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OPTIMAL HOEFFDING BOUNDS FOR DISCRETE REVERSIBLE
MARKQOV CHAINS

By CARLOS A. LEON! AND FRANCOIS PERRON?
Universidad de Concepcion and Université de Montréal

We build optimal exponential bound®r the probabities of large
deviations of sumizzl f (X)) where(Xy) is a finite reversible Markov
chain andf is an arbitrary bounded function. These bounds depend only
on the stationary medH; f, the end-points of the support ¢f, the sample
sizen and the second largest eigenvaluef the transition matrix.

0. Introduction. Consider an ergodic Markov chaiiX;) with finite state
spacek, transition matrixP and stationary distribution. Let f: E — R satisfy
min f(E) =0, maxf(E) =1 and letu = [ f dx. From the weak law of large
numbers we know that the empirical meants, = n~1Y"7_; f(Xx) converges
to u in probability. This result is the working principle behind all Markov chain
Monte Carlo (MCMC) integration techniques. The basis of MCMC dates back to
the 50’s with the article of Metropolis, Rosenbluth, Rosenbluth, Teller and Teller
(1953), but it is only with today’s computing power that these methods can give
their full measure. Like in the classical Monte Carlo schemes, one way of getting
insight about the above convergence is by looking at the first moR{&pt and the
(asymptotic) variance lim~2V[S,]. There is abundant literature covering these
matters—see, for example, Peskun (1973) and Smith and Roberts (1993). A related
problem is also to study the rate at which the chain approaches stationarity. Instead,
our concern will be the stationary large deviation probabilities

(1) Pr[Sp = n(u+e)].

As p and f are arbitrary, this also covers the caSg < (u — ¢) soO we

can restrict ourselves to upper deviations without loss of generality. It is a
well-known result from large deviation theory [see Dembo and Zeitouni (1998)]
that the asymptotic rate of convergence to zero in (1) is exponential with rate
function 7, (x) = supg{tx —logn(z)}, wheren(z) is the largest eigenvalue of the
matrix with coefficientsP (i, j)e'/ (/). On the other hand, the literature dealing with
fixed sample size upper bounds for the above probability is scarce [see Gillman
(1993), Dinwoodie (1995) and Lézaud (1998)] and the results do not compare well
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HOEFFDING BOUNDS FOR MARKQV CHAINS 959

with the classical bounds when restricted to the independent case [see Hoeffding
(1963)].

The above authors use perturbation theory for linear operators to estimate the
Perron—Frobenius eigenvalug:) and obtain upper bounds from the Markov
inequality through the matrix represemtet of the moment generating function
E[exp(S,)]. In particular, Lézaud (1998) obtains results for nonreversible and
continuous chains.

Our approach contains some elements of the later, but achieves to reduce the
initial problem to a simpler one where exact calculations can be carried out. Our
bounds are optimal in the sense that the exponential rate is reached asymptotically
for a class of Markov chains.

THEOREM 1. For all pairs ((X,), f), such that(X,,) is a finite ergodic and
reversible Markov chain in stationary state with second largest eigenvadunel f
is a function taking values if0, 1] such thatE[ f (X;)] = u, the following bounds
with Ao = max(0, 1), hold for all ¢ > 0 such thatu + ¢ < 1 and all timen

Pr[Sy = n(n + )]

) <|: w+ firo :|n(ﬂ+s)|: -+ who ]n(ﬂ—s)
Tl1-2(a—-e)/A+VA) 1-2u+e)/(1+A)
(3) gexp{—Zl_konez},
1+ Ag
where
4ho(p +e)(in — &) _
A=1 , =1-—pu.
TR agE T

In particular, the upper bound given by expression (3) is the large deviation rate
function for a two-state chain, which, far= 0, coincides with Hoeffding’s bound.
The bounds are optimal far> 0.

The paper is organized as follows. We will first solve the two-state case, which
turns out to be the extremal case needed in the sequel. Next, we handle the case
where the cardinality of is finite by introducing a modification of the spectre
of the transition matrix resulting in a new chaix;), which will serve as a
bridge between the initial chaiX;) and the two-state case through a positive
semidefinitness argument and a convex majorization result. We also compare our
bound with existing bounds. Finally, countable chains with a spectral gap can be
handled in the same manner.

1. Solution of the two-state case. Let (Y;) be an ergodic Markov chain with
state spacé), 1}, transition matrix with second largest eigenvalugnd stationary
distribution u = (i, 1), ot +pm =1, 0 < u < 1. Let | be the identity matrix
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and1l= (1,1). It is easily seen that and u completely specify the transition
mechanism, which is then given by

MO, p)=Al+ Q-1

Following a classical recipe, we derive a bound for the upper deviation probabili-
ties of the empirical sums, = Y"}_; Yx using Markov’s inequality: for alt > 0,

(4) Pu[Sy > n(u+¢e)] < e ™HTOR, [exprS,)].

The expectation on the right-hand side admits the representation [see Dinwoodie
(1995)]

(5) w'[M(n, p) D",

whereD, = diag(1, ¢'/2). Let D = diag(\/J1, /i) and denote by the orthogonal

matrix with columnsy, = (V/ix, /ir) andy, = (— /i, +/i2)'. The expression (5)
then admits the following symmetric form:

y1D/Gi ™ Dyy1,

whereG; = D;[y,y7 + (I — y1¥)1D;. All the above expressions are derived
from (5) using the spectral representatith(x, p) = DT diag(1, \)I'D. We

will perform this derivation in complete detail for the general case in the next
section. Now, the largest eigenval@&) of G, satisfiesd (r)k = SURx|=1 ||Gfx||

and an application of Cauchy—Schwarz’s inequality on the last display yields

YiD:G" Dy, <Dy IlIGF 1Dyl

(6)
< IDyqlI20) 2

PropoOsSITION 1. For the two-state Markov chain with transition®, the
stationary upper-deviation probabilities satisfy

(7)  PulSy=n(u+e) <Dy l?0(0)  exp{—nlt (u + &) — loga ()]}
Whena > 0, it can further be shown that
]P)M[Sn >n(u+e)]

|: w4 i i|n(u+8)|: i+ A i|n(/1—8)
1-2(i—8)/(VA+1) 1-2u+e)/WA+1)

1—X
) 2
(9) §exp[ 1+/\ne ]

(8) <

where
Ah(n+e)(n —e)

A=1+ —
(1 —2)2
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PROOF Inequality (7) is obtained from (4) and (6) after rewriting the
exponential part. Undehée additionhcondition A > 0, the nonexponential term
in (7) is less than 1. Indeed,

"D D
01) > Y1l: G, tV1
ID:yall Dyl
Y D?(1 — y1y))D?y
= [ Dry ) + AT S
Dyl
> | Dy 1)?,

since |- y,y] is positive semidefinite. Then we have
Pu[Sy > n(u+ &)l < expl—nlt(u + &) —logh(1)]}.
Taking the infimum for > 0, we obtain
PulSn = n(pn +e)] <exp{—nlp(n + )},

where Iy(x) = supcritx — logé(z)} [see Dembo and Zeitouni (1998),
Lemma 2.2.5] is the rate function of the empirical averagess,. An explicit
computation of this rate function will prove (8). A simple calculation yields

(10) (1) = 3[Tr(Gy) + VTI3(Gy) — 4re' ],

where TK-) denotes the trace. TakingOx < 1 arbitrary but fixed and looking for
the zeros of the equatio%[tx —log6(r)] =0, we obtain

(11) (x —H)VTI?(G,) — 4re' — [(+ pd)e' — (fi+ pr)] = 0.

Multiplying by the conjugate, simplifying and expanding into powersebf

a quadratic polynomial emerges whose roots are possible candidates for the
maximum valuer, which is found to be the following (see Appendix A for the
details):

o= Iog[(mm)[ﬂ— (% —x)]}

(14 mV[VA + (& —x)]
where
Ahxx
A= 1+_7] and x=1-—x.
[ pi(l—2)2
Now we can evaluate expression (10) to determine the Perron eigemvae
which we call simplyg,
(L + puM) VA +1]
0= .
VA+i—x
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This yields the rate functiofy, which after simplifying can be written as

W+ LA - i+ A
1_22/(JZ+1)] - g[l—Zx/(\/K+l)]
and the right-hand side of (8) is just the explicit form of éxply(x + ¢)}.
To prove the uniform bound (9), we will show tha(x) > G7(x — w2

First, we differentiatez (x) = Iy(x)/(x — )2 to obtaing’(x) = (x — u)~3h(x),
whereh(x) = (x — u)ly(x) — 2I5(x). Studying the two first derivatives of the
numeratorz(x), it can be shown (see Appendix B) that

>0, if |x—21/2]>|u—1/2,
h(x)’

12) Isy(x)=-—x Iog[

=0, if x=porx=p,
<0, if |x—21/2|<|u—1/2,

andg’ has the following behavior:
<0, if x <p,
gx){=0 if x=np,
>0, if x>,

from what we deduce that attains a global minimum at = . Now, a Taylor
expansion forg (1) = Iy(R) (i — )2 interms ofr = (L — w)(L — A1+ 1)1
gives

g(i) = (i — W~ Hogl(XL+r) /(1 —1)]

1-A 1 1
=2 r_1<r+—r3+—r5+---)

1+A 3 5
> Zﬁ’
1+
and from the definition 0§ we then have
1-A
I > o(i)(x — w)2>2"—"(x — w).
p(x) = g()(x — )= 1+/\(x W) 0

2. General case. Let (Xj) have transitions® = (p;;) with stationary distrib-
ution = (7r;) such that

(13) T pij =T pji

for all i, j in the finite and ordered state spacg, <). (It is convenient to
leave the order< unspecified.) Consider now a bounded functibnE — R
with min f(E) = 0, maxf(E) = 1 and such that the stationary meag[ f (X;)]

is equal to a fixed number. Applying an obvious affine transformation we
can always set mifi(E) = 0, and maxf (E) = 1, this has no bearing on our
argumentation and will only make the expressions more concise.
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Using condition (13) we now derive a spectral decompaosition for the maAtrix
This result is well known [see, e.g., Green and Han (1992)], but our derivation
contains some new elements and will allow us to introduce most of the notation
needed for the sequel in a smooth way. @athe diagonal matrix with (diagonal)
elements,/m;, wherei runs through(E£, <). Condition (13) says thab?P is
symmetric, and henc& P D1 is symmetric too. Since the last product shares its
spectrum withP, the transition matrix has real eigenvalugsand further admits
the spectral representation

(14) P =D~ 'r'diagi I D,

whereT is orthogonal. Furthermore, sin@e is irreducible and aperiodic, from

the Perron—Frobenius theorem we know that the largest eigervalad. strictly
dominates in modulus any other eigenvalue and also the corresponding eigenvector
in (14) is positive. In fact, using (14) and stationarity we get

D™Irdiagsi ' D = A,

where A is the limiting matrix (A;;) = =; and 8} is Kronecker’s delta. So far,
all this is well known. Now, let. be the second largest eigenvalue®fig =
max0, 1) and consider

0 = DI diagmax(ro, 1)IT"' D

(15)
=Ml + (1 —Ap)A.

Clearly the rows ofQ sum to 1 and the off-diagonal elements are positive, hence
it is a good candidate to be a stochastic matrix, withbeing a convex linear
combination of stochastic matrices. It only remains to show that the diagonal
elements are always nonnegative. Sidd@ — P)D ! is positive semidefinite,

the desired result follows from

qii — pii =€.D(Q — P)D™ e > 0,

where g is the corresponding canonical vector. Observe that since the map
A > max(Ao, A;) leaves the largest eigenvalue unchangeds stationary for
Q-alternatively check it directly from (15). When> 0 we haver = Ag so the
largest and the second largest eigenvalue@ @nd the ones of are the same.
Since T(Q) =1+ A(1 — |E]) = 0, where|E]| is the cardinality ofE, we have
thatd > —(|E| — 1)~1: hence when dealing with arbitrarily large chaihgandi
cannot be very far apart. A crucial property of these transitions is the preservation
of the Markov property under any transformation.

Here we give a simple construction for deriving a Markov ch@ffj) with
transition probabilities). Considerig € [0,1), 7 and E as fixed but arbitrary
and let(I;) and (Z;) be independent sequences of i.i.d. random variables with
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respective distribution Bernoulli — Ao) andz on E. Let I; =1 andl; = I; for
k > 1. Itis easy to verify that the construction

s- ¥ | 1 a-nliz
{

{j:1<j<k} U j<t=<k}

works. Moreover, if we set

N(jH= ), { I1 <1—1,g)}1;-,
{

{k:j<k<n}\{L: j<tl<k}
then
(16) Y FXD=Y_NG)FZ)
k=1 j=1

with independence betwee¥i(1),..., N(n) and f(Z1),..., f(Z,). It is plain
from this representation that applying a transformation on the observations only
amounts to changing the distribution of the i.idls, that is, changindgc and .
Since(X}) is Markovian regardless df andx, any transformation will preserve
the Markov property.

Our goal now will be to relate the moment generating funciityizS,] to
its 0—1 counterpart studied previously. This will be done in two steps. First, we
compareS, = Y ;_; f(Xx) with the nth partial sums;, of the chain(f(X})),
where (X;) has transitionsQ. Second, we establish a stochastic majorization
property for(X}) that will enable us to relate it to the two-state case.

2.1. Stepl. As seen previously for the two-state case, the moment-generating
function of the partial sums, can be written as
E,[exprS,)] = n'[P D",

where D, is the diagonal matrix with entries e (i)/2). Sincer is stationary
for P and since diagonal matrices commute, from the spectral representation (14)
we get

a'[PDX"1=n'D,[D,PD;]" 1D,1
= n'D, D[ D,T diag, 11" D,]" *DD,1
= )’llDthn_lDz)’l,

wherey | = (,/7;) is the first column of” andG, = D, I" diag2;]I'"* D;. SinceG;

has nonnegative entries and is irreducible, from the Perron—Frobenius theorem the
largest eigenvalue(r) satisfies¢ (r)F = SURx =1 ||G§‘|| and the same argument
that we used to obtain (7) yields

YiDG "Dy, < Dy lPc )L



HOEFFDING BOUNDS FOR MARKQV CHAINS 965

If we introduce H, = D,I" diagmax(io, A;)]"" D,, and denote its largest eigen-
value byn(t), then H, — G, is positive semidefinite angl(z) dominates; () so
that

1Dy 112 @) < 1Dy a0 (@) .
PrROPOSITION2. The large deviation probabilities satisfy
(17)  PulSy=n(u+e)l < Dy 1lIPc ()~  expl—nlt (u + &) — log¢ ()]}
(18) < IDy1lPn @~ expl—nlt (u + &) — logn(®)1}.
Since)g > 0, we further have

P,[Sy > n(p +e)] < exp{—nlt(u + &) —logn(®)]}.

PrRoOOF Markov's inequality together with (17) and (18) imply the two first
inequalities. Now, just as ithe 0—1 case, the conditiop > 0 guarantees(r) >
| D;y4]1? and the last inequality holds ]

2.2. Step2.

THEOREM 2. Let(X;) have transitions and letE,[ f(X;)] = . Then for
any convex functio® : R — R, we have
Er[W(f(XD 4+ f(X)] <E X144+ V)],
where(Y}) is the two-state chain with transitiodd (Lo, ).

PrRooOF The proof is based on the representation (16) and a construction.
We introduce random variable8;, j = 1,...,n and we consider a joint
distribution on(B;, Z;) such that the conditional distribution &;, givenZ;, is
a Bernoulli distribution with mearf (Z;). We assume thaiB1, Z1), ..., (B,, Z,)
are independent. Therefore, the marginal distributiorBefis Bernoulliu) for
j=1,...,n.Asin expression (16) we set

Yi= { [] a- Ig)}I;Bj,
{j:11=<j=<k} L: j<l=k}
so
n n
> Yi=> N(j)B;.
k=1 j=1
Jensen’s inequality combined with a conditional expectation tells us that

‘I’(Z N(j)f(Z‘,-)) <E, [‘I'(Z N(j)B{,-)‘N, Z]

j=1 j=1
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Taking expectation on both sides, we obtain that
n
E-[¥(S)] <E, [w(z Yk>i|.
k=1 O

REMARK 1. In the above proof, it is implicit that the endpoints £fE) are
a =0andb = 1. Whena < b are arbitrary, the corresponding extremal chain lives
in {a, b} and the transitions are determined by

I b—p
b—a

=(1—xro)—,
Mmap = ( O)b—a

Mmpq = (1 — Ao)

Theorem 2 deals witlstochastic orderingpf random variables. The particular
stochastic order used here is known in the literature as the convex ordgring:
if E[W(X)] <E[¥(Y)] for all convex real valuedv (such that the expectations
exist). The result can be stated ¥+ --- + X, <Y1+ --- + Y,,. Observe that
under stationarityX,’( =< Y, so we have transition schem@sandM under which
the stochastic order relation is preserved for the respective partial sums. When
there is independency within each sequence, it is known that the convex ordering
of the marginals implies the same ordering for the corresponding partial sums [see
Marshall and Olkin (1979)]; our result shows that this preservation property can
occur in the Markovian setting as well.

We now have all the necessary tools to prove our main result.

PROOF OFTHEOREM 1. Applying Theorem 2 with¥ (x) = exp(tx), we get
() < nli_)moon‘llogEn{exp(tS,;)}
: -1
< lim n~*logE, {exp(t > Yk> }
k=1
=0()
and then from Proposition 2 we obtain

Pr[S, > n(u+e)] < jggeXp{—n[t(u +¢) —logn(®)1}
< tig{)exp{—n[t(u +¢) —logo (1)1}

=exp{—nlo(n+¢)},
where I is the rate function (12). The stated upper bounds then follow from
Proposition 1. [J

REMARK 2. With a little more effort we can see that we do not need to
assume thaP is aperiodic in Theorem 1. Indeed, given periodic but irreducible
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and reversibleP, it is possible to construct a sequence of aperiodic, irreducible
and reversible chain®,,, such thatP,, converges toP asm tends to infinity.
Sincei, w andu are continuous functions d?, Theorem 1 will hold for allP,,

and the result will hold forP as well, by continuity. In fact, an eigenvalue near of
even equal te-1 is not a problem as only Césaro susjsare considered here.

REMARK 3. Following Remark 1, the theorem remains valid when the end
pointsa < b of f(E) are arbitrary. In this case the valugsande in the bounds
are to be replaced biy—" and =, respectively.

It is clear from the proof of Theorem 1 that, under the condition O, the
rate functionsl/; (x) = supr{tx —10g¢ (1)}, I,(x) = supcgrftx —logn(r)} and
Ip(x) = supg{rx —logé ()} corresponding td,, S, and)_}_, Yx, respectively,
satisfy

(19) I (x) = Iy (x) > Ip(x).

When P = Q, there is equality on the leftmost side. Furthermore, wfiés 0—1,

we have equality in the rightmost side. Hence, whita- Q and f: E — {0, 1},

the exponential rate given in our first upper bound cannot be improved upon.
In particular, when the chain is independent, the theorem yields the well-known
Hoeffding’s inequality

n(u+e) n(i—e)
P[Snzn(u+e)]s( " ) (“ ) .
n+ & n—e

REMARK 4. A closer look reveals that the leftmost inequality in (19) is true
for all A. This suggests the possibility that the theorem might be true for all
admissible values of. But this is not so, numerical evidence show that the bounds
do not hold without the conditioh > 0.

3. Comparisons. Gillman (1993) was the first tobtain a finite sample size
exponential bound for the large deviation probabilities using perturbation theory.
Successive refinements of the technique allowed Dinwoodie (1995) and Lézaud
(1998) to improve this bound. Among these, the later work contains the best
results and we shall use them for the comparisons. Witkatisfying our usual
assumptions, Theorem 1.1 of Lézaud (1998) gives in our particular case

A-1)/5 (1—1)ne? }

(20) Pr[Sp =n(u+e)l<e ex T a1+ h(e/ )]

whereh(x) = o/1—x — (1 — x). Let us denotel.(u, ¢) the exponential rate in
(20) andly (u + ¢) is the exponential rate in the bound (2). Observe first that since
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Iy (1 + ¢) comes from the rate function of the two-state case, and §inges, co)
is a continuity set ofy, then sampling from this chain implies
lim n =t ogP,[Sy = n(u+ &)l = —ls(u + &) < —L(u, ¢),

hence, wher. > 0, the rately (1 + ¢) always yields a better bound. A limited
Taylor expansion ofy aroundu gives an idea of the ratio of these quantities

Tp(n +¢) 2
= — + o(e).
L(n,e)  n(1+A)
APPENDIX A

The leading, middle and constant terms of the convex quadratic polynomial
obtained from (15) are

a=[1—(@2x =D+ pan),
b=—2{[pii(1— 2% + A1+ (2x — D] — 24(2x — 1)?}
and
= (i + )21 — (2x — 1),
respectively. After some simplifications the discriminaft— 4ac can be written
as
_ Ahx(1—x)
16(2x ~ V(i 7|14 -2 |
(1 —2)?
and the rootso+ .1y are given, respectively, by
pi(l =114 2 — D+ 41— (2x = 1)?]
[1—(2x — D2 + ad)
22 = Dl = )*VA
[1—(2x — D2 (u+ar)
Now, consider the conjugate product
[VA+ (1 -20][VA - (1-20)]
_ (A (A + p[l - (2 - 17
(L —2)2
Since it is positive for O< x < 1 and since both terms on the left-hand side are

positive atx = 1/2 and continuous, each is positive for alkQc < 1. Multiplying
the numerator and denominator in the expression (21YhBy+ (1 — 2x), for ta',

and byv/A — (1 - 2x), for t5, the roots can be written as
(L + u) VA — (1 - 2%)] (2 + u)[VA + (1—20)]
(1 + AV [VA 4+ (1 —2x)] (4 aMVA — (1—2x)]

(21)
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Except forx = 1/2, where they coincide, exactly one of these is the solution
of (11), the other being the solution to the conjugate equation. To arbitrate, let
us, evaluate the rightmost term in (11) for the first candidate. We obtain

(AApIVA = A=201  oo0 2@x - DGt uh)
(1 +ANIVA + (1= 20)] VA+@-20)

Since this expression shares its sign with the leftmost term in (11), we have found
the maximizing value.

(1 4 ar)

APPENDIX B

The behavior ofi(x) = (x — ) I (x) — 21y (x) depends on whether < 1/2 or
w > 1/2; we shall carry out the analysis for the first case, the other being similar
but somewhat less involved. To begin with, the first derivativeg,oére found
to be

: A i } [ R ]
1 = —| [ s
o) 09[1—22/(1+JZ) 1 2a+va)
I (x) = (VAxx)
(x — ¥)(3A — 1)
19(3)(x) = IA2(:0)2

so thatly(n) = I;(n) = 0, while 19(3)(x) x (x — X), since the other terms are
positive. Now, we havé'(x) = (x — u) I}/ (x) — I;(x), h"(x) = (x — W) I}> (x),
and Figure 1 summarizes the analysis of their sign.

Combining this with the fact thai(u) = h(ix) = 0, we see that these are the
only zeros and furthef; is negative in(u, i) and positive in(0, w) U (i, 1).

0
,./0\ ~
n 0 T 1/2 p 1
h' e ° o ° o
+ - +
0
, 0 1 1/2 I 1
h \. /.\ d J \Q .J

+ 4
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