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A HOMING PROBLEM FOR DIFFUSION PROCESSES
WITH CONTROL-DEPENDENT VARIANCE!

BY MARIO LEFEBVRE
Ecole Polytechnique de Montréal

Controlled one-dimensional diffusion processes, with infinitesimal vari-
ance (instead of the infinitesimal mean) depending on the control variable,
are considered in an interval located on the positive half-line. The process is
controlled until it reaches either end of the interval. The aim is to minimize
the expected value of a cost criterion with quadratic control costs on the way
and a final cost equal to zero (resp. a large constant) if the process exits the in-
terval through its left (resp. right) end point. Explicit expressions are obtained
both for the optimal value of the control variable and the value function when
the infinitesimal parameters of the processes are proportional to a power of
the state variable.

1. Introduction. Let x(¢z) be a one-dimensional controlled diffusion process
defined by the stochastic differential equation

dx(t) = alx(t), 11dt + b[x (1), tlu(t) dt + {v[x @), Y2 dW (1),
whereuv(., -) is positive andW (¢) is a standard Brownian motion, and define
7(x) :=inf {t >0:x() € {d1, d2} | x(0)=x €[dq, dz]}.

Using a result due to Whittle [(1982), page 289], we can show that if the
uncontrolled processg(¢) that corresponds te(r) is certain to leave the interval
[d1, d2], then the value of the contralz) that minimizes the expected value of the
cost criterion

T(x)
s = [ dale@. PO di + K (x(2). 7).
wheregq (-, -) is positive andK (-, -) is a general termination cost function, can be
obtained from the mathematical expectation
E[e—K()‘(T)J)/Ol|y(0) =x],
in which « is a positive parameter such that the relation
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holds. Actually, the mathematical expectation above is equal t¢*)/¢, where
F(x) is the value function defined by

(1) Fex)= inf JEU @)L

u(t),0<r<t(x

Whittle has termed this type of probleb®@G homing It can be generalized [see
Lefebvre (1989, 1997)] in particular by using a risk-sensitive cost criterion instead
of J(x) [see Kuhn (1985) and Whittle (1990), page 222].
Next, the author [Lefebvre (2001)] modified the problem set up by Whittle by
considering the controlled process defined by
dx(1) = blx(O)lu() dt + vlx(O1|u(@)}/2dW ()

and the cost criterion

T(x) 1 ’
s = [ Balx ) + 2 ar
whereg (-) is positive,\ is a positive parameter and
t(x):=inf{r>0:|x()|=d | x(0) =x € [—d, d]}.

He found, under some symmetry assumptions, that the control that minimizes the
expected value of (x) is given by

2 1/2
u*:(—) when 0< x <d.
q(x)

He also gave a probabilistic interpretation to the value funcién) and, finally,
he computed explicitly this function in the most important cases, for instance,
the cases whem(r) with u(r) = 1 is a Wiener process or a geometric Brownian
motion.

In the present paper, we assume that the controlled stochastic pkb¢gss
obeys the stochastic differential equation

2 dX(1) = fIXO]dt + X ONu@®}Y2aW (@),
where f (x) andv(x) are positive functions far > d;, and we let
t(x):=inf{t > 0:X(t) € {d1,d2} | X(0) = x € [dy, d2]}

with dy > 0. Therefore, itis the infinitesimal variance of the controlled pro&&ss
that is control-dependent, rather thanimtnitesimal mean, fin Whittle [(1982),
page 289]. The cost criterion is

T 2
(3) J(x) = fo (LgIX ONu?(t) + 2} di + K{X[r(0)1).

In J(x), the parametex can now take any real value afd-) is defined by
0, if X[z(x)]=da,

K{X[t(x)]} = { Ko, if X[t(x)]=d>,
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where Kg is a (large enough) positive constant. Thusy ifs positive, then the
aim is to make the controlled proceXs:) leave the intervaldi, d2) as soon as
possible and through its left end poi#t, whereas whei is negative there is
a reward given for survival ifdy, d2). If A = 0, time spent in the continuation
region (d1, d») is neither directly rewarded nor penalized; however, because the
functiong(-) is assumed to be strictly positive, the sooigr) exits (d1, d»), the
better. In all cases, the quadratic control costs must of course be taken into account.
In the next section, the optimal value of the control variable will be computed.
The case when the functiong, v and ¢ are proportional toX"(z), where
n € {0, 1,2}, will be treated thoroughly. Particular examples, including the case
when X (r) with u(r) = 1 is a Wiener process, will be presented in Section 3.
Finally, a few concluding remarks will be made in Section 4.

2. Computation of the optimal control. Let F(x) be the value function
defined in (1). Assuming that it exists and is twice differentiable, we can easily
show that it satisfies the dynamic programming equation

(4) oszgqum2+x+j(wF%m+évuan%m}
for d1 < x < d», whereu := u(0). Moreover, the boundary conditions are
(5) F(d) =0 and F(dy) = Ko.

Now, sinceu(t) only appears in absolute value in the stochastic differential
equation (2) and squared in the cost criterion (3), the siga(of is actually
irrelevant. Hence, we can assume without loss of generalityuti|honnegative
and it then follows at once that the optimal contblis given by

v(x)

(©) uz_%u)

F’(x) (= 0).

REMARKS. 1. We will have to check below that”(x) is indeed less than
or equal to zero. Actually, we cannot ha¥€(x) = 0 and satisfy both boundary
conditions in (5). SoF”(x) should in fact be strictly negative.

2. We have assumed above that the functfai) is positive if x > d1. Notice
that if f(x) is negative forx € [d1, d2] and A = 0, then the optimal control
is trivially given by u* = 0. Indeed, we then obtain th#&t(x) = 0 (for d1 <
x < do), which is clearly the smallest value th#t(x) can take. However,
when we choose a parametedifferent from zero, the casg(x) # 0 could
be considered.

3. If the parameter. = 0, then the functionF(x) takes its values in the
interval [0, Kg].

4. In some cases, the origin is an inaccessible boundary for the uncontrolled
processX1(¢) obtained by setting (r) = 1, that is, the origin cannot be reached
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in finite time. This is true, in particular, wheki,(¢) is a geometric Brownian
motion defined by the stochastic differential equation

dX1(t) = X1(t)dt + | X1(t)| dW (¢).
Therefore, it is natural to chooge strictly positive in such a case. However, in

other cased; can be chosen equal to zero in a very legitimate way.

Next, substituting the optimal contral* into the dynamic programming
equation (4), we find that the value functiadn(x) satisfies the second-order
nonlinear ordinary differential equation

v2(x)
8g(x)

Summing up, we may state the following proposition.

) 0=+ f(X)F'(x) — [F"(x)]%

ProrPoOsITION 2.1. If the value functionF'(x) exists and is twice differen-
tiable, then the optimal contrat* is given by the formulé6). Moreoverthe func-
tion F (x) can be obtained by solving the ordinary differential equationsubject
to the boundary condition®).

REMARK. Note that for the problem set up above to make sense, we must
havei + f(x)F'(x) > 0 [see (7)].

Next, we will solve explicitly the nonlinear ordinary differential equation (7) in
two particular cases.

Casel. Assume firstthaf (x) = fo, a positive constant, and that

v3(x) |
8g(x)
wherehg is also a positive constant andce {—2, —1, ..., 4}.

(8) = h(x) = hox",

REMARK. The most important cases for applications are the ones when
f(x) = fox*, v(x) = vox/ and g(x) = gox’ with j, k,I € {0,1,2}. Actually,
we could also include the case wheiix) = fo/x. Indeed, X () with u(z) =1
could then be a Bessel processyifc) = 1; see Karlin and Taylor (1981), pages
175 and 176, for instance].

When the formula (8) holds [and(x) = fo], we may rewrite the ordinary
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differential equation (7) as
9) hOF" ()P =4 + foF' (x).
Differentiating this differential equation, we obtain that
W ()F"(x))? + 2h(x)F"(x)F" (x) = foF" (x).
Hence, because we must havé(x) < 0 (see above), we may write that
(10) 2h(x)G'(x) + h' (x)G(x) = fo,

whereG (x) := F”(x). The general solution of (10) is given by

1
Gu):h—”%xﬂquéﬁﬁigdx+c}

wherec is a constant. It is now easy to obtain an explicit expression in the case
whenh(x) = hox". We find that

1-n
€ nyzy JoXTT

= .f 2
Gx) Vho ho2—n It n#
(11) and
c 1 folnx :
G(x) %x + I ifn

Integrating the functiorG (x) twice, we obtain that the value functiafi(x) is
given by

2c xZ—(n/Z) fO x3—n
Jio@—m@—nj2) | ho@—n2@—n) | T
if n#2, 3,4,
\/Lh_ox(lnx -1+ %Oox(lnzx —2Inx+2)+c1x +co
(12) if n =2,
—L4x1/2+ﬁlnx+c1x+co if n=3,
Vho ho
c fol .
———lnx——= fn=4,
% X 4h0x+c1x+co It n

wherec1 andcg are constants.

Finally, the constants, ¢; andcg are uniquely determined from the boundary
conditions (5) and the equation (9). Actually, we find tkdt= A + foc1. An
example will be presented in the next section.
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CAse2. IfA=0and

& = g(x) = gox™

8g(x) f(x)
wheregg is a positive constant and € {—4, —3, ..., 4}, we have
(13) g)[F"(x)]? = F'(x).

Proceeding as above, we find that the functiom) is given by (12), withfp =1

n replaced bym and hg by go, and that the constants ¢1 and ¢g are now
uniquely determined from the boundary conditions (5) and the ordinary differential
equation (13). Here, we find that = c1. As for Case 1, an example will be
provided in the next section.

REMARKS.

1. As mentioned above, we must also check that the condiiéex) < O is
satisfied.

2. As will be seenin the examples presented in Section 3, there is also a restriction
on the constanky in the definition of the functiork (-).

3. Examples. (a) First, we consider the particular case whgéx) = fo,
v(x) = vg andg(x) = qgg, Where fg, vg andgg are all positive constants. Then,
the controlled procesX () with u(z) = 1 is a Wiener process with infinitesimal
parameterg andvg. We have

02
h(x) = ho = -0
840’
so thatz = 0 in (8). It follows that [see (12)]
2 V2q
F(x) = fo;]o 3 V0.2 4 iy +co
3§ )

We find that the ordinary differential equation (9) is satisfied if and only if we take
c? = A + foc1, as noticed above. It follows that

2 cA/2 c2—
Fx)= fogox?’—l- q0x2+ X + co.
3vg Vo fo

Next, the boundary conditioR (d1) = 0 implies that

fOQO( 3_ 3 3) 4 VA0 c+/2 2
3v0 fO
and finally, F (d2) = Kq yields that
_ Pld2—dy)  cV2q0(di—df) | 2foqo(di —d) dz—dy)
fo vo 3v3 fo

F(x)=

x —d1),
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Hence, we have

o fo
2(dz — dy)
_ V/2q0(d5 — df)
U0

2

N { 2qo(d? — d?)?
Vg

pd2—d <2foqo(d2 i) _Mda—dv) )}1/2
_ — Ko )
fo 3v3 fo

To simplify further, we takefo = vg = 1 andgg = 1/2. We get that

(d2+d1)
2

| @} — df)? — Aldp — d1) (1/3(d3 — df) — i(dz — d1) — Ko)}/?
2(dz — d1) '
We then deduce that the consta&f must satisfy the inequality

(15) Ko > M(dz — d1) + 25(do — dy)*.

(14)

Notice that the larger the parameteis, the largerko must be. Conversely, K is
(negative and) small enough, aky > 0 is admissible.

To determine whether we must choose the or “ —" sign in (14), we will use
the fact that we must haveé” (x) < 0; that is, with fo = vo = 1 andgo = %

F'(x)=G(x)=2x+2c<0 fordy <x <do.

This implies that the constantmust be smaller than or equal+ai,. Using (14),
we obtain that

N {(d3 — d?)? — Mdp — d1)(1/3(d3 — d3) — M(dp — dy) — Ko)}/?
2(dy — dy)

WO a- =

(<0).

Thus, we must choose the-" sign. Then, we find that (16) implies that
(d5 — d})? — Adz — d1)(3(d5 — d3) — A(d2 — d1) — Ko) > (d2 — dp)*

a7 1 3

< Ko>A(d2—d1)+ 3(d2—d1)".

Since this last condition is more restrictive than the one in (15), this is a condition
that must be fulfilled.
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Summing up, when we choos&x) =1, v(x) =1 andg(x) = % the optimal
control is given by
u*=-2(x+c),

where the constantis defined in (14), in which the=” sign is chosen and the
constantky satisfies the condition (17). Furthermore, the value function is

F)=303—d}) +c(x®—dd) +(* - —dy)  fordi<x<dy.

(b) Next, we consider the controlled stochastic prockss defined by the
stochastic differential equation

dX (1) = X (1) dt + {X2O)|u(@) Y2 dW (1)

and we look for the controk™ that minimizes the expected value of the cost
criterion

T(x) 1
J(x):/o 53X (Ou()dt + K{X[t(x)]}.

Thatis, we takef [ X (1)] = X (¢), v[X ()] = X2(1) andg[X (r)] = X (r). Moreover,
we setir = 0. In the case when(z) = 1, X (¢) is a geometric Brownian motion.
Notice that

vz(x) x2 )
—— = —=g(X).
8 f) 8 °
It follows that the value function is given by [see (12) with=m) =2, fo=1
andho (= go) = 3]
F(x)=2v2cx(Inx — 1) + 2x(Inx — 2Inx 4+ 2) + c1x + co
and

1 In
G(x)=F"(x)=2V2c= + 4—x.
X X

Furthermore, the optimal contref is
(18) u*=—+v2c—2lnx.
Next, (13) yields that
4+2Ix +2vV2cinx =2v2cinx +2Inx +¢1 = c?=cy,
which is in fact true for all problems in Case 2. Hence, we have
F(x)=2v2cx(Inx — 1) + 2x Inx(Inx — 2) + 4x + c?x + co.
The boundary conditiong (d1) = 0 andF (d2) = Ko imply that
F(x) =2v2c[(xInx —diInd1) — (x — d1)] + 2(x In?x — dqIn?dy)

(19) 4 ’
—4(xInx —d1Indy) + 4(x — d1) + c“(x — dp),
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where the constatis such that
Ko=c*(dz — d1) + 2v2c[(d2Indz — d1Indy) — (d2 — d1)]
+2dyIn?dp — 2d1In%dy — AdaIndo + 4d1Indy + 4(do — dy).
For simplicity, letd; = 1 andd, = d. Then, we have
= (d — Dc? +2v2c[dInd — (d — 1)] +2dIn*d — 4dInd + 4(d — 1) — Ko,
so that

—2J/2(dInd —d + 1) £[8dIn%d — 8(d — 1)% + 4(d — 1) Ko]¥/?
2(d — 1) '
Thus, a first restriction on the constdty is that

(20) c¢=

d
Ko>2d—1) —2 Ind,
0z2d-1 -2

whered > 1.
Finally, we know that we must also have

F(x) = 2J§c— + 4— <0 Vxelld),

which implies that

c <—+/2Ind.

We then deduce from (20) that we must again choose testgn and that the
constantky must satisfy the inequality

Ko>4d—1) —4Ind — 2In?d.

Since

Ad—1)—4Ind —2In°d > 2(d — 1) — 2

d
1In2a’ Vd > 1,

we must impose the constraint
1102
(21) Ko>4(d —1—Ind — 5In°d).

In summary, when we choosg[X ()] = X (1), v[X ()] = X2(1), q[X(1)] =
X (@), »=0,dy=1andd> =d (> 1), the optimal control is given by (18) with the
constantc defined in (20), in which the=" sign is chosen and the constakig
is such that (21) holds. Moreover, the value function is [see (19) &its 1 and
do =d]

F(x) =2x|nx[|nx+\/§c—2] +(x — 1)[c2—2«/§c+4].
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4. Concluding remarks. In this article, the problem of optimally controlling
a certain class of one-dimensional diffusion processes was set up and solved
exactly. Contrary to the classic formulation, the diffusion processes in question
had control-dependent infinitesimal variances rather than infinitesimal means.
The objective, when the parameteiin the cost criterion/ (x) defined in (3) is
nonnegative, was to incite the controlled process to exit, as soon as possible, the
interval [d1, d»] at d1. Whena is negative, a reward is given for survival in the
interval (d1, d2).

In Section 3, two particular cases were treated extensively. The first example
involved a controlled Wiener process, whereas in the second example a geometric
Brownian motion was optimally controlled. Many other important cases could
be considered. For instance, particular Bessel processes could have been used. It
would also be interesting to také{ X (r)] = —a X (¢), with « a positive constant,
v[X(#)] = vo > 0 andA < 0. Then, the controlled process(r) with u(r) =1
is an Ornstein—Uhlenbeck process. SinteX (¢)] is negative whenX(¢) is in
the interval[di, d2], we haveJ(x) =0 if A =0 and if the optimizer chooses
u(t) = 0. However, ifA is negative and small enough (i.e., large enough in absolute
value), the optimizer can receive a reward overall if the controlled process remains
betweend; andds for a long enough time. Therefore, the optimal controlwill
not always be identical to zero ifis small andKg is not too large. Actually, the
situation is similar even whefi[X (¢)] > 0 in the intervaldy, d»]. Indeed, ifKg is
not large, the optimizer is better off to |&t(z) hit d> befored, rather than to use a
lot of control to makeX (¢) hit d1 first; hence the constraints that we must impose
on the constank, as we have seen in the examples presented in Section 3.

Finally, possible extensions of the work presented in this article are the
following: first, a two-dimensional version of the optimal control problem could
be considered. Also, we could use a risk-sensitive cost criterion rathey than
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