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OPTIMAL HOEFFDING BOUNDS FOR DISCRETE REVERSIBLE
MARKOV CHAINS

BY CARLOS A. L EÓN1 AND FRANÇOIS PERRON2

Universidad de Concepción and Université de Montréal

We build optimal exponential boundsfor the probabilities of large
deviations of sums

∑n
k=1 f (Xk) where(Xk) is a finite reversible Markov

chain andf is an arbitrary bounded function. These bounds depend only
on the stationary meanEπf, the end-points of the support off , the sample
sizen and the second largest eigenvalueλ of the transition matrix.

0. Introduction. Consider an ergodic Markov chain(Xk) with finite state
spaceE, transition matrixP and stationary distributionπ . Let f :E → R satisfy
minf (E) = 0, maxf (E) = 1 and letµ = ∫

f dπ. From the weak law of large
numbers we know that the empirical meann−1Sn = n−1 ∑n

k=1 f (Xk) converges
to µ in probability. This result is the working principle behind all Markov chain
Monte Carlo (MCMC) integration techniques. The basis of MCMC dates back to
the 50’s with the article of Metropolis, Rosenbluth, Rosenbluth, Teller and Teller
(1953), but it is only with today’s computing power that these methods can give
their full measure. Like in the classical Monte Carlo schemes, one way of getting
insight about the above convergence is by looking at the first momentE[Sn] and the
(asymptotic) variance limn−2

V[Sn]. There is abundant literature covering these
matters—see, for example, Peskun (1973) and Smith and Roberts (1993). A related
problem is also to study the rate at which the chain approaches stationarity. Instead,
our concern will be the stationary large deviation probabilities

Pπ [Sn ≥ n(µ + ε)].(1)

As µ and f are arbitrary, this also covers the caseSn ≤ (µ − ε) so we
can restrict ourselves to upper deviations without loss of generality. It is a
well-known result from large deviation theory [see Dembo and Zeitouni (1998)]
that the asymptotic rate of convergence to zero in (1) is exponential with rate
functionIη(x) = supt∈R{tx − logη(t)}, whereη(t) is the largest eigenvalue of the
matrix with coefficientsP (i, j)etf (j). On the other hand, the literature dealing with
fixed sample size upper bounds for the above probability is scarce [see Gillman
(1993), Dinwoodie (1995) and Lézaud (1998)] and the results do not compare well
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with the classical bounds when restricted to the independent case [see Hoeffding
(1963)].

The above authors use perturbation theory for linear operators to estimate the
Perron–Frobenius eigenvalueη(t) and obtain upper bounds from the Markov
inequality through the matrix representation of the moment generating function
E[exp(tSn)]. In particular, Lézaud (1998) obtains results for nonreversible and
continuous chains.

Our approach contains some elements of the later, but achieves to reduce the
initial problem to a simpler one where exact calculations can be carried out. Our
bounds are optimal in the sense that the exponential rate is reached asymptotically
for a class of Markov chains.

THEOREM 1. For all pairs ((Xn), f ), such that(Xn) is a finite, ergodic and
reversible Markov chain in stationary state with second largest eigenvalueλ andf

is a function taking values in[0,1] such thatE[f (Xi)] = µ, the following bounds,
with λ0 = max(0, λ), hold for all ε > 0 such thatµ + ε < 1 and all timen

Pπ [Sn ≥ n(µ + ε)]

≤
[

µ + µ̄λ0

1− 2(µ̄ − ε)/(1+ √
�)

]n(µ+ε)[ µ̄ + µλ0

1− 2(µ + ε)/(1+ √
�)

]n(µ̄−ε)

(2)

≤ exp
{
−2

1− λ0

1+ λ0
nε2

}
,(3)

where

� = 1+ 4λ0(µ + ε)(µ̄ − ε)

µµ̄(1− λ0)2 , µ̄ = 1− µ.

In particular, the upper bound given by expression (3) is the large deviation rate
function for a two-state chain, which, forλ = 0, coincides with Hoeffding’s bound.
The bounds are optimal forλ ≥ 0.

The paper is organized as follows. We will first solve the two-state case, which
turns out to be the extremal case needed in the sequel. Next, we handle the case
where the cardinality ofE is finite by introducing a modification of the spectre
of the transition matrix resulting in a new chain(X̃k), which will serve as a
bridge between the initial chain(Xk) and the two-state case through a positive
semidefinitness argument and a convex majorization result. We also compare our
bound with existing bounds. Finally, countable chains with a spectral gap can be
handled in the same manner.

1. Solution of the two-state case. Let (Yk) be an ergodic Markov chain with
state space{0,1}, transition matrix with second largest eigenvalueλ and stationary
distribution µ = (µ̄,µ)′, µ̄ + µ = 1, 0 < µ < 1. Let I be the identity matrix



960 C. A. LEÓN AND F. PERRON

and 1 = (1,1)′. It is easily seen thatλ andµ completely specify the transition
mechanism, which is then given by

M(λ,µ) = λI + (1− λ)1µ′.

Following a classical recipe, we derive a bound for the upper deviation probabili-
ties of the empirical sumsSn = ∑n

k=1 Yk using Markov’s inequality: for allt ≥ 0,

Pµ[Sn ≥ n(µ + ε)] ≤ e−nt(µ+ε)
Eµ[exp(tSn)].(4)

The expectation on the right-hand side admits the representation [see Dinwoodie
(1995)]

µ′[M(λ,µ)D2
t

]n1,(5)

whereDt = diag(1, et/2). LetD = diag(
√

µ̄,
√

µ) and denote by� the orthogonal
matrix with columnsγ 1 = (

√
µ̄,

√
µ)′ andγ 2 = (−√

µ,
√

µ̄ )′. The expression (5)
then admits the following symmetric form:

γ ′
1DtG

n−1
t Dtγ 1,

whereGt = Dt [γ 1γ
′
1 + λ(I − γ 1γ

′
1)]Dt . All the above expressions are derived

from (5) using the spectral representationM(λ,µ) = D−1� diag(1, λ)�′D. We
will perform this derivation in complete detail for the general case in the next
section. Now, the largest eigenvalueθ(t) of Gt satisfiesθ(t)k = sup‖x‖=1‖Gk

t x‖
and an application of Cauchy–Schwarz’s inequality on the last display yields

γ ′
1DtG

n−1
t Dtγ 1 ≤ ‖Dtγ 1‖‖Gn−1

t Dtγ 1‖
≤ ‖Dtγ 1‖2θ(t)n−1.

(6)

PROPOSITION 1. For the two-state Markov chain with transitionsM, the
stationary upper-deviation probabilities satisfy

Pµ[Sn ≥ n(µ + ε)] ≤ ‖Dtγ 1‖2θ(t)−1 exp{−n[t (µ + ε) − logθ(t)]}.(7)

Whenλ ≥ 0, it can further be shown that

Pµ[Sn ≥ n(µ + ε)]

≤
[

µ + µ̄λ

1− 2(µ̄ − ε)/(
√

� + 1)

]n(µ+ε)[ µ̄ + µλ

1− 2(µ + ε)/(
√

� + 1)

]n(µ̄−ε)

(8)

≤ exp
[
−2

1− λ

1+ λ
nε2

]
,(9)

where

� = 1+ 4λ(µ + ε)(µ̄ − ε)

µµ̄(1− λ)2
.
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PROOF. Inequality (7) is obtained from (4) and (6) after rewriting the
exponential part. Under the additional condition λ ≥ 0, the nonexponential term
in (7) is less than 1. Indeed,

θ(t) ≥ γ ′
1Dt

‖Dtγ 1‖
Gt

Dtγ 1

‖Dtγ 1‖

= ‖Dtγ 1‖2 + λ
γ ′

1D
2
t ( I − γ 1γ

′
1)D

2
t γ 1

‖Dtγ 1‖2

≥ ‖Dtγ 1‖2,

since I− γ 1γ
′
1 is positive semidefinite. Then we have

Pµ[Sn ≥ n(µ + ε)] ≤ exp{−n[t (µ + ε) − logθ(t)]}.
Taking the infimum fort ≥ 0, we obtain

Pµ[Sn ≥ n(µ + ε)] ≤ exp{−nIθ(µ + ε)},
where Iθ (x) = supt∈R{tx − logθ(t)} [see Dembo and Zeitouni (1998),
Lemma 2.2.5] is the rate function of the empirical averagesn−1Sn. An explicit
computation of this rate function will prove (8). A simple calculation yields

θ(t) = 1
2

[
Tr(Gt) +

√
Tr2(Gt) − 4λet

]
,(10)

where Tr(·) denotes the trace. Taking 0< x < 1 arbitrary but fixed and looking for
the zeros of the equation∂

∂t
[tx − logθ(t)] = 0, we obtain

(x − x̄)
√

Tr2(Gt) − 4λet − [(µ + µ̄λ)et − (µ̄ + µλ)] = 0.(11)

Multiplying by the conjugate, simplifying and expanding into powers ofet ,
a quadratic polynomial emerges whose roots are possible candidates for the
maximum valuet0, which is found to be the following (see Appendix A for the
details):

t0 = log

[
(µ̄ + µλ)[√� − (x̄ − x)]
(µ + µ̄λ)[√� + (x̄ − x)]

]
,

where

� =
[
1+ 4λxx̄

µµ̄(1− λ)2

]
and x̄ = 1− x.

Now we can evaluate expression (10) to determine the Perron eigenvalueθ(t0),

which we call simplyθ ,

θ = (µ̄ + µλ)[√� + 1]√
� + x̄ − x

.
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This yields the rate functionIθ , which after simplifying can be written as

Iθ (x) = −x log
[

µ + µ̄λ

1− 2x̄/(
√

� + 1)

]
− x̄ log

[
µ̄ + µλ

1− 2x/(
√

� + 1)

]
(12)

and the right-hand side of (8) is just the explicit form of exp{−nIθ (µ + ε)}.
To prove the uniform bound (9), we will show thatIθ (x) ≥ (1−λ)

(1+λ)
(x − µ)2.

First, we differentiateg(x) = Iθ (x)/(x − µ)2 to obtaing′(x) = (x − µ)−3h(x),

whereh(x) = (x − µ)I ′
θ (x) − 2Iθ (x). Studying the two first derivatives of the

numeratorh(x), it can be shown (see Appendix B) that

h(x)




> 0, if |x − 1/2| > |µ − 1/2|,
= 0, if x = µ or x = µ̄,
< 0, if |x − 1/2| < |µ − 1/2|,

andg′ has the following behavior:

g′(x)




< 0, if x < µ̄,
= 0, if x = µ̄,
> 0, if x > µ̄,

from what we deduce thatg attains a global minimum atx = µ̄. Now, a Taylor
expansion forg(µ̄) = Iθ (µ̄)(µ̄ − µ)−2 in terms ofr = (µ̄ − µ)(1 − λ)(1 + λ)−1

gives

g(µ̄) = (µ̄ − µ)−1 log[(1+ r)/(1− r)]
= 2

1− λ

1+ λ
r−1

(
r + 1

3
r3 + 1

5
r5 + · · ·

)

≥ 2
1− λ

1+ λ
,

and from the definition ofg we then have

Iθ (x) ≥ g(µ̄)(x − µ)2 ≥ 2
1− λ

1+ λ
(x − µ)2. �

2. General case. Let (Xk) have transitionsP = (pij ) with stationary distrib-
ution π = (πi) such that

πipij = πjpji(13)

for all i, j in the finite and ordered state space(E,≤). (It is convenient to
leave the order≤ unspecified.) Consider now a bounded functionf :E → R

with minf (E) = 0,maxf (E) = 1 and such that the stationary meanEπ [f (Xk)]
is equal to a fixed numberµ. Applying an obvious affine transformation we
can always set minf (E) = 0, and maxf (E) = 1; this has no bearing on our
argumentation and will only make the expressions more concise.
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Using condition (13) we now derive a spectral decomposition for the matrixP .
This result is well known [see, e.g., Green and Han (1992)], but our derivation
contains some new elements and will allow us to introduce most of the notation
needed for the sequel in a smooth way. CallD the diagonal matrix with (diagonal)
elements

√
πi, where i runs through(E,≤). Condition (13) says thatD2P is

symmetric, and hence,DPD−1 is symmetric too. Since the last product shares its
spectrum withP , the transition matrix has real eigenvaluesλl , and further admits
the spectral representation

P = D−1� diag[λl]�tD,(14)

where� is orthogonal. Furthermore, sinceP is irreducible and aperiodic, from
the Perron–Frobenius theorem we know that the largest eigenvalueλ1 = 1 strictly
dominates in modulus any other eigenvalue and also the corresponding eigenvector
in (14) is positive. In fact, using (14) and stationarity we get

D−1� diag[δl
1]�tD = A,

whereA is the limiting matrix (Aij ) = πj and δl
1 is Kronecker’s delta. So far,

all this is well known. Now, letλ be the second largest eigenvalue ofP , λ0 =
max(0, λ) and consider

Q = D−1� diag[max(λ0, λl)]�tD

= λ0I + (1− λ0)A.
(15)

Clearly the rows ofQ sum to 1 and the off-diagonal elements are positive, hence
it is a good candidate to be a stochastic matrix, withQ being a convex linear
combination of stochastic matrices. It only remains to show that the diagonal
elements are always nonnegative. SinceD(Q − P )D−1 is positive semidefinite,
the desired result follows from

qii − pii = et
iD(Q − P )D−1ei ≥ 0,

where ei is the corresponding canonical vector. Observe that since the map
λl �→ max(λ0, λl) leaves the largest eigenvalue unchanged,π is stationary for
Q-alternatively check it directly from (15). Whenλ ≥ 0 we haveλ = λ0 so the
largest and the second largest eigenvalues ofQ and the ones ofP are the same.
Since Tr(Q) = 1 + λ(1 − |E|) ≥ 0, where|E| is the cardinality ofE, we have
thatλ ≥ −(|E| − 1)−1; hence when dealing with arbitrarily large chains,λ0 andλ

cannot be very far apart. A crucial property of these transitions is the preservation
of the Markov property under any transformation.

Here we give a simple construction for deriving a Markov chain(X′
k) with

transition probabilitiesQ. Considerλ0 ∈ [0,1), π andE as fixed but arbitrary
and let(Ik) and (Zk) be independent sequences of i.i.d. random variables with
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respective distribution Bernoulli(1 − λ0) andπ on E. Let I ′
1 = 1 andI ′

k = Ik for
k > 1. It is easy to verify that the construction

X′
k = ∑

{j : 1≤j≤k}

{ ∏
{
 : j<
≤k}

(1− I ′

)

}
I ′
jZj

works. Moreover, if we set

N(j) = ∑
{k : j≤k≤n}

{ ∏
{
 : j<
≤k}

(1− I ′

)

}
I ′
j ,

then
n∑

k=1

f (X′
k) =

n∑
j=1

N(j)f (Zj )(16)

with independence betweenN(1), . . . ,N(n) and f (Z1), . . . , f (Zn). It is plain
from this representation that applying a transformation on the observations only
amounts to changing the distribution of the i.i.d.Z’s, that is, changingE andπ.

Since(X′
k) is Markovian regardless ofE andπ, any transformation will preserve

the Markov property.
Our goal now will be to relate the moment generating functionEπ [tSn] to

its 0–1 counterpart studied previously. This will be done in two steps. First, we
compareSn = ∑n

k=1 f (Xk) with the nth partial sumS′
n of the chain(f (X′

k)),
where (X′

k) has transitionsQ. Second, we establish a stochastic majorization
property for(X′

k) that will enable us to relate it to the two-state case.

2.1. Step1. As seen previously for the two-state case, the moment-generating
function of the partial sumsSn can be written as

Eπ [exp(tSn)] = π ′[PD2
t ]n1,

whereDt is the diagonal matrix with entries exp(tf (i)/2). Sinceπ is stationary
for P and since diagonal matrices commute, from the spectral representation (14)
we get

π ′[PD2
t ]n1 = π ′Dt [DtPDt ]n−1Dt1

= π ′DtD
−1[Dt� diag[λl]�tDt

]n−1
DDt1

= γ ′
1DtGt

n−1Dtγ 1,

whereγ 1 = (
√

πi ) is the first column of� andGt = Dt� diag[λl]�tDt . SinceGt

has nonnegative entries and is irreducible, from the Perron–Frobenius theorem the
largest eigenvalueζ(t) satisfiesζ(t)k = sup‖x‖=1‖Gk

t ‖ and the same argument
that we used to obtain (7) yields

γ ′
1DtGt

n−1Dtγ 1 ≤ ‖Dtγ 1‖2ζ(t)n−1.
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If we introduceHt = Dt� diag[max(λ0, λi)]�tDt , and denote its largest eigen-
value byη(t), thenHt − Gt is positive semidefinite andη(t) dominatesζ(t) so
that

‖Dtγ 1‖2ζ(t)n−1 ≤ ‖Dtγ 1‖2η(t)n−1.

PROPOSITION2. The large deviation probabilities satisfy

Pµ[Sn ≥ n(µ + ε)] ≤ ‖Dtγ 1‖2ζ(t)−1 exp{−n[t (µ + ε) − logζ(t)]}(17)

≤ ‖Dtγ 1‖2η(t)−1 exp{−n[t (µ + ε) − logη(t)]}.(18)

Sinceλ0 ≥ 0, we further have

Pµ[Sn ≥ n(µ + ε)] ≤ exp{−n[t (µ + ε) − logη(t)]}.
PROOF. Markov’s inequality together with (17) and (18) imply the two first

inequalities. Now, just as inthe 0–1 case, the conditionλ0 ≥ 0 guaranteesη(t) ≥
‖Dtγ 1‖2 and the last inequality holds.�

2.2. Step2.

THEOREM 2. Let (X′
k) have transitionsQ and letEπ [f (X′

k)] = µ. Then for
any convex function� :R → R, we have

Eπ

[
�

(
f (X′

1) + · · · + f (X′
n)

)] ≤ Eµ[�(Y1 + · · · + Yn)],
where(Yk) is the two-state chain with transitionsM(λ0,µ).

PROOF. The proof is based on the representation (16) and a construction.
We introduce random variablesBj , j = 1, . . . , n and we consider a joint
distribution on(Bj ,Zj ) such that the conditional distribution ofBj , givenZj , is
a Bernoulli distribution with meanf (Zj ). We assume that(B1,Z1), . . . , (Bn,Zn)

are independent. Therefore, the marginal distribution ofBj is Bernoulli(µ) for
j = 1, . . . , n. As in expression (16) we set

Yk = ∑
{j : 1≤j≤k}

{ ∏
{
 : j<
≤k}

(1− I ′

)

}
I ′
jBj ,

so
n∑

k=1

Yk =
n∑

j=1

N(j)Bj .

Jensen’s inequality combined with a conditional expectation tells us that

�

(
n∑

j=1

N(j)f (Zj )

)
≤ Eπ

[
�

(
n∑

j=1

N(j)Bj

)∣∣∣∣N,Z

]
.



966 C. A. LEÓN AND F. PERRON

Taking expectation on both sides, we obtain that

Eπ [�(S′
n)] ≤ Eµ

[
�

(
n∑

k=1

Yk

)]
.

�

REMARK 1. In the above proof, it is implicit that the endpoints off (E) are
a = 0 andb = 1. Whena < b are arbitrary, the corresponding extremal chain lives
in {a, b} and the transitions are determined by

mab = (1− λ0)
µ − a

b − a
, mba = (1− λ0)

b − µ

b − a
.

Theorem 2 deals withstochastic orderingof random variables. The particular
stochastic order used here is known in the literature as the convex ordering:X 	 Y

if E[�(X)] ≤ E[�(Y )] for all convex real valued� (such that the expectations
exist). The result can be stated asX′

1 + · · · + X′
n 	 Y1 + · · · + Yn. Observe that

under stationarityX′
k 	 Yk, so we have transition schemesQ andM under which

the stochastic order relation is preserved for the respective partial sums. When
there is independency within each sequence, it is known that the convex ordering
of the marginals implies the same ordering for the corresponding partial sums [see
Marshall and Olkin (1979)]; our result shows that this preservation property can
occur in the Markovian setting as well.

We now have all the necessary tools to prove our main result.

PROOF OFTHEOREM 1. Applying Theorem 2 with�(x) = exp(tx), we get

η(t) ≤ lim
n→∞n−1 logEπ {exp(tS′

n)}

≤ lim
n→∞n−1 logEµ

{
exp

(
t

n∑
k=1

Yk

)}

= θ(t)

and then from Proposition 2 we obtain

Pπ [Sn ≥ n(µ + ε)] ≤ inf
t≥0

exp{−n[t (µ + ε) − logη(t)]}
≤ inf

t≥0
exp{−n[t (µ + ε) − logθ(t)]}

= exp{−nIθ (µ + ε)},
where Iθ is the rate function (12). The stated upper bounds then follow from
Proposition 1. �

REMARK 2. With a little more effort we can see that we do not need to
assume thatP is aperiodic in Theorem 1. Indeed, given periodic but irreducible
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and reversibleP , it is possible to construct a sequence of aperiodic, irreducible
and reversible chainsPm, such thatPm converges toP as m tends to infinity.
Sinceλ, π andµ are continuous functions ofP , Theorem 1 will hold for allPm

and the result will hold forP as well, by continuity. In fact, an eigenvalue near of
even equal to−1 is not a problem as only Césaro sumsSn are considered here.

REMARK 3. Following Remark 1, the theorem remains valid when the end
pointsa < b of f (E) are arbitrary. In this case the valuesµ andε in the bounds
are to be replaced byµ−a

b−a
and ε

b−a
, respectively.

It is clear from the proof of Theorem 1 that, under the conditionλ ≥ 0, the
rate functionsIζ (x) = supt∈R{tx − logζ(t)}, Iη(x) = supt∈R{tx − logη(t)} and
Iθ (x) = supt∈R{tx − logθ(t)} corresponding toSn,S

′
n and

∑n
k=1 Yk , respectively,

satisfy

Iζ (x) ≥ Iη(x) ≥ Iθ (x).(19)

WhenP = Q, there is equality on the leftmost side. Furthermore, whenf is 0–1,
we have equality in the rightmost side. Hence, whenP = Q andf :E → {0,1},
the exponential rate given in our first upper bound cannot be improved upon.
In particular, when the chain is independent, the theorem yields the well-known
Hoeffding’s inequality

P[Sn ≥ n(µ + ε)] ≤
(

µ

µ + ε

)n(µ+ε)( µ̄

µ̄ − ε

)n(µ̄−ε)

.

REMARK 4. A closer look reveals that the leftmost inequality in (19) is true
for all λ. This suggests the possibility that the theorem might be true for all
admissible values ofλ. But this is not so, numerical evidence show that the bounds
do not hold without the conditionλ ≥ 0.

3. Comparisons. Gillman (1993) was the first toobtain a finite sample size
exponential bound for the large deviation probabilities using perturbation theory.
Successive refinements of the technique allowed Dinwoodie (1995) and Lézaud
(1998) to improve this bound. Among these, the later work contains the best
results and we shall use them for the comparisons. Withf satisfying our usual
assumptions, Theorem 1.1 of Lézaud (1998) gives in our particular case

Pπ [Sn ≥ n(µ + ε)] ≤ e(1−λ)/5 exp
{
− (1− λ)nε2

4µ[1+ h(5ε/µ)]
}
,(20)

whereh(x) = √
1− x − (1 − x). Let us denoteL(µ, ε) the exponential rate in

(20) andIθ (µ + ε) is the exponential rate in the bound (2). Observe first that since
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Iθ (µ+ ε) comes from the rate function of the two-state case, and since[µ+ ε,∞)

is a continuity set ofIθ , then sampling from this chain implies

lim
n→∞n−1 logPµ[Sn ≥ n(µ + ε)] = −Iθ (µ + ε) ≤ −L(µ, ε),

hence, whenλ ≥ 0, the rateIθ (µ + ε) always yields a better bound. A limited
Taylor expansion ofIθ aroundµ gives an idea of the ratio of these quantities

Iθ (µ + ε)

L(µ, ε)
= 2

µ̄(1+ λ)
+ o(ε).

APPENDIX A

The leading, middle and constant terms of the convex quadratic polynomial
obtained from (15) are

a = [1− (2x − 1)2](µ + µ̄λ),

b = −2
{[µµ̄(1− λ)2 + λ][1+ (2x − 1)2] − 2λ(2x − 1)2}

and

c = (µ̄ + µλ)2[1− (2x − 1)2],
respectively. After some simplifications the discriminantb2 − 4ac can be written
as

16(2x − 1)2[µµ̄(1− λ)2]2
[
1+ 4λx(1− x)

µµ̄(1− λ)2

]
≥ 0

and the rootst+0 , t−0 are given, respectively, by

µµ̄(1− λ)2[1+ (2x − 1)2] + λ[1− (2x − 1)2]
[1− (2x − 1)2](µ + µ̄λ)

± 2(2x − 1)µµ̄(1− λ)2
√

�

[1− (2x − 1)2](µ + µ̄λ)
.

(21)

Now, consider the conjugate product[√
� + (1− 2x)

][√
� − (1− 2x)

]
= (µ + µ̄λ)(µ̄ + µλ)[1− (2x − 1)2]

µµ̄(1− λ)2 .

Since it is positive for 0< x < 1 and since both terms on the left-hand side are
positive atx = 1/2 and continuous, each is positive for all 0< x < 1. Multiplying
the numerator and denominator in the expression (21) by

√
� + (1− 2x), for t+0 ,

and by
√

� − (1− 2x), for t−0 , the roots can be written as

(µ̄ + µλ)[√� − (1− 2x)]
(µ + µ̄λ)[√� + (1− 2x)] ,

(µ̄ + µλ)[√� + (1− 2x)]
(µ + µ̄λ)[√� − (1− 2x)] .



HOEFFDING BOUNDS FOR MARKOV CHAINS 969

Except forx = 1/2, where they coincide, exactly one of these is the solution
of (11), the other being the solution to the conjugate equation. To arbitrate, let
us, evaluate the rightmost term in (11) for the first candidate. We obtain

(µ + µ̄λ)
(µ̄ + µλ)[√� − (1− 2x)]
(µ + µ̄λ)[√� + (1− 2x)] − (µ̄ + µλ) = 2(2x − 1)(µ̄ + µλ)√

� + (1− 2x)
.

Since this expression shares its sign with the leftmost term in (11), we have found
the maximizing value.

APPENDIX B

The behavior ofh(x) = (x −µ)I ′
θ (x) − 2Iθ (x) depends on whetherµ < 1/2 or

µ ≥ 1/2; we shall carry out the analysis for the first case, the other being similar
but somewhat less involved. To begin with, the first derivatives ofIθ are found
to be

I ′
θ (x) = − log

[
µ + µ̄λ

1− 2x̄/(1+ √
�)

]
+ log

[
µ̄ + µλ

1− 2x/(1+ √
�)

]
,

I ′′
θ (x) = (√

�xx̄
)−1

,

I
(3)
θ (x) = (x − x̄)(3� − 1)

2�3/2(xx̄)2

so thatIθ (µ) = I ′
θ (µ) = 0, while I

(3)
θ (x) ∝ (x − x̄), since the other terms are

positive. Now, we haveh′(x) = (x − µ)I ′′
θ (x) − I ′

θ (x), h′′(x) = (x − µ)I
(3)
θ (x),

and Figure 1 summarizes the analysis of their sign.
Combining this with the fact thath(µ) = h(µ̄) = 0, we see that these are the

only zeros and further,h is negative in(µ, µ̄) and positive in(0,µ) ∪ (µ̄,1).

FIG. 1.
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