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We consider the problem of scheduling a queueing system in which many
statistically identical servers cater to several classes of impatient customers.
Service times and impatience clocks are exponential while arrival processes
are renewal. Our cost is an expected cumulative discounted function, linear or
nonlinear, of appropriately normalized performance measures. As a special
case, the cost per unit time can be a function of the number of customers
waiting to be served in each class, the number actually being served, the
abandonment rate, the delay experienced by customers, the number of idling
servers, as well as certain combinations thereof. We study the system in
an asymptotic heavy-traffic regime where the number of serversn and the
offered loadr are simultaneously scaled up and carefully balanced:n ≈
r + β

√
r for some scalarβ. This yields an operation that enjoys the benefits

of both heavy traffic (high server utilization) and light traffic (high service
levels.)

We first consider a formal weak limit, through which our queueing
scheduling problem gives rise to a diffusion control problem. We show that
the latter has an optimal Markov control policy, and that the corresponding
Hamilton–Jacobi–Bellman (HJB) equation has a unique classical solution.
The Markov control policy and the HJB equation are then used to define
scheduling control policies which we prove are asymptotically optimal
for our original queueing system. The analysis yields both qualitative and
quantitative insights, in particularon staffing levels, the roles of non-
preemption and work conservation, and the trade-off between service quality
and servers’ efficiency.
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1. Introduction. We analyze a queueing system that consists of several
customer classes and a large pool of independent statistically identical servers
(see Figure 1). Customer arrivals for each class follow a renewal process. Each
server can serve customers of all classes, and service durations are exponentially
distributed with class-dependent means. In addition, some customers abandon
the system while waiting to be served, and abandonments arise according to
exponential clocks with class-dependent rates. This work addresses the stochastic
control problem of system scheduling: how to optimally match customers and
servers. The cost criterion we consider is an expected cumulative discounted
function of the (appropriately normalized) number of customers waiting to be
served and the number actually being served, for each class. Special cases for
the cost per unit time are the number of customers in the system (or increasing
functions of it), the number of abandonments per unit time, the delay experienced
by the customers, the number of idling servers and certain combinations of these
costs. Since our scheduling problem is too complex for direct analysis, we resort to
heavy-traffic asymptotics. The goal is to identify the asymptotics with a diffusion
control problem, then rigorously justify this identification and finally gain insight
from it.
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FIG. 1. A many-server multiclass queueing system.

1.1. Motivation: the QED regime. The asymptotic heavy-traffic regime that
we consider is the one analyzed by Jagerman [24], Halfin and Whitt [17] and
Fleming, Stolyar and Simon [12]. Here, the number of servers and the arrival
rates are large and carefully balanced so that the traffic intensity is moderately
close to unity. Economies of scale then enable an operation that is both efficiency-
driven (high servers’ utilization) and quality-driven (high service levels), hence the
terminology QED: both Quality- and Efficiency-driven.

An important motivating application for our model is the modern telephone
call center, where a large heterogeneous customer population seeks service from
many flexible servers. In this context, the QED regime was identified in practice
first by Sze [36], and more recently and systematically in Garnett, Mandelbaum
and Reiman [15]. The QED regime captures the operational environment of
well-run moderate-to-large call centers, where servers’ utilization is high yet a
significant fraction of the customers is served immediately upon calling. The last
two statements are in fact equivalent for single-class many-server systems [15, 17].
They are further equivalent to “square-root safety staffing,” which also applies to
the model under study here: ifr denotes the offered load andn the number of
servers, thenn ≈ r + β

√
r for some constantβ. (See [13] for more elaboration,

motivation and references.)
For a single-class queue(GI/M/n) in the QED regime, one subtracts from the

number of customers in the system the number of servers and then divides by the
square root of the latter. The resulting stochastic process, when positive, models
the (scaled) queue-length, and when negative models the (scaled) number of idle
servers. Halfin and Whitt [17] proved that this process converges in distribution,
as the number of servers (n) grows without bound, to a diffusion process with
a fixed diffusion coefficient and a piecewise linear state-dependent drift, under
appropriate assumptions on system parameters. The result was extended in [15] to
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accommodate abandonment from the queue (but arrivals were assumed Poisson).
Further extensions were carried out by Puhalskii and Reiman [34] to cover a
multiclass queue, phase-type service time distributions and priority scheduling
policies, giving rise in the limit to a multidimensional diffusion process.

1.2. Diffusion control problems and queueing systems.There has been a
considerable amount of research on diffusion control problems in the context
of queueing systems, specifically on asymptotic optimality when approaching a
diffusive limit. We refer the reader to [38] for a summary and further references.
Most of this research, however, has been within the “conventional” heavy-
traffic regime which, in the terminology introduced above, corresponds to an
efficiency-driven regime of operation: servers’ utilization approaches 100%, with
essentially all customers being delayed in queue for service. To wit, our model in
“conventional” heavy traffic was analyzed by Van Mieghem [37], who considered
a single server (or equivalently, afixednumber of servers) with traffic intensity
converging to unity. (One could, alternatively, increase the number of servers to
infinity, which entails an acceleration of the convergence to unity; see the last
section of [30].)

Following Harrison [18], there has been a stream of research that produced
schemes for determining “good” scheduling policies for queueing systems, in
an asymptotic sense. These have been based on exact analytic solutions to
corresponding diffusion control problems, formally obtained as “conventional”
heavy traffic limits. For rigorous proofs of asymptotic optimality, see [3, 26, 27,
29–32 and 37].

Recently, Armony and Maglaras [1], Harrison and Zeevi [21] and the present
authors [2] have considered stochastic control problems in the QED regime.
The first [1] models and analyzes rational customers in equilibrium, and the
last [2] served as a pilot for the present paper. The analysis in [21] is that of
the diffusion control problem associated with our queueing system with linear
costs. Specifically, Harrison and Zeevi show in [21] that this control problem
has an optimal Markov control policy (cf. [11]) which is characterized in terms
of its underlying HJB equation. Then, they use the diffusion control problem to
propose a scheduling control policy for the original queueing system, conjecturing
that it is asymptotically optimal in the QED regime. In the current paper we use
that same approach, with yet a significant broadening of modeling scope: we
identify a sequence of HJB-based scheduling policies (for a general and natural
cost structure) and we prove their asymptotic optimality (within a broad family of
nonanticipating preemptive or nonpreemptive policies).

1.3. Main results and scope.Our main results are as follows. First, we
formally take a heavy-traffic limit in the QED regime (Section 2.3). Then we
show that the diffusion control problem associated with this limit has an optimal
Markov control policy, and that its HJB equation has a unique classical solution
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(see Theorem 3). This extends the results of [21] to cover a large class of cost
functions. As is often the case in stochastic control of diffusions, proving existence
of optimal Markov control policies is coupled with establishing the existence
and uniqueness of solutions for the underlying HJB equation. In the case of
bounded cost, existence and uniqueness for this equation follow from the theory
of optimal control of diffusions [6, 11] and of nonlinear elliptic PDEs [23]. Since
our cost is not assumed to be bounded, finer information on the model needs to
be exploited, and in particular moment estimates on the controlled processes are
required [Proposition 4(ii)].

Having studied the diffusion control problem and the HJB equation, we use
them to propose a scheme for determining scheduling control policies of two
types: preemptive and nonpreemptive (see Section 2.6). After defining a notion of
scheduling control policies that do not anticipate the future, we prove that among
them, our proposed policies are asymptotically optimal in the QED heavy-traffic
limit (Theorems 2 and 4). (More precisely, asymptotic optimality is proved among
work conserving policies; more on that in the sequel.) The asymptotic optimality
is in the sense that, under the proposed policies, the cost converges to the optimal
cost of the diffusion control problem, and that the latter is a lower bound for the
limit inferior of costs under any other sequence of policies.

Our approach for deriving the diffusion control problem follows Bell and
Williams [3] in that the system of equations and the cost are represented in terms
of the system’s primitives. The controlled diffusion then arises as a formal weak
limit. In obtaining the asymptotic results, this direct relation between the queueing
system control problem and the diffusion control problem is convenient.

The policies that we establish as asymptotically optimal are feedback controls.
By this we mean that the action at each time depends only on the “state” of the
system, namely on the number of customers waiting to be served and the number
of customers being served, for each class. The family of policies among which
they are proved asymptotically optimal contains all policies that observe all system
information up to decision time. In fact, the family we consider is slightly broader
in that the policies are allowed to exploit some information on the future, namely
the time of the next arrival for each class. We comment below that this is a natural
class to consider in the presence of renewal arrivals (cf. Section 2.2).

Under a preemptive scheduling control, service to customers can be interrupted
at any time and resumed at a later time. Consequently, the class-fractions of
the customers waiting to be served provide natural candidates for control. The
diffusion control problem is formulated with such a preemptive model in mind,
and the control process corresponds to these fractions (as suggested in [21]).
When restricting to scheduling control policies that are nonpreemptive, one must
constrain the processes that count the number of customers routed to the server
pool to be nondecreasing. The diffusion control problem that arises from such
a model resides in a higher dimension. However, here we demonstrate that the
nonpreemptive scheduling control problem is asymptotically governed by the
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simpler diffusion control problem and its HJB equation; to this end, the preemptive
HJB equation is used to construct a nonpreemptive scheduling control policy that
is asymptotically optimal (in fact, within the class of preemptive policies).

Work-conserving policies are typically not optimal among nonpreemptive
scheduling control policies. This can be seen in a simple example, where there are
two customer classes, and the cost takes the formE

∫ ∞
0 e−γ t

∑
i=1,2 ci�i(t) dt :

�i(t) is the number of class-i customers waiting to be served at timet . Consider
the event that when the first class-1 customer arrives, there is exactly one free
server, and no class-2 waiting customers. If the customer is routed to the free
server, then there is a positive probability that the class-2 customer that arrives
next will be delayed by at least one unit of time. If the ratioc2/c1 is large enough,
it is clear that the cost paid for delaying this individual class-2 customer can be
larger than the cost of delaying all class-1 customers that ever arrive (due to the
discount in the cost). As a result, a good policy will leave a free server to idle until
a class-2 customer arrives, or until additional servers become idle.

On the other hand, when allowing preemptive policies, for most costs of interest
it is intuitively clear that work conservation is optimal. We refer to such costs as
work encouraging(see Section 5). While there is no attempt here at a rigorous
analysis of work encouragement (this seems to require a different modeling
framework), our results do reduce the problem of asymptotic optimality (under
preemption or nonpreemption) to verifying that work conservation is optimal
among preemptive policies(Corollary 1). For example, when optimality of work-
conserving preemptive policies holds for the prelimit problems, our results, which
establish asymptotic optimality of a nonpreemptive policy that is work conserving,
imply that the phenomenon described in the previous paragraph is negligible on the
diffusive scale.

We comment that, to prove asymptotic optimality, it is not necessary to establish
weak convergence of the controlled processes to a controlled diffusion, but only
convergence of the costs. However, under appropriate regularity conditions of the
coefficients (such as Lipschitz continuity of the function used to define the optimal
Markov control policy; see Theorem 3), convergence of the controlled processes
follows from our analysis.

Diffusion control problems that arise in “conventional” heavy traffic often have
a particularly simple solution, in the form of a static priority policy. Moreover,
these policies typically exhibit pathwise minimality of the associated workload
processes. Such a simplification is a consequence of astate-space collapse[19,
35] namely that these multidimensional diffusion control problems reduce to one-
dimensional problems: in conventional heavy traffic, the many servers work in
concert as though they constitute a single “super-server.” While such collapse
prevails in the special case studied in [2], simulations and intuition indicate that,
in general for the QED regime, an analogous phenomenon is unlikely to occur.
Significantly, though, our analysis does yield some state-space collapse: it is
manifested through the asymptotic optimality of nonpreempting work-conserving
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feedback controls, within the far broader class that allows nonpreemption, idleness
in the presence of waiting customers and the use of all past information.

1.4. Organization and notation. In Section 2 we describe the model, introduce
a notion of scheduling control policies that do not anticipate the future and specify
the heavy-traffic assumptions and scaling. We state our first main result regarding
the diffusion control problem (Theorem 1). We then use the diffusion control
problem to construct two sequences of scheduling control policies (preemptive
and nonpreemptive) for the queueing system, and state our second main result
on asymptotic optimality of these sequences of policies (Theorem 2). Section 3
treats the diffusion control problem, proving existence and uniqueness for the
underlying HJB equation, and existence of optimal Markov control policies.
The asymptotic optimality results are proved in Section 4. In Section 5 we discuss
the implications of our main result to sequences of policies that are not necessarily
work conserving, and chart possible directions for further research. Finally, some
auxiliary results are proved in the Appendix.

Forx ∈ R
k we let‖x‖ = ∑

i |xi |. Associated with the parametersk andn of the
queueing system are the setsK = {1, . . . , k} andN = {1, . . . , n}. We write N =
{1,2, . . .}, Zk+ = {0,1,2, . . .}k , Rk+ = [0,∞)k and Sk = {x ∈ Rk+ :

∑k
i=1 xi = 1}.

We denote byB(m, r) an open Euclidean ball of radiusr aboutm. B(A) denotes
Borel σ -field of subsets ofA. Cm,ε(D) [resp. Cm(D)] denotes the class of
functions onD ⊂ Rk for which all derivatives up to orderm are Hölder continuous
uniformly on compact subsets ofD [continuous onD]. Cpol(R

k) denotes the
class of continuous functionsf on Rk , satisfying a polynomial growth condition:
there are constantsc and r such that|f (x)| ≤ c(1 + ‖x‖r ), x ∈ Rk . We let
C

m,ε
pol = Cpol ∩ Cm,ε . For E a metric space, we denote byD(E) the space of all

cadlag functions (i.e., right continuous and having left limits) fromR+ to E.
We endowD(E) with the usual Skorohod topology. All processes we consider
are assumed to have sample paths inD(E) (for appropriateE, mostlyE = Rk).
If Xn, n ∈ N andX are processes with sample paths inD(E), we writeXn ⇒ X

to denote weak convergence of the measures induced byXn [on D(E)] to the
measure induced byX. For any cadlag pathX, let Xt− = lims↑t Xs for t > 0,
X0− = X0, and �Xt = Xt − Xt−. If X is a process (or a function onR+),
‖X‖∗

t = sup0≤s≤t ‖X(s)‖, and if X takes real values,|X|∗t = sup0≤s≤t |X(s)|.
X(t) andXt are used interchangeably. Vectors inRk are considered as column
vectors. We write1 = (1, . . . ,1)′ ∈ R

k . For vectorsu, v ∈ R
k , let u · v denote their

scalar product. Finally,c denotes a positive constant whose value is not important,
and may change from line to line.

2. The controlled system in the QED regime and its diffusion approxima-
tion. We consider a queueing system which consists ofk customer classes and
n multiskilled servers (see Figure 1). Service to any customer can be provided by
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any of the servers indifferently. The service time distribution depends on the cus-
tomer class, but not on the individual server (or customer). We say that a customer
is in queuei at time t if the customer is of classi, and at timet it is in the sys-
tem and is not being served (although it possibly received partial service prior to
time t). Customers enter the system at one of the queues, and leave the system in
one of two ways: either when their service is completed, or while they are waiting
at their queue and decide to abandon the system without being served.

2.1. The stochastic model.Let a complete probability space,(�,F,P ) be
given, on which all the stochastic processes below are defined. Expectation with
respect toP is denoted byE. The parametern, denoting the number of servers,
which is particularly significant in our analysis, will appear (as a superscript) in
the notation of all basic stochastic processes associated with the queueing system.

For i ∈ K , the number of class-i customers in the queue at timet ≥ 0 is denoted
by �n

i (t), and �n(t) = (�n
1(t), . . . ,�

n
k(t))

′. The number of class-i customers
being served at timet is denoted by�n

i (t) and �n(t) = (�n
1(t), . . . ,�n

k (t))′.
Clearly these processes take integer values, and

�n(t),�n(t) ∈ R
k+,

∑
i

�n
i (t) ≤ n, t ≥ 0.(1)

The initial conditions of the system are assumed to be deterministic and are
denoted by�n(0) = �0,n = (�

0,1
1 , . . . ,�

0,1
k )′ and �n(0) = �0,n = (�

0,n
1 , . . . ,

�
0,n
k )′.
Let An

i , i ∈ K , be independent renewal processes defined as follows. For
i ∈ K , let there be a sequence{Ǔi(j), j ∈ N} of strictly positive i.i.d. ran-
dom variables with meanEǓi(1) = 1 and squared coefficient of variation
Var(Ǔi(1))/(EǓi(1))2 = C2

U,i ∈ [0,∞). Let

Un
i (j) = 1

λn
i

Ǔi(j), i ∈ K, j ∈ N,(2)

whereλn
i > 0. With the convention

∑0
1 = 0, define

An
i (t) = sup

{
m ≥ 0 :

m∑
j=1

Un
i (j) ≤ t

}
, i ∈ K, t ≥ 0.(3)

The valueAn
i (t) denotes the number of arrivals of class-i customers up to timet .

Note that the first class-i customer arrives atUn
i (1), and the time between the

(m − 1)st andmth arrival of class-i customers isUn
i (m), m = 2,3, . . . .

The service time of a class-i customer is assumed to be exponentially distributed
with parameterµn

i , regardless of the service provider. This is captured in the
following description. Fori ∈ K , let Sn

i be a Poisson process of rateµn
i ∈ (0,∞),

and assume that the processesSn
i are independent of each other and of the
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processesAn
i , i ∈ K . LetT n

i (t) denote the time up tot that a server has devoted to
class-i customers, summed over all servers. Clearly,

T n
i (t) =

∫ t

0
�n

i (s) ds, i ∈ K, t ≥ 0.

ThenSn
i (T n

i (t)) = Sn
i (

∫ t
0 �n

i (s) ds) denotes the number of service completions of
class-i jobs, by all servers, up to timet . Our assumptions onT n will ensure that,
for eacht , T n(t) is independent of any increment of the formSn(T n(t) + s) −
Sn(T n(t)), s ≥ 0 (cf. Definition 2).

For i ∈ K , individuals abandon queuei at rateθn
i ∈ [0,∞). Let Rn

i be Poisson
processes of rateθn

i , independent of each other and of the processesAn
j , S

n
j , j ∈ K .

Note that the time up tot that a class-i customer spends in the queue, summed over
all customers, is equal to

∫ t
0 �n

i (s) ds. ThenRn
i (

∫ t
0 �n

i (s) ds) denotes the number
of abandonments from queuei up to time t . Under an appropriate assumption
on

∫ ·
0 �n(s) ds, similar to that onT n (cf. Definition 2), this describes abandonment

of class-i customers according to independent rate-θn
i Poisson clocks, each run as

long as the customer is in the queue.
We would like to have equations that hold for both nonpreemptive and

preemptive resume policies. Consider the processesBn
i (t), i ∈ K , described as

follows.Bn
i (0) = 0;Bn

i increases by 1 each time a class-i job is assigned to a server
(to start or resume service), and decreases by 1 each time such a job is moved back
to the queue (in a preemptive-resume policy). Note that in a nonpreemptive policy,
Bn

i (t) is the number of type-i customers that have been routed to the server pool at
any time up tot . In fact, we do not assume that these processes only jump by±1;
their increments can take arbitrary values inZ. Following are the system equations:

�n
i (t) = �

0,n
i + An

i (t) − Bn
i (t) − Rn

i

(∫ t

0
�n

i (s) ds

)
, i ∈ K, t ≥ 0,

(4)
�n

i (t) = �
0,n
i + Bn

i (t) − Sn
i

(∫ t

0
�n

i (s) ds

)
, i ∈ K, t ≥ 0.

These equations hold regardless of assumptions on the policy as to whether it is
preemptive or not, and work conserving or not (these terms are, in fact, made
precise later in this section). Note that the representations above in terms of
Poisson processesSn

i andRn
i exploit the exponential assumptions on service times

and abandonment.
Assume that there is a fullP -measure set under which allAn

i (t) < ∞ for t ≥ 0,
An

i increases to infinity,�An
i (t) ∈ {0,1} for all t , and where similar statements

hold for Sn
i and Rn

i . Then, without loss, we omit from subsequent discussions
all realizations (sample paths) of these processes that do not adhere to these
conditions.

Let

Xn(t) = �n(t) + �n(t)(5)
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and denoteX0,n = �0,n + �0,n. ThenXn
i (t) is equal to the number of class-i

customers in the system at timet . The constraints (1) can be written in terms of
Xn and�n as

Xn(t) − �n(t) ∈ R
k+, �n(t) ∈ R

k+,
∑
i

�n
i (t) ≤ n, t ≥ 0,(6)

while the system equations (4) imply that

Xn
i (t) = X

0,n
i + An

i (t) − Rn
i

(∫ t

0

(
Xn

i (s) − �n
i (s)

)
ds

)
− Sn

i

(∫ t

0
�n

i (s) ds

)
,

(7)
i ∈ K, t ≥ 0.

2.2. Scheduling control policies.We define two types of control problems,
one where scheduling is preemptive and one where it is nonpreemptive. Equa-
tion (7) serves as the description of the system dynamics. The scheduling control
policy (SCP) will be identified with the process�n, and it will be assumed that it is
such that the constraints (6) are satisfied. Apart from a nonanticipating assumption
on �n (Definition 2), there will be no further restrictions for preemptive schedul-
ing control problems. For nonpreemptive scheduling control problems, a further
constraint will be that the processBn is nondecreasing in each component.

For the following definition, note that, given a process�n, if there exists a
processXn so that (7) holds, then it is unique (as can be argued by induction on
the jump times of the processesAn, Rn andSn). Thus (5) uniquely determines�n,
and either part of (4) then uniquely determinesBn. Also, finiteness of the integrals
appearing in (4) and (7) follows from the fact that�n

i are bounded byn, while
Xn

i (t) − �n
i (t) = �n

i (t) ≤ X0,n + An
i (t).

DEFINITION 1. (i) We say that�n is apreemptive resume scheduling control
policy (P-SCP) if it is a stochastic process with cadlag paths, taking values inRk ,
for which there exists a processXn (referred to as acontrolled process) satisfying
the system equations (7), and such that the constraints (6) are met. Given a P-SCP
�n and a controlled processXn, denote by�n andBn the processes uniquely
determined by (4) and (5).

(ii) We say that�n is anonpreemptive scheduling control policy(N-SCP) if it
is a P-SCP, and in addition,Bn

i , i ∈ K , have nondecreasing paths.

We collectively refer to P-SCPs and N-SCPs asscheduling control policies
(SCPs) (although the class of SCPs is simply the class of P-SCPs).

We need a notion of SCPs that do not anticipate the future. To this end, denote

T n
i (t) =

∫ t

0
�n

i (s) ds,
◦
T n

i (t) =
∫ t

0
�n

i (s) ds,(8)
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and fori ∈ K , let

τn
i (t) = inf{u ≥ t :An

i (u) − An
i (u−) > 0}

stand for the time of the first arrival to queuei no earlier thant . Set

F n
t = σ

{
An

i (s), S
n
i

(
T n

i (s)
)
,Rn

i

( ◦
T n

i (s)
)
,�n

i (s),�
n
i (s),Xn

i (s) : i ∈ K,s ≤ t
}

(9)

and

Gn
t = σ

{
An

i

(
τn
i (t) + u

) − An
i

(
τn
i (t)

)
, Sn

i

(
T n

i (t) + u
) − Sn

i

(
T n

i (t)
)
,

(10)
Rn

i

( ◦
T n

i (t) + u
) − Rn

i

( ◦
T n

i (t)
)
: i ∈ K,u ≥ 0

}
.

While F n
t represents the information available at timet , Gn

t constitutes future
information. Since for eachi, An

i is a renewal process, its increments of the form
that appears in the definition ofGn

t are independent ofσ {An
i (s) : s ≤ t}. However,

the time τn
i of the next arrival may be anticipated, to some degree, from the

information on the arrivals up to timet . Therefore, withτn
i (t) replaced byt in its

definition,Gn
t would not be a good candidate to represent innovative information.

Note that an analogous treatment ofSn andRn is not necessary, since these are
Poisson processes which are memoryless. The following definition refers to both
types of problems.

DEFINITION 2. We say that a scheduling control policy isadmissibleif:

(i) for eacht , F n
t is independent ofGn

t ;
(ii) for each i and t , the processSn

i (T n
i (t) + ·) − Sn

i (T n
i (t)) is equal in law

to Sn
i (·), and the processRn

i (
◦
T n

i (t) + ·) − Rn
i (

◦
T n

i (t)) is equal in law toRn
i (·).

Some SCPs considered in this paper will be constructed by setting

�n(t) = F
(
Xn(t)

)
, t ≥ 0,(11)

for an appropriate choice ofF . As the following result shows, this leads to
admissible SCPs.

PROPOSITION 1. Fix n and let a functionF :Zk+ → Z
k+ be given such that,

for X ∈ Zk+, one hasX − F(X) ∈ Zk+ and 1 · F(X) ≤ n. Then the system of
equations(7) and (11) has a unique solution, and �n is an admissible SCP. In
particular, if the processBn determined via(4) has nondecreasing paths, �n is an
admissible N-SCP.

See the Appendix for a proof.
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2.3. QED scaling. We consider a sequence of queueing systems as above
where now the number of serversn ∈ N is used as an index to the sequence. It
is implicitly assumed that there is an SCP associated with each queueing system.
It is assumed (without loss) that there is one probability space,(�,F,P ), on which
the processes associated with thenth system are defined, for alln ∈ N. The heavy-
traffic assumptions are as follows (cf. [15, 17, 21, 34]).

ASSUMPTION 1. (i) Parameters.There are constantsλi,µi ∈ (0,∞), θi ∈
[0,∞), λ̂i, µ̂i ∈ R, i ∈ K , such that

k∑
i=1

λi/µi = 1

and, asn → ∞,

n−1λn
i → λi, µn

i → µi, θn
i → θi

n1/2(n−1λn
i − λi) → λ̂i , n1/2(µn

i − µi) → µ̂i.

(ii) Initial conditions.There are constantsφi ∈ [0,∞), ψi ∈ R, i ∈ K , such that∑
K ψi ≤ 0, and, withρi = λi/µi , asn → ∞,

�̂
0,n
i := n−1/2�

0,n
i → φi, �̂

0,n
i := n−1/2(�

0,n
i − ρin) → ψi.

REMARK 1. The above scaling is in concert with that in [12, 15, 17, 24]. For a
verification, letρn denote the traffic intensity of ournth system. Thenρn = rn/n,
where its offered loadrn is given by

rn =
k∑

i=1

λn
i /µ

n
i .

From Assumption 1 it now follows, via simple algebra, that

√
n(1− ρn) →

k∑
i=1

(ρiµ̂i − λ̂i )/µi.

Denoting this last limit byβ, we deduce that

n ≈ rn + β
√

rn.

QED scaling thus leads to square-root safety staffing [7], which characterizes
the regimes in [12, 15, 17, 24]. (β > 0 was required in the original Halfin–
Whitt regime of [17], to guarantee stability when there is no abandonment. Our
analysis, however, covers all values ofβ since it does not require stability of the
queueing system. Indeed, the total discounted costs are always finite in view of our
polynomial growth constraints on the cost functions.)

For more details on QED scaling, readers are referred to [15] and [17]. An
instructive comparison of the QED regime with conventional heavy traffic, in the
context of our problem, is provided by [21].
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The rescaled processes are defined as follows:

�̄n
i (t) = n−1�n

i (t), �̄n
i (t) = n−1�n

i (t),

X̄n
i (t) := �̄n

i (t) + �̄n
i (t) = n−1Xn

i (t),

�̂n
i (t) = n1/2�̄n

i (t) = n−1/2�n
i (t),

�̂n
i (t) = n1/2(�̄n

i (t) − ρi

) = n−1/2(�n
i (t) − ρin

)
,

X̂n
i (t) := �̂n

i (t) + �̂n
i (t) = n1/2(X̄n

i (t) − ρi

) = n−1/2(Xn
i (t) − ρin

)
.

The primitive processes are rescaled as

Ân
i (t) = n−1/2(An

i (t) − λn
i t

)
, Ŝn

i (t) = n−1/2(Sn
i (nt) − nµn

i t
)
,

R̂n
i (t) = n−1/2(Rn

i (nt) − nθn
i t

)
.

Finally,

B̂n
i (t) = n−1/2(Bn

i (t) − nλit
)
.

With this notation, the system equations (4) can be written as follows:

�̂n
i (t) = �̂

0,n
i + Ân

i (t) + n1/2(n−1λn
i − λi)t

− B̂n
i (t) − R̂n

i

(∫ t

0
�̄n

i (s) ds

)
− θn

i

∫ t

0
�̂n

i (s) ds,

�̂n
i (t) = �̂

0,n
i + B̂n

i (t) − Ŝn
i

(∫ t

0
�̄n

i (s) ds

)

− µn
i

∫ t

0
�̂n

i (s) ds − ρin
1/2(µn

i − µi)t.

(12)

We have from (12)

X̂n
i (t) = X̂

0,n
i + riŴ

n
i (t) + �n

i t − µn
i

∫ t

0
�̂n

i (s) ds − θn
i

∫ t

0
�̂n

i (s) ds,(13)

where we denote

riŴ
n
i (t) = Ân

i (t) − Ŝn
i

(∫ t

0
�̄n

i (s) ds

)
− R̂n

i

(∫ t

0
�̄n

i (s) ds

)
,

(14)
ri = (λiC

2
U,i + λi)

1/2

and

�n
i = n1/2(n−1λn

i − λi) − ρin
1/2(µn

i − µi).

We now present a formal derivation of the limiting dynamics, as described by
a system of controlled SDEs. The actual relation to the sequence of queueing
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systems (as a limit) will be justified once our results of Section 4 are established.
To this end, we pretend that the convergence

�̄n
i (·) ⇒ 0, �̄n

i (·) ⇒ ρi,

holds, and writeA,S,�,�,X,B for the formal weak limits ofÂn, Ŝn, �̂n, �̂n,

X̂n, B̂n (without worrying at this point about whether weak limits exist). Fori ∈ K ,
the processesAi and Si are Brownian motions with zero drift and variances
λiC

2
U,i andµi , respectively. We thus obtain

�i(t) = φi + Ai(t) + λ̂i t − Bi(t) − θi

∫ t

0
�i(s) ds,

(15)
�i(t) = ψi + Bi(t) − ρ

1/2
i Si(t) − µi

∫ t

0
�i(s) ds − ρiµ̂i t.

The corresponding constraints are as follows:

�i(t) ≥ 0,
∑
i

�i(t) ≤ 0.

Writing W = (W1, . . . ,Wk)
′, Wi = r−1

i (Ai − ρ
1/2
i Si), the processW is a standard

k-dimensional Brownian motion. The processX = � + � then satisfies

Xi(t) = xi + riWi(t) + �it − θi

∫ t

0

(
Xi(s) − �i(s)

)
ds − µi

∫ t

0
�i(s) ds,(16)

as well as the constraints

Xi(t) − �i(t) ≥ 0,
∑
i

�i(t) ≤ 0,(17)

where

�i = λ̂i − ρiµ̂i, xi = φi + ψi.

2.4. Work conservation and cost.A policy is work conserving if there can
be no idling servers when there are customers in the queue. For the following
definition, recall that1 ·�n equals the number of customers in all queues, and that
1 · Xn equals the number of customers in the system.

DEFINITION 3. We say that an SCP iswork-conservingif(
1 · Xn(t) − n

)+ = 1 · �n(t), t ≥ 0.(18)

Note that equivalently(
1 · X̂n(t)

)+ = 1 · �̂n(t), t ≥ 0.(19)
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For a given SCP, let̂�n and�̂n denote the rescaled processes as before. We
consider the problem of infimizing an expected cumulative discounted cost of the
form

Cn = E

∫ ∞
0

e−γ t L̃
(
�̂n(t), �̂n(t)

)
dt,(20)

over all work-conserving admissible SCPs. Under the assumption that SCPs are
work conserving, it is more convenient to work with the functionL :Rk × Sk →
R+ defined as

L(x,u) = L̃
(
(1 · x)+u, x − (1 · x)+u

)
.(21)

If work conservation holds,(1 · Xn − n)+ is equal to the number of customers
waiting in all queues, namely1 ·�n. If un ∈ Sk denotes the proportion of customers
of the different classes that are waiting in the queues, then

�n = (1 · Xn − n)+un, �n = Xn − (1 · Xn − n)+un.(22)

Hence (21) is merely a change of variables from(�̂n, �̂n) to (X̂n, un). The
following will be assumed onL andL̃.

ASSUMPTION2. (i) L(x,u) ≥ 0, (x,u) ∈ Rk × Sk.
(ii) The mapping(φ,ψ) �→ L̃(φ,ψ) is continuous. In particular, the mapping

(x,u) �→ L(x,u) is continuous.
(iii) There is� ∈ (0,1) such that, for any compactA ⊂ Rk ,

|L(x,u) − L(y,u)| ≤ c‖x − y‖�

holds foru ∈ S
k andx, y ∈ A, wherec depends only onA.

(iv) There are constantsc > 0 andmL ≥ 0 such thatL(x,u) ≤ c(1+ ‖x‖mL),
u ∈ S

k , x ∈ R
k .

By applying an analogous change of variables to the state equations, both for
the queueing system and for the diffusion, one can obtain these equations in a new
form as follows. Equation (13) for̂Xn under work conservation takes the form

X̂n
t = X̂0,n + riŴ

n
t +

∫ t

0
bn(X̂n

s , un
s ) ds,(23)

where

bn(X̂, u) = �n + (µn − θn)(1 · X̂)+u − µnX̂,(24)

andr = diag(ri; i ∈ K), �n = (�n
1, . . . , �

n
k)

′, µn = diag(µn
i ; i ∈ K), θn = diag(θn

i ;
i ∈ K). Similarly, (16) for the diffusion model is now given as

X(t) = x + rW(t) +
∫ t

0
b
(
X(s), u(s)

)
ds,(25)

where forX ∈ Rk andu ∈ Sk ,

b(X,u) = � + (µ − θ)(1 · X)+u − µX,(26)

and� = (�1, . . . , �k)
′, µ = diag(µi; i ∈ K) andθ = diag(θi; i ∈ K).
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2.5. Diffusion control problem. Below we formulate a stochastic control
problem for the minimization of

C = E

∫ ∞
0

e−γ tL
(
X(t), u(t)

)
dt,

whereX is a controlled diffusion given by (25) over an appropriate class of control
processesu, taking values inSk . We then state our first main result that there exists
a measurable functionh :Rk → Sk such that, upon settingut = h(Xt), t ≥ 0, the
infimum in the problem is achieved.

DEFINITION 4. (i) We call

π = (
�,F, (Ft),P ,u,W

)
anadmissible systemif:

1. (�,F, (Ft),P ) is a complete filtered probability space,
2. u is a Sk-valued,F -measurable,(Ft)-progressively measurable process, and

W is a standardk-dimensional(Ft )-Brownian motion.

The processu is said to be acontrolassociated withπ .
(ii) We say thatX is a controlled processassociated with initial datax ∈ Rk

and an admissible systemπ = (�,F, (Ft),P ,u,W), if:

1. X is a continuous process on(�,F,P ), F -measurable,(Ft)-adapted,
2.

∫ t
0 |b(X(s), u(s))|ds < ∞ for every t ≥ 0, P -a.s. [recall thatb is defined

in (26)],
3.

X(t) = x + rW(t) +
∫ t

0
b
(
X(s), u(s)

)
ds, 0 ≤ t < ∞,(27)

holdsP -a.s.

Proposition 2 shows that there isa unique controlled processX associated with
anyx andπ . With an abuse of notation we sometimes denote the dependence onx

andπ by writing P π
x in place ofP andEπ

x in place ofE. Denote by� the class
of all admissible systems.

PROPOSITION2. Let initial datax ∈ R
k and an admissible systemπ ∈ � be

given. Then there exists a controlled processX associated withx andπ . Moreover,
if X and X̄ are controlled processes associated withx andπ , thenX(t) = X̄(t),
t ≥ 0, P -a.s.

For a proof see the Appendix.
Forx ∈ R

k andπ ∈ �, let X be the associated controlled process, and consider



1100 R. ATAR, A. MANDELBAUM AND M. I. REIMAN

the cost function

C(x,π) = Eπ
x

∫ ∞
0

e−γ tL
(
X(t), u(t)

)
dt.

The value functionV for the control problem is defined as

V (x) = inf
π∈�

C(x,π).

DEFINITION 5. Let x ∈ Rk be given. We say that a measurable function
h :Rk → Sk is a Markov control policyif there is an admissible systemπ and
a controlled processX corresponding tox andπ , such thatus = h(Xs), s ≥ 0,
P -a.s. We say that an admissible systemπ is optimalfor x, if V (x) = C(x,π). We
say that a Markov control policy is optimal forx if the corresponding admissible
system is.

The following constitutes a part of the first main result of this paper. Its full
version that also characterizes the value functionV as the solution to an HJB
equation, Theorem 3, is stated and proved in Section 3.

THEOREM 1. AssumeL is continuous and satisfies Assumption2(i), (iii)
and (iv). Then there exists a Markov control policy, h :Rk → S

k, which is optimal
for all x ∈ Rk .

Throughout,h denotes the function from Theorem 1.

2.6. SCPs emerging from the diffusion control problem.We formulate three
SCPs that are based on the functionh, and state our second main result, namely
that these policies are, in an appropriate sense, asymptotically optimal.

A P-SCP. For eacht , �n(t) will be determined as a function ofXn(t) only.
GivenXn(t), the diffusion control problem suggests setting

�n(t) = (
1 · Xn(t) − n

)+
h
(
X̂n(t)

)
,(28)

where as before

X̂n(t) = n1/2
(

1

n
Xn(t) − ρ

)
.

There are two points, however, to which one must pay attention. First, the
components of�n must be integer-valued, in order to represent queue lengths;
and second, the components of�n = Xn − �n must be nonnegative, so that one
serves only those customers present in the system.

For the first point, we need any measurable map� : {y ∈ Rk+ :1 · y ∈ Z} → Zk+
that preserves sums of components and introduces an error uniformly bounded by
a constant, so that

�n(t) = �
[(

1 · Xn(t) − n
)+

h
(
X̂n(t)

)]
(29)
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can be used in place of (28). For concreteness, take the following map. Fory ∈ Rk+,
write yi = �yi� + δi , and setz = �(y) defined aszi = �yi�, i = 1, . . . , k − 1, and
zk = yk +∑k−1

i=1 δi . Clearly,1 ·z = 1 ·y, andz ∈ Zk+ whenever1 ·y ∈ Z. Moreover,
‖y − z‖ ≤ 2k:

‖�(y) − y‖ ≤ 2k, y ∈ R
k+.(30)

For the second point, note that (29) might set�n = Xn − �n in such a way that
�n is not in Rk+. For example, ifXn = (n + 1)e1 andh(X̂n) = e2, then�n

2 = 1,
which means that�n

2 = −1. Such a problem does not occur if

Xn
i (t) ≥ (

1 · Xn(t) − n
)+ ∀ i ∈ K.(31)

When the problem does happen, the policy may be defined quite arbitrarily, subject
only to being work conserving. For concreteness, when (31) is not met, we set�n

in accordance with a priority policy, where classi receives priorityi (the higheri,
the higher the priority). When (31) is met, we set�n(t) as in (29). Finally, set
�n(t) = Xn(t)−�n(t), or equivalently,�̂n(t) = X̂n(t)− �̂n(t). One verifies that
the constraints (6) hold by construction.

We remark that the results of Section 4 will establish that (31) typically holds.
This is basically due to the fact that the RHS, which represents the total number
of customers waiting to be served, behaves at most asO(n1/2), while the LHS,
representing the number of customers at each class, isO(n).

We next describe two alternative rules for determining sequences of N-SCPs.

N-SCP(i). To describe an N-SCP for eachn, one needs to determine�n

so that the processBn(t) is nondecreasing. We describe a work-conserving SCP.
A customer that arrives when there is a free server is instantaneously routed to a
server. When a server becomes free, and there is at least one customer in the queue,
we use the following scheme to determine which class to route to the server. This
is in fact all that is to be determined. We look again at

Mn(t) := (
1 · Xn(t) − n

)+
h
(
X̂n(t)

)
,

and consider the setK0 of i ∈ K for which �n
i (t) ≥ Mn

i (t) ∨ 1. Note that if there
is at least onei ∈ K with �n

i ≥ 1, thenK0 is not empty. Indeed, suppose thatK0 is
empty, and letK ′ = {i ∈ K :�n

i (t) ≥ 1}. Then fori ∈ K ′, �n
i (t) < Mn

i (t). Hence
by (18),

1 · Mn = 1 · �n = ∑
i∈K ′

�n
i <

∑
i∈K ′

Mn
i ≤ 1 · Mn,

a contradiction. We now choose the largesti in K0. Then a customer of classi is
routed to the free server. This procedure is performed instantaneously.

In heuristic terms, the scheme described above attempts to drive the system
towards nearly achieving an equality of the form (28). This is done by sending to
service customers of classesi for which �n

i ≥ Mn
i , thus obtaining approximate

equality between the quantities�n andMn. A justification of this heuristic is a
part of the proof of the result below.
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N-SCP(ii) . The N-SCP is defined precisely as the N-SCP (i), except that, for
eachn, the functionh is replaced by a functionhn, which may vary withn.

By defining the interarrival timesUn
i (j) via Ǔi(j) [cf. (2)], we have assumed

that they have finite variance. Here we strengthen this assumption.

ASSUMPTION 3. Let mL be as in Assumption 2. Then there is a constant
mU ≥ 2, mU > mL, such thatE(Ǔi(1))mU < ∞.

Our second main result is as follows.

THEOREM 2. Let Assumptions1–3 hold. Let X̂0,n ∈ n−1/2Zk be a sequence
converging tox ∈ Rk . Let a sequence of work-conserving admissible SCPs�n be
given, consider the corresponding processes�n, and let �̂n, �̂n denote the
corresponding rescaled processes.

(i) Let�n,∗,�n,∗ be a sequence as determined by the proposed P-SCP above,
and let�̂n,∗ and�̂n,∗ be the corresponding rescaled processes. Then

lim
n→∞E

∫ ∞
0

e−γ t L̃(�̂
n,∗
t , �̂

n,∗
t ) dt

≤ lim inf
n→∞ E

∫ ∞
0

e−γ t L̃(�̂n
t , �̂

n
t ) dt.

(32)

Moreover, the left-hand side is finite.
(ii) Assume that the restriction ofh to X := {y ∈ Rd :1 · y > 0} is locally

Hölder continuous. Let �n,∗,�n,∗ be a sequence as determined by the proposed
N-SCP(i) and �̂n,∗, �̂n,∗ be the corresponding rescaled processes. Then (32)
holds.

(iii) Assume that the mappingu �→ L(x,u) is convex onSk for eachx ∈ Rk .
Then there exists a sequence of functions{hn} with the following property. Let
�n,∗,�n,∗ be a sequence as determined by the proposed N-SCP(ii), using the
functions{hn}, and�̂n,∗, �̂n,∗ be the corresponding rescaled processes.Then(32)
holds.

Item (i) of Theorem 2 establishes asymptotic optimality of the proposed
sequence of preemptive SCPs, within all work-conserving SCPs. Item (ii)
establishes asymptotic optimality of the proposed sequence of nonpreemptive
SCPs, within all work-conserving SCPs, under the assumption that the functionh

is locally Hölder continuous. In Proposition 3, we show that under some strict
convexity assumptions onL, h is locally Hölder continuous, and thus item (ii)
applies. However, for linear costs, asL̃(�̂, �̂) = c · �̂ (c ∈ Rk+ a constant), the
resultingh is discontinuous (see [21]), and this part of the theorem does not apply.
Assuming only convexity ofL(x, ·), for eachx (which certainly holds for linear
costs), item (iii) establishes asymptotic optimality of the proposed nonpreemptive
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SCPs, whereh is replaced by a sequence of functionshn that are locally Hölder
continuous. Indeed, in Section 2.7 we discuss additional costs of interest, where
u �→ L(x,u) is convex for eachx, implying that (i) and (iii) hold.

REMARK 2. The theorem is established by comparing both sides of (32) to the
optimal cost in the corresponding diffusion control problem, denoted in Section 3
by V (x). It is established below that, in fact, the left-hand side of (32) is equal
to V (x).

REMARK 3. As discussed in Section 5 (Corollary 1), for a sequence of
N-SCPs that are not necessarily work conserving, Theorem 2 still holds given that
work conservation is optimal among P-SCPs.

2.7. Costs of interest. The following result provides an example for a family
of costs for which the assumptions onh made in Theorem 2(ii) hold. It is proved
in the Appendix.

PROPOSITION 3. Let Assumption2 hold, and assume that̃L is of the form
L̃(�,�) = ∑

i∈K gi(�i), where, for eachi ∈ K , gi : [0,∞) → R is in C2([0,∞)),
and there is a constantc0 > 0 such thatg′′

i ≥ c0. Then the restriction ofh to X is
locally Hölder continuous.

Note that one can take in the above resultgi(x) = cix
pi , ci > 0, pi ≥ 2.

In the sequel we give examples of costs of interest, and specify the assumptions
under which our main results apply. In all the cases below,L̃ and L satisfy
Assumption 2. Hence our results show asymptotic optimality of the proposed
policies amongwork-conservingadmissible policies.

Queue lengths.Let

L̃(�̂, �̂) = �(�̂),

where� is nondecreasing as a function of�̂i , for eachi. It is assumed that� ≥ 0
is locally Hölder continuous and satisfies a polynomial growth bound. Then

L(X̂,u) = �
(
(1 · X̂)+u

)
.

Abandonment. We need the following result, the proof of which is given in
the Appendix.

LEMMA 1. Under the assumptions of Theorem2, ERn
i (

◦
T n

i (t)) = θiE
◦
T n

i (t).
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The number of abandonments from queuei up to timet , normalized by
√

n, is
given by

R̃n
i (t) := n−1/2Rn

i

( ◦
T n

i (t)
)
.

Consider the cost

Cn = ∑
i

ciE

∫ ∞
0

e−γ t dR̃n
i (t)

(the dependence ofCn on the SCP is not indicated in this notation). Integrating by
parts, usinge−γ tER̃n

i (t) → 0 ast → 0 and Lemma 1,

Cn = ∑
i

γ ciE

∫ ∞
0

e−γ t R̃n
i (t) dt

= ∑
i

γ ciθiE

∫ ∞
0

e−γ t
∫ t

0
�̂n

i (s) ds dt

= E

∫ ∞
0

e−γ t

[∑
i

ciθi�̂
n
i (t)

]
dt.

This is a special case of the queue-length cost considered in the previous
paragraph.

Delay. For each of the customersl ever present in the system, let cl(l) denote
the class to whichl belongs, and letν(l) denote the set of times at which customerl

is in the queue. We are interested in the cost

Cn = n−1/2E
∑
l

ccl(l)

∫
ν(l)

e−γ t dt,

whereci > 0, i ∈ K , are constants. Since clearly,�̂n
i (t) = n−1/2∑

1t∈ν(l), where
the sum extends over all class-i customersl,

Cn = E

∫ ∞
0

e−γ t

[ ∑
i∈K

ci�̂
n
i (t)

]
dt.

This again can be treated within the framework of queue-length costs.

Idling servers. The number of servers that idle at timet is given byn − 1 ·
�n(t). With an appropriate normalization and discounting, this becomes

Cn = −E

∫ ∞
0

e−γ t1 · �̂n(t) dt.

The corresponding costs areL̃(�̂, �̂) = −1 · �̂ andL(X̂,u) = (1 · X̂)−.
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Number of customers in the system.The cost associated with the weighted
normalized number of customers in the system is

Cn = E

∫ ∞
0

e−γ t
∑
i

ciXi(t) dt.

3. Stochastic control and the HJB equation.

3.1. Moment estimates.We begin with a key estimate for the results of this
section.

PROPOSITION 4. For any admissible systemπ , any x, x̄ ∈ Rk , and corre-
sponding controlled processesX (associated withx and π ) and X̄ (associated
with x̄ andπ ), the following hold:

(i) |Xt − X̄t | ≤ |x − x̄|(1+ ect ), t ≥ 0,

P -a.s., where the constantc does not depend onπ,x, x̄ and t .
(ii) For m ∈ N,

Eπ
x |X(t)|m ≤ cm(1+ ‖x‖m)(1+ tm), t ≥ 0,

where the constantsc1, c2, . . . do not depend onπ , x and t .

PROOF. (i) Note that|X(t) − X̄(t)| ≤ |x − x̄| + c
∫ t
0 |X(s) − X̄(s)|ds, where

c is the Lipschitz constant forx �→ b(x,u). The result follows from Gronwall’s
lemma.

(ii) Write �(t) = X − (1 ·X)+u and�i(t) = �(t) · ei . Note that�i(t) ≤ Xi(t),
and ∑

i

�i(t) = 0∧ ∑
i

Xi(t).(33)

Then

Xi(t) = xi + riWi(t)+
∫ t

0
[−θiXi(s)− (µi − θi)�i(s)+�i]ds, i ∈ K, t ≥ 0.

Let K1 be the set ofi ∈ K , whereµi ≥ θi , andK2 = K \ K1. Define, for eachi,
ϒi as the unique solution (cf. Theorems 5.2.5 and 5.2.9 of [25]) to the equation

ϒi(t) = xi + riWi(t) +
∫ t

0
[−µiϒi(s) + �i]ds.

ThenXi − ϒi is differentiable,Xi(0) − ϒi(0) = 0, and fori ∈ K1,

d

dt

(
Xi(t) − ϒi(t)

) = −θiXi − (µi − θi)�i + µiϒi

≥ −µi

(
Xi(t) − ϒi(t)

)
.



1106 R. ATAR, A. MANDELBAUM AND M. I. REIMAN

Similarly, the reverse inequality holds wheni ∈ K2. By comparison of ODEs
(Theorem I.7 in [5]),

Xi(t) ≥ ϒi(t), i ∈ K1; Xi(t) ≤ ϒi(t), i ∈ K2; t ≥ 0 a.s.(34)

If z is a vector satisfying the boundszi ≥ ai for all i, and
∑

i zi ≤ A, then its norm
can be bounded as follows:

‖z‖ ≤ ∑
i

(zi − ai) + ‖a‖ ≤ A + 2‖a‖.(35)

We have in (34) inequalities analogous tozi ≥ ai , when we considerzi = ciXi ,
whereci > 0, i ∈ K1, andci < 0, i ∈ K2. Below, we obtain an inequalityanalogous
to

∑
i zi ≤ A, by finding an upper bound on the quantity

∑
K ciXi . To this end, note

first that by (33) and (34),

∑
K1

−�i + ∑
K2

(Xi − �i) = −
(

0∧ ∑
K

Xi

)
+ ∑

K2

Xi

= 1{∑K Xi≥0}
∑
K2

Xi − 1{∑K Xi<0}
∑
K1

Xi(36)

≤ ∑
K

|ϒi|.

Next, let c > 0 be so small that 1+ c(1 − θi/µi) ≥ 0 for all i ∈ K2. Then also
[1+ c(1− θi/µi)](Xi − �i) ≥ 0, and as a result,

c

[
− θi

µi

(�i − Xi) + �i

]
≤ (Xi − �i) + cXi, i ∈ K2.(37)

Hence, denotingx̃ = ∑
K1

µ−1
i xi − ∑

K2
cµ−1

i xi , W̃ (t) = ∑
K1

riWi(t) −∑
K2

criWi(t) and�̃ = ∑
K1

�i − ∑
K2

c�i , we have by (34), (36) and (37)∑
K1

µ−1
i Xi(t) − ∑

K2

cµ−1
i Xi(t)

= x̃ + W̃ (t) + �̃t +
∫ t

0

∑
K1

[
µ−1

i θi

(
�i(s) − Xi(s)

) − �i(s)
]
ds

+
∫ t

0

∑
K2

c
[−µ−1

i θi

(
�i(s) − Xi(s)

) + �i(s)
]
ds

≤ x̃ + W̃ (t) + �̃t +
∫ t

0

[∑
K1

−�i(s) + ∑
K2

[(
Xi(s) − �i(s)

) + cXi(s)
]]

ds

≤ x̃ + W̃ (t) + �̃t +
∫ t

0

[∑
K

|ϒi(s)| +
∑
K2

c|ϒi(s)|
]

ds.
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DenotingZi = ciXi , whereci = µ−1
i , i ∈ K1, andci = −cµ−1

i , i ∈ K2, we have
from (34), (35) and the above, that, for some positive constantsC1,C2,

C1‖X(t)‖ ≤ ‖Z(t)‖ ≤ x̃ + W̃ (t) + �̃t + C2

∫ t

0

∑
K

|ϒi(s)|ds + C2
∑
K

|ϒi(t)|.

It is easy to show thatE|ϒi(t)|2 ≤ C(1 + |xi |2), for some constantC, and since
ϒi are Gaussian,E|ϒi(t)|m ≤ c̃m(1 + |xi|m) for m = 1,2, . . . . It easily follows
that

E‖X(t)‖m ≤ cm(1+ ‖x‖m)(1+ tm). �

REMARK 4. We record a consequence of the proof to be used in Section 4.
Recall (23) which holds under the work-conservation condition (19). Arguing
analogously to the proof of Proposition 4, under (19) one obtains

‖X̂n(t)‖ ≤ c

[
‖X̂0,n‖ + ‖Ŵn

t ‖ + t +
∫ t

0
‖ϒn(s)‖ds + ‖ϒn(t)‖

]
,(38)

wherec does not depend onn or t , and whereϒn is the unique solution to

ϒn
i (t) = X̂

0,n
i + rn

i Ŵ n
i (t) +

∫ t

0

(−µn
i ϒ

n
i (s) + �n

i

)
ds.(39)

3.2. Cost and value. Recall that forx ∈ Rk andπ ∈ �, the cost and value are
defined as

C(x,π) = Eπ
x

∫ ∞
0

e−γ tL
(
X(t), u(t)

)
dt,

V (x) = inf
π∈�

C(x,π).

We assume in this section thatL(x,u) satisfies Assumption 2, except that part (ii)
should be understood as the assumption thatL is continuous (the notatioñL is not
needed in this section).

To state the next result, we need to formulate a control problem on a bounded
domain. In the sequel,� will denote a bounded open connected subset ofRk with
smooth (say,C∞) boundary. Letg :R+ × ∂� → R+ be a continuous function. For
x ∈ � andπ ∈ �, we define

C�,g(x,π) = Eπ
x

[∫ τ

0
e−γ tL(Xt , ut) dt + g(τ,Xτ )

]
,

whereX is the corresponding controlled process, and

τ = inf{t :Xt /∈ �}.
We also let

V�,g(x) = inf
π∈�

C�,g(x,π).
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PROPOSITION 5. AssumeL is continuous and satisfies Assumption2(i),
(iii) and(iv). Then:

(i) There is a constantc such thatV (x) ≤ c(1+ ‖x‖mL), x ∈ Rk .
(ii) V is continuous onRk .
(iii) Let � ⊂ Rk be a smooth domain. Let g(t, x) = e−γ tV (x) for t ≥ 0 and

x ∈ ∂�. ThenV = V�,g in �.

PROOF. (i) This is immediate from the polynomial growth condition onL and
Proposition 4(ii).

(ii) Fix an arbitrary open ball of radius 1,ν = B(y,1). Let x ∈ ν be given, and
for ε > 0, letπ = (�,F, (Ft),P ,u,W) be such that

C(x,π) ≤ V (x) + ε.

Let X be the controlled process associated withx andπ . Let X̄ be the controlled
process on the same probability space,associated withπ and somēx ∈ ν. Denote
m = mL (as in Assumption 2). LetA(T ) = B(y,T 2m+3). Let c1(T ) be the Hölder
constant forL onA(T ). By Proposition 4(ii),

Eπ
z ‖X(t)‖m ≤ ĉ(1+ tm), t ≥ 0, z ∈ ν,(40)

whereĉ = ĉ(ν). Then for anyT ∈ [1,∞) andt ∈ [0, T ], Proposition 4(i), (40) and
the Cauchy–Schwarz inequality imply

E|L(Xt ,ut) − L(X̄t , ut )|
≤ c1(T )E

[
1{Xt ,X̄t∈A(T )}‖Xt − X̄t‖�]

+ cE
[
1{eitherXt or X̄t /∈A(T )}(1+ ‖Xt‖m + ‖X̄t‖m)

]
≤ c1(T )(1+ ecT )‖x − x̄‖� + c[p(T ) + p̄(T )]1/2ĉ(1+ T m),

where

p(T ) = sup
s≤T

P
(
Xs /∈ A(T )

)
, p̄(T ) = sup

s≤T

P
(
X̄s /∈ A(T )

)
.

The moment bounds on‖Xt‖ imply that

p(T ) + p̄(T ) ≤ c2(ν)T −2m−2,

wherec2(ν) depends onν, but not onx, x̄ ∈ ν. Hence, writingc3(ν) = ĉc2(ν)1/2,

C(x,π) − C(x̄,π)

= E

∫ ∞
0

e−γ t
(
L(Xt ,ut) − L(X̄t , ut )

)
dt

≤ {
c1(T )(1+ ecT )‖x − x̄‖� + cc3(ν)T −m−1(1+ T m)

}
E

∫ T

0
e−γ t dt

+ c

∫ ∞
T

e−γ t (1+ E‖Xt‖m + E‖X̄t‖m)dt

≤ c4(T )‖x − x̄‖� + c5(ν)α(T ),
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wherec4(T ) depends only onT , c5(ν) depends only onν, andα(T ) → 0 as
T → ∞. Let T be so large thatc5(ν)α(T ) ≤ ε. Next chooseδ > 0 so small that
{0 < ‖x − x̄‖ < δ andx, x̄ ∈ ν} implies c4(T )‖x − x̄‖� ≤ ε. Then for suchx, x̄

one hasV (x̄) ≤ C(x̄,π) ≤ C(x,π) + 2ε ≤ V (x) + 3ε. Note that the choice ofδ
does not depend onx, x̄ (in particular, it does not depend onπ !). Therefore, the
inequalityV (x̄) ≤ V (x) + 3ε holds for allx, x̄ ∈ ν for which ‖x − x̄‖ < δ. This
shows thatV is continuous.

(iii) This is a standard result (the principle of optimality), which, in the current
context, can be proved similarly to the results of [6], Section III.1.�

3.3. The HJB equation and optimality.The HJB equation associated with the
stochastic control problem is (cf. [11])

Lf + H(x,Df ) − γf = 0,(41)

whereL = (1/2)
∑

i r
2
i ∂2/∂x2

i , and

H(x,p) = inf
u∈Sk

[b(x,u) · p + L(x,u)].

The equation is considered onRk with the growth condition

∃C,m, |f (x)| ≤ C(1+ ‖x‖m), x ∈ R
k.(42)

We say thatf is a solution to (41) if it is of classC2, and the equation is satisfied
everywhere inRk .

THEOREM 3. AssumeL is continuous and satisfies Assumption2(i), (iii)
and(iv). Then there exists a classical solutionf ∈ C

2,�
pol (R

k) to (41), (42),and this

solution is unique inC2
pol(R

k). Moreover, the valueV is equal tof . Furthermore,

there exists a Markov control policy which is optimal for allx ∈ Rk .

PROOF. We first consider equation (41) on a smooth open bounded connected
domain�, satisfying an exterior sphere condition, with boundary conditions

f (x) = V (x), x ∈ ∂�.(43)

The key is a result from [16] regarding existence of classical solutions in bounded
domains, with merely continuous boundary conditions. To use this result, we verify
the following two conditions:

(i) |H(x,p)| ≤ c(1+ ‖p‖) for x ∈ �, wherec does not depend onx or p.
(ii) H(x,p) ∈ Cε(� × Rk), someε ∈ (0,1).
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Item (i) is immediate from the local boundedness ofb(x,u) and L(x,u).
Next we show that item (ii) holds. Forδ > 0, let v be such thatH(y,q) ≥
b(y, v) · q + L(y, v) − δ. Write

H(x,p) − H(y,q) ≤ b(x, v) · p + L(x, v) − b(y, v) · q − L(y, v) + δ.

Using the Hölder property ofL in x uniformly for (x, v) ∈ � × S
k , and the

Lipschitz property ofb in x, uniformly in (x, v),

H(x,p) − H(y,q) ≤ c‖p − q‖ + c‖p‖‖x − y‖ + c‖x − y‖� + δ.

Sinceδ > 0 is arbitrary, it can be dropped. This shows thatH is Hölder continuous
with exponent�, uniformly over compact subsets of� × Rk. Hence (ii) holds.

Defining for (x, z,p) ∈ � × R × Rk , A(x, z,p) = (1/2)r2p, B(x, z,p) =
H(x,p) − γ z, one can write (41) in divergence form as

divA(x,f,Df ) + B(x,f,Df ) = 0.

The hypotheses of Theorem 15.19 of [16] regarding the coefficientsA andB hold
in view of (i) and (ii). Indeed,B is Hölder continuous of exponent�, uniformly
on compact subsets of� × R × Rk . Moreover, withτ = 0, ν(z) = (1/2)mini r

2
i ,

µ(z) = c(1 + ‖z‖), α = 2, b1 = 0 anda1 = 0, one checks that the conditions
(15.59), (15.64), (15.66) and (10.23) of [16] are satisfied. Theorem 15.19 of [16]
therefore applies. [We comment that there is a typo in the statement of the
conditions of the theorem in [16]: the reference should be to condition (15.59)
instead of (15.60).] It states that there exists a solution to (41) inC2,�(�) ∩ C(�),
satisfying the continuous boundary condition (43). We denote this solution byf .

Let x ∈ �. Let π be any admissible system and letX be the controlled process
associated withx andπ . Let τ denote the first timeX hits∂�. Using Itô’s formula
for theC1,2(R+ × �) functione−γ tf (x), in conjunction with the inequality

Lf (y) + b(y,u) · Df (y) + L(y,u) − γf (y) ≥ 0, y ∈ �, u ∈ S
k,

satisfied byf , one obtains

f (x) ≤
∫ t∧τ

0
e−γ sL(Xs,us) ds

+ e−γ (t∧τ)f (Xt∧τ ) −
∫ t∧τ

0
e−γ sDf (Xs) · r dWs.

(44)

Taking expectation and then sendingt → ∞, using the monotone convergence
theorem as well as the bounded convergence theorem, we have withg(t, x) =
e−γ tV (x),

f (x) ≤ Eπ
x

[∫ τ

0
e−γ sL(Xs,us) ds + e−γ τV (Xτ )

]
= C�,g(x,π).

Taking the infimum overπ ∈ �, we have

f (x) ≤ V�,g(x) = V (x), x ∈ �,
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where the last equality follows from Proposition 5(iii).
In order to obtain the equalityf = V on �, we next show there exist optimal

Markov control policies for the control problem on�. Let

ϕ(x,u) = b(x,u) · Df (x) + L(x,u), x ∈ �,u ∈ S
k.(45)

Note thatϕ is continuous on� ×Sk . For eachx, consider the setUx �= ∅ of u ∈ Sk

for which

ϕ(x,u) = inf
v∈Sk

ϕ(x, v).

We show that there exists a measurable selection ofUx , namely there is a
measurable functionh from (�,B(�)) to (Sk,B(Sk)) with h(x) ∈ Ux , x ∈ �.

Let xn ∈ � and assume limn xn = x ∈ �. Let un be any sequence such that
un ∈ Uxn . We claim that any accumulation point ofun is in Ux , for if this is not
true, then by continuity ofϕ, there is a converging subsequenceum, converging
to ū, and there is âu such thatδ := ϕ(x, ū) − ϕ(x, û) > 0. Hence for allm large,
ϕ(xm,um) ≥ ϕ(x, û) + δ/2 ≥ ϕ(xm, û) + δ/4, contradictingum ∈ Uxm .

As a consequence, the assumptions of Corollary 10.3 in the Appendix of [10]
are satisfied, and it follows that there exists a measurable selectionh :� → S

k

of (Ux, x ∈ �).
We extendh to Rk in a measurable way so that it takes values inSk (but

is otherwise arbitrary). Clearly,x �→ b(x,h(x)) is measurable. Consider the
autonomous SDE

X(t) = x + rW(t) +
∫ t

0
b̂(Xs) ds,(46)

where b̂(y) agrees withb(y,h(y)) on �, and is set to zero off�. Then b̂ is
measurable and bounded onRk . By Proposition 5.3.6 of [25], there exists a weak
solution to this equation. That is, there exists a complete filtered probability space
on whichX is adapted andW is ak-dimensional Brownian motion, such that (46)
holds for t ≥ 0, a.s. On this probability space, consider the processus = h(Xs).
SinceX has continuous paths and is adapted, it is progressively measurable (see
Proposition 1.13 of [25]) and by measurability ofh, so isu. Denote byπ the
admissible system thus constructed. Then fors < τ , us ∈ UXs and

b(Xs,us) · Df (Xs) + L(Xs,us) = H
(
Xs,Df (Xs)

)
.

Hence

Lf (X) + b(Xs,us) · Df (Xs) + L(Xs,us) − γf (Xs) = 0, s < τ.

A use of Itô’s formula and the convergence theorems just as before now shows that

f (x) = Eπ
x

[∫ τ

0
e−γ sL(Xs,us) ds + e−γ τV (Xτ )

]
= C�,g(x,π), x ∈ �,
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with g as above. This, together with the principle of optimality, shows that
f ≥ V�,g = V on�. Summarizing,f = V on�.

In particular,V ∈ C2,�(�) and is a classical solution to the HJB equation.
� can now be taken arbitrarily large, and this shows thatV ∈ C2,�(Rk), and that
it satisfies the HJB equation onRk . In view of Proposition 5(i), it also satisfies the
polynomial growth condition. As a result, there exists a classical solution to (41)
in C2,�(Rk), again denoted byf , satisfying (42), and moreover,V = f .

It remains to show uniqueness withinC2
pol(R

k) and existence of optimal Markov
control policies for the problem onRk . Let f̄ ∈ C2

pol(R
k) be any solution to (41).

Then analogously to (44), we obtain

f̄ (x) ≤
∫ t

0
e−γ sL(Xs,us) ds + e−γ t f̄ (Xt ) −

∫ t

0
e−γ sDf̄ (Xs) · r dWs.

Taking expectation, sendingt → ∞, using the polynomial growth of̄f and the
moment bounds on‖Xt‖, one has that̄f (x) ≤ C(x,π), whereπ ∈ � is arbitrary.
Consequently,f̄ ≤ V onRd .

The proof of existence of optimal Markov policies as well as the inequality
V ≤ f̄ on Rk is completely analogous to that on�, where one replaces� by Rk

and uses again the polynomial growth condition off̄ . The weak existence of
solutions to (46) follows on noting that̂b satisfies a linear growth condition of
the form‖b̂(y)‖ ≤ x(1+ ‖y‖), y ∈ Rk , and using again Proposition 5.3.6 of [25].
HenceV = f̄ on Rk . We conclude thatf is the unique solution inC2

pol(R
k), that

V = f , and that there exists a Markov control policy, optimal for allx ∈ Rk . �

4. Asymptotic optimality. In this section we prove asymptotic optimality of
the proposed SCPs. As in the statement of Theorem 2, all SCPs are assumed
to be work conserving in this section. Recall from Section 2 that the processes
�n and �n represent the number of customers waiting in each queue, and,
respectively, the number of servers working on jobs of each class. Letun be an
Sk-valued process, determined as

un =
{

�n/(1 · Xn − n)+, 1 · Xn − n > 0,

u0, 1 · Xn − n ≤ 0,
(47)

whereu0 is some fixed, arbitrary element ofSk . As in the paragraph preceding
Assumption 2,un represents the fraction of customers of each class that are waiting
in the queues (whenever there are such customers). As a result one can determine
�̂n and�̂n from un andX̂n as�̂n = (1 · X̂n)+un and�̂n = X̂n − �̂n.

Throughout this section letf denote the uniqueC2
pol solution to (41)

(cf. Theorem 3). Let

Kn
t = b(X̂n

t , un
t ) · Df (X̂n

t ) + L(X̂n
t , un

t ) − H
(
X̂n

t ,Df (X̂n
t )

) ≥ 0.(48)
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A condition that plays a central role in the convergence proof is∫ ·

0
e−γ sKn

s ds ⇒ 0.(49)

THEOREM4. (i) Let Assumptions1–3hold. LetX̂0,n ∈ n−1/2Zk be a sequence
converging tox ∈ Rk . Let a sequence of work-conserving admissible SCPs be
given [namely, (19) holds], let X̂n be the corresponding normalized controlled
processes starting from̂X0,n and letun be given by(47).Then

lim inf
n→∞ E

∫ ∞
0

e−γ tL(X̂n
t , un

t ) dt ≥ V (x).

(ii) Assume, in addition, that (49) is satisfied. Then

lim sup
n→∞

E

∫ ∞
0

e−γ tL(X̂n
t , un

t ) dt ≤ V (x).

In what follows we prove Theorem 4. We treat both parts (i) and (ii) simulta-
neously. Whenever there is a reference to part (ii), we indicate explicitly that (49)
holds. It will be convenient to work with both representations (13) and (23) forX̂n

in this section. Denote

Yn
t =

∫ t

0
bn(X̂n

s , un
s ) ds, Zn

t =
∫ t

0
e−γ sL(X̂n

s , un
s ) ds.(50)

Let (F n
t ) be the filtration (9). Note that, by definition, the processesX̂n, �̂n, �̂n

are adapted toF n. Hence by (47) and (50), so are the processesun, Yn andZn.

LEMMA 2. Under Assumption3,

E(‖Ân‖∗
t )

mU ≤ c(1+ tmU /2), n ∈ N, t ∈ R+,

wherec does not depend onn or t .

PROOF. This is a consequence of Theorem 4 of [26], which, under the
assumptionE(Ǔi(1))mU < ∞, mU ≥ 2, states that

E sup
s≤t

∣∣n−1/2(An
i (ns) − nλis

)∣∣mU ≤ c(1+ tmU /2),(51)

where

Ai(t) = sup

{
m ≥ 0 :

m∑
j=1

Ǔi(j) ≤ t

}
, t ≥ 0,

andc does not depend onn or t . Indeed, by (2) and (3),An
i (t) = Ai(λ

n
i t). Let

C = supn[λn
i /(nλi)] and note thatC < ∞ by Assumption 1. Then

|Ân
i |∗t = sup

s≤t
n−1/2|Ai(λ

n
i s) − λn

i s|

≤ sup
s≤Ct

n−1/2|Ai(nλis) − nλis|.
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The lemma follows from (51). �

LEMMA 3. Under the assumptions of Theorem4(i), the processeŝXn satisfy
E‖X̂n(t)‖mU ≤ c(1+ ‖x‖m̄)(1+ tm̄), wherem̄ andc do not depend onn, x or t .

PROOF. Since we are assuming work conservation, (38) applies. Solving
for ϒn of (39), we obtain

ϒn
i (t) = X̂

0,n
i e−γ t + W̃n

i (t) − µn
i

∫ t

0
W̃n

i (s)e−µn
i (t−s) ds,

where

W̃n
i (t) = riŴ

n
i (t) + �n

i t.

Hence

‖X̂n
t ‖ ≤ c

[
1+ t2 + ‖X̂0,n‖ + ‖Ŵn

t ‖ +
∫ t

0
‖Ŵn

s ‖ds +
∫ t

0

∫ s

0
‖Ŵn

θ ‖dθ ds

]
.(52)

By (14), using�̄n
i (s) ≤ 1 and�̄n

i (s) ≤ ξn(s) := maxi[n−1X
0,n
i + n−1An

i (s)],
‖Ŵn(t)‖ ≤ ‖Ân(t)‖ + sup

s≤t
‖Ŝn(s)‖ + sup

s≤ξn(t)

‖R̂n(s)‖.(53)

Denotep = mU . Apply Burkholder’s inequality (cf. [33], page 175) to the (dis-
continuous) martingalêSn, denoting by[M] the quadratic variation processes
associated withM , and recalling that if a processM taking real values has sam-
ple paths of bounded variation, then[M](t) = M2

0 + ∑
0<s≤t (�Ms)

2. Denoting
by χn

i (t) a Poisson random variable with parameternµn
i t and using the conver-

genceµn
i → µi , we obtain

E sup
s≤t

|Ŝn
i (s)|p ≤ cE

([Ŝn
i ](t))p/2

= cn−p/2E
(
χn

i (t)
)p/2

≤ cpn−p/2(nµn
i t)

p/2

≤ ctp/2,

where c does not depend onn or t . Similarly, E sups≤t |R̂n
i (s)|p ≤ ctp/2.

Therefore, by the independence ofAn andRn and Assumption 3,

E sup
s≤ξn(t)

|R̂n
i (s)|p = E

{
E

[
sup

s≤ξn(t)

|R̂n
i (s)|p

∣∣∣ξn(t)

]}

≤ cE
(
ξn(t)

)p/2

≤ c(1+ tq),
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whereq does not depend onn or t . Lemma 2 and an application of Minkowski’s
inequality to (53) show that there ism not depending onn or t such that

E‖Ŵn(t)‖p ≤ c(1+ tm), t ≥ 0.(54)

The lemma now follows from (52).�

LEMMA 4. Let the assumptions of Theorem4(i) hold.

(i) (Ân, Ŝn, R̂n) ⇒ (A,S,R), whereA,S and R are independent Brownian
motions with zero drift and variance matricesdiag(λiC

2
U,i)i∈K , diag(µi)i∈K , and,

respectively, diag(θi)i∈K .
(ii) One has

(�̄n, �̄n) ⇒ (ρ,0) in
(
D(Rk)

)2(55)

[the process that is constantly(ρ,0)].
(iii) The sequence(X̂n, Y n,Zn, Ŵn) is tight [in (D(Rk))4].

PROOF. (i) By the assumption on the finite second moment and i.i.d. structure
of the interarrival times, and by Assumption 1, the results of [22] imply (i).

(ii) Since work conservation (19) is assumed, we can use (38). Note that
X̄n − ρ = n−1/2X̂n. By part (i), n−1/2Ŵn ⇒ 0. Also, n−1/2X̂0,n → 0. Hence
by Gronwall’s lemma,n−1/2 sups≤t ‖ϒn(s)‖ → 0 in distribution for anyt , and

thereforen−1/2ϒn ⇒ 0. As a result,n−1/2X̂n ⇒ 0, which implies thatX̄n ⇒ ρ.
Using1 ·ρ = 1 and1 · �̄n = (1 · X̄n −1)+, we have that1 · �̄n ⇒ 0. Now�̄n

i ⇒ 0
follows since�̄n

i ≥ 0. UsingX̄n = �̄n + �̄n, we have that̄�n ⇒ ρ.
(iii) By (i), Ân ⇒ A. By (i) and (ii) and a time change lemma (cf. [4]), it directly

follows thatŜn
i (

∫ ·
0 �̄n

i (s) ds) ⇒ Si(ρi ·). A use of (i), (ii) and a time change lemma

also shows that̂Rn
i (

∫ ·
0 �̄n

i (s) ds) ⇒ 0. Hence by (14),

Ŵn
i ⇒ r−1rW = W,(56)

whereW is a standardk-dimensional Brownian motion.
SinceŴn are relatively compact, they are tight. Hence by [4], Theorem 16.8,

for eacht , limm→∞ lim supn→∞ P (‖Ŵn‖t ≥ m) = 0. By (23) and the Lipschitz
property of the functionsx �→ bn(x,u), uniformly in x, u andn,

‖X̂n(t)‖ ≤ ‖X̂0,n‖ + ‖Ŵn(t)‖ + c

∫ t

0

(
1+ ‖X̂n(s)‖)

ds.

By Gronwall’s inequality, using the boundedness ofX̂n,0, n ∈ N, we have

‖X̂n‖t ≤ cect(1+ ‖Ŵn‖t ).(57)

This shows that, for eacht ,

lim
m→∞ lim sup

n→∞
P (‖X̂n‖t ≥ m) = 0.(58)
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Fix T . It follows from (23) that, for anys, t ∈ [0, T ] with s < t ,

‖X̂n(t) − X̂n(s)‖ ≤ ‖Ŵn(t) − Ŵn(s)‖ + c

∫ t

s

(
1+ ‖X̂n(s)‖)

ds

(59) ≤ ‖Ŵn(t) − Ŵn(s)‖ + c(t − s)(1+ ‖X̂n‖T ).

Recall the modulus of continuity defined forx ∈ D(Rk) restricted to[0, T ] (cf. [4],
page 171) as

w′
T (x, δ) = inf max

1≤i≤v
w

(
x, [ti−1, ti)

)
,

where the infimum is taken over all decompositions[ti−1, ti), 1≤ i ≤ v, of [0, T )

such thatti − ti−1 > δ for 1 ≤ i ≤ v. Here, forS ⊂ [0, T ),

w(x,S) = sup
s,t∈S

‖x(s) − x(t)‖.

By tightness ofŴn, Theorem 16.8 of [4] implies that, for eacht andε,

lim
δ→0

lim sup
n→∞

P
(
w′

t (Ŵ
n, δ) ≥ ε

) = 0.

Using (59), a similar statement follows for̂Xn, namely that, for eacht ≤ T andε,

lim
δ→0

lim sup
n→∞

P
(
w′

t (X̂
n, δ) ≥ ε

) = 0.(60)

By (59) and (60), and sinceT is arbitrary, the tightness of̂Xn follows from
Theorem 16.8 of [4].

Noting that‖Yn(t)‖ ≤ ct (1 + ‖X̂n‖t ), and‖Zn(t)‖ ≤ ct (1 + ‖X̂n‖m
t ) (m of

the L), and that fors, t ≤ T , ‖Yn(t) − Yn(s)‖ ≤ c|t − s|(1 + ‖X̂n‖T ) and
‖Zn(t) − Zn(s)‖ ≤ c|t − s|(1 + ‖X̂n‖m

T ), the tightness ofYn and ofZn follows
from (58) using again Theorem 16.8 of [4].�

We use the following (very special case of a) result of Kurtz and Protter [28].
Let (Ft ) be a filtration. A cadlag,(Ft )-adapted processV is a semimartingale
if V = M + N , where M is an (Ft )-local martingale, and the paths ofN
are of bounded variation over finite time intervals. AnRk-valued process is an
(Ft )-semimartingale if each component is a semimartingale. Write

∫
U dV for∫ ·

0 U(s−) · dV (s). A cadlag processV has bounded jumps if there is a constantc

such that‖V (s) − V (s−)‖ ≤ c, s ∈ (0,∞), a.s. Denote by[M] the quadratic
variation process associated withM , and by Tt (N) the total variation ofN
over[0, t].

LEMMA 5. For eachn, let (Un,V n) be an(F n
t )-adapted process with sample

paths inD((Rk)2) and letV n be an(F n
t )-semimartingale with bounded jumps.



SCHEDULING IN HEAVY TRAFFIC 1117

Let V n = Mn + Nn be a decomposition ofV n into an(F n
t )-local martingale and

a process with finite variation. Suppose

for eacht > 0, sup
n

E
[[Mn]t + Tt (N

n)
]
< ∞.(61)

If (Un,V n) ⇒ (U,V ) in the Skorohod topology onD((Rk)2), then V is a
semimartingale with respect to a filtration to whichU and V are adapted, and
(Un,V n,

∫
Un dV n) ⇒ (U,V,

∫
U dV ) in the Skorohod topology onD((Rk)3).

PROOF. The proof follows from Theorem 2.2 of [28] on taking, forα > 0,
τα
n = α + 1, noting thatV δ

n = Vn if δ is a fixed large constant.�

LEMMA 6. Let the assumptions of Theorem4(i) hold. Denote by(X,Y,Z,W)

a limit point of (X̂n, Y n,Zn, Ŵn) along a subsequence. Let (Ft) denote the
filtration generated by(X,Y,W). ThenW is an (Ft )-standard Brownian motion,
X, Y and Z have continuous sample paths, and Y has sample paths of
bounded variation over finite time intervals. Moreover,

∫
e−γ sDf (X̂n

s ) · dY n
s ⇒∫

e−γ sDf (Xs) · dYs along the subsequence, where f is the solution to(41).

PROOF. The processesY andZ have continuous sample paths sinceYn and
Zn do (see Theorem 3.10.2(a) of [10]). SincêXn = X̂0,n + rŴ n + Yn, and
Ŵn converges in distribution to a Brownian motion [cf. (56)],X = x + rW + Y

has continuous sample paths. To see thatY has sample paths of bounded
variation, writeYn = Yn,+ − Yn,−, whereY

n,+
i (t) = ∫ t

0(Ẏ n
i (s))+ ds, Y

n,−
i (t) =∫ t

0(Ẏ n
i (s))− ds. By definition (50) ofYn

t and (24) ofbn,

Yn,+(t) ∨ Yn,−(t) ≤ c

∫ t

0
(1+ ‖X̂n

s ‖) ds,(
Yn,+(t) − Yn,+(s)

) ∨ (
Yn,−(t) − Yn,−(s)

) ≤ c|t − s|(1+ ‖X̂n‖t ),

(62)

where c does not depend ont, n. Thus it follows from the tightness of̂Xn

that (Y n,+, Y n,−) is tight. Let (Y+, Y−) denote any subsequential limit point
in (D(Rk))2. SinceYn,+ andYn,− have continuous sample paths, so doY+ and
Y−, and thereforeY = Y+ − Y−. SinceY+ andY− have nondecreasing sample
paths,Y has sample paths of bounded variation over[0, t] for anyt .

Next we apply Lemma 5 withUn = e−γ tDf (X̂n(t)), V n = Yn, and(F n
t ) =

(F n
t ) of (9). By Definition 2 and the definition ofYn, clearly X̂n and Yn

are adapted to(F n
t ). We decomposeYn = Mn + Nn as Mn = 0, Nn = Yn.

By (62), and Lemma 3, (61) holds. By the continuous mapping theorem,
(e−γ tDf (X̂n(t)), Y n(t)) converges to(e−γ tDf (X(t)), Y (t)) in the Skorohod
topology on (D(Rk))2. By continuity of the sample paths ofYn, it follows
that the convergence in fact holds in the Skorohod topology onD((Rk)2) (see
Proposition 6.3.2 of [10]). As a result of Lemma 5,

∫
e−γ tDf (X̂n(t)) · dY n(t) ⇒∫

e−γ tDf (X(t)) · dY (t).
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It was shown in the proof of Lemma 4 [cf. (56)] thatŴn converges to a standard
Brownian motion. To see thatW is in fact an(Ft )-Brownian motion, note that by
definition it is adapted to(Ft). It remains to show that, for eacht , Ft is independent
of σ {Wt+u −Wt :u > 0}. Fix t ≥ 0,u ≥ 0 and 0≤ s ≤ t . Writeαn = (X̂n

s , Y n
s , Ŵ n

s )

andα = (Xs,Ys,Ws). By (14), using the notation (8), and denoting

S̃n
i = Ŝn

i

(
n−1T n

i (t)
) − Ŝn

i

(
n−1T n

i (t + u)
)
,

R̃n
i = R̂n

i

(
n−1 ◦

T n
i (t)

) − R̂n
i

(
n−1 ◦

T n
i (t + u)

)
,

we have

ri
(
Ŵn

i (t + u) − Ŵn
i (t)

) = Ân
i (t + u) − Ân

i (t) − S̃n
i − R̃n

i

= riβ
n
i + δn

i ,

where

riβ
n
i = Ân

i

(
τn
i (t) + u

) − Ân
i

(
τn
i (t)

) − S̃n
i − R̃n

i

and

δn
i = Ân

i (t + u) − Ân
i (t) − Ân

i

(
τn
i (t) + u

) + Ân
i

(
τn
i (t)

)
.

Let f : (Rk)3 → R andg :Rk → R be bounded continuous. By (9) and (10),βn is
measurable onGn

t andαn is measurable onF n
t . By the admissibility assumption

and Definition 2,

Ef (αn)g(βn) = Ef (αn)Eg(βn).(63)

Sinceτn
i (t) converges in distribution to zero, and̂An

i converges in distribution to a
continuous process, it follows by a random change of time lemma ([4], page 151)
thatδn

i converges in distribution to zero. As a result,βn converges in distribution
to Wt+u − Wt . Using (63), the convergence(X̂n, Y n, Ŵ n) ⇒ (X,Y,W) and the
continuous mapping theorem, it follows that

Ef (α)g(Wt+u − Wt) = Ef (α)Eg(Wt+u − Wt).(64)

By approximating indicator functions of closed sets of(Rk)3 (and resp.Rk) by
continuous functionsf (resp.g), it follows that (64) holds whenf and g are
replaced by such indicator functions. Sinceu ≥ 0 and s ≤ t are arbitrary, an
application of the Dynkin class theorem (Theorem 1.4.2 of [9]) shows thatFt is
independent ofσ {Wt+u −Wt :u > 0}. Since alsot is arbitrary, it follows thatW is
an(Ft )-Brownian motion. �

PROOF OF THEOREM 4. We first prove part (ii). Recall that (49) holds.
Let (X,Y,Z,W) be a weak limit point of(X̂n, Y n,Zn, Ŵn) and let(Ft) be the
filtration generated by(X,Y,W). By Lemma 6,Xt = x+rWt +Yt , W is a standard
(Ft )-Brownian motion and the sample paths ofY have bounded variation over
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finite time intervals. Just as before, an application of Itô’s formula and the fact that
f satisfies the HJB equation (41) give

e−γ tf (Xt ) = f (x) +
∫ t

0
e−γ sDf (Xs) · r dWs

(65)
+

∫ t

0
e−γ sDf (Xs) · dYs −

∫ t

0
e−γ sH

(
Xs,Df (Xs)

)
ds.

By (48), ∫ t

0
e−γ sKn

s ds =
∫ t

0
e−γ sDf (X̂n

s ) · dY n
s

+ en(t) + Zn
t −

∫ t

0
e−γ sH

(
X̂n

s ,Df (X̂n
s )

)
ds,

(66)

where

en(t) =
∫ t

0
e−γ s(b(X̂n

s , un
s ) − bn(X̂n

s , un
s )

) · Df (X̂n
s ) ds.

By definition of the functionsb andbn and by Assumption 1,

‖b(X̂n
s , un

s ) − bn(X̂n
s , un

s )‖ ≤ εn(1+ ‖X̂n
s ‖),

where εn → 0. Therefore, Lemma 3 and the continuous mapping theorem
imply that en ⇒ 0. We get from (49) and Lemma 6, using continuity ofx �→
H(x,Df (x)),∫ t

0
e−γ sDf (Xs) · dYs + Zt −

∫ t

0
e−γ sH

(
Xs,Df (Xs)

)
ds = 0.(67)

Combining (65) and (67),

0 ≤ e−γ tf (Xt ) = f (x) +
∫ t

0
e−γ sDf (Xs) · r dWs − Zt .

Hence

∀ t, EZt ≤ f (x).(68)

Fix an arbitraryδ > 0. By Lemma 3 and Assumption 2, there isT such that

E

∫ ∞
T

e−γ sL(X̂n
s , un

s ) ds ≤ δ(69)

for all n. SinceZn ⇒ Z andZ has continuous sample paths,Zn
T converges in

distribution toZT . By Jensen’s inequality, Assumption 2 and Lemma 3,

E(Zn
T )1+ε/mL ≤ cE

∫ T

0
e−γ (1+ε/mL)s(1+ ‖X̂n

s ‖mL+ε) ds

(70) ≤ c,
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wherec does not depend onn. HenceZn
T , n ∈ N, are uniformly integrable, and

one hasEZn
T → EZT asn → ∞. By (68) and (69), we therefore have that

lim sup
n→∞

E

∫ ∞
0

e−γ sL(X̂n
s , un

s ) ds ≤ f (x) + δ.

Sinceδ > 0 is arbitrary, it can be dropped, and part (ii) of the theorem follows.
Next we prove part (i). Arguing as in part (ii) but usingKn

t ≥ 0 instead of (49),
we have that (65) holds and∫ t

0
e−γ sDf (Xs) · dYs + Zt −

∫ t

0
e−γ sH

(
Xs,Df (Xs)

)
ds ≥ 0.

Hence

e−γ tf (Xt ) ≥ f (x) +
∫ t

0
e−γ sDf (Xs) · r dWs − Zt .(71)

By Proposition 5 and Lemma 3,

Ef (X̂n
t ) ≤ c(1+ tmL),

for t ≥ 0 andn ∈ N. Since for eacht , f (X̂n
t ) converges in distribution tof (Xt),

andf (X̂n
t ) are uniformly integrable [arguing as in (70), using the growth condition

of Proposition 5(i)], one hasEf (Xt) ≤ c(1+ tmL), where againc does not depend
on t . We therefore have, from (71),

EZt ≥ f (x) − α(t),

whereα(t) → 0 ast → ∞. Note that as in part (ii), givenδ > 0, (69) holds for
all T large enough, and that, for eachT , Zn

T , n ∈ N, are uniformly integrable.
Hence

lim inf
n→∞ E

∫ ∞
0

L(X̂n
s , un

s ) ds ≥ EZT − δ ≥ f (x) − α(T ) − δ.

Part (i) of the theorem now follows on takingT → ∞ andδ → 0. �

PROOF OFTHEOREM 2. We only need to show that the proposed SCPs satisfy
the conditions of Theorem 4(ii). The work-conservation condition (19) holds for
both of the proposed SCPs, by definition. To conclude parts (i) and (ii), it remains
to show that in both cases (49) holds. Part (iii) is treated thereafter.

(i) The P-SCP. Fix T . Let�n denote the event that (31) is met for allt ∈ [0, T ].
Recall that on�n, the P-SCP sets

�(t) = �
[(

1 · Xn(t) − n
)+

h
(
X̂n(t)

)]
, t ∈ [0, T ].

Let

Un = (1 · X̂n)+h(X̂n), V n = �̂n − Un.(72)
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Recall thath satisfies

b
(
x,h(x)

) · Df (x) + L
(
x,h(x)

) = H
(
x,Df (x)

)
, x ∈ R

k.

Note that forx with 1 · x ≤ 0, b(x,u) is independent ofu [see (26)] and so is
L(x,u) = L̃((1 · x)+u, x − (1 · x)+u) [see (21)]. Hence

inf
u∈Sk

[b(x,u) · p + L(x,u)] = b(x, v) · p + L(x, v), v ∈ S
k, 1 · x ≤ 0.(73)

For t such that1 · X̂n
t ≤ 0, (73) and (48) imply thatKn

t = 0. Next considert such
that1 · X̂n

t > 0. We have

un
t = �̂n(t)(1 · X̂n

t )−1 = h(X̂n
t ) + V n

t (1 · X̂n
t )−1.

By assumption,̃L is uniformly continuous on compacts. For eachκ , let ακ(δ) be
such thatακ(δ) ↓ 0 as δ ↓ 0, and |L̃(φ,ψ) − L̃(φ′,ψ ′)| ≤ ακ(δ) whenever
‖φ‖,‖φ′‖,‖ψ‖,‖ψ ′‖ ≤ κ , and‖φ −φ′‖∨‖ψ −ψ ′‖ ≤ δ. Then using (21), writing
ξn
t = 1 · X̂n

t , the following holds on the event�n,κ := �n ∩ {‖�̂n‖∗
T + ‖�̂n‖∗

T +
‖X̂n‖∗

T ≤ κ}:
|Kn

t | = ∣∣(b(X̂n
t , un

t ) − b
(
X̂n

t , h(X̂n
t )

)) · Df (X̂n
t )

+ L̃
(
(ξn

t )+un
t , X̂n

t − (ξn
t )+un

t

)
(74)

− L̃
(
(ξn

t )+h(X̂n
t ), X̂n

t − (ξn
t )+h(X̂n

t )
)∣∣

≤ c‖V n
t ‖‖Df (X̂n

t )‖ + ακ(c‖V n
t ‖).

By (30), ‖V n
t ‖ ≤ 2kn−1/2. As a result,|Kn|∗T ≤ εn on �n,κ for someεn → 0.

The events�n have probability tending to 1 asn → ∞, as follows from the
convergenceX̄n ⇒ ρ shown in Lemma 4. The tightness ofX̂n (see Lemma 4),
(19) and the fact that̂�n

t ∈ Rk+ imply that

lim
κ→∞ lim inf

n→∞ P (�n,κ) = 1.(75)

Therefore|Kn|∗T converges to zero in distribution. SinceT is arbitrary,Kn ⇒ 0,
and (49) holds.

(ii) The N-SCP(i). Fix T . Let Un andV n be defined as in (72). A review of
the previous paragraph shows that, replacing throughout�n by �, (74) and (75)
still hold. Fix ε0 > 0. We next estimate, for anyε > 0,

lim sup
n

P

(
sup

t∈[ε0,T ]
‖V n(t)‖ > 8kε

)
.
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Fix i ∈ K . If either V n
i (t) < 0 or �̂n

i (t) = 0 holds for allt ∈ [s, r), then within
this time interval, the SCP does not route any class-i customer to the service pool.
Therefore by (4), fort ∈ [s, r),

�̂n
i (t) = �̂n

i (s) + n−1/2An
i (s, t) − n−1/2�n

i (s, t),(76)

where we write

An
i (s, t) = An

i (t) − An
i (s),

�n
i (s, t) = Rn

i

(∫ t

0
�n

i (z) dz

)
− Rn

i

(∫ s

0
�n

i (z) dz

)
.

Givenε > 0,

P

(
inf

t∈[ε0,T ]V
n
i (t) < −4ε

)
≤ P

(
(�n,κ)c

) + P (�
n,k
1 ) + P (�

n,κ
2 ),(77)

where

�
n,κ
1 = �n,κ ∩

{
∃ ε0 ≤ s ≤ r ≤ T :V n

i (s) ≥ −ε,

sup
t∈[s,r)

V n
i (t) ≤ −ε, V n

i (r) ≤ −4ε

}
,

�
n,κ
2 = �n,κ ∩

{
sup

t∈[0,ε0]
V n

i (t) < −ε

}
.

Using the local Hölder property ofh on X, for any κ , there arecκ > 0 and
pκ ∈ (0,1] such that, on�n,κ ,

|Un
i (t) − Un

i (s)| ≤ cκ‖X̂n(t) − X̂n(s)‖pκ

+ (ε/4)1{1·X̂n(s)<ε/8} + (ε/4)1{1·X̂n(t)<ε/8}
≤ cκ‖X̂n(t) − X̂n(s)‖pκ + ε/2.

Writing

n−1/2�n
i (s, t)

= R̂n
i

(∫ t

0
�̄n

i (z) dz

)
− R̂n

i

(∫ s

0
�̄n

i (z) dz

)
+ n1/2θi

∫ t

s
�̄n

i (z) dz,

and using‖�̄n‖∗
T ≤ κn−1/2 on�n,κ , we have

n−1/2|�n
i (s, t)| ≤ 2‖R̂n‖∗

κT n−1/2 + cκ(t − s).

Hence on�n,κ
1 , for t ∈ [s, r),

V n
i (t) = V n

i (s) + (
�̂n

i (t) − �̂n
i (s)

) − (
Un

i (t) − Un
i (s)

)
≥ −ε − ε/2+ n−1/2An

i (s, t)

− cκ‖X̂n(t) − X̂n(s)‖pκ − 2‖R̂n‖∗
κT n−1/2 − cκ(t − s).
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On�
n,κ
1 we also haveV n

i (r) ≤ −4ε. Let β > 0 and writeβ̃ = β + cκ . Therefore

P (�
n,κ
1 ) ≤ P (�

n,κ
1,1) + P (�

n,κ
1,2) + P (�

n,κ
1,3),(78)

where

�
n,κ
1,1 = {∃0 ≤ s ≤ r ≤ T :n−1/2An(s, r) ≤ −ε + β̃(r − s)},

�
n,κ
1,2 = {∃0 ≤ s ≤ r ≤ T : cκ‖X̂n(r) − X̂n(s)‖pκ ≥ ε + β(r − s)},

�
n,κ
1,3 = {2‖R̂n‖∗

κT n−1/2 ≥ ε/2}.
Using the monotonicity of the processesAn

i and the uniform convergence of
n−1An

i on [0, T ] to Ãi(t) = λit , as follows from the convergencêAn ⇒ A [see
Lemma 4(i)],

lim sup
n

P (�
n,κ
1,1)

≤ lim sup
n

P
(∃0≤ s ≤ r ≤ T : r − s ≥ ε/β̃, n−1An(s, r) ≤ n−1/2β̃T

)
(79)

≤ lim sup
n

P

(
sup
t≤T

‖n−1An(t) − λit‖ ≥ c

)

= 0.

Also,

P (�
n,κ
1,2) ≤ P

(∃0 ≤ s ≤ r ≤ T, r − s > β−1/2 : cκ‖X̂n(r) − X̂n(s)‖pκ ≥ β1/2)
+ P

(∃0 ≤ s ≤ r ≤ T, r − s ≤ β−1/2 : cκ‖X̂n(r) − X̂n(s)‖pκ ≥ ε
)

≤ P
(
2c

p−1
κ

κ ‖X̂n‖∗
T ≥ β1/(2pκ)

) + P
(
w

(
X̂n|[0,T ], β−1/2) ≥ (ε/cκ)

p−1
κ

)
.

By Lemma 6, the processeŝXn are tight and converge along subsequences to
processes with continuous sample paths. Therefore

lim
β→∞ lim sup

n
P (�

n,κ
1,2) = 0.(80)

The convergence of̂Rn to a Brownian motion (Lemma 4) implies

lim
n

P (�
n,κ
1,3) = 0.(81)

By a similar argument, on�n,κ
2 ,

V n
i (0) + n−1/2An

i (ε0) − cκ‖X̂n(ε0) − X̂n(0)‖pκ − ε/2− 2‖R̂n‖∗
κT n−1/2 − cκε0

≤ V n
i (ε0) ≤ −ε.
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Hence, for some constantc′
κ ,

lim
n

P (�
n,κ
2 ) ≤ lim

n
P

(
n−1An

i (ε0) ≤ c′
κn−1/2 + 2n−1/2‖R̂n‖∗

κT n−1/2

)
= 0,

(82)

where the last equality follows from the convergence in distribution ofn−1An
i (ε0)

to λiε0 and ofR̂n to a Brownian motion. Combining (77)–(82) shows that

lim sup
n

P

(
inf

t∈[ε0,T ]V
n
i (t) < −4ε

)
≤ lim sup

n
P

(
(�n,κ)c

)
.

Note that by (19),1 · V n = 0. Hence‖V n‖ = 2(1 · V n)−. Sincei ∈ K is arbitrary,
it follows that

lim sup
n

P

(
sup

t∈[ε0,T ]
‖V n(t)‖ > 8kε

)
≤ lim sup

n
P

(
(�n,κ)c

)
.

Combining this with (74) (assuming without loss that, for eachκ , ακ is
bounded), (75) and the fact thatε, ε0 > 0 andT are arbitrary, it follows that∫ ·
0 e−γ sKn

s ds ⇒ 0. Therefore (49) holds and this concludes the proof that both
SCPs satisfy the conditions of Theorem 4(i). Parts (i) and (ii) of Theorem 2
follows.

(iii) The N-SCP(ii) . To prove this part, it suffices to show that, for eachδ,
there is a locally Lipschitzh′ such that the N-SCP (i) applied toh′ gives

lim sup
n→∞

E

∫ ∞
0

e−γ tL(X̂n
t , un

t ) dt ≤ V (x) + δ.(83)

Recall from the proof of Theorem 3 thath :Rk → Sk is a function satisfying

ϕ
(
x,h(x)

) = inf
v∈Sk

ϕ(x, v) =: ϕ∗(x),

where

ϕ(x,u) = b(x,u) · Df (x) + L(x,u).

For eachε > 0, lethε :Rk → Sk be a function defined as

hε(x) =
∑

y d(x, y, ε)h(y)∑
y d(x, y, ε)

,

where both sums extend overy ∈ εZk ∩ B(x, εk1/2), andd(x, y, ε) denotes the
Euclidean distance fromy to the boundary∂B(x, εk1/2). It is easy to check
that hε is locally Lipschitz. Write d̃(x, y, ε) = d(x, y, ε)/

∑
y′ d(x, y′, ε). By

assumption,u �→ L(x,u) is convex, and sinceu �→ b(x,u) is affine,u �→ ϕ(x,u)
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is convex. Using Jensen’s inequality, uniform continuity of(x,u) �→ ϕ(x,u) and
of x �→ ϕ∗(x) on compacts, for eachδ > 0, there isε such that

ϕ
(
x,hε(x)

) = ϕ

(
x,

∑
y

d̃(x, y, ε)h(y)

)

≤ ∑
y

d̃(x, y, ε)ϕ
(
x,h(y)

)

≤ ∑
y

d̃(x, y, ε)ϕ
(
y,h(y)

) + δ/2

= ∑
y

d̃(x, y, ε)ϕ∗(y) + δ/2

≤ ϕ∗(x) + δ.

Everywhere in the above display, the sum extends overy ∈ εZk ∩ B(x, εk1/2).
A review of the proof of Theorems 2 and 4 shows that, upon applying N-SCP (i)
with hε , (83) holds. By taking an appropriate sequencehn = hεn , it is then
clear that N-SCP (ii) applied tohn admits the conclusion of Theorem 4, and
therefore (32). �

5. Further research.

5.1. Work-encouraging SCPs.We have restricted our analysis to work-
conserving SCPs. However, our results regarding asymptotic optimality amongall
admissible SCPs hold, in fact, under the additional condition that the cost functions
are work encouraging (cf. Definition 6). Recall that with each admissible SCP we
have associated a cost of the form [cf. (20)]

Cn = E

∫ ∞
0

e−γ t L̃
(
�̂n(t), �̂n(t)

)
dt.

DEFINITION 6. We say that the cost functioñL (or the corresponding cost
function L) is work encouragingif, for each n, the infimum of Cn over all
admissible SCPs is equal to that over all work-conserving admissible SCPs.

COROLLARY 1. Let all assumptions of Theorem2 apply, except the assump-
tion that the SCPs are work conserving.Then the conclusions of Theorem2prevail,
given that the cost functioñL is work encouraging.

Although in many cases it is intuitively clear that work conservation is optimal
(for P-SCPs, not for N-SCPs), in the presence of abandonments, and in the
generality of our setting, this turns out to be nontrivial to prove. We intend to
treat the issue in a future work. We end this section with a few examples that are
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intended to exhibit some of the subtleties of this point, and to indicate how it can
be dealt with. The arguments should be considered as proof outlines only.

First, consider the expected discounted number of customers of a particular
class, say class 1, present in the system. Ifθ1 ≤ µ1, then class-1 customers leave
the system faster when they are served than when they are in the queue. Hence a
good policy will attempt to serve these customers as much as possible, and will be
work conserving. On the other hand, ifθi > µi , then customers leave the system by
abandoning the queue faster than by being served, and as a result, a policy which
minimizes the cost will not schedule any services at all.

More subtle are the costs associated with queue length and abandonment. We
argue heuristically that ifθ1 > µ1, then there are cost functions�, nondecreasing
as a function of̂�i for eachi, for which work conservation is actually not optimal.
Suppose thatθ1 > µ1, and the cost is 0 for̂�1 ≤ c, and 1 for�̂1 > c, wherec > 0.
If �̂1 ≤ c, no cost is incurred, and customers leave faster if in the queue than if
in service. Thus an SCP that keeps customers in the queue would do better than a
work-conserving SCP.

Consider the case where� is linear in �̂i , andθi,µi are arbitrary. We argue
that work-conserving policies are optimal. We use coupling. A sample path is
considered under an SCP that is not always work conserving. The coupling is used
to show that if the SCP is changed to be work conserving, the cost will be no higher
than for the original SCP. In view of the discussion on costs of abandonment, one
can use the relation between abandonment rate and expected queue length to obtain
the result. Consider a sample path under an SCP that leaves customers in the queue
when there are idle servers. Modify it by moving a customer into service. Keep
that customer in service until the earliest of: (i) it completes its service, (ii) its
“twin” (i.e., the customer in the original system that is in the queue) abandons, or
(iii) the original SCP needs to use the server. In cases (i) and (ii), the cost of the
modified SCP will be no larger. In case (iii), it is the same as the original. In the
case where there is a class for which the abandonment rate is zero, the relation
between abandonment and queue lengths cannot be used. However, this can be
treated similarly to the following paragraph.

Consider next the case where� is an increasing function of�i , for all i, with
θi ≤ µi for all i. Here, when a customer is moved into service, its service time is
coupled to the abandonment time of its twin: Pick an exponential random variable
with rateµi , and a Bernoulli random variable that is 1 with probabilityθi/µi . The
service time is the exponential random variable. If the Bernoulli random variable
is 1, then the abandonment occurs simultaneously; otherwise the original customer
does not abandon at that time and picks a new exponential random variable with
rateθi . Again, if the original SCP needs the server, the customer is moved out. It
can be seen that the cost of the modified SCP will be no larger than the original
one.
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5.2. Additional topics. The following is a list of research problems that are
suggested by the present study.

1. Nonlinear waiting costs: Nonlinear waiting costs are natural for quantifying
human costs of waiting [37, 39]. We believe that it is possible to reduce such
costs to nonlinear costs of queue lengths, and are planning to include this in
future work.

2. Alternative cost structures: Discounted costs are mathematically convenient.
Long-run average costs provide an alternative which is no less, perhaps
more, natural for call center applications. Their analysis, however, would be
mathematically more taxing.

3. Performance analysis in the QED regime: In the present study, we are not
analyzing the performance of our queueing system under the proposed SCPs. In
particular, one would like to confirm that the (discounted) probability of delay,
for each class, is nontrivial, as expected in the QED regime. Such analysis might
require numerical supplements, as in [21]. This could also shed further light on
qualitative features of our asymptotically optimal SCPs.

4. More general models: The model in Figure 1 is a beginning. Ultimately,
one would like to generalize it to the model surveyed in [38], which has
heterogeneous pools of servers with overlapping service skills. (See [14]
for interesting simulations of such models.) In conventional heavy traffic
(efficiency driven), a simple generalizedCµ control was proved asymptotically
optimal [30]. Here, only the problem of assigning servers who become idle is
relevant, since customers essentially never encounter an idle server upon arrival.
This same simplifying feature applies for our model, under work conservation.
But with heterogeneous pools of servers, and with a nontrivial fraction of
arrivals encountering idle servers (as expected in the QED regime), both the
assignment of servers to customers and the routing of arriving customers to
idle servers become significant. In a call center context, the problem of online
matching customers and servers is called skills-based routing; it is widely
acknowledged as the most important and difficult operational problem next to
staffing, to which we now turn.

5. Staffing insights: The staffing problem is to determine the least (optimal)
number of serversn that is required to conform to given performance standards.
In the QED regime,n ≈ R + β

√
R, whereR is the offered load andβ is a

scalar. The problem can thus be decomposed, as in [7], into two steps: first,
given a QED operation, determine the least (optimal) scalarβ; then, establish
that operating in the QED regime is indeed desirable (optimal). The staffing
problem becomes more interesting and far more difficult in a skills-based
routing environment. ([8] is the single paper on the subject that we are aware
of.)
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APPENDIX

PROOF OF PROPOSITION 2. Note that(x,u) �→ b(x,u) is continuous and
x �→ b(x,u) is Lipschitz uniformly inu. Considerbm, a function that agrees with
b on the ballB(0,m), uniformly Lipschitz and bounded. Then strong existence
and uniqueness for

Xm(t) = x + rW(t) +
∫ t

0
bm

(
Xm(s), u(s)

)
ds, 0≤ t < ∞,

holds by Theorem I.1.1 of [6]. Since‖Xm(t)‖ ≤ ‖x‖+c‖W(t)‖+c
∫ t
0 ‖Xm(s)‖ds,

one has‖Xm(t)‖ ≤ (‖x‖ + c‖W‖∗
t )(1 + ect ) by Gronwall’s lemma. Thus letting

τm = inf{t :‖Xm(t)‖ ≥ m}, one hasτm → ∞ a.s. ThereforeX(t) = limm Xm(t)

for all t defines a process that solves the equation (a strong solution). IfX andX̄

are both strong solutions, then, for everym, they both agree withXm on [0, τm].
Therefore they agree on[0,∞) a.s. �

PROOF OFLEMMA 1. Letn ∈ N andi ∈ K be fixed, and consider for eachs
theσ -fields

F̄s = σ
{
1{ ◦

T n
i (u)≤s},R

n
i (α) :u ∈ R+, α ≤ s

}
,

Ḡs = σ {Rn
i (β + γ ) − Rn

i (β) :β > s,γ > 0}.
We simplify notation by writingTu = ◦

T n
i (u) andR(u) = Rn

i (u).
For eacht ands, one has{Tt ≤ s} ∈ F̄s , and therefore, for eacht , Tt is a stopping

time on the filtration(F̄s). We next show thatMt := R(t) − θi t is a martingale on
the filtration(F̄s); hence the lemma follows from the optional stopping theorem.
Indeed, it is clear thatMs is measurable on̄Fs for eachs. Moreover,Mr − Ms is
measurable on̄Gs for eachs andr ≥ s. It remains to show that̄Fs is independent
of Ḡs for eachs. Fix s. Fix δ, andu ≥ 0, 0< α < s < s + Kδ = β, γ > 0. Let

Hm = {
Tmδ ≤ s < T(m+1)δ

}
.

Note thatP (
⋃

m Hm) = 1. Let

H̄K,r = {Tr > s; Ṫ ≤ K on [0, r]}.
Let also

Ĥm,K = {Ṫ ≤ K, on [mδ, (m + 1)δ]}.
For measurable boundedf,g (denote byc a bound onfg),

Cf,g := E
[
f

(
1{Tu≤s},R(α)

)
g
(
R(β + γ ) − R(β)

)]

=
[r/δ]∑
m=0

E
[
1
Hm∩Ĥm,K

f
(
1{Tu≤s},R(α)

)
g
(
R(β + γ ) − R(β)

)] + e1,
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where |e1| ≤ cP (H̄ c
K,r). Under the eventHm ∩ Ĥm,K , Tmδ ≤ s ≤ T(m+1)δ ≤

s + Kδ = β. Denote�m = β − T(m+1)δ , and note that 0≤ �m ≤ Kδ under the
same event. Then

Cf,g =
[r/δ]∑
m=0

E
{
1
Hm∩Ĥm,K

f
(
1{Tu≤s},R(α)

)
g
(
R

(
T(m+1)δ + �m + γ

)

− R
(
T(m+1)δ + �m

))} + e1.

Let H̃K,δ denote the event that there are no jumps of the processR within
[s, s + Kδ] ∪ [s + γ, s + γ + Kδ]:

Cf,g =
[r/δ]∑
m=0

E
{
1
Hm∩Ĥm,K∩H̃K,δ

f
(
1{Tu≤s},R(α)

)
g
(
R

(
T(m+1)δ + γ

) − R
(
T(m+1)δ

))}
+ e1 + e2

=
[r/δ]∑
m=0

E
{
1
Hm∩Ĥm,K

f
(
1{Tu≤s},R(α)

)
g
(
R

(
T(m+1)δ + γ

) − R
(
T(m+1)δ

))}
+ e1 + e2 + e3,

where|e2|, |e3| ≤ cP (H̃ c
K,δ). Recall that by Definition 2(i),F n(t) andGn(t) are in-

dependent. Since underHm, α ≤ s ≤ T(m+1)δ, it follows that1
Hm∩Ĥm,K

f (1{Tu≤s},
R(α)) ∈ F n((m+1)δ). Also,R(T(m+1)δ + γ )−R(T(m+1)δ) ∈ Gn((m+1)δ), and,
using Definition 2(ii), it has the same law asR(γ ). Hence

Cf,g = Eg(R(γ ))

[r/δ]∑
m=0

E
{
1
Hm∩Ĥm,K

f
(
1{Tu≤s},R(α)

)} + e1 + e2 + e3

= Eg(R(γ ))

∞∑
m=0

E
{
1Hmf

(
1{Tu≤s},R(α)

)} + e1 + e2 + e3 + e4

= Eg(R(γ ))E
{
f

(
1{Tu≤s},R(α)

)} + e1 + e2 + e3 + e4,

where |e4| ≤ cP (H̄ c
K,r). It follows from Lemma 2 thatE‖�n‖∗

r < ∞. Since
Ṫ = �n

i , one has that

lim
r→∞ lim inf

K→∞ P (H̄K,r) = 1.

Note also thatP (H̃ c
K,δ) ≤ c1Kδ for some constantc1. Takingδ → 0 andK → ∞

such thatKδ → 0, and then takingr → ∞, we conclude that

E
[
f

(
1{Tu≤s},R(α)

)
g
(
R(s + γ ) − R(s)

)]
= E

[
f

(
1{Tu≤s},R(α)

)]
E[g(R(γ ))]

= E
[
f

(
1{Tu≤s},R(α)

)]
E

[
g
(
R(s + γ ) − R(s)

)]
.
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Sinceα, s andγ are arbitrary (subject to 0< α < s < s + γ ), and so aref,g, it
follows thatF̄s andḠs are independent for anys. The result follows. �

PROOF OFPROPOSITION1 (SKETCH).
Existence and uniqueness for the system (7) and (11) are easily obtained by

induction on the jump times of the processesAn
i , Rn

i andSn
i . By the assumptions

on the functionF , the constraints (6) are met. We next need to show that
Definition 2 holds. For part (i) of the definition it suffices to show that, for any
bounded measurableg,

E
[
g
(
An

i

(
τn
i (t) + u

) − An
i

(
τn
i (t)

)
, Sn

i

(
T n

i (t) + u
) − Sn

i

(
T n

i (t)
)
,

Rn
i

( ◦
T n

i (t) + u
) − Rn

i

( ◦
T n

i (t)
); i ∈ K

)∣∣F n
t

]
(84)

= Eg
(
An

i (u), Sn
i (u),Rn

i (u); i ∈ K
)

whereu > 0, and for part (ii) is suffices to show that

E
[
g
(
Sn

i

(
T n

i (t) + uj

) − Sn
i

(
T n

i (t)
)
,

Rn
i

( ◦
T n

i (t) + uj

) − Rn
i

( ◦
T n

i (t)
); i ∈ K, j ≥ 1

)∣∣F n
t

]
(85)

= Eg
(
Sn

i (uj ),R
n
i (uj ); i ∈ K, j ≥ 1

)
,

where 0< u1 < u2 < · · · . In what follows we suppressn from the notation, fix
i andt and, denotingT i

t = T n
i (t), show that, foru > v > 0,

E
[
g
(
Si(T

i
t + u) − Si(T

i
t + v)

)∣∣Ft

] = Eg
(
Si(u − v)

)
,(86)

E
[
g
(
Ai(τi(t) + u

) − Ai

(
τi(t) + v

))∣∣Ft

] = Eg
(
Ai(u − v)

)
.(87)

Since the notation is quite complicated, we do not give the full details on proving
(84), (85), but only comment that the argument is similar to the one we use in
proving (86) and (87).

To show (86), forδ > 0, letHm = {T i
t ∈ [mδ, (m + 1)δ)} and

H̃m = {Si has no jumps on[mδ + v, (m + 1)δ + v] ∪ [mδ + u, (m + 1)δ + u]}.
Then

E
[
g
(
Si(T

i
t + u) − Si(T

i
t + v)

)∣∣Ft

]
=

∞∑
m=0

E
[
1Hmg

(
Si(T

i
t + u) − Si(T

i
t + v)

)∣∣Ft

]

=
∞∑

m=0

E
[
1Hmg

(
Si

(
(m + 1)δ + u

) − Si

(
(m + 1)δ + v

))∣∣Ft

] + e1

=
∞∑

m=0

1HmE
[
g
(
Si

(
(m + 1)δ + u

) − Si

(
(m + 1)δ + v

))∣∣Ft

] + e1,
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where

|e1| ≤ c

∞∑
m=0

P (Hm ∩ H̃ c
m|Ft ).(88)

Note that on the eventT i
t ≤ η, the quantities(X(s),�(s),�(s); s ≤ t) only

depend onA, R, Sj , j �= i, andSi(t
′), t ′ ≤ η. SinceSi is Poisson and independent

of the processesA, R andSj , j �= i, using the definition ofFt andHm we obtain
that

E
[
g
(
Si(T

i
t + u) − Si(T

i
t )

)∣∣Ft

]
=

∞∑
m=0

1HmEg
(
Si

(
(m + 1)δ + u

) − Si

(
(m + 1)δ

)) + e1

= Eg
(
Si(u)

) + e1.

By (88), and sinceH̃m depends only onSi(s); s ≥ mδ + v,

|e1| ≤ c

∞∑
m=0

1HmP (H̃ c
m) ≤ cδ,

wherec does not depend onδ ∈ (0,1). As a result, (86) holds. An equivalent of (86)
for the processesRi is proved analogously. Equality (87) is proved analogously,
where one conditions onFt ∨ σ {τi(t)} and uses the fact thatAi is a renewal
process. �

PROOF OFPROPOSITION 3. Throughout, fix a compact subsetA of X, and
let c denote a positive constant that depends only onA, and whose value may
change from location to location. Recall from the proof of Theorem 3 that, for
eachx ∈ R

k , h(x) satisfiesϕ(x,h(x)) = infv∈Sk ϕ(x, v), where

ϕ(x,u) = b(x,u) · Df (x) + L(x,u).

In the special case we analyze here,L(x,u) = ∑
i gi((1 · x)+ui), hence [cf. (26)]

ϕ(x,u) = (
� + (µ − θ)(1 · x)+u − µx

) · Df (x) + ∑
i

gi

(
(1 · x)+ui

)

=: ā(x) + b̄(x) · u + ∑
i

gi(x̄ui),

wherex̄ = 1 · x > 0. For anyx ∈ X, the mapu �→ ϕ(x,u) is strictly convex; hence
the infimum overSk is uniquely attained.

Fixing x ∈ A, and lettingmi(ui) = b̄i (x)ui + gi(x̄ui), ϕ(x,u) is given as
ā(x) + ∑

i mi(ui). Use Taylor’s formula for eachmi based atui ,

ϕ(x, v) = ϕ(x,u) + ∑
i

m′
i (ui)(vi − ui) + (1/2)m′′

i (ξi)(vi − ui)
2.
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We claim that
∑

i m
′
i (ui)(vi − ui) ≥ 0 for v ∈ Sk. For if this is false, letv ∈ Sk

be such that
∑

i m
′
i (ui)(vi − ui) = −c < 0. Then for vε := u + ε(v − u),∑

i m
′
i (ui)(v

ε
i − ui) = −cε. Moreover, by assumption on the functionsgi , there

is a constantc such thatg′′
i (x̄vi ) ≤ c; hencem′′

i (vi) ≤ x̄2c, v ∈ Sk . Therefore∑
i m

′′
i (ξi)(v

ε
i − ui)

2 ≤ cε2, implying that ϕ(x, vε) < ϕ(x,u) for ε > 0 small,
contradicting the definition ofu.

Using the above, and thatm′′
i (ξi) = x̄2g′′

i (x̄ξi) ≥ c0x̄
2 ≥ c > 0 onA, we obtain

ϕ(x, v) − ϕ(x,u) ≥ (1/2)
∑
i

m′′
i (ξi)(vi − ui)

2

≥ c‖v − u‖2, x ∈ A, u = h(x), v ∈ S
k.

(89)

Let x, y ∈ A and let u = h(x) and v = h(y). Since f is of class C2

(cf. Theorem 3),

‖Df (x) − Df (y)‖ ≤ c‖x − y‖.
By the proof of Theorem 3,

|H(x,p) − H(y,q)| ≤ c(‖p − q‖ + ‖x − y‖�),

for p,q in a compact set. It follows that

|ϕ(x,u) − ϕ(y, v)| = ∣∣H (
x,DV (x)

) − H
(
y,DV (y)

)∣∣
≤ c‖x − y‖�.

Since by Assumption 2(iii) onL, x �→ ϕ(x, v) is Hölder of exponent�,

ϕ(x, v) − ϕ(x,u) ≤ c‖x − y‖�.

Combining the last display with (89),‖u − v‖2 = ‖h(x) − h(y)‖2 ≤ c‖x − y‖�,
and the result follows. �
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