u).
In the special case we analyze heley, u) =3, g: ((1 - x)Tu;), hence [cf. (26)]
@(x,u) = (E+ (w—0)(L-)Tu—px) - DF )+ gi((1-x)Tu;)

1
=:a(x) +bx)-u+y glu),
wherex =1 -x > 0. For anyx € X, the mapu — ¢(x, u) is strictly convex; hence
the infimum ovesF is uniquely attained.
Fixing x € A, and lettingm; (u;) = b;(x)u; + g;(xXu;), ¢(x,u) is given as
a(x)+ > ;m;(u;). Use Taylor's formula for eacty; based ats;,

P(x,v) = @(x,u) + Y miu) (v —u;) + (1/2)m] &) (v; — u)?.
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We claim thaty"; m! (u;)(v; — u;) > 0 for v € Sk, For if this is false, let € S
be such that)>; m;(u;)(v; — u;) = —c < 0. Then forv® = u + (v — u),
Y im;(ui)(vf —u;) = —ce. Moreover, by assumption on the functiogs there
is a constant such thatg/(xv;) < ¢; hencem/(v;) < %2¢, v € S*. Therefore
>iml(E) (v — u;)? < ce?, implying thatg(x, v¥) < @(x,u) for ¢ > 0 small,
contradicting the definition af.

Using the above, and that! (&;) = ¥2g/ (¥&) > cox? > ¢ > 0 0on A, we obtain

P(x,v) —o(x, 1) > (1/2) Y m (&) (v — u;)?
(89) i
2c||v—u||2, x €A, u=nh(x), veSk

Let x,y € A and letu = h(x) and v = h(y). Since f is of class C?
(cf. Theorem 3),

IDf(x) = Df NI =cllx = yl.
By the proof of Theorem 3,

|H(x,p) —H(y, @)l <c(lp —ql +llx =y,
for p, g in a compact set. It follows that

|(P(x7 I/t) - (p(ya U)| = |H(-xa DV(X)) - H(ya DV()’))|
<clx—yl°.
Since by Assumption 2(iii) oL, x — ¢(x, v) is Holder of exponeng,

(P(X, U) _(p(x’u) SC”X - )’”Q

Combining the last display with (89)x — v||2 = |h(x) — h(y)||? < c|lx — y||®,
and the result follows. O
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