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Block-Conditional Missing at Random
Models for Missing Data
Yan Zhou, Roderick J. A. Little and John D. Kalbfleisch

Abstract. Two major ideas in the analysis of missing data are (a) the EM
algorithm [Dempster, Laird and Rubin, J. Roy. Statist. Soc. Ser. B 39 (1977)
1–38] for maximum likelihood (ML) estimation, and (b) the formulation of
models for the joint distribution of the data Z and missing data indicators M ,
and associated “missing at random” (MAR) condition under which a model
for M is unnecessary [Rubin, Biometrika 63 (1976) 581–592]. Most previ-
ous work has treated Z and M as single blocks, yielding selection or pattern-
mixture models depending on how their joint distribution is factorized. This
paper explores “block-sequential” models that interleave subsets of the vari-
ables and their missing data indicators, and then make parameter restrictions
based on assumptions in each block. These include models that are not MAR.
We examine a subclass of block-sequential models we call block-conditional
MAR (BCMAR) models, and an associated block-monotone reduced like-
lihood strategy that typically yields consistent estimates by selectively dis-
carding some data. Alternatively, full ML estimation can often be achieved
via the EM algorithm. We examine in some detail BCMAR models for the
case of two multinomially distributed categorical variables, and a two block
structure where the first block is categorical and the second block arises from
a (possibly multivariate) exponential family distribution.

Key words and phrases: Block-sequential missing data models, block-
conditional MAR models, EM algorithm, categorical data.

1. INTRODUCTION

Missing values arise in empirical studies for many
reasons, including unavailability of the measurements,
respondents refusing to answer certain items on a ques-
tionnaire, and attrition in longitudinal studies. Com-
plete case (CC) analysis, which omits information in
the cases with missing values, is inefficient and po-
tentially biased, especially if the subjects included in
the analysis are systematically different from those ex-
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cluded in terms of one or more key variables. Ap-
proaches that incorporate information in the incom-
plete cases include nonresponse weighting (Little and
Rubin, 2002, Chapter 3); multiple imputation (MI),
where missing values are replaced by multiple sets
of plausible values (Rubin, 1987; Little and Rubin,
2002, Chapter 5); weighted estimating equation (WEE)
methods (Lipsitz, Ibrahim and Zhao, 1999); and meth-
ods based on the likelihood for a model for the data,
such as maximum likelihood (ML) or fully Bayes mod-
eling. We focus here on the ML approach, although our
models could also be analyzed using Bayesian or MI
methods.

Rubin’s (1976) theory on modeling the missing-
data mechanism was a key development in estima-
tion with incomplete data. Rubin (1976) formalized
the concept of missing-data mechanisms by treating
the missing-data indicators as random variables and as-
signing them a distribution. Specifically, let Z = (Zij )
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denote a rectangular n × p data set; the ith row is
Zi = (Zi1, . . . ,Zip), where Zij is the j th observation
for subject i. Let M = (Mij ) be a missing data indica-
tor matrix with the ith row Mi = (Mi1, . . . ,Mip), such
that Mij is 1 if Zij is missing and Mij is 0 if Zij is
present. We assume that (Zi,Mi), i = 1, . . . , n, are in-
dependent and identically distributed. In Rubin (1976),
the joint distribution is factored as

f (Zi,Mi |θ,ψ) = f (Zi |θ)f (Mi |Zi,ψ),(1.1)

where f (Zi |θ) represents the model for the data with-
out missing values, f (Mi |Zi,ψ) models the missing-
data mechanism, and (θ,ψ) denotes unknown parame-
ters. When missingness does not depend on the values
of the data Z, missing or observed, that is, if

f (Mi |Zi,ψ) = f (Mi |ψ) for all Zi,ψ,

the data are called missing completely at random
(MCAR). With the exception of some planned missing-
data designs, MCAR is a strong assumption, and miss-
ingness often depends on the observed and/or unob-
served data. Let Zobs,i denote the observed component
of Zi and Zmis,i the missing component. A less re-
strictive assumption is that missingness depends only
on the observed values Zobs,i , and not on the missing
values Zmis,i . That is,

f (Mi |Zi,ψ) = f (Mi |Zobs,i ,ψ) for all Zmis,i ,ψ.

The missing-data mechanism is then called missing at
random (MAR). The mechanism is called missing not
at random (MNAR) if the distribution of M depends on
the missing values in the data matrix Z.

The observed data consist of the values of the vari-
ables (Zobs,M) and the distribution of the observed
data is obtained by integrating Zmis out of the joint den-
sity of Z = (Zobs,Zmis) and M . That is, for unit i,

f (Zobs,i ,Mi |θ,ψ)

=
∫

f (Zobs,i ,Zmis,i |θ)(1.2)

· f (Mi |Zobs,i ,Zmis,i ,ψ)dZmis,i .

The full likelihood of θ and ψ is any function of θ and
ψ proportional to the product of (1.2) over observa-
tions i:

Lfull(θ,ψ |Zobs,M) ∝
n∏

i=1

f (Zobs,i ,Mi |θ,ψ).

The missing-data mechanism is called ignorable if it is
MAR and if in addition, the parameter space for (θ,ψ)

is a Cartesian product space � × � where θ ∈ � and

ψ ∈ � . Likelihood-based inferences for θ can then be
based on

Lign(θ |Zobs) ∝
n∏

i=1

f (Zobs,i |θ),

the ignorable likelihood of θ based on the observed
data Zobs (Rubin, 1976). Many methods of handling
missing data assume missingness is MCAR or MAR.
If this is assumed, the missing-data mechanism can be
ignored and we only need to model the observed data
Zobs to derive likelihood-based inferences for θ . How-
ever, these inferences are subject to bias when the data
are not MAR.

Equation (1.1) is sometimes called a selection model
factorization of the joint distribution of (Zi,Mi) be-
cause of connections with the econometric literature
on selection bias (Heckman, 1976). Clearly other fac-
torizations are possible. In particular, pattern-mixture
models (Little, 1993) factor the joint distribution as

f (Zi,Mi |ϕ,π) = f (Mi |π)f (Zi |Mi,ϕ),(1.3)

which models the distribution of Zi for each pattern of
missing data.

Both selection and pattern-mixture models treat the
variables Zi and missing-data indicators Mi as sin-
gle blocks. Little attention has been paid to mod-
els that disaggregate these blocks based on subsets
of variables and their missing-data indicators. One
such class of models is generated by writing Zi =
(Zi(1),Zi(2), . . . ,Zi(B)) where Zi(j) is a subset of the
variables, with corresponding missing-data indicators
Mi = (Mi(1),Mi(2), . . . ,Mi(B)). For convenience, de-
fine the “history” up to block j for unit i as

Hi(j) = (
Zi(1),Mi(1), . . . ,Zi(j),Mi(j)

)
and factor the joint distribution as

f (Zi,Mi |θ,ψ)

= f
(
Zi(1),Mi(1)|θ(1),ψ(1))

(1.4)
· f (

Zi(2),Mi(2)|Hi(1), θ
(2),ψ(2))

· · · · · f (
Zi(B),Mi(B)|Hi(B−1), θ

(B),ψ(B)).
We call models based on the factorization (1.4) block-
sequential missing data models. The set (Zi(j),Mi(j))

in the j th block might be modeled using the selec-
tion or pattern-mixture factorization, yielding combi-
nations of (1.1) and (1.3). This approach to modeling
might be seen as natural when the blocks unfold se-
quentially in time, or if they follow a causal sequence,
and the variables in a block are conditioned on prior
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variables in time or in the causal chain. Along these
lines, Robins and Gill (1997) and Robins (1997) argue
that MAR is hard to justify causally when data do not
have a monotone pattern, and discuss alternative fac-
torizations that have a readier causal interpretation.

Various modeling assumptions might be incorpo-
rated in (1.4). In this article we consider a particular
form of potentially MNAR models based on (1.4) with
specific assumptions concerning the dependence of the
distribution of the variables in each block on the his-
tory. Specifically, we assume that in the j th block, the
joint distribution of (Zi(j),Mi(j)|Hi(j−1)) can be fac-
torized as follows (parameters are left implicit):

f
(
Zi(j),Mi(j)|Hi(j−1)

)
(1.5)

= f
(
Zi(j)|Hi(j−1)

)
f

(
Mi(j)|Hi(j−1),Zi(j)

)
,

where

f
(
Zi(j)|Hi(j−1)

) = f
(
Zi(j)|Zi(1), . . . ,Zi(j−1)

)
,

f
(
Mi(j)|Hi(j−1),Zi(j)

) = f
(
Mi(j)|Hi(j−1),Zobs,i(j)

)
,

and Zobs,i(j) denotes the observed components of
Zi(j). That is, the distribution of Zi(j) given the pre-
vious variables depends only on the previous Z’s, not
the previous M’s, and the distribution of Mi(j) can de-
pend on previous Z’s, M’s and Zobs,i(j), but not on the
missing components of Zi(j), say, Zmis,i(j). We call
models of the form (1.5) block-conditional MAR (BC-
MAR), since each block would be MAR if values of Z

in previous blocks were fully observed.
For B = 2 blocks, (1.5) reduces to

f (Zi,Mi |θ,ψ)

= f
(
Zi(1)|θ(1))f (

Mi(1)|Zobs,i(1),ψ
(1))

(1.6)
· f (

Zi(2)|Zi(1), θ
(2))

· f (
Mi(2)|Mi(1),Zi(1),Zobs,i(2),ψ

(2)),
where Zi(1) is MAR, ignoring information about Zi(2)

and Mi(2), and missingness of Zi(2) depends on the ob-
served components of Zi(2), observed and unobserved
value of Zi(1) and on Mi(1). This mechanism is not in
general MAR, since missingness of Zi(2) is allowed to
depend on missing values of Zmis,i(1). For the particu-
lar case where Zi(1) and Zi(2) are single variables, this
reduces to the simpler form

f (Zi,Mi |θ,ψ)

= f
(
Zi(1)|θ(1))f (

Mi(1)|ψ(1))
(1.7)

· f (
Zi(2)|Zi(1), θ

(2))
· f (

Mi(2)|Mi(1),Zi(1),ψ
(2)),

because of the MAR condition in each block. In this
case, Zi(1) is MCAR and, given Zi(1),Mi(1),Zi(2) is
also MAR. In Section 2 we describe inference for BC-
MAR models based on a block-monotone reduced like-
lihood, where the conditional distribution of the vari-
ables in each block, given the variables in previous
blocks, is computed using only the subset of cases
for which the variables in previous blocks are fully
observed. This reduced likelihood is related but not
quite the same as a partial likelihood as defined by
Cox (1975). This reduced likelihood does not require
a model for the distribution of the missing-data indica-
tors M . This is a useful property, since specifying mod-
els for M can be challenging, and results are vulnerable
to misspecification. The block-monotone reduced like-
lihood becomes the full likelihood when data have a
particular pattern, which we call block monotone.

Use of the block-monotone reduced likelihood gen-
erally involves a loss of information, and an interesting
question is how much information is lost; the remain-
der of the paper examines this question in the context
of simple bivariate examples. We analyze in detail the
model (1.7) for case of bivariate categorical Z, where
the complete cases form a 2-way contingency table,
and the incomplete cases form supplemental margins
(see, for example, Little and Rubin, 2002, Chapter 13).
In addition, we give a less detailed analysis of a more
general example with two blocks where the distribution
of Zi(2) is from the exponential family.

The EM algorithm (Dempster, Laird and Rubin,
1977), a ubiquitous algorithm for ML estimation from
incomplete data and the topic of this special issue,
plays a useful role in fitting these models. EM is partic-
ularly appealing for categorical data, since the Poisson
and multinomial distributions for modeling count data
yield complete data loglikelihoods that are linear in the
cell counts. Consequently, the E step of EM consists of
replacing the complete-data cell counts by conditional
expectations given the observed data, in effect distrib-
uting the supplemental margins into the full table ac-
cording to current estimates of the cell probabilities.
The M step of EM is the same as complete-data ML
estimation based on the data filled in by the E step.
This approach to estimation for count data with some
grouped counts was first established as ML by Hartley
(1958). The application to a (2 × 2) table with supple-
mental margins was considered by Chen and Fienberg
(1974), and extended to the general class of loglinear
models by Fuchs (1982).

For some hierarchical loglinear models the M step of
EM requires iteration, so EM involves double iteration.
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The usual approach is the Deming–Stephan algorithm,
also known as iterative proportional fitting (Bishop,
Fienberg and Holland, 1975). If the M step is restricted
to just one iteration of Deming–Stephan, the result is
an example of an ECM (Expectation Conditional Max-
imization) algorithm, which achieves similar theoreti-
cal properties to EM with just a single iterative loop
(Meng and Rubin, 1993; Little and Rubin, 2002). EM
is also useful for fitting MNAR models for contin-
gency tables (Baker and Laird, 1985; Fay, 1986; Ru-
bin, Stern and Vehovar, 1995; Little and Rubin 2002,
Section 15.7). As shown below, EM also plays a useful
role for BCMAR models.

In Section 3, we consider ML estimation for a
BCMAR model for bivariate categorical data, where
Z = (Z(1),Z(2)) are assumed to have a multinomial
distribution. The results are surprising. The block-
monotone reduced ML estimates of the parameters
of the joint distribution of (Z(1),Z(2)) (as discussed
in Section 2) are computed noniteratively from the
monotone pattern, excluding the data with Z(2) ob-
served and Z(1) missing. These are in fact the full ML
estimates, providing corresponding estimates of the pa-
rameters of the missing-data mechanism all lie in the
admissible range [0,1]. If not, then the data with Z(2)

observed and Z(1) missing enter into the full ML esti-
mates, and an iterative algorithm such as EM is needed
to compute them. In Section 4, a restricted version of
the BCMAR model is introduced where missingness of
Z(2) depends on the perhaps unobserved value of Z(1)

but not on whether Z(1) is missing. Some numerical
examples are presented in Section 5 to compare unre-
stricted and restricted BCMAR models and MAR mod-
els and to illustrate when the block-monotone reduced
ML estimates in the BCMAR models are full ML.
A real data example is given in Section 6. Section 7
explores a more general example of a BCMAR model
with two blocks, in which the possibly vector valued
variable Z(2) arises from a distribution in the exponen-
tial family. Section 8 reviews the ideas of the article and
outlines extensions to other missing-data problems.

2. ESTIMATION OF BLOCK-CONDITIONAL MAR
MODELS USING A REDUCED LIKELIHOOD

For any BCMAR model, define the block-monotone
reduced likelihood to be

Lbm(θ)

=
B∏

j=1

∏
i∈Qj

f
(
Zobs,i(j)|Zi(1),Zi(2), . . . ,(2.1)

Zi(j−1), θ
(j)),

where Qj is the subset of cases with Zi(1),Zi(2), . . . ,

Zi(j−1) fully observed, that is, Mi(1) = Mi(2) = · · · =
Mi(j−1) = 0. Under usual regularity conditions, the
estimator of θ that maximizes Lbm(θ) has the same
properties as maximum likelihood, in that it is con-
sistent and asymptotically normal with an asymptotic
covariance matrix estimated by I (θ̂)−1 where I (θ) =
−∂2 logLbm(θ)/∂θT ∂θ . These results can be obtained
using conditional arguments similar to those of Cox
(1975) in his examination of partial likelihood.

We prove this property for the special case of B =
2 blocks; the extension to more than two blocks is
straightforward. The observed-data likelihood for the
two blocks can be written

Lobs(θ,ψ)

=
n∏

i=1

{
f

(
Zobs,i(1),Mi(1)|θ,ψ

)

· [
f

(
Zobs,i(2),Mi(2)|Zobs,i(1),

(2.2)
Mi(1) = 0, θ,ψ

)]δi

· [
f

(
Zobs,i(2),Mi(2)|Zobs,i(1),

Mi(1), θ,ψ
)]1−δi

}
,

where δi = I (Mi(1) = 0). Note that the second term in
the product refers to the cases for which i ∈ Q2. Con-
sider the pseudo-likelihood generated by the first two
terms in the product (2.2). Let γ = (θ,ψ), and denote
the corresponding scores as

Si(1) = ∂

∂γ
logf

(
Zobs,i(1),Mi(1)|θ,ψ

)
and

Si(2) = δi

∂

∂γ

· logf
(
Zobs,i(2),Mi(2)|Zobs,i(1),

Mi(1) = 0, θ,ψ
)
.

Under usual regularity conditions for the appropri-
ate conditional densities, it is now easily seen that
E[Si(j)] = 0 and E[S2

i(j)] = −E[∂Si(j)/∂γ ] where
j = 1,2. Finally, by conditioning on Zobs,i(1),Mi(1),
it can be seen that E[Si(1)Si(2)] = 0 so that the scores
are uncorrelated. It follows that

n∑
i=1

[
Si(1)(θ,ψ) + Si(2)(θ,ψ)

] = 0(2.3)

is an unbiased estimating equation with asymptotic
properties similar to those of a likelihood score equa-
tion. Under i.i.d. assumptions for the data {(Zi(1),
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Mi(1),Zi(2),Mi(2)), i = 1, . . . , n}, the central limit the-
orem applies to the total score and a Taylor expansion
gives the usual asymptotic normal results for the es-
timators θ̂ , ψ̂ that arise as a solution to (2.3). Further,
the asymptotic variance of θ̂ , ψ̂ can be estimated as the
inverse of the usual observed information. Finally, we
note that

Lobs(θ,ψ)

=
n∏

i=1

f
(
Zobs,i(1)|θ(1))f (

Mi(1)|Zobs,i(1),ψ
(1))

· ∏
i∈Q2

f
(
Zobs,i(2)|Zi(1), θ

(2))

· f (
Mi(2)|Zi(1),Mi(1) = 0,Zobs,i(2),ψ

(2))
· ∏
i /∈Q2

f
(
Zobs,i(2),Mi(2)|Zobs,i(1),Mi(1), θ,ψ

)
,

where the factorization of the first two products into
distinct components for θ and ψ is a result of the
BCMAR assumptions. Rearranging terms, we can
write

Lobs(θ,ψ) = Lbm(θ) × LM(ψ) × Lrest(θ,ψ),

where

Lbm(θ) =
n∏

i=1

f
(
Zobs,i(1)|θ(1)),

· ∏
i∈Q2

f
(
Zobs,i(2)|Zi(1), θ

(2))

LM(ψ) =
n∏

i=1

f
(
Mi(1)|Zobs,i(1),ψ

(1))

· ∏
i∈Q2

f
(
Mi(2)|Zi(1),Mi(1) = 0,

Zobs,i(2),ψ
(2)),

Lrest(θ,ψ) = ∏
i /∈Q2

f
(
Zobs,i(2),Mi(2)|Zobs,i(1),

Mi(1), θ,ψ
)
.

It can then be easily seen that the observed information
matrix based on the first two components is diagonal in
the parameters, and the asymptotic results for θ can be
determined from Lbm(θ) as described above.

The block-monotone reduced likelihood inference
drops the components LM(ψ) and Lrest(θ,ψ) from the
likelihood, and bases inference about θ on the remain-
ing term Lbm(θ). This provides a convenient approach

to inference, since the block-monotone reduced likeli-
hood does not involve the distributions of the missing-
data indicators, and, hence, these distributions do not
need to be specified. Correctly specifying these distri-
butions is not easy, and estimates of θ are vulnerable to
their misspecification.

We say that Zi = (Zi(1),Zi(2), . . . ,Zi(B)) have a
block monotone pattern if, for all j , Zi(j−1) is fully
observed whenever Zi(j) has at least one observed
component. Note that block monotonicity is weaker
than a monotone pattern for all the variables, since the
variables within each block do not necessarily have a
monotone pattern. If the data have a block monotone
pattern, the term Lrest(θ,ψ) is no longer present, and
the block-monotone reduced likelihood is equivalent to
the full likelihood for inference about θ , providing the
parameters θ and ψ are distinct. In other situations,
dropping the term Lrest(θ,ψ) involves a loss of infor-
mation, so the estimates are not in general fully effi-
cient compared with full ML. We explore this poten-
tial loss in efficiency for some simple models in the
remainder of this article.

3. UNRESTRICTED BCMAR MODELS FOR
BIVARIATE CATEGORICAL DATA

We consider data with B = 2, Z = (Z(1),Z(2))

where Z(1) and Z(2) are categorical variables with J

and K categories respectively. Both Z(1) and Z(2) may
be missing, so there are four missing-data patterns. Let
r = 0,1,2,3 index the missing-data patterns and let
Pr denote the set of sample cases with pattern type
r, r = 0, . . . ,3 (see Table 1). Let nr denote the number
of cases in the sample with pattern r and n = ∑

r nr

denote the total sample size.
For categorical Z(1) and Z(2) with J and K levels,

data in P0 can be arranged as a J × K contingency
table, and the data in P1 and P2 form supplemental
J × 1 and 1 × K margins. Let n(0),jk be the count of
complete cases with Z(1) = j,Z(2) = k, n(1),j+ be the
count of cases with Z(1) = j and Z(2) missing, n(2),+k

be the count of cases with Z(2) = k and Z(1) miss-
ing, and n(3),++ be the count of cases with both Z(1)

and Z(2) missing. The data are displayed in Table 2.

TABLE 1
Missing-data pattern for two variables

Pattern
P0
P1 ?
P2 ?
P3 ? ?
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TABLE 2
Notation for a J × K table with supplemental margins for both

variables

Z(2)

1 2 . . . . . . K Missing

1 n(0),11 n(0),12 . . . . . . n(0),1K n(1),1+
2 n(0),21 n(0),22 . . . . . . n(0),2K n(1),2+

Z(1)

...
...

...
...

...
...

...

J n(0),J1 n(0),J2 . . . . . . n(0),JK n(1),J+

Missing n(2),+1 n(2),+2 . . . . . . n(2),+K n(3),++

Note that n0 = ∑J
j=1

∑K
k=1 n(0),jk , n1 = ∑J

j=1 n(1),j+,

n2 = ∑K
k=1 n(2),+k , and n3 = n(3),++.

The parameters of interest are θ = {θjk}, where
θjk = P(Z(1) = j,Z(2) = k) with

∑J
j=1

∑K
k=1 θjk = 1.

The MAR assumption for these data implies that

P
(
M(1) = M(2) = 1|Z(1) = j,Z(2) = k

) = υ,

P
(
M(1) = 0,M(2) = 1|Z(1) = j,Z(2) = k

) = υ
(0)
j ,

P
(
M(1) = 1,M(2) = 0|Z(1) = j,Z(2) = k

) = υ
(1)
k ,

P
(
M(1) = M(2) = 0|Z(1) = j,Z(2) = k

)
= 1 − υ − υ

(0)
j − υ

(1)
k ,

where 1 ≤ j ≤ J,1 ≤ k ≤ K and M(1) and M(2) are
missing-data indicators for Z(1) and Z(2) with 1 and 0
denoting missing and observed values respectively (see
Little and Rubin, 2002, Example 1.19). In this case,
ζ = {υ,υ

(0)
j , υ

(1)
k } represent nuisance parameters for

the missing-data mechanism. Under MAR, the likeli-
hood factors into distinct components of θ and ζ ; ML
estimation of θ under MAR involves all the observed
data and typically requires an iterative algorithm such
as EM (Little and Rubin, 2002, Chapter 13).

We consider as an alternative to MAR the follow-
ing BCMAR model (1.7), which incorporates the as-
sumption that Z(1) is MCAR and missingness of Z(2)

depends on Z(1) and M(1):

P
(
M(1) = 1|Z(1) = j,Z(2) = k

) = φ,

P
(
M(2) = 1|M(1) = 0,Z(1) = j,Z(2) = k

)
= φ

(0)
j ,(3.1)

P
(
M(2) = 1|M(1) = 1,Z(1) = j,Z(2) = k

)
= φ

(1)
j ,

where 1 ≤ j ≤ J,1 ≤ k ≤ K . Here � = {φ,φ
(0)
j , φ

(1)
j }

are nuisance parameters corresponding to the missing-
data mechanism. The number of parameters in this
model is JK + 2J , whereas the degrees of freedom of
the data are JK + J + K , which comprise JK for the
complete cases, plus J for the supplemental margin on
Z(1), plus K for the supplemental margin on Z(2), plus
1 for the number of cases with Z(1) and Z(2) both miss-
ing, minus 1 for the total which is considered fixed at
n. When J = K , the model has the same number of pa-
rameters as degrees of freedom in the data; otherwise,
the model has more parameters for J > K or fewer for
J < K .

Note that if φ
(1)
j = φ(1) does not depend on j , this

reduces to a restricted MAR model in which Z(1) is
MCAR and missingness of Z(2) depends on M(1), and
only depends on Z(1) for the pattern with Z(1) ob-
served. A likelihood ratio test could be used to test this
restricted MAR assumption against the more general
BCMAR model and the EM algorithm can be applied
to compute the ML estimates (Little and Rubin, 2002,
Chapter 13). This restricted MAR model is introduced
as a testable submodel of the unrestricted BCMAR
model, but we do not view it as particularly appealing
substantively, since if missingness of Z(2) depends on
Z(1) for the cases with Z(1) observed, one might also
expect it to depend on Z(1) for the cases with Z(1) miss-
ing. Another submodel of the unrestricted BCMAR
model is discussed in Section 4.

3.1 EM Algorithm

The full likelihood for the above model is

L
(
θ,�|Zobs,(1),Zobs,(2),M

)
= ∏

i∈P0

p
(
Zi(1),Zi(2)|θ)

(1 − φ)

· p(
Mi(2) = 0|Zi(1),Mi(1) = 0,�

)
· ∏
i∈P1

p
(
Zi(1)|θ)

(1 − φ)

· p(
Mi(2) = 1|Zi(1),Mi(1) = 0,�

)
(3.2)

· ∏
i∈P2

∑
Zi(1)

p
(
Zi(1),Zi(2)|θ)

φ

· p(
Mi(2) = 0|Zi(1),Mi(1) = 1,�

)
· ∏
i∈P3

∑
Zi(1)

p
(
Zi(1)|θ)

φ

· p(
Mi(2) = 1|Zi(1),Mi(1) = 1,�

)
.
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The block-monotone reduced likelihood is

Lbm
(
θ |Zobs,(1),Zobs,(2)

)
(3.3)

= ∏
i∈P0

p
(
Zi(1),Zi(2)|θ) ∏

i∈P1

p
(
Zi(1)|θ)

,

which does not model the missing data mechanism,
and drops the data for patterns P2 and P3. We first
consider ML estimation for the full likelihood (3.2),
and then discuss the relationship between these ML
estimates and the estimates that maximize the block-
monotone reduced likelihood (3.3).

One approach to ML estimation is to apply the EM

algorithm. To define the E step of EM, let (θ
(t)
jk , φ

(1)
j

(t)
)

denote the parameter estimates at iteration t , and
n

(t)
(r),jk be the estimate of cell frequency for Zi(1) =

j,Zi(2) = k in pattern Pr . The E step distributes the
partially classified observations into the table accord-
ing to the corresponding probabilities:

n
(t)
(1),jk = n(1),j+ · θ

(t)
jk

θ
(t)
j+

,

n
(t)
(2),jk = n(2),+k · (1 − φ

(1)
j

(t)
)θ

(t)
jk∑J

j=1(1 − φ
(1)
j

(t)
)θ

(t)
jk

,

n
(t)
(3),jk = n(3),++ · φ

(1)
j

(t)
θ

(t)
jk∑J

j=1 φ
(1)
j

(t)
θ

(t)
j+

.

The M step calculates new parameters as follows:

θ
(t+1)
jk = n(0),jk + n

(t)
(1),jk + n

(t)
(2),jk + n

(t)
(3),jk

n
,

φ =
∑n

i=1 I (Mi(1) = 1)

n
= n2 + n3

n
,

φ
(0)
j =

∑n
i=1 I (Mi(1) = 0,Mi(2) = 1,Zi(1) = j)∑n

i=1 I (Mi(1) = 0,Zi(1) = j)

= n(1),j+
n(1),j+ + n(0),j+

,

φ
(1)
j

(t+1) =
∑

k n
(t)
(3),jk∑

k n
(t)
(2),jk + ∑

k n
(t)
(3),jk

.

The E step and M step alternate until the parameter
estimates converge.

Note that φ and {φ(0)
j } are estimated directly and are

unchanged throughout the EM algorithm. Complete-
case estimates or estimates arising from the monotone
pattern P0 and P1 can be chosen as the starting values

of {θjk}, and the estimates of {φ(0)
j } or any constant

in (0,1) can be taken as initial values of {φ(1)
j }. When

J > K , the model has more parameters than degrees
of the freedom. In this case, multiple maxima may ex-
ist, and depending on starting values, the EM algorithm
can converge to different estimates. This case will be
discussed further below.

3.2 Noniterative ML Estimates

When J ≥ K , noniterative estimates of the parame-
ters can sometimes be obtained using the factored like-
lihood method (Little and Rubin, 2002, Chapter 7). We
transform the parameters (θjk, φ,φ

(0)
j , φ

(1)
j ) to

α(0),jk = P
(
Z(1) = j,Z(2) = k|M(1) = M(2) = 0

)
,

β(1),j+ = P
(
Z(1) = j |M(1) = 0,M(2) = 1

)
,

γ(2),+k = P
(
Z(2) = k|M(1) = 1,M(2) = 0

)
,

π0 = P
(
M(1) = 0,M(2) = 0

)
,(3.4)

π1 = P
(
M(1) = 0,M(2) = 1

)
,

π2 = P
(
M(1) = 1,M(2) = 0

)
,

π3 = P
(
M(1) = 1,M(2) = 1

)
,

where 1 ≤ j ≤ J,1 ≤ k ≤ K and the following con-
straints apply:

J∑
j=1

K∑
k=1

α(0),jk = 1,

J∑
j=1

β(1),j+ = 1,

K∑
k=1

γ(2),+k = 1,

3∑
r=0

πr = 1.

These parameters correspond to a pattern-mixture fac-
torization, as in (1.3). The components of (θ,�) =
(θjk, φ,φ

(0)
j , φ

(1)
j ) can be expressed in terms of the new

parametrization (3.4) as follows:

θjk =
(

α(0),jk

α(0),j+

)(
π0α(0),j+ + π1β(1),j+

π0 + π1

)
,

φ = 1 − π0 − π1,(3.5)

φ
(0)
j = π1β(1),j+

π0α(0),j+ + π1β(1),j+
,

and {φ
(1)
j , j = 1, . . . , J } is a solution to the K simul-

taneous equations

J∑
j=1

(
1 − φ

(1)
j

)
θjk = P

(
M(2) = 0,Z(2) = k|M(1) = 1

)

= π2

1 − π0 − π1
γ(2),+k,
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where α(0),j+ = ∑K
k=1 α(0),jk .

Letting (ϕ,π) represent the parameters in (3.4), the
likelihood can be written as

L
(
ϕ,π |Zobs,(1),Zobs,(2),M

)
=

n∏
i=1

p
(
Mi(1),Mi(2)

)

· ∏
i∈p0

p
(
Zi(1),Zi(2)|Mi(1) = 0,Mi(2) = 0

)

· ∏
i∈p1

p
(
Zi(1)|Mi(1) = 0,Mi(2) = 1

)

· ∏
i∈p2

p
(
Zi(2)|Mi(1) = 1,Mi(2) = 0

)

=
3∏

r=0

πnr
r

J,K∏
j,k=1

α
n(0),jk

(0),jk

J∏
j=1

β
n(1),j+
(1),j+

K∏
k=1

γ
n(2),+k

(2),+k .

Maximizing the four terms in this likelihood yields

α̂(0),jk = n(0),jk

n0
, β̂(1),j+ = n(1),j+

n1
,

γ̂(2),+k = n(2),+k

n2
, π̂r = nr

n
,

where 1 ≤ j ≤ J,1 ≤ k ≤ K and 0 ≤ r ≤ 3. Estimates
of θjk, φ and φ

(0)
j can then be obtained by substitut-

ing the above estimates of (ϕ,π) = (α(0),jk, β(1),j+,

γ(2),+k,πr) into equation (3.5). This yields

θ̂jk =
(

n(0),jk

n(0),j+

)(
n(0),j+ + n(1),j+

n0 + n1

)
,(3.6)

φ̂ = 1 − π̂0 − π̂1,

φ̂
(0)
j = π̂1β̂(1),j+

π̂0α̂(0),j+ + π̂1β̂(1),j+
.(3.7)

Estimates of {φ
(1)
j , j = 1, . . . , J } can be obtained as

solutions of the following K simultaneous equations,
provided they are in the parameter space:

J∑
j=1

(
1 − φ̂

(1)
j

)
θ̂jk = π̂2

1 − π̂0 − π̂1
γ̂(2),+k.(3.8)

This approach yields ML estimates, providing the esti-
mates lie within the parameter space, that is, the prob-
abilities lie between zero and one. The expressions for
θ̂jk, φ̂ and φ̂

(0)
j always yield estimates in [0,1]. The

equations in (3.8), however, may or may not yield so-
lutions for {φ(1)

j } that lie in [0,1]. If they do, then es-
timates from this approach are ML estimates and the

ML estimates of θjk , φ and φ
(0)
j are unique. If not, this

approach fails to yield ML estimates of the parameters
of interest. In this case, however, the EM algorithm can
still be used, and whether the ML estimate is unique or
not depends on the form of the likelihood. If the likeli-
hood is unimodel, the ML estimate is unique. The solu-
tion set for (3.8) depends on whether J = K or J > K .
When J = K there are J equations for J unknowns.
Provided the J × J matrix, �̂ = (θ̂jk), is nonsingular,
these equations yield a unique solution that may or may
not lie in the parameter space. When J ≥ K and �̂ has
rank K ′ < J , the solution set is a linear subspace of
dimension J − K ′. If the solution space intersects the
parameter space [0,1]J , then this approach yields the
ML estimates. For example, consider the case where
J = 3, K = 2 and �̂ is of full rank K , the solution set
to (3.8) is a straight line. When it intersects the unit
cube representing the parameter space, this approach
yields unique ML estimates of θjk, φ and φ

(0)
j , but any

point in [0,1]J that is in the solution set of (3.8) is a
ML estimate for {φ(1)

j }. However, when the solution
set does not intersect the unit cube, this method fails
to yield the ML estimates of the parameters. The EM
algorithm can be implemented to find ML estimates,
which may or may not be unique. When J < K , non-
iterative ML estimates do not exist and the EM algo-
rithm can be applied to compute ML estimates.

The closed-form estimates (3.6) of θ are simply the
product of the estimated conditional probabilities of
Z(2) = k given Z(1) = j from the complete cases and
the marginal probabilities of Z(1) = j from the cases
with Z(1) observed. These estimates maximize the
block-monotone reduced likelihood discussed in Sec-
tion 2, which drops the data for Z(2) from the pattern
P2 with Z(2) observed and Z(1) missing. One would
expect the data in P2 to provide additional information
for the marginal distribution of Z(2), but this is only the
case if the data in P2 are inconsistent with the data on
Z(2) from P0 and P1, in the sense of yielding estimates

of {φ(1)
j } from (3.8) that lie outside the interval [0, 1].

4. A RESTRICTED BCMAR MODEL

In the unrestricted BCMAR model (3.1), the miss-
ingness of Z(2) is allowed to depend not only on the
(perhaps unobserved) value of Z(1) but also on whether
Z(1) is missing or not. If, given the value of Z(1), the
probability of Z(2) being missing is assumed the same
for the cases with Z(1) observed and missing, we then
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have the restricted BCMAR model:

P
(
M(1) = 1|Z(1) = j,Z(2) = k

) = φ,
(4.1)

P
(
M(2) = 1|M(1) = l,Z(1) = j,Z(2) = k

) = φj ,

where l = 1,2 and 1 ≤ j ≤ J,1 ≤ k ≤ K . The number
of the parameters in this model is JK + J which is al-
ways less than the degree of freedom JK + J + K in
the data. The explicit estimates in (3.6) are no longer
ML estimates of {θjk}, and EM is needed to obtain
ML estimates of the parameters. In the E step, the par-
tially classified observations are effectively distributed
into the table according to the corresponding estimated
probabilities:

n
(t)
(1),jk = n(1),j+ · θ

(t)
jk

θ
(t)
j+

,

n
(t)
(2),jk = n(2),+k · (1 − φj

(t))θ
(t)
jk∑J

j=1(1 − φj
(t))θ

(t)
jk

,

n
(t)
(3),jk = n(3),++ · φj

(t)θ
(t)
jk∑J

j=1 φj
(t)θ

(t)
j+

.

In the M step, new estimates are calculated as

θ
(t+1)
jk = n(0),jk + n

(t)
(1),jk + n

(t)
(2),jk + n

(t)
(3),jk

n
,

φ = n2 + n3

n
,

φj
(t+1)

=
∑

k n
(t)
(1),jk + ∑

k n
(t)
(3),jk

n(0),j+ + ∑
k n

(t)
(1),jk + ∑

k n
(t)
(2),jk + ∑

k n
(t)
(3),jk

.

The E step and M step alternate until the parameter es-
timates converge. Since φ is estimable directly and is

unchanged throughout the EM algorithm, starting val-
ues are only needed for {θjk} and {φj }. Complete-case
estimates or pooled estimates from the monotone pat-
tern P0 and P1 can be used as starting values of {θjk}.
Estimates of {φ(0)

j } in (3.7) or any constant in (0,1) can
be taken as initial values of {φj }.

The restricted BCMAR model (4.1) is a submodel
of the unrestricted BCMAR model (3.1) obtained by
assuming φ

(0)
j = φ

(1)
j . The restricted model is plau-

sible when the mechanism of missingness of Z(1) is
relatively unrelated to the mechanism of missingness
of Z(2), so the probability that one variable is miss-
ing is not thought to be related to whether the other
variable is missing. The appeal of the restricted model
is that it is more parsimonious and will tend to yield
more efficient estimates of the parameters of interest.
A likelihood ratio test can be applied to test the re-
stricted BCMAR assumption against the more general
unrestricted BCMAR model, and one may favor the re-
stricted BCMAR if this test is not rejected.

5. NUMERICAL EXAMPLES

5.1 Examples with J = K = 2

For data given in the 2 × 2 Table 3A with supple-
mental margins, the noniterative estimates of {θjk} that
drop the data in P2 are ML estimates under the un-
restricted BCMAR model. The estimates of {θjk} are
also close to those in the restricted BCMAR and MAR
models which involve all the data (Table 4). How-
ever, for data in Table 3B, the marginal distribution of
Z(2) in P2 is substantially different from that in the
monotone pattern P0 and P1. In this case, the unre-
stricted BCMAR model yields the estimates of {φ(1)

j }
from (3.8) that do not lie between 0 and 1. The EM al-
gorithm applied to all the data is needed to obtain the
ML estimates, and the estimates of {θjk} are different
from those in the restricted BCMAR and MAR models
(Table 5).

TABLE 3
2 × 2 tables with supplemental margins for both variables

3A

Z(2)

1 2 Missing

1 50 150 30
Z(1) 2 75 75 60

Missing 28 60 50

3B

Z(2)

1 2 Missing

1 100 50 30
Z(1) 2 75 75 60

Missing 28 60 50
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TABLE 4
Estimates of parameters for data in Table 3A

Parameter of interest Nuisance parameter

θ11 θ12 θ21 θ22 φ φ
(0)
1 φ

(0)
2 φ

(1)
1 φ

(1)
2

Unrestricted BCMAR
noniterative estimate 0.131 0.392 0.239 0.239 0.239 0.130 0.286 0.113 0.636
EM algorithm 0.131 0.392 0.239 0.239 0.239 0.130 0.286 0.113 0.636

Restricted BCMAR φ
(0)
j = φ

(1)
j , j = 1,2

φ φ1 φ2
EM algorithm 0.126 0.390 0.238 0.246 0.239 0.157 0.333

Restricted MAR φ
(1)
1 = φ

(1)
2

φ φ
(0)
1 φ

(0)
2 φ(1)

EM algorithm 0.127 0.398 0.232 0.243 0.239 0.130 0.286 0.362

5.2 Examples with J = 3,K = 2

Table 6A and B give data for the case J = 3, K = 2
for which the solution set to (3.8) is a straight line. The
parameter space for {φ(1)

j } is a unit cube, as displayed
in Figures 1 and 2. For the data in Table 6A, the so-
lution line does not intersect the cube (Figure 1), so
ML estimates in the unrestricted BCMAR model are
obtained iteratively using all the data (Table 7). For the
data in Table 6B, the marginal distribution of Z(2) in
P2 is similar to that in P0 and P1 and the solution line
intersects the cube (Figure 2), and the noniterative esti-
mates obtained by dropping the data in P2, displayed in
Table 8, are the ML estimates of {θjk}, although there

are multiple ML estimates for {φ(1)
j }. ML estimates in

the restricted BCMAR and MAR models are unique
for both data sets in Table 6.

6. MUSCATINE CORONARY RISK FACTOR STUDY

The Muscatine Coronary Risk Factor Study (MCRF)
is a longitudinal study of obesity in 4856 school chil-
dren. Five cohorts (ages 5–7, 7–9, 9–11, 11–13, 13–15)
of boys and girls were measured for height and weight
in 1977, 1979 and 1981. Children with relative weight
greater than 110 percent of the median weight for their
age-gender-height group were classified as obese, and
at any time point about 20 percent of the children were
obese. We are interested in estimating obesity rates
over time and evaluating whether or not these rates dif-
fer by gender. The study was first presented by Wool-
son and Clarke (1984), and further analyses can be
found in, for example, Baker (1995), Ekholm and Skin-
ner (1998), Lipsitz, Parzen and Molenberghs (1998)
and Birmingham and Fitzmaurice (2002).

TABLE 5
Estimates of parameters for data in Table 3B

Parameters of interest Nuisance parameter

θ11 θ12 θ21 θ22 φ φ
(0)
1 φ

(0)
2 φ

(1)
1 φ

(1)
2

Unrestricted BCMAR
noniterative estimate 0.308 0.154 0.269 0.269 0.261 0.167 0.286 2.507 −1.476
EM algorithm 0.297 0.153 0.236 0.314 0.261 0.167 0.286 0.867 0

Restricted BCMAR φ
(0)
j = φ

(1)
j , j = 1,2

φ φ1 φ2
EM algorithm 0.274 0.175 0.242 0.309 0.261 0.197 0.320

Restricted MAR φ
(1)
1 = φ

(1)
2

φ φ
(0)
1 φ

(0)
2 φ(1)

EM algorithm 0.279 0.174 0.239 0.308 0.261 0.167 0.286 0.362
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TABLE 6
3 × 2 tables with supplemental margins for both variables

6A

Z(2)

1 2 Missing

1 100 50 30
Z(1) 2 75 75 60

3 32 67 20
Missing 28 60 50

6B

Z(2)

1 2 Missing

1 50 150 30
Z(1) 2 75 75 60

3 32 67 20
Missing 28 60 50

The analysis is complicated by the study design.
Both cross-sectional and longitudinal information
about age trends in obesity rates were present in the
data. Due to cohort effects, cross-sectional age trends
in obesity rates may be different from longitudinal
trends. Ekholm and Skinner (1998) found no statisti-
cal evidence of cohort effects. Therefore, in our analy-
ses, cohort effects are assumed negligible and data are
pooled across five age-group cohorts. In order to sim-
plify the illustration, we only use the data from the
surveys of years 1977 and 1981 (Table 9).

The analysis is further complicated by the substan-
tial nonresponse. Only 40 percent of children provided
complete records in 1977 and 1981. In addition to
the complete records, there are three nonresponse pat-
terns, specifically, two patterns with one missing re-
sponse and one pattern with two missing responses.
Baker (1995) reported two main reasons for nonre-
sponse: (1) no parental consent form was received and

FIG. 1. Noniterative estimates of φ
(1)
j for data in Table 6A.

(2) the child was not in school on the examination day.
For girls, the missingness of obese status in 1981 is
found to depend on the missingness in 1977 using a
chi-square test (p-value < 0.0001). Furthermore, girls
measured and classified as obese in 1977 were more
likely to have missing data in 1981 than those classi-
fied as nonobese (p-value < 0.0001 based on a chi-
square test). The estimates of girls’ obesity rates and
missing probabilities in the BCMAR model discussed
above are presented in Table 10. For the unrestricted
BCMAR model, the estimate from (3.8) of {φ(1)

1 , φ
(1)
2 }

is (0.274,0.121), which is in the parameter space, so
closed form estimates of the parameters are available.
A bootstrap approach was used to estimate standard
errors. If a bootstrap sample leads to the solutions
of {φ(1)

j } from (3.8) that lie outside of the parameter
space, the EM algorithm is used to obtain the ML es-
timates. Among the 1000 bootstrap samples, 23.2% of

FIG. 2. Noniterative estimates of φ
(1)
j for data in Table 6B.
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TABLE 7
Estimates of parameters for data in Table 6A

Parameter of interest Nuisance parameter

θ11 θ12 θ21 θ22 θ31 θ32 φ φ
(0)
1 φ

(0)
2 φ

(0)
3 φ

(1)
1 φ

(1)
2 φ

(1)
3

Unrestricted BCMAR
Noniterative estimate 0.236 0.118 0.206 0.206 0.076 0.158 0.213 0.167 0.286 0.168 no solution in [0,1]3
EM algorithm 0.235 0.117 0.192 0.219 0.071 0.166 0.213 0.167 0.286 0.168 1 0.037 0

Restricted BCMAR φ
(0)
j = φ

(1)
j , j = 1,2,3

φ φ1 φ2 φ3
EM algorithm 0.218 0.126 0.194 0.224 0.069 0.168 0.213 0.196 0.322 0.190

Restricted MAR φ
(1)
1 = φ

(1)
2 = φ

(1)
3

φ φ
(0)
1 φ

(0)
2 φ

(0)
3 φ(1)

EM algorithm 0.221 0.127 0.190 0.223 0.070 0.169 0.213 0.167 0.286 0.168 0.362

the samples yield the solutions of {φ(1)
j } from (3.8) that

are outside of the parameter space.
Likelihood ratio tests can be utilized to test the two

submodels discussed above against the more general
unrestricted BCMAR model. Denote the unrestricted
BCMAR model as M1, the restricted BCMAR model
as M2 and the restricted MAR model in Section 3
as M3, and let lmax represent the maximized value
of the loglikelihood. We find that −2(lmax(M2) −
lmax(M1)) = −2(−4569.823 + 4535.292) = 69.062,
which yields a p-value < 0.0001 when compared
to χ2

2 . There is strong evidence that the restricted
BCMAR model does not fit the data. On the other hand,
lmax(M3) is close to lmax(M1), and we cannot differ-
entiate the restricted MAR model from the unrestricted
BCMAR model.

Similarly for the boys, the estimate from (3.8)
of {φ(1)

1 , φ
(1)
2 } in the unrestricted BCMAR model is

(0.228,0.325), which is in the parameter space, and
closed form estimates of the parameters are avail-
able. Among 1000 bootstrap samples, only 28 sam-
ples yield the solutions of {φ(1)

j } from (3.8) outside of
the parameter space. The likelihood ratio test yields
strong evidence against the restricted BCMAR model,
with −2(lmax(M2) − lmax(M1)) = −2(−4748.48 +
4713.03) = 70.9 on two degrees of freedom. On the
other hand, lmax(M3) is close to lmax(M1), and the
restricted MAR model seems to be satisfactory (Ta-
ble 11).

The models considered above show a small effect on
the fitted values of obesity rates and their standard er-
rors. For boys, the marginal distributions of 1981 obe-

TABLE 8
Estimates of parameters for data in Table 6B

Parameter of interest Nuisance parameter

θ11 θ12 θ21 θ22 θ31 θ32 φ φ
(0)
1 φ

(0)
2 φ

(0)
3 φ

(1)
1 φ

(1)
2 φ

(1)
3

Unrestricted BCMAR
Noniterative estimate 0.103 0.309 0.188 0.188 0.069 0.144 0.198 0.130 0.286 0.168 multiple solutions in [0,1]3
EM algorithm 0.103 0.309 0.188 0.188 0.069 0.144 0.198 0.130 0.286 0.168 multiple solutions

Restricted BCMAR φ
(0)
j = φ

(1)
j , j = 1,2,3

φ φ1 φ2 φ3
EM algorithm 0.100 0.307 0.189 0.193 0.067 0.144 0.198 0.154 0.328 0.197

Restricted MAR φ
(1)
1 = φ

(1)
2 = φ

(1)
3

φ φ
(0)
1 φ

(0)
2 φ

(0)
3 φ(1)

EM algorithm 0.101 0.311 0.184 0.190 0.068 0.146 0.198 0.130 0.286 0.168 0.362
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TABLE 9
Tables of data from muscatine coronary

risk factor study

1981

1 2 Missing

Girls
1 701 98 497

1977 2 59 111 183
Missing 408 139 174

Boys
1 699 98 566

1977 2 72 116 141
Missing 473 125 196

Notes: 1 = not obese, 2 = obese.

sity rates are quite similar for those with 1977 obe-
sity rates observed or not. If we consider only the
cases with 1977 obesity rates observed, the nonitera-
tive block-monotone reduced ML estimates of obesity
rates for the unrestricted BCMAR model are ML esti-
mates, and these are close to ML estimates in the re-
stricted BCMAR and MAR models. Furthermore, φ̂

(0)
1

and φ̂
(0)
2 are close to one another, which suggests a

MCAR mechanism. As a consequence, complete-case
estimates of obesity rates are also similar to those in
three models considered above. For girls, for the same
reason, noniterative block-monotone reduced ML es-
timates of obesity rates for the unrestricted BCMAR

model are ML estimates and are close to those in the
restricted BCMAR and MAR models. However, φ̂

(0)
1

and φ̂
(0)
2 are quite different, and, as a consequence,

complete-case estimates of obesity rates are not sim-
ilar to those in the other three models.

7. TWO BLOCK BCMAR DATA WITH OUTCOMES
FROM THE EXPONENTIAL FAMILY DISTRIBUTION

Suppose, as before, that Z(1) takes values 1, . . . , J

with probabilities θ
(1)
j where

∑
θ

(1)
j = 1. The model in

Section 3 is generalized here to allow Z(2) to have an
exponential family distribution of full rank. Thus, we
suppose that the density of Z(2) given Z(1) is

f
(
Z(2)|Z(1) = j, θ(2))
= a

(
Z(2)

)
exp

[
c
(
θ

(2)
j

) + t
(
Z(2)

)T
θ

(2)
j

]
,

where j = 1, . . . , J , θ
(2)
j and t (Z(2)) are vectors of di-

mension V , and c is a real-valued function. This fam-
ily includes the exponential and normal distribution
(with variance known or unknown) as well as the mul-
tivariate normal, normal linear regression and general-
ized linear models with canonical links. The mean of
t (Z(2)) given Z(1) = j is given by the V -dimensional
vector

ψj = ψ
(
θ

(2)
j

) = ∂c(θ
(2)
j )

∂θ
(2)
j

.

In a random sample (Zi(1),Zi(2)), i = 1, . . . , n, the ML
estimate of ψj is ψ̂j = ∑

t (Zi(2))I (Zi(1) = j)/nj+

TABLE 10
Estimates of girls’ obesity rates

Obesity rate Nuisance parameter
Observed data

θ11 θ12 θ21 θ22 φ φ
(0)
1 φ

(0)
2 φ

(1)
1 φ

(1)
2 loglikelihood

Complete-case estimate 0.723 0.101 0.061 0.115 – – – – – –
(0.014) (0.010) (0.008) (0.010)

Restricted MAR φ
(1)
1 = φ

(1)
2

φ φ
(0)
1 φ

(0)
2 φ(1)

EM algorithm 0.685 0.099 0.073 0.143 0.304 0.383 0.518 0.241
(0.012) (0.009) (0.009) (0.010) (0.010) (0.006) (0.023) (0.016) −4535.605

Restricted BCMAR φ
(0)
j = φ

(1)
j , j = 1,2

φ φ1 φ2
EM algorithm 0.683 0.103 0.070 0.143 0.304 0.335 0.455

(0.011) (0.009) (0.008) (0.010) (0.010) (0.006) (0.022) −4569.823

Unrestricted BCMAR φ φ
(0)
1 φ

(0)
2 φ

(1)
1 φ

(1)
2

noniterative estimate 0.690 0.096 0.074 0.140 0.304 0.383 0.518 0.274 0.121
(0.012) (0.010) (0.009) (0.010) (0.010) (0.006) (0.023) (0.034) (0.122) −4535.292
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TABLE 11
Estimates of boys’ obesity rates

Obesity rate Nuisance parameter
Observed data

θ11 θ12 θ21 θ22 φ φ
(0)
1 φ

(0)
2 φ

(1)
1 φ

(1)
2 loglikelihood

Complete-case estimate 0.710 0.099 0.073 0.118 – – – – – –
(0.015) (0.010) (0.008) (0.010)

Restricted MAR φ
(1)
1 = φ

(1)
2

φ φ
(0)
1 φ

(0)
2 φ(1)

EM algorithm 0.709 0.097 0.075 0.118 0.319 0.415 0.429 0.247
(0.011) (0.009) (0.008) (0.008) (0.009) (0.006) (0.025) (0.015) −4713.142

Restricted BCMAR φ
(0)
j = φ

(1)
j , j = 1,2

φ φ1 φ2
EM algorithm 0.709 0.098 0.075 0.118 0.319 0.360 0.375

(0.011) (0.009) (0.008) (0.008) (0.009) (0.005) (0.023) −4748.480

Unrestricted BCMAR φ φ
(0)
1 φ

(0)
2 φ

(1)
1 φ

(1)
2

noniterative estimate 0.707 0.099 0.074 0.120 0.319 0.415 0.429 0.228 0.325
(0.013) (0.009) (0.008) (0.009) (0.009) (0.006) (0.025) (0.037) (0.153) −4713.027

where nj+ is the number of observations with Z(1) =
j ; the ML estimate of θ

(1)
j is θ̂

(1)
j = nj+/

∑
nl+. The

ML estimates of θ
(2)
j can be obtained from those

for ψj .
We consider as before the missing data structure il-

lustrated in Table 1 with missingness patterns Pr with
nr observations, for r = 0, . . . ,3. The missingness pa-
rameters � = (φ,φ

(0)
j , φ

(1)
j , j = 1, . . . , J ) are defined

as before in (3.1). The parameters in the model are de-
noted by the triple (θ(1), θ (2),�).

In this case, the likelihood contributions in each cell
from the (incomplete) data are as follows:

• For i ∈ P0, the observed data are Zi(1),Zi(2),

Mi(1) = Mi(2) = 0 and the likelihood contribution
is proportional to

A0
(
Zi(1) = j,Zi(2); θ(1), θ (2),�

)
= θ

(1)
j exp

[
c
(
θ

(2)
j

) + t
(
Zi(2)

)T
θ

(2)
j

]
(1 − φ)

· (
1 − φ

(0)
j

)
.

• For i ∈ P1, the observed data are Zi(1),Mi(1) =
0,Mi(2) = 1, and the likelihood contribution is pro-
portional to

A1
(
Zi(1) = j ; θ(1), θ (2),�

)
= θ

(1)
j (1 − φ)φ

(0)
j .

• For i ∈ P2, the observed data are Zi(2),Mi(1) =
1,Mi(2) = 0 and the likelihood contribution is pro-

portional to

A2
(
Z(2); θ(1), θ (2),�

)

= φ

J∑
j=1

θ
(1)
j exp

[
c
(
θ

(2)
j

) + t
(
Z(2)

)T
θ

(2)
j

]

· (
1 − φ

(1)
j

)
.

• For i ∈ P3, no elements of Z(1) or Z(2) are observed
and the data comprise Mi(1) = 1,Mi(2) = 1. The
likelihood contribution is proportional to

A3
(
θ(1), θ (2),�

) = φ

J∑
j=1

θ
(1)
j φ

(1)
j .

The full observed-data likelihood is then the product
of such terms and can be written as L = L0L1L2L3,
where

L0 = (1 − φ)n0

J∏
j=1

{(
θ

(1)
j

)n(0),j+(
1 − φ

(0)
j

)n(0),j+

· exp
[
c
(
θ

(2)
j

) + T T
0j θ

(2)
j

]}
,

L1 = (1 − φ)n1

J∏
j=1

{(
θ

(1)
j

)n(1),j+(
φ

(0)
j

)n(1),j+}
,

L2 = φn2
∏
i∈P2

{
J∑

j=1

θ
(1)
j

(
1 − φ

(1)
j

)

· exp
[
c
(
θ

(2)
j

) + t
(
Zi(2)

)T
θ

(2)
j

]}
,
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L3 = φn3

{
J∑

j=1

θ
(1)
j φ

(1)
j

}n3

,

and T0j = ∑
i∈P0

t (Zi(2))I (Zi(1) = j).
An EM algorithm can readily be applied to maxi-

mize the observed-data likelihood. At the E step, the
underlying complete data in patterns P2 and P3 can be
replaced with their conditional expectations, whereas
blocks P0 and P1 can be treated as complete data. Al-
ternatively, all four patterns can be incorporated into
the EM approach, with the complete data viewed as all
the observations Zi(1),Zi(2), i = 1, . . . , n. For the data
in block i ∈ P2, for example, the expectation step in-
volves calculating

E
[
I
(
Zi(1) = j

)|Zi(2),Mi(1) = 1,Mi(2) = 0
]

= θ
(1)
j (1 − φ

(1)
j ) exp[c(θ(2)

j ) + t (Zi(2))
T θ

(2)
j ]∑J

l=1 θ
(1)
l (1 − φ

(1)
l ) exp[c(θ(2)

l ) + t (Zi(2))
T θ

(2)
l ] .

After missing data in each pattern are filled in from the
E step, the M step computes the simple estimates given
above for complete data.

As in the multinomial case, the block-monotone re-
duced ML estimates of the parameters θ

(1)
j , θ

(2)
j , j =

1, . . . , J , are computed from patterns P0,P1, dropping
the data from the other patterns. The corresponding
block-monotone reduced likelihood of θ(1), θ (2) is

Lbm(P0,P1) ∝ L0 × L1,

where the factors in the parameters � can be ignored
in L0,L1. Unlike the multinomial case, these block-
monotone reduced ML estimates are typically not full
ML estimates, since there is information about the pa-
rameters θ

(2)
j in the excluded patterns.

8. DISCUSSION

Most of the work on MNAR mechanisms concerns
selection or pattern-mixture models, and extensions
to include latent random effects that are applicable
to repeated-measures data (Little, 1995). In this arti-
cle we consider block-sequential missing data models,
where the variables in the data set are divided into
subsets, and the joint distribution of these variables
and their missing data indicators are factored as a se-
quence. A characteristic of this class is that distribu-
tions of variables and their missing data indicators are
interleaved, and combinations of selection and pattern-
mixture models can be developed within each block.
Except for the work of Robins (1997), there appears to

be very little existing literature on missing data mech-
anisms of this type.

Here we consider a class of block-sequential missing
data which we call block-conditional MAR models, in
which missingness in successive blocks is allowed to
depend on observed variables in the block and both
observed and unobserved data in earlier blocks. The
proposed class is related to the models with 2 blocks
described in Little and Zhang (2011), in the context
of regression with missing data. A block-monotone re-
duced likelihood approach to estimating these models
is described that yields consistent asymptotically nor-
mal estimates without specifying the distribution of
the missing-data mechanism. We examined here the
BCMAR model in some detail for the case of bivari-
ate categorical data, and showed that maximization of
the block-monotone reduced likelihood can yield fully
efficient ML estimates, when associated estimates of
parameters of the missing-data mechanism lie inside
the parameter space. We also discussed more briefly
the case where the variable in the second block comes
from an exponential family, and inference based on the
block-monotone reduced likelihood approach is not in
general fully efficient. In future work we plan to study
other BCMAR models involving more than two blocks,
continuous and categorical variables and missing data
within each block, and fully observed covariate infor-
mation.

The BCMAR model discussed here is related to the
“latent ignorable” missing data mechanisms proposed
to model missing data in the presence of noncompli-
ance with a treatment (Frangakis and Rubin, 1999;
Peng, Little and Raghunathan, 2004). In these cases,
there is a binary compliance variable that indicates
whether an individual would comply with a treatment
if assigned to it. In a clinical trial, this indicator is fully
observed for individuals in the active treatment group,
but is completely missing for individuals in the con-
trol group, since they do not have access to the active
treatment. The latent ignorable model assumes MAR
within subpopulations defined by the compliance indi-
cator. Our BCMAR model, applied to that setting, gen-
eralizes this structure by allowing missing data for the
stratifying variable.

The BCMAR model (1.5) is just one of many possi-
ble block-sequential missing-data models, obtained by
placing restrictions on the parameters of the distribu-
tions in each block. Future work might consider prop-
erties of models obtained by imposing other parameter
restrictions, based on plausible assumptions about the
nature of the missing data.
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