
Statistical Science
2010, Vol. 25, No. 1, 88–106
DOI: 10.1214/10-STS325
© Institute of Mathematical Statistics, 2010

Particle Learning and Smoothing
Carlos M. Carvalho, Michael S. Johannes, Hedibert F. Lopes and Nicholas G. Polson

Abstract. Particle learning (PL) provides state filtering, sequential parame-
ter learning and smoothing in a general class of state space models. Our
approach extends existing particle methods by incorporating the estimation
of static parameters via a fully-adapted filter that utilizes conditional suffi-
cient statistics for parameters and/or states as particles. State smoothing in
the presence of parameter uncertainty is also solved as a by-product of PL.
In a number of examples, we show that PL outperforms existing particle fil-
tering alternatives and proves to be a competitor to MCMC.

Key words and phrases: Mixture Kalman filter, parameter learning, particle
learning, sequential inference, smoothing, state filtering, state space models.

1. INTRODUCTION

There are two statistical inference problems associ-
ated with state space models. The first is sequential
state filtering and parameter learning, which is char-
acterized by the joint posterior distribution of parame-
ters and states at each point in time. The second is
state smoothing, which is characterized by the distri-
bution of the states, conditional on all available data,
marginalizing out the unknown parameters.

In linear Gaussian models, assuming knowledge
about the system parameters, the Kalman filter (Kal-
man, 1960) provides the standard analytical recur-
sions for filtering and smoothing (West and Harrison,
1997). For more general model specifications, condi-
tional on parameters, it is common to use sequential

Carlos M. Carvalho is Assistant Professor of Econometrics
and Statistics, University of Chicago Booth School of
Business, 5807 South Woodlawn Avenue, Chicago, Illinois
60637, USA (e-mail: carlos.carvalho@chicagobooth.edu).
Michael Johannes is Roger F. Murray Associate Professor
of Finance, Graduate School of Business, Columbia
University, 3022 Broadway, Uris Hall 424, New York, NY
10027, USA (e-mail: mj335@columbia.edu). Hedibert F.
Lopes is Associate Professor of Econometrics and
Statistics, University of Chicago Booth School of Business,
5807 South Woodlawn Avenue Chicago, Illinois 60637,
USA (e-mail: hlopes@chicagobooth.edu). Nicholas G.
Polson is Professor of Econometrics and Statistics,
University of Chicago Booth School of Business, 5807
South Woodlawn Avenue Chicago, Illinois 60637, USA
(e-mail: ngp@chicagobooth.edu).

Monte Carlo methods known as particle filters to ap-
proximate the sequence of filtering distributions (see
Doucet, de Freitas and Gordon, 2001 and Cappé, God-
sill and Moulines, 2007). As for smoothing, the poste-
rior for states is typically approximated via Markov
chain Monte Carlo (MCMC) methods as developed
by Carlin, Polson and Stoffer (1992), Carter and Kohn
(1994) and Frühwirth-Schnatter (1994).

In this paper we propose a new approach, called par-
ticle learning (PL), for approximating the sequence of
filtering and smoothing distributions in light of para-
meter uncertainty for a wide class of state space mod-
els. The central idea behind PL is the creation of a
particle algorithm that directly samples from the parti-
cle approximation to the joint posterior distribution of
states and conditional sufficient statistics for fixed pa-
rameters in a fully-adapted resample–propagate frame-
work.

In terms of models, we consider Gaussian Dynamic
Linear Models (DLMs) and conditionally Gaussian
(CDLMs). In these class of models, PL is defined over
both state and parameter sufficient statistics. This is a
generalization of the mixture Kalman filter (MKF) of
Chen and Liu (2000) that allows for parameter learn-
ing. Additionally, we show that PL can handle nonlin-
earities in the state evolutions, dramatically widening
the class of models that MKF particle methods apply
to. Finally, we extend the smoothing results of Godsill,
Doucet and West (2004) to sequential parameter learn-
ing and to all the models considered.

In a series of simulation studies, we provide signifi-
cant empirical evidence that PL dominates the standard

88

http://www.imstat.org/sts/
http://dx.doi.org/10.1214/10-STS325
http://www.imstat.org
mailto:carlos.carvalho@chicagobooth.edu
mailto:mj335@columbia.edu
mailto:hlopes@chicagobooth.edu
mailto:ngp@chicagobooth.edu

PARTICLE LEARNING 89

particle filtering alternatives in terms of estimation ac-
curacy and that it can be seen as a true competitor to
MCMC strategies.

The paper starts in Section 2, with a brief review of
the most popular particle filters that represent the build-
ing blocks for the development of PL in Section 3. Sec-
tion 4 in entirely dedicated to the application of PL to
CDLMs followed by possible extensions to nonlinear
alternatives in Section 5. Section 6 presents a series of
experiments benchmarking the performance of PL and
highlighting its advantages over currently used alterna-
tives.

2. PARTICLE FILTERING IN
STATE SPACE MODELS

Consider a general state space model defined by the
observation and evolution equations:

yt+1 ∼ p(yt+1|xt+1, θ),

xt+1 ∼ p(xt+1|xt , θ),

with initial state distribution p(x0|θ) and prior p(θ). In
the above notation, states at time t are represented by
xt while the static parameters are denoted by θ . The se-
quential state filtering and parameter learning problem
is solved by the sequence of joint posterior distribu-
tions, p(xt , θ |yt), where yt = (y1, . . . , yt) is the set of
observations up to time t .

Particle methods use a discrete representation of
p(xt , θ |yt) via

pN(xt , θ |yt) = 1

N

N∑
i=1

δ(xt ,θ)(i) ,

where (xt , θ)(i) is the state and parameter particle vec-
tor and δ(·) is the Dirac measure, representing the distri-
bution degenerate at the N particles. Given this approx-
imation, the key problem is how to sample from this
joint distribution sequentially as new data arrives. This
step is complicated because the state’s propagation de-
pends on the parameters, and vice versa. To circum-
vent the codependence in a joint draw, it is common to
use proposal distributions in a sequence of importance
sampling steps. We now review the main approaches
of this general sequential Monte Carlo strategy first for
pure filtering and then with parameter learning.

2.1 Pure Filtering Review

We start by considering the pure filtering problem,
where it is assumed that the set of parameters θ is
known. Although less relevant in many areas of ap-
plication, this is the traditional engineering application
where both the Kalman filter and original particle fil-
ters were developed.

The bootstrap filter. In what can be considered the
seminal work in the particle filtering literature, Gordon,
Salmond and Smith (1993) developed a strategy based
on a sequence of importance sampling steps where the
proposal is defined by the prior for the states. This algo-
rithm uses the following representation of the filtering
density:

p(xt+1|yt+1) ∝ p(yt+1|xt+1)p(xt+1|yt),

where the state predictive is

p(xt+1|yt) =
∫

p(xt+1|xt)p(xt |yt) dxt .

Starting with a particle approximation of p(xt |yt),

draws from p(xt+1|yt) are obtained by propagat-
ing the particles forward via the evolution equation
p(xt+1|xt), leading to importance sampling weights
that are proportional to like likelihood p(yt+1|xt+1).
The bootstrap filter can be summarized by the follow-
ing:

BOOTSTRAP FILTER (BF).

Step 1 (Propagate). {x(i)
t }Ni=1 to {x̃(i)

t+1}Ni=1 via
p(xt+1|xt).

Step 2 (Resample). {x(i)
t+1}Ni=1 from {x̃(i)

t+1}Ni=1 with

weights w
(i)
t+1 ∝ p(yt+1|x̃(i)

t+1).

Resampling in the second stage is an optional step,
as any quantity of interest could be computed more ac-
curately by the use of the particles and its associated
weights. Resampling has been used as a way to avoid
the decay in the particle approximation and we refer
the reader to Liu and Chen (1998) for a careful discus-
sion of its merits. Throughout our work we describe all
filters with a resampling step, as this is the central idea
to our particle learning strategy introduced below. No-
tice, therefore, that we call BF a propagate–resample
filter due to the order of operation of its steps:

AUXILIARY PARTICLE FILTER (APF).

Step 1 (Resample). {x̃(i)
t }Ni=1 from {x(i)

t }Ni=1 with
weights

w̃
(i)
t+1 ∝ p

(
yt+1|g(

x
(i)
t

))
.

Step 2 (Propagate). {x̃(i)
t }Ni=1 to {x̃(i)

t+1}Ni=1 via
p(xt+1|x̃t).

Step 3 (Resample). {x̃(i)
t+1}Ni=1 with weights

w
(i)
t+1 ∝ p(yt+1|x̃(i)

t+1)

p(yt+1|g(x̃
(i)
t))

.

90 CARVALHO, JOHANNES, LOPES AND POLSON

Auxiliary particle filter (APF). The APF of Pitt and
Shephard (1999) uses a different representation of the
joint filtering distribution of (xt , xt+1) as

p(xt , xt+1|yt+1)

∝ p(xt+1|xt , y
t+1)p(xt |yt+1)

= p(xt+1|xt , y
t+1)p(yt+1|xt)p(xt |yt).

Our view of the APF is as follows: starting with a
particle approximation of p(xt |yt), draws from the
smoothed distribution of p(xt |yt+1) are obtained by
resampling the particles with weights proportional
to the predictive p(yt+1|xt). These resampled parti-
cles are then propagated forward via p(xt+1|xt , y

t+1).
The APF is therefore a resample–propagate filter.
Using the terminology of Pitt and Shephard (1999),
the above representation is an optimal, fully adapted
strategy where exact samples from pN(xt+1|yt+1)

were obtained, avoiding an importance sampling step.
This is possible if both the predictive and propaga-
tion densities were available for evaluation and sam-
pling.

In general, this is not the case and Pitt and Shep-
hard proposed the use of an importance function
p(yt+1|μ̂t+1 = g(xt)) for the resampling step based
on a best guess for xt+1 defined by μ̂t+1 = g(xt). This
could be, for example, the expected value, the median
or mode of the state evolution. The resampled parti-
cles would then be propagated with a second proposal
defined by p(xt+1|xt), leading to the following algo-
rithm:

Two main ideas make the APF an attractive ap-
proach: (i) the current observation yt+1 is used in the
proposal of the first resampling step and (ii) due to the
pre-selection in step 1, only “good” particles are prop-
agated forward. The importance of this second point
will prove very relevant in the success of our proposed
approach.

2.2 Sequential Parameter Learning Review

Sequential estimation of fixed parameters θ is noto-
riously difficult. Simply including θ in the particle set
is a natural but unsuccessful solution, as the absence
of a state evolution implies that we will be left with
an ever-decreasing set of atoms in the particle approxi-
mation for p(θ |yt). Important developments in this di-
rection appear in Liu and West (2001), Storvik (2002),
Fearnhead (2002), Polson, Stroud and Müller (2008),
Johannes and Polson (2008) and Johannes, Polson and
Yae (2008), to cite a few. We now review two popular
alternatives to learn about θ :

STORVIK’S FILTER.

Step 1 (Propagate). {x(i)
t }Ni=1 to {x̃(i)

t+1}Ni=1 via

q(xt+1|x(i)
t , θ (i), yt+1).

Step 2 (Resample). {(xt+1, st)
(i)}Ni=1 from {(x̃t+1,

st)
(i)}Ni=1 with weights

w
(i)
t+1 ∝ p(yt+1|x̃(i)

t+1, θ)p(x̃
(i)
t+1|x(i)

t , θ)

q(x̃
(i)
t+1|x(i)

t , θ, yt+1)
.

Step 3 (Propagate). Sufficient statistics s
(i)
t+1 =

S(s
(i)
t , x

(i)
t+1, yt+1).

Step 4 (Sample). θ(i) from p(θ |s(i)
t+1).

Storvik’s filter. Storvik (2002) (similar ideas appear
in Fearnhead, 2002) assumes that the posterior dis-
tribution of θ given xt and yt depends on a low-
dimensional set of sufficient statistics that can be recur-
sively updated. This recursion for sufficient statistics
is defined by st+1 = S(st , xt+1, yt+1), leading to the
above algorithm. Notice that the proposal q(·) is con-
ditional on yt+1, but this is still a propagate–resample
filter.

Liu and West’s filter. Liu and West (2001) suggest
a kernel approximation p(θ |yt) based on a mixture of
multivariate normals. This idea is used in the context
of the APF. Specifically, let {(xt , θt)

(i)}Ni=1 be particle
draws from p(xt , θ |yt). Hence, the posterior for θ can
be approximated by the mixture distribution

p(θ |yt) =
N∑

j=1

N
(
m(j);h2Vt

)
,

where m(j) = aθ
(j)
t + (1−a)θ̃t , θ̃t = ∑N

j=1 θ
(j)
t /N and

Vt = ∑N
j=1(θ

(j)
t − θ̄t)(θ

(j)
t − θ̄t)

′/N . The constants a

and h measure, respectively, the extent of the shrink-
age and the degree of overdispersion of the mixture
(see Liu and West, 2001 for a detailed discussion of
the choice of a and h). The idea is to use the mixture
approximation to generate fresh samples from the cur-
rent posterior in an attempt to avoid particle decay. The
algorithm is summarized in the next page. The main
attraction of Liu and West’s filter is its generality, as it
can be implemented in any state-space model. It also
takes advantage of APF’s resample–propagate frame-
work and can be considered a benchmark in the current
literature:

LIU AND WEST’S FILTER.

Step 1 (Resample). {(x̃t , θ̃t)
(i)}Ni=1 from {(xt ,

θt)
(i)}Ni=1 with weights

w
(i)
t+1 ∝ p

(
yt+1|g(

x
(i)
t

)
,m(i)).

PARTICLE LEARNING 91

Step 2 (Propagate).

(2.1) {θ̃ (i)
t }Ni=1 to {θ̂ (i)

t+1}Ni=1 via N(m̃(i), V);

(2.2) {x̃(i)
t }Ni=1 to {x̂(i)

t+1}Ni=1 via p(xt+1|x̃(i)
t , θ̂

(i)
t+1).

Step 3 (Resample). {(xt+1, θt+1)
(i)}Ni=1 from {(x̂t+1,

θ̂t+1)
(i)}Ni=1 with weights

w
(i)
t+1 ∝ p(yt+1|x̂(i)

t+1, θ̂
(i)
t+1)

p(yt+1|g(x̃
(i)
t), m̃(i))

.

3. PARTICLE LEARNING AND SMOOTHING

Our proposed approach for filtering and learning
relies on two main insights: (i) conditional sufficient
statistics are used to represent the posterior of θ .
Whenever possible, sufficient statistics for the latent
states are also introduced, increasing the efficiency of
our algorithm by reducing the variance of sampling
weights in what can be called a Rao–Blackwellized
filter. (ii) We use a resample–propagate framework and
attempt to build perfectly adapted filters whenever pos-
sible in trying to obtain exact samples from our parti-
cle approximation when moving from pN(xt , θ |yt) to
pN(xt+1, θ |yt+1). This avoids sample importance re-
sampling and the associated “decay” in the particle ap-
proximation. As with any particle method, there will
be accumulation of Monte Carlo error and this has to
be analyzed on a case-by-case basis. Simply stated, PL
builds on the ideas of Johannes and Polson (2008) and
creates a fully adapted extension of the APF to deal
with parameter uncertainty. Without delays, PL can be
summarized as follows, with details provided in the
following sections:

PARTICLE LEARNING.

Step 1 (Resample). {z̃(i)
t }Ni=1 from z

(i)
t = (xt , st ,

θ)(i) with weights wt ∝ p(yt+1|z(i)
t).

Step 2 (Propagate). x̃
(i)
t to x

(i)
t+1 via p(xt+1|z̃(i)

t ,

yt+1).
Step 3 (Propagate). Sufficient statistics s

(i)
t+1 =

S(s̃
(i)
t , x

(i)
t+1, yt+1).

Step 4 (Sample). θ(i) from p(θ |s(i)
t+1).

Due to our initial resampling of states and sufficient
statistics, we would end up with a more representative
set of propagated sufficient statistics when sampling
parameters than Storvik’s filter.

3.1 Discussion

Assume that at time t , after observing yt , we have
a particle approximation pN(zt |yt), given by {z(i)

t }Ni=1.

Once yt+1 is observed, PL updates the above approxi-
mation using the following resample–propagate rule:

p(zt |yt+1) ∝ p(yt+1|zt)p(zt |yt)(3.1)

and

p(zt+1|yt+1) =
∫

p(st+1|xt+1, st , yt+1)

· p(xt+1|zt , yt+1)(3.2)

· p(zt |yt+1) dxt+1 dzt .

From (3.1), we see that an updated approximation
pN(zt |yt+1) can be obtained by resampling the cur-
rent particles set with weights proportional to the pre-
dictive p(yt+1|zt). This updated approximation is used
in (3.2) to generate propagated samples from the poste-
rior p(xt+1|zt , yt+1) that are then used to update st+1,
deterministically, by the recursive map S(·), which in
(3.2) we denote by p(st+1|xt+1, st , yt+1). However,
since st and xt+1 are random variables, the conditional
sufficient statistics st+1 are also random and are replen-
ished, essentially as a state, in the filtering step. This
is the key insight for handling the learning of θ . The
particles for st+1 are sequentially updated with resam-
pled st particles and propagated and replenished xt+1
particles and updated samples from p(θ |st+1) can be
obtained at the end of the filtering step.

By resampling first we reduce the compounding of
approximation errors as the states are propagated af-
ter being “informed” by yt+1, as in APF. To clarify
the notion of full-adaptation, we can rewrite the prob-
lem of updating the particles {z(i)

t }Ni=1 to {z(i)
t+1}Ni=1

as the problem of obtaining samples from the tar-
get p(xt+1, zt |yt+1) based on draws from the pro-
posal p(zt |yt+1)p(xt+1|zt , y

t+1), yielding importance
weights

wt+1 ∝ p(xt+1, zt |yt+1)

p(zt |yt+1)p(xt+1|zt , yt+1)
= 1,(3.3)

and therefore, exact draws. Sampling from the pro-
posal is done in two steps: first draws z

(i)
t from

p(zt |yt+1) are simply obtained by resampling the par-
ticles {z(i)

t }Ni=1 with weights proportional to p(yt+1|zt);

we can then sample x
(i)
t+1 from p(xt+1|zt , y

t+1). Fi-
nally, updated samples for st+1 are obtained as a func-
tion of the samples of xt+1, with weights 1/N , which
prevents particle degeneracies in the estimation of θ .
This is a feature of the “resample–propagate” mech-
anism of PL. Any propagate–resample strategy will
lead to decay in the particles of xt+1 with signif-
icant negative effects on pN(θ |st+1). This strategy

92 CARVALHO, JOHANNES, LOPES AND POLSON

will only be possible whenever both p(yt+1|zt) and
p(xt+1|zt , y

t+1) are analytically tractable, which is the
case in the classes of models considered here.

Convergence properties of the algorithm are straight-
forward to establish. The choice of particle size N to
achieve a desired level of accuracy depends, however,
on the speed of Monte Carlo accumulation error. In
some cases this will be uniformly bounded. In others,
a detailed simulation experiment has to be performed.
The error will depend on a number of factors. First, the
usual signal-to-noise ratio with the smaller the value
leads to larger accumulation. Section 4 provides de-
tailed simulation evidence for the models in question.
Second, a source of Monte Carlo error can appear from
using a particle approximation to the initial state and
parameter distribution. This error is common to all par-
ticle methods. At its simplest level our algorithm only
requires samples θ(i) from the prior p(θ). However, a
natural class of priors for diffuse situations are mix-
tures of the form p(θ) = ∫

p(θ |z0)p(z0) dz0, with the
conditional p(θ |z0) chosen to be conditionally conju-
gate. This extra level of analytical tractability can lead
to substantial improvements in the initial Monte Carlo

error. Particles z
(i)
0 are drawn from p(z0) and then re-

sampled from the predictive and then propagated. Mix-
tures of this form are very flexible and allow for a range
of nonconjugate priors. We now turn to specific exam-
ples.

EXAMPLE 1 (First order DLM). For illustration,
consider first the simple first order dynamic linear
model, also known as the local level model (West and
Harrison, 1997), where

(yt+1|xt+1, θ) ∼ N(xt+1, σ
2),

(xt+1|xt , θ) ∼ N(xt , τ
2),

with θ = (σ 2, τ 2), x0 ∼ N(m0,C0), σ 2 ∼ IG(a0, b0)

and τ 2 ∼ IG(c0, d0). The hyperparameters m0, C0, a0,
b0, c0 and d0 are kept fixed and known. It is straight-
forward to show that

(yt+1|xt , θ) ∼ N(xt , σ
2 + τ 2) and

(xt+1|yt+1, xt , θ) ∼ N(μt ,ω
2),

where μt = ω2(σ−2yt+1 + τ−2xt), ω−2 = σ−2 + τ−2.
Also, for scales

(σ 2|yt+1, xt+1) ∼ IG(at+1, bt+1) and

(τ 2|yt+1, xt+1) ∼ IG(ct+1, dt+1),

where at+1 = at + 1/2, ct+1 = ct + 1/2, bt+1 = bt +
0.5(yt+1 − xt+1)

2 and dt+1 = dt + 0.5(xt+1 − xt)
2.

Therefore, the vector of conditional sufficient statistics
st+1 is 5-dimensional and satisfies the following deter-
ministic recursions: st+1 = st + (y2

t+1, yt+1xt+1, x
2
t+1,

x2
t , xt+1xt). Finally, notice that, in both, p(yt+1|xt)

and p(xt+1|xt , y
t+1) are available for evaluation and

sampling, so that a fully adapted version of PL can be
implemented.

3.2 State Sufficient Statistics

A more efficient approach, whenever possible, is to
marginalize states and just track conditional state suffi-
cient statistics. In the pure filtering case, Chen and Liu
(2000) use a similar approach. Here we use the fact that

p(xt |yt) =
∫

p(xt |sx
t)p(sx

t |yt) dsx
t .

Thus, we are interested in the distribution p(sx
t |yt).

The filtering recursions are given by

p(sx
t+1|yt+1) =

∫
p(sx

t+1|sx
t , xt+1, yt+1)

· p(sx
t , xt+1|yt+1) dsx

t dxt+1.

We can decompose p(sx
t , xt+1|yt+1) as proportional to

p(yt+1|sx
t)p(xt+1|sx

t , yt+1)p(sx
t |yt),

where we have an extra level of marginalization. In-
stead of marginalizing xt , you now marginalize over
sx
t and xt+1. For this to be effective, we need the fol-

lowing conditional posterior:

p(xt+1|sx
t , yt+1) =

∫
p(xt+1|xt , yt+1)p(xt |sx

t) dxt .

We can then proceed with the particle learning al-
gorithm. Due to this Rao–Blackwellization step, the
weights are flatter in the first stage, that is, p(yt+1|sx

t)

versus p(yt+1|xt) increasing the efficiency of the algo-
rithm.

EXAMPLE 1 (Cont.). Recalling (xt |θ) ∼ N(mt,

Ct), then it is straightforward to see that (yt+1|mt,Ct ,

θ) ∼ N(mt,Ct + σ 2 + τ 2), so sx
t = (mt ,Ct). The re-

cursions for the state sufficient statistics vector sx
t are

the well-known Kalman recursions, that is, mt+1 =
(1 − At+1)mt + At+1yt+1 and Ct+1 = At+1σ

2, where
At+1 = (Ct + τ 2)/(Ct + τ 2 + σ 2) is the Kalman gain.

3.3 Smoothing

Smoothing, that is, estimating the states and parame-
ters conditional on all available information, is charac-
terized by p(xT , θ |yT), with T denoting the last obser-
vation.

PARTICLE LEARNING 93

After one sequential pass through the data, our parti-
cle approximation computes samples from pN(xt , st |
yt) for all t ≤ T . However, in many situations, we
are required to obtain full smoothing distributions
p(xT |yT) which are typically carried out by a MCMC
scheme. We now show that our filtering strategy pro-
vides a direct backward sequential pass to sample from
the target smoothing distribution. To compute the mar-
ginal smoothing distribution, we write the joint poste-
rior of (xT , θ) as

p(xT , θ |yT) =
T −1∏
t=1

p(xt |xt+1, θ, yt)p(xT , θ |yT).

By Bayes’ rule and conditional independence, we have

p(xt |xt+1, θ, yt) ∝ p(xt+1|xt , θ, yt)p(xt |θ, yt).

We can now derive a recursive backward sampling al-
gorithm to jointly sample from p(xT , θ |yT) by sequen-
tially sampling from filtered particles with weights
proportional to p(xt+1|xt , θ, yt). In detail, randomly
choose, at time T , (x̃T , s̃T) from the particle approxi-
mation pN(xT , sT |yT) and sample θ̃ ∼ p(θ |s̃T). Then,
for t = T − 1, . . . ,1, choose x̃t = x

(i)
t from the filtered

particles {x(i)
t , i = 1, . . . ,N} with weights w

(i)
t |t+1 ∝

p(x̃t+1|x(i)
t , θ̃):

PARTICLE SMOOTHING.

Step 1 (Forward filtering). Sample {(xT , θ)(i)}Ni=1
via particle learning.

Step 2 (Backwards smoothing). For each pair (xT ,

θ)(i) and t = T −1, . . . ,1, resample x
(i)
t from {x(j)

t }Nj=1
with weights

w
(j)
t |t+1 ∝ p

(
x

(i)
t+1|x(j)

t , θ (i)).
This algorithm is an extension of Godsill, Doucet

and West (2004) to state space models where the fixed
parameters are unknown. See also Briers, Doucet and
Maskell (2010) for an alternative SMC smoother. Both
SMC smoothers are O(T N2), so the computational
time to obtain draws from p(xT |yT) is expected to
be much larger than the computational time to ob-
tain draws from p(xt |yt), for t = 1, . . . , T , from stan-
dard SMC filters. An O(T N) smoothing algorithm has
recently been introduced by Fearnhead, Wyncoll and
Tawn (2008).

EXAMPLE 1 (Cont.). For t = T − 1, . . . ,2,1, it
is easy to see that (xt |xt+1, y

T , θ) ∼ N(at ,Dtτ
2) and

(xt |yT , θ) ∼ N(mT
t ,CT

t), where at = (1 − Dt)mt +
Dtxt+1 mT

t = (1 − Dt)mt + Dtm
T
t+1, CT

t = (1 −

Dt)Ct + D2
t C

T
t+1, and Dt = Ct/(Ct + τ 2). Finally,

mT
T = mT and CT

T = CT .

3.4 Model Monitoring

The output of PL can be used for sequential pre-
dictive problems but is also key in the computation of
Bayes factors for model assessment in state space mod-
els. Specifically, the marginal predictive for a given
model M can be approximated via

pN(yt+1|yt , M) = 1

N

N∑
i=1

p
(
yt+1|(xt , θ)(i), M

)
.

This then allows the computation of a SMC approxi-
mation to the Bayes factor Bt+1 or sequential likeli-
hood ratios for competing models M0 and M1 (see,
e.g., West, 1986):

Bt+1 = p(y1, . . . , yt+1|M1)

p(y1, . . . , yt+1|M0)
,

where p(y1, . . . , yt+1|Mi) = ∏t+1
j=1 p(yj |yj−1, Mi),

for either model.

MODEL MONITORING.

Step 1. Compute the predictive using

pN(yt+1|yt) = 1

N

N∑
i=1

p
(
yt+1|(xt , θ)(i)

)
.

Step 2. Compute the marginal likelihood

pN(y1, . . . , yt+1) =
t+1∏
j=1

pN(yj+1|yj).

An important advantage of PL over MCMC schemes
is that it directly provides the filtered joint posteriors
p(xt , θ |yt) and, hence, p(yt+1|yt), whereas MCMC
would have to be repeated T times to make that avail-
able.

4. CONDITIONAL DYNAMIC LINEAR MODELS

We now explicitly derive our PL algorithm in a class
of conditional dynamic linear models which are an ex-
tension of the models considered in West and Harri-
son (1997). This consists of a vast class of models that
embeds many of the commonly used dynamic mod-
els. MCMC via Forward-filtering Backward-sampling
(Carter and Kohn, 1994; Frühwirth-Schnatter, 1994) or
mixture Kalman filtering (MKF) (Chen and Liu, 2000)
are the current methods of use for the estimation of
these models. As an approach for filtering, PL has a

94 CARVALHO, JOHANNES, LOPES AND POLSON

number of advantages. First, our algorithm is more ef-
ficient, as it is a perfectly-adapted filter. Second, we
extend MKF by including learning about fixed para-
meters and smoothing for states.

The conditional DLM defined by the observation and
evolution equations takes the form of a linear system
conditional on an auxiliary state λt+1,

(yt+1|xt+1, λt+1, θ) ∼ N(Fλt+1xt+1,Vλt+1),

(xt+1|xt , λt+1, θ) ∼ N(Gλt+1xt ,Wλt+1),

with θ containing F ’s, G’s, V ’s and W ’s. The marginal
distribution of observation error and state shock distri-
bution are any combination of normal, scale mixture
of normals or discrete mixture of normals depending
on the specification of the distribution on the auxiliary
state variable p(λt+1|θ), so that

p(yt+1|xt+1, θ) =
∫

fN(yt+1;Fλt+1xt+1,Vλt+1)

· p(λt+1|θ) dλt+1.

Extensions to hidden Markov specifications where
λt+1 evolves according to p(λt+1|λt , θ) are straight-
forward and are discussed in Example 2 below.

4.1 Particle Learning in CDLM

In CDLMs the state filtering and parameter learning
problem is equivalent to a filtering problem for the joint
distribution of their respective sufficient statistics. This
is a direct result of the factorization of the full joint

p(xt+1, θ, λt+1, st+1, s
x
t+1|yt+1)

as a sequence of conditional distributions

p(θ |st+1)p(xt+1|sx
t+1, λt+1)p(λt+1, st+1, s

x
t+1|yt+1).

Here the conditional sufficient statistics for states (sx
t)

and parameters (st) satisfy deterministic updating rules

sx
t+1 = K(sx

t , θ, λt+1, yt+1),(4.1)

st+1 = S(st , xt+1, λt+1, yt+1),(4.2)

where K(·) denotes the Kalman filter recursions and
S(·) our recursive update of the sufficient statistics.
More specifically, define sx

t = (mt ,Ct) as Kalman fil-
ter first and second moments at time t . Conditional on
θ , we then have

(xt+1|sx
t+1, λt+1, θ,) ∼ N(at+1,Rt+1),

where at+1 = Gλt+1mt and Rt+1 = Gλt+1CtG
′
λt+1

+
Wλt+1 . Updating state sufficient statistics (mt+1,Ct+1)

is achieved by

mt+1 = Gλt+1mt + At+1(yt+1 − et),(4.3)

C−1
t+1 = R−1

t+1 + F ′
λt+1

Fλt+1V
−1
λt+1

,(4.4)

with Kalman gain matrix At+1 = Rt+1Fλt+1Q
−1
t+1, et =

Fλt+1Gλt+1mt , and Qt+1 = Fλt+1Rt+1Fλt+1 + Vλt+1 .
We are now ready to define the PL scheme for

the CDLMs. First, assume that the auxiliary state
variable is discrete with λt+1 ∼ p(λt+1|λt , θ). We
start, at time t , with a particle approximation for
the joint posterior of (xt , λt , st , s

x
t , θ |yt). Then we

propagate to t + 1 by first resampling the current
particles with weights proportional to the predictive
p(yt+1|(θ, sx

t)). This provides a particle approxima-
tion to p(xt , θ, λt , st , s

x
t |yt+1), the smoothing distri-

bution. New states λt+1 and xt+1 are then propa-
gated through the conditional posterior distributions
p(λt+1|λt , θ, yt+1) and p(xt+1|λt+1, xt , θ, yt+1). Fi-
nally, the conditional sufficient statistics are updated
according to (4.1) and (4.2) and new samples for θ

are obtained from p(θ |st+1). Notice that in the con-
ditional dynamic linear models all the above densities
are available for evaluation and sampling. For instance,
the predictive is computed via

p
(
yt+1|(λt , s

x
t , θ)(i)

) = ∑
λt+1

p
(
yt+1|λt+1, (s

x
t , θ)(i)

)

· p(λt+1|λt , θ),

where the inner predictive distribution is given by

p(yt+1|λt+1, s
x
t , θ) =

∫
p(yt+1|xt+1, λt+1, θ)

· p(xt+1|sx
t , θ) dxt+1.

Starting with particle set {(x0, θ, λ0, s0, s
x
0)(i), i =

1, . . . ,N} at time t = 0, the above discussion can be
summarized in the PL Algorithm 1. In the general case
where the auxiliary state variable λt is continuous, it
might not be possible to integrate out λt+1 form the
predictive in step 1. We extend the above scheme by
adding to the current particle set a propagated parti-
cle λt+1 ∼ p(λt+1|(λt , θ)(i)) and define the PL Algo-
rithm 2.

Both algorithms can be combined with the backward
propagation scheme of Section 3.3 to provide a full
draw from the marginal posterior distribution for all
the states given the data, namely, the smoothing dis-
tribution p(x1, . . . , xT |yT).

ALGORITHM 1 (CDLM).

Step 1 (Resample). z̃
(i)
t from z

(i)
t = (λt , s

x
t , θ)(i)

with weights

w
(i)
t+1 ∝ p

(
yt+1|(λt , s

x
t , θ)(i)

)
.

PARTICLE LEARNING 95

Step 2 (Propagate). States

λ
(i)
t+1 ∼ p

(
λt+1|(λ̃t , θ̃)(i), yt+1

)
,

x
(i)
t+1 ∼ p

(
xt+1|(x̃t , θ̃)(i), λ

(i)
t+1, yt+1

)
.

Step 3 (Propagate). Sufficient statistics

s
x(i)
t+1 = K

(
s̃
x(i)
t , λ

(i)
t+1, θ̃

(i), yt+1
)
,

s
(i)
t+1 = S

(
s̃
(i)
t , x

(i)
t+1, λ

(i)
t+1, θ̃

(i), yt+1
)
.

Step 4 (Propagate). Parameters θ(i) ∼ p(θ |s(i)
t+1).

EXAMPLE 2 (Dynamic factor model with time-
varying loadings). Consider data yt = (yt1, yt2)

′, t =
1, . . . , T , following a dynamic factor model with time-
varying loadings driven by a discrete latent state λt

with possible values {1,2}. Specifically, we have

(yt+1|xt+1, λt+1, θ) ∼ N(βt+1xt+1, σ
2I2),

(xt+1|xt , λt+1, θ) ∼ N(xt , σ
2
x),

with time-varying loadings βt+1 = (1, βλt+1)
′ and ini-

tial state distribution x0 ∼ N(m0,C0). The jumps in
the factor loadings are driven by a Markov switch-
ing process (λt+1|λt , θ), whose transition matrix 	

has diagonal elements Pr(λt+1 = 1|λt = 1, θ) = p and
Pr(λt+1 = 2|λt = 2, θ) = q . The parameters are θ =
(β1, β2, σ

2, τ 2,p, q)′. See Carvalho and Lopes (2007)
for related Markov switching models.

We are able to marginalize over both (xt+1, λt+1) by
using state sufficient statistics sx

t = (mt ,Ct) as parti-
cles. From the Kalman filter recursions we know that
p(xt |λt , θ, yt) ∼ N(mt,Ct). The mapping for state
sufficient statistics (mt+1,Ct+1) = K(mt ,Ct , λt+1, θ,

yt+1) is given by the one-step Kalman update as
in (4.3) and (4.4). The prior distributions are condi-
tionally conjugate where (βi |σ 2) ∼ N(bi0, σ

2Bi0) for
i = 1,2, σ 2 ∼ IG(ν00/2, d00/2) and τ 2 ∼ IG(ν10/2,

d10/2). For the transition probabilities, we assume that
p ∼ Beta(p1,p2) and q ∼ Beta(q1, q2). Assume that,
at time t , we have particles {(xt , θ, λt , s

x
t , st)

(i)}Ni=1,
for i = 1, . . . ,N , approximating p(xt , θ, λt , s

x
t , st |yt).

The PL algorithm can be described through the follow-
ing steps:

1. Resampling: Draw an index ki ∼ Mult(w(1)
t , . . . ,

w
(N)
t) with weights w

(i)
t ∝ p(yt+1|(mt ,Ct , λt ,

θ)(k
i)) where

p(yt+1|sx
t , λt , θ)

=
2∑

λt+1=1

fN(yt+1;a, b)p(λt+1|λt , θ),

where fN(x;a, b) denotes the density of the nor-
mal distribution with mean a and variance b and
evaluation at the point x. Here a = βt+1mt and
b = (Ct + τ 2)βt+1β

′
t+1 + σ 2I2.

2. Propagating state λ: Draw λ
(i)
t+1 from p(λt+1|(sx

t ,

λt , θ)(k
i), yt+1):

p(λt+1|sx
t , λt , θ, yt+1)

∝ fN

(
yt+1;βt+1mt, (Ct + τ 2)βt+1β

′
t+1 + σ 2I2

)
· p(λt+1|λt , θ).

3. Propagating state x: Draw x
(i)
t+1 from p(xt+1|λ(i)

t+1,

(sx
t , θ)(k

i), yt+1).
4. Propagating sufficient statistics for states: The

Kalman filter recursions yield

mt+1 = mt + At+1(yt+1 − βt+1mt),

Ct+1 = Ct + τ 2 − At+1Q
−1
t+1A

′
t+1,

where Qt+1 = (Ct + τ 2)βt+1βt+1 + σ 2I2 and
At+1 = (Ct + τ 2)Q−1

t+1βt+1.
5. Propagating sufficient statistics for parameters:

The conditional posterior p(θ |st), for i = 1,2, is
decomposed into

p(βi |σ 2, st+1) ∼ N(bi,t+1, σ
2Bi,t+1),

p(σ 2|st+1) ∼ IG(ν0,t+1/2, d0,t+1/2t),

p(τ 2|st+1) ∼ IG(ν1,t+1/2, d1,t+1/2),

p(p|st+1) ∼ Beta(p1,t+1,p2,t+1),

p(q|st+1) ∼ Beta(q1,t+1, q2,t+1),

with B−1
i,t+1 = B−1

it + x2
t+1Iλt+1=i , bi,t+1 = Bi,t+1 ·

(B−1
it bit + xtyt2Iλt+1=i) and νi,t+1 = νi,t + 1, for

i = 1,2, d1,t+1 = d1t + (xt+1 −xt)
2, p1,t+1 = p1t +

Iλt=1,λt+1=1, p2,t+1 = p2t + Iλt=1,λt+1=2, q1,t+1 =
q1t + Iλt=2,λt+1=2 q2,t+1 = q2t + Iλt=2,λt+1=1 and
d0,t+1 = d0t + ∑2

j=1[(yt+1,2 − bj,t+1xt+1)yt+1,2+
bj,t+1B

−1
j0 + (yt+1,1 − xt+1)

2]Iλt+1=j .

Figures 1 and 2 illustrate the performance of the PL
algorithm. The first panel of Figure 1 displays the true
underlying λ process along with filtered and smoothed
estimates, whereas the second panel presents the same
information for the common factor. Figure 2 provides
the sequential parameter learning plots.

ALGORITHM 2 (Auxiliary state CDLM). Let zt =
(λt+1, xt , s

x
t , θ).

Step 0 (Propagate). λ
(i)
t to λ

(i)
t+1 via λ

(i)
t+1 ∼ p(λt+1|

(λt , θ)(i)).

96 CARVALHO, JOHANNES, LOPES AND POLSON

FIG. 1. Dynamic factor model (state learning). Top panel: True value of λt (red line), Pr(λt = 1|yt) (black line) and Pr(λt = 1|yT) (blue
line). Bottom panel: True value of xt (red line), E(xt |yt) (black line) and E(xt |yT) (blue line).

Step 1 (Resample). z̃
(i)
t from z

(i)
t with weights

w
(i)
t+1 ∝ p(yt+1|z̃(i)

t).

Step 2 (Propagate). x̃
(i)
t to x

(i)
t+1 via p(xt+1|z̃(i)

t ,

yt+1).
Step 3 (Propagate). Sufficient statistics as in PL.
Step 4 (Propagate). Parameters as in PL.

5. NONLINEAR FILTERING AND LEARNING

We now extend our PL filter to a general class of
nonlinear state space models, namely, the conditional
Gaussian dynamic model (CGDM). This class gener-
alizes conditional dynamic linear models by allowing
nonlinear evolution equations. In this context we take
advantage of most efficiency gains of PL, as we are
still able to follow the resample/propagate logic and
filter sufficient statistics for θ . Consider a conditional
Gaussian state space model with nonlinear evolution
equation,

(yt+1|xt+1, λt+1, θ) ∼ N(Fλt+1xt+1,Vλt+1),(5.1)

(xt+1|xt , λt+1, θ) ∼ N(Gλt+1h(xt),Wλt+1),(5.2)

where h(·) is a given nonlinear function and, again, θ

contains F ’s, G’s, V ’s and W ’s. Due to the nonlinear-
ity in the evolution, we are no longer able to work with
state sufficient statistics sx

t , but we are still able to eval-
uate the predictive p(yt+1|xt , λt , θ). In general, take
as the particle set the following: {(xt , θ, λt , st)

(i), i =
1, . . . ,N}. For discrete λ we can define the following
algorithm:

ALGORITHM 3 (CGDM).

Step 1 (Resample). z̃
(i)
t from z

(i)
t = (xt , λt , θ)(i)

with weights

w
(i)
t ∝ p

(
yt+1|(xt , λt , θ)(i)

)
.

Step 2 (Propagate). States

λ
(i)
t+1 ∼ p

(
λt+1|(λ̃t , θ̃)(i), yt+1

)
,

x
(i)
t+1 ∼ p

(
xt+1|(x̃t , θ̃)(i), λ

(i)
t+1, yt+1

)
.

PARTICLE LEARNING 97

FIG. 2. Dynamic factor model (parameter learning). Sequential posterior median (black line) and posterior 95% credibility intervals (blue
lines) for model parameters β1, β2, σ 2, τ2, p and q . True values are the red lines.

Step 3 (Propagate). Parameter sufficient statistics as
in Algorithm 1.

Step 4 (Propagate). Parameters as in PL.

When λ is continuous, propagate λ
(i)
t+1 from p(λt+1|

(λt , θ)(i)), for i = 1, . . . ,N , then we resample the par-
ticle (xt , λt+1, θ, st)

(i) with the appropriate predictive

98 CARVALHO, JOHANNES, LOPES AND POLSON

distribution p(yt+1|(xt , λt+1, θ)(i)) as in Algorithm 2.
Finally, it is straightforward to extend the backward
smoothing strategy of Section 3.3 to obtain samples
from p(xT |yT).

EXAMPLE 3 (Heavy-tailed nonlinear state space
model). Consider the following non-Gaussian and
nonlinear state space model

(yt+1|xt+1, λt+1, θ) ∼ N(xt+1, λt+1σ
2),

(xt+1|xt , λt+1, θ) ∼ N(βh(xt), σ
2
x),

where θ = (β, σ 2, τ 2), h(xt) = xt/(1+x2
t) and λt+1 ∼

IG(ν/2, ν/2), for known ν. Therefore, the distribution
of (yt+1|xt+1, θ) ∼ tν(xt+1, σ

2), that is, a t-Student
with ν degrees of freedom.

The particle learning algorithm works as follows.
Let the particle set {(xt , θ, λt+1, st)

(i)}Ni=1 approximate
p(xt , θ, λt+1, st |yt). For anygiven time t = 0, . . . ,

T − 1 and i = 1, . . . ,N , we first draw an index ki ∼
Mult(w(1)

t , . . . ,w
(N)
t), with w

(j)
t ∝ p(yt+1|(xt , λt+1,

θ)(j)), j = 1, . . . ,N , and p(yt+1|xt , λt+1, θ) =
fN(yt+1;βh(xt), λt+1σ

2 + τ 2). Then, we draw a new

state x
(i)
t+1 ∼ p(xt+1|(λt+1, xt , θ)(k

i), yt+1) ≡ fN(xt+1;
μ

(i)
t+1,V

(i)
t+1), where μt+1 = Vt+1(λ

−1
t+1σ

−2yt+1 + τ−2 ·
βh(xt)) and V −1

t+1 = λ−1
t+1σ

−2 + τ−2. Finally, simi-
lar to Example 1, posterior parameter learning for
θ = (β, σ 2, τ 2) follows directly from a conditionally
normal-inverse gamma update. Figure 3 illustrates the
above PL algorithm in a simulated example where
β = 0.9, σ 2 = 0.04 and σ 2

x = 0.01. The algorithm un-
covers the true parameters very efficiently in a sequen-
tial fashion. In Section 6.1 we revisit this example to
compare the performances of PL, MCMC (Carlin, Pol-
son and Stoffer, 1992) and the benchmark particle filter
with parameter learning (Liu and West, 2001).

FIG. 3. Heavy-tailed non-Gaussian, nonlinear model. Sequential posterior median and posterior 95% credibility intervals (black lines) for
model parameters β , σ 2 and τ2. True values are the red lines. The bottom right panel is the true value of xt against E(xt |yt).

PARTICLE LEARNING 99

6. COMPARING PARTICLE LEARNING TO
EXISTING METHODS

We now present a series of examples that illustrate
the performance of PL benchmarked by commonly
used alternatives.

EXAMPLE 4 (State sufficient statistics). In this first
simulation exercise we revisit the local level model
of Example 1 in order to compare PL to its version
that takes advantage of state sufficient statistics, that
is, by marginalizing the latent states. The main goal
is to study the Monte Carlo error of the two filters.
We simulated a time series of length T = 100 with
σ 2 = 1, τ 2 = 0.1 and x0 = 0p . The prior distributions
are σ 2 ∼ IG(5,4), τ 2 ∼ IG(5,0.4) and x0 ∼ N(0,10).
We run two filters: one with sequential learning for xt ,
σ 2 and τ 2 (we call it simply PL), and the other with
sequential learning for state sufficient statistics, σ 2 and
τ 2 (we call it PLsuff). In both cases, the particle fil-
ters are based on either one long particle set of size
N = 100,000 (we call it Long) or 20 short particle sets
of size N = 5000 (we call it Short). The results are in
Figures 4 to 6. Figure 4 shows that the differences be-
tween PL and PLsuff dissipate for fairly large N . How-
ever, when N is small PLsuff has smaller Monte Carlo
error and is less biased than PL, particularly when es-
timating σ 2 and τ 2 (see Figure 5). Similar findings ap-
pear in Figure 6 where the mean square errors of the
quantiles from the 20 Short runs are compared to those
from the Long PLsuff run.

EXAMPLE 5 (Resample–propagate or propagate–
resample?). In this second simulation exercise we

continue focusing in the local level model of Ex-
ample 1 to compare PL to three other particle fil-
ters: the bootstrap filter (BF), its fully adapted ver-
sion (FABF), and the auxiliary particle filter (APF) (no
fully adapted). BF and FABF are propagate–resample
filters, while PL and APF are resample–propagate fil-
ters. The main goal is to study the Monte Carlo error
of the four filters. We start with the pure case scenario,
that is, with fixed parameters. We simulated 20 time
series of length T = 100 from the local level model
with parameters τ 2 = 0.013, σ 2 = 0.13 and x0 = 0.
Therefore, the signal to noise ratio σx/σ equals 0.32.
Other combinations were also tried and similar results
were found. The prior distribution of the initial state x0
was set at N(0,10). For each time series, we run 20
times on each of the four filters, all based on N = 1000
particles. We use five quantiles to compare the vari-
ous filters. Let qt

α be such that Pr(xt < qα
t |yt) = α,

for α = (0.05,0.25,0.5,0.75,0.95). Then, the mean
square error (MSE) for filter f , at time t and quantile
α is

MSEα
t,f = 1

400

20∑
d=1

20∑
r=1

(qα
t,d − q̂α

t,d,f,r)
2,

where d and r index the data set and the particle fil-
ter run, respectively. We compare PL, APF and FABF
via logarithm relative MSE (LRMSE), relative to the
benchmark BF. Results are summarized in Figure 7.
PL is uniformly better than all three alternatives. No-
tice that the only algorithmic difference between PL
and FABF is that PL reverses the propagate–resample
steps.

FIG. 4. PL and PL with state sufficient statistics (long runs). Left panel—p(xt |yt)—PL (black), PLsuff (red); Middle panel—p(σ 2|yt)—PL
(solid line), PLsuff (dotted line); Right panel—p(τ2|yt)—PL (solid line), PLsuff (dotted line).

100 CARVALHO, JOHANNES, LOPES AND POLSON

FIG. 5. PL and PL with state sufficient statistics (20 short runs). PL runs (left columns) and PLsuff runs (right columns). One long run
(black) and 20 short runs (gray); p(xt |yt) (top row), p(σ 2|yt) (middle row) and p(τ2|yt) (bottom row).

We now move to the parameter learning scenario,
where σ 2 is still kept fixed but learning of τ 2 is per-
formed. Three time series of length T = 1000 were
simulated from the local level model with x0 = 0 and
(σ 2, τ 2) in {(0.1,0.01), (0.01,0.01), (0.01,0.1)}. The
independent prior distributions for x0 and τ 2 are x0 ∼
N(0,1) and τ 2 ∼ IG(10,9τ 2

0), where τ 2
0 is the true

value of τ 2 for a given time series. In all filters τ 2

is sampled offline from p(τ 2|st) where st is the vec-
tor of conditional sufficient statistics. We run the fil-
ters 100 times, all with the same seed within run, for
each one of the three simulated data sets. Finally, the
number of particles was set at N = 5000, with simi-
lar results found for smaller N , ranging from 250 to
2000 particles. Mean absolute errors (MAE) over the
100 replications are constructed by comparing quan-

PARTICLE LEARNING 101

FIG. 6. PL and PL with state sufficient statistics (mean square errors). Logarithm of the relative mean square error for three quantiles of
pN(xt |yt), pN(σ 2|yt) and pN(τ2|yt), averaged across the 20 N = 5000 runs. PL relative to PLsuff.

tiles of the true sequential distributions p(xt |yt) and
p(τ 2|yt) to quantiles of the estimated sequential distri-
butions pN(xt |yt) and pN(τ 2|yt). More specifically,
for time t , a in {x, τ 2}, α in {0.01,0.50,0.99}, true
quantiles qα

t,a and PL quantiles q̂α
t,a,r ,

MAEα
t,a = 1

100

100∑
r=1

|qα
t,a − q̂α

t,a,r |.

Across different quantiles and combinations of error
variances, PL is at least as good as FABF and in many

cases significantly better than BF. Results appear in
Figure 8.

EXAMPLE 6 (PL versus LW). Consider once again
a variation of the dynamic linear model introduced in
Example 1, but now we assume complete knowledge
about (σ 2, τ 2) in

(yt+1|xt+1, β) ∼ N(xt , σ
2),

(xt+1|xt , β) ∼ N(βxt , τ
2)

for t = 1, . . . , T = 100, σ 2 = 1, x1 = 0.0 and three
possible values for τ 2 = (0.01,0.25,1.00). So, the sig-

FIG. 7. APF, FABF and PL pure filter. Logarithm of the relative mean square error for five quantiles of pN(xt |yt). MSE relative to BF.
Boxplots on the second row are based on the time series plots on the first row.

102 CARVALHO, JOHANNES, LOPES AND POLSON

FIG. 8. BF, FABF and PL with learning of τ2. Mean absolute errors. BF (black), FABF (red) and PL (blue).

nal to noise ratio τ/σ = 0.1,0.5,1.0. Only β and xt

are sequentially estimated and their independent prior
distributions are N(1.0,1.0) and N(0.0,1.0), respec-
tively. The particle set has length N = 2000 and both
filters were run 50 times to study the size of the Monte
Carlo error. The smoothing parameter δ of Liu and
West’s filter was set at δ = 0.95, but fairly similar
results were found for δ ranging from 0.8 to 0.99.
Our findings, summarized in Figure 9, favor PL over
LW uniformly across all scenarios. The discrepancy is
higher when τ/σ is small, which is usually the case in
state space applications.

6.1 PL vs MCMC

PL combined with the backward smoothing algo-
rithm (as in Section 3.3) is an alternative to MCMC
methods for state space models. In general, MCMC

methods (see Gamerman and Lopes, 2006) use Markov
chains designed to explore the posterior distribution
p(xT , θ |yT) of states and parameters conditional on
all the information available, yT = (y1, . . . , yT). For
example, an MCMC strategy would have to iterate
through

p(θ |xT , yT) and p(xT |θ, yT).

However, MCMC relies on the convergence of very
high-dimensional Markov chains. In the purely con-
ditional Gaussian linear models or when states are
dicrete, p(xT |θ, yT) can be sampled in block using
FFBS. Even in these ideal cases, achieving conver-
gency is far from an easy task and the computational
complexity is enormous, as at each iteration one would
have to filter forward and backward sample for the full
state vector xT . The particle learning algorithm pre-

PARTICLE LEARNING 103

FIG. 9. PL and LW (parameter learning). Posterior mean and 95% credibility interval from p(β|yt). Medians across the 50 runs appear
in red. N = 2000 particles. signal-to-noise stands for σx/σ . In all cases, σ = 1.

sented here has two advantages: (i) it requires only one
forward/backward pass through the data for all N par-
ticles and (ii) the approximation accuracy does not rely

on convergence results that are virtually impossible to
assess in practice (see Papaspiliopoulos and Roberts,
2008).

104 CARVALHO, JOHANNES, LOPES AND POLSON

FIG. 10. PL and FFBS (smoothed distributions). T = 100 simulated from a local level model with σ 2 = 1, τ2 = 0.5, x0 = 0 and
x0 ∼ N(0,100). PL is based on N = 1000 particles, while FFBS is based on 2N draws with the first N discarded.

In the presence of nonlinearities, MCMC methods
will suffer even further, as no FFBS scheme is avail-
able for the full state vector xT . One would have to
resort to univariate updates of p(xt |x(−t), θ, yT) as in
Carlin, Polson and Stoffer (1992), where x(−t) is xT

without xt . It is well known that these methods gener-
ate very “sticky” Markov chains, increasing computa-
tional complexity and slowing down convergence. PL
is also attractive given the simple nature of its imple-
mentation (especially if compared to more novel hy-
brid methods).

EXAMPLE 7 (PL versus FFBS). We revisit the
first order dynamic linear model introduced in Exam-
ple 1 to compare our PL smoother and the forward-
filtering, backward-sampling (FFBS) smoother. As-
suming knowledge about θ , Figure 10 compares the
true smoothed distributions p(xt |yT) to approxima-
tions based on PL and on FFBS. Now, when parameter
learning is introduced, PL performance is comparable
to that of the FFBS when approximating p(σ 2, τ 2|yT),
as shown in Figure 11. We argue that, based on these
empirical findings, PL and FFBS are equivalent alter-
natives for posterior computation. We now turn to the
issue of computational cost, measured here by the run-
ning time in seconds of both schemes. Data was simu-
lated based on (σ 2, τ 2, x0) = (1.0,0.5,0.0). The prior
distribution of x0 is N(0,100), while σ 2 and τ 2 are
kept fixed throughout this exercise. PL was based on
N particles and FFBS based on 2N iterations, with
the first M discarded. Table 1 summarizes the results.
For fixed N , the (computational) costs of both PL and
FFBS increase linearly with T , with FFBS twice as fast
as PL. For fixed T , the cost of FFBS increases linearly

with N , while the cost of PL increases exponentially
with N . These findings were anticipated in Section 3.3.
As expected, PL outperforms FFBS when comparing
filtering times.

EXAMPLE 8 (PL versus single-move MCMC). Our
final example compares PL to a single-move MCMC as
in Carlin, Polson and Stoffer (1992). We consider the
first order conditional Gaussian dynamic model with
nonlinear state equation as defined in Example 3. The
example focuses on the estimation of σ 2. We gener-
ate data with different levels of signal to noise ratio
and compare the performance of PL versus MCMC.
Table 2 presents the results for the comparisons. Once
again, PL provides significant improvements in com-
putational time and MC variability for parameter esti-
mation over MCMC.

7. FINAL REMARKS

In this paper we provide particle learning tools (PL)
for a large class of state space models. Our method-
ology incorporates sequential parameter learning, state
filtering and smoothing. This provides an alternative to
the popular FFBS/MCMC (Carter and Kohn, 1994) ap-
proach for conditional dynamic linear models (DLMs)
and also to MCMC approaches to nonlinear non-
Gaussian models. It is also a generalization of the mix-
ture Kalman filter (MKF) approach of Chen and Liu
(2000) that includes parameter learning and smooth-
ing. The key assumption is the existence of a condi-
tional sufficient statistic structure for the parameters
which is commonly available in many commonly used
models.

PARTICLE LEARNING 105

FIG. 11. PL and FFBS (parameter learning). Contour plots for the true posterior p(σ 2, τ2|yT) (red contours) and posterior draws from
PL, panels (a) and (c), and FFBS, panels (b) and (d). The blue dots represent the true value of the pair (σ 2, τ2). The sample size is T = 50
(top row) and T = 500 (bottom row).

We provide extensive simulation evidence to address
the efficiency of PL versus standard methods. Compu-
tational time and accuracy are used to assess the per-
formance. Our approach compares very favorably with

TABLE 1
Computing time (in seconds) of PL and FFBS for smoothing. In

parenthesis are PL times for filtering

N = 500 T = 100

T PL FFBS N PL FFBS

200 18.8 (0.25) 9.1 500 9.3 (0.09) 4.7
500 47.7 (1.81) 23.4 1000 32.8 (0.15) 9.6

1000 93.9 (8.29) 46.1 2000 127.7 (0.34) 21.7

these existing strategies and is robust to particle degen-
eracies as the sample size grows. Finally, PL has the
additional advantage of being an intuitive and easy-
to-implement computational scheme and should, there-
fore, become a default choice for posterior inference in
a variety of models, with examples already appearing
in Lopes et al. (2010), Carvalho et al. (2009), Prado
and Lopes (2010), Lopes and Tsay (2010) and Lopes
and Polson (2010).

ACKNOWLEDGMENTS

We thank the Editor, Raquel Prado, Peter Müller and
Mike West for their invaluable comments that greatly
improved the presentation of the ideas of the paper.
R code for all examples are freely available upon re-
quest.

106 CARVALHO, JOHANNES, LOPES AND POLSON

TABLE 2
Single-move MCMC based on 2000 draws, after 2000 burn-in. PL

based on 2000 particles. Expectations are with respect to the
whole data set at time T , while the true value of τ2 is 0.01.

Numbers in parenthesis are 1000 times the standard deviation
based on 20 replications of the algorithms. Time is in seconds

when running our code in R version 2.8.1 on a MacBook with a
2.4 GHz processor and 4 GB MHz of memory

T σ 2 Time E(σ 2) E(τ2)

Single-move MCMC
50 0.2500 19.7 0.209934 (3.901) 0.011 (1.532)

0.0100 19.3 0.009151 (0.253) 0.008 (0.545)
0.0001 19.3 0.000097 (0.003) 0.010 (0.049)

200 0.2500 79.3 0.249059 (6.981) 0.027 (12.76)
0.0100 79.1 0.009740 (0.305) 0.013 (1.375)
0.0001 79.8 0.000099 (0.004) 0.011 (0.032)

PL
50 0.2500 0.8 0.170576 (1.633) 0.010 (0.419)

0.0100 0.7 0.007204 (0.151) 0.008 (0.165)
0.0001 0.6 0.000092 (0.004) 0.010 (0.058)

200 0.2500 6.5 0.262396 (6.392) 0.009 (1.332)
0.0100 6.4 0.010615 (0.570) 0.011 (0.935)
0.0001 6.4 0.000098 (0.010) 0.011 (0.057)

REFERENCES

BRIERS, M., DOUCET, A. and MASKELL, S. (2010). Smoothing
algorithms for state-space models. Ann. Inst. Statist. Math. 62
61–89. MR2577439

CAPPÉ, O., GODSILL, S. and MOULINES, E. (2007). An overview
of existing methods and recent advances in sequential Monte
Carlo. IEEE Proceedings 95 899–924.

CARLIN, B., POLSON, N. G. and STOFFER, D. (1992). A Monte
Carlo approach to nonnormal and nonlinear state-space model-
ing. J. Amer. Statist. Assoc. 87 493–500.

CARTER, C. and KOHN, R. (1994). On Gibbs sampling for state
space models. Biometrika 82 339–350. MR1311096

CARVALHO, C. M. and LOPES, H. F. (2007). Simulation-based se-
quential analysis of Markov switching stochastic volatility mod-
els. Comput. Statist. Data Anal. 51 4526–4542. MR2364463

CARVALHO, C. M., LOPES, H. F., POLSON, N. G. and TADDY,
M. (2009). Particle learning for general mixtures. Working pa-
per, Univ. Chicago Booth School of Business.

CHEN, R. and LIU, J. (2000). Mixture Kalman filters. J. Roy. Sta-
tist. Soc. Ser. B 62 493–508. MR1772411

DOUCET, A., DE FREITAS, J. and GORDON, N. (2001). Sequen-
tial Monte Carlo Methods in Practice. Springer, New York.
MR1847783

FEARNHEAD, P. (2002). Markov chain Monte Carlo, sufficient sta-
tistics, and particle filters. J. Comput. Graph. Statist. 11 848–
862. MR1951601

FEARNHEAD, P., WYNCOLL, D. and TAWN, J. (2008). A sequen-
tial smoothing algorithm with linear computational cost. Work-
ing paper, Dept. Mathematics and Statistics, Lancaster Univ.

FRÜHWIRTH-SCHNATTER, S. (1994). Applied state space mod-
elling of non-Gaussian time series using integration-based
Kalman filtering. Statist. Comput. 4 259–269.

GAMERMAN, D. and LOPES, H. F. (2006). Markov Chain Monte
Carlo: Stochastic Simulation for Bayesian Inference. Chapman
& Hall/CRC Press, Boca Raton, FL. MR2260716

GODSILL, S. J., DOUCET, A. and WEST, M. (2004). Monte Carlo
smoothing for nonlinear time series. J. Amer. Statist. Assoc. 99
156–168. MR2054295

GORDON, N., SALMOND, D. and SMITH, A. F. M. (1993). Novel
approach to nonlinear/non-Gaussian Bayesian state estimation.
IEE Proceedings-F 140 107–113.

JOHANNES, M. and POLSON, N. G. (2008). Exact particle filtering
and learning. Working paper, Univ. Chicago Booth School of
Business.

JOHANNES, M., POLSON, N. G. and YAE, S. M. (2008). Nonlin-
ear filtering and learning. Working paper, Univ. Chicago Booth
School of Business.

KALMAN, R. E. (1960). A new approach to linear filtering and pre-
diction problems. Transactions of the ASME—Journal of Basic
Engineering 82 35–45.

LIU, J. and CHEN, R. (1998). Sequential Monte Carlo methods
for dynamic systems. J. Amer. Statist. Assoc. 93 1032–1044.
MR1649198

LIU, J. and WEST, M. (2001). Combined parameters and state esti-
mation in simulation-based filtering. In Sequential Monte Carlo
Methods in Practice (A. Doucet, N. de Freitas and N. Gordon,
eds.). Springer, New York. MR1847793

LOPES, H. F. and POLSON, N. G. (2010). Extracting SP500 and
NASDAQ volatility: The credit crisis of 2007–2008. In Hand-
book of Applied Bayesian Analysis (A. O’Hagan and M. West,
eds.) 319–342. Oxford Univ. Press, Oxford.

LOPES, H. F. and TSAY, R. E. (2010). Bayesian analysis of finan-
cial time series via particle filters. J. Forecast. To appear.

LOPES, H. F., CARVALHO, C. M., JOHANNES, M. and POLSON,
N. G. (2010). Particle learning for sequential Bayesian compu-
tation. In Bayesian Statistics 9 (J. M. Bernardo, M. J. Bayarri,
J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and
M. West, eds.). Oxford Univ. Press, Oxford.

PAPASPILIOPOULOS, O. and ROBERTS, G. (2008). Stability of the
Gibbs sampler for Bayesian hierarchical models. Ann. Statist.
36 95–117. MR2387965

PITT, M. and SHEPHARD, N. (1999). Filtering via simulation:
Auxiliary particle filters. J. Amer. Statist. Assoc. 94 590–599.
MR1702328

POLSON, N. G., STROUD, J. and MÜLLER, P. (2008). Practical
filtering with sequential parameter learning. J. Roy. Statist. Soc.
Ser. B 70 413–428. MR2424760

PRADO, R. and LOPES, H. F. (2010). Sequential parameter learn-
ing and filtering in structured autoregressive models. Working
paper, Univ. Chicago Booth School of Business.

STORVIK, G. (2002). Particle filters in state space models with
the presence of unknown static parameters. IEEE Trans. Signal
Process. 50 281–289.

WEST, M. (1986). Bayesian model monitoring. J. Roy. Statist. Soc.
Ser. B 48 70–78. MR0848052

WEST, M. and HARRISON, J. (1997). Bayesian Forecasting and
Dynamic Models, 2nd ed. Springer, New York. MR1482232

http://www.ams.org/mathscinet-getitem?mr=2577439
http://www.ams.org/mathscinet-getitem?mr=1311096
http://www.ams.org/mathscinet-getitem?mr=2364463
http://www.ams.org/mathscinet-getitem?mr=1772411
http://www.ams.org/mathscinet-getitem?mr=1847783
http://www.ams.org/mathscinet-getitem?mr=1951601
http://www.ams.org/mathscinet-getitem?mr=2260716
http://www.ams.org/mathscinet-getitem?mr=2054295
http://www.ams.org/mathscinet-getitem?mr=1649198
http://www.ams.org/mathscinet-getitem?mr=1847793
http://www.ams.org/mathscinet-getitem?mr=2387965
http://www.ams.org/mathscinet-getitem?mr=1702328
http://www.ams.org/mathscinet-getitem?mr=2424760
http://www.ams.org/mathscinet-getitem?mr=0848052
http://www.ams.org/mathscinet-getitem?mr=1482232

	Introduction
	Particle Filtering in State Space Models
	Pure Filtering Review
	The bootstrap filter
	Auxiliary particle filter (APF)

	Sequential Parameter Learning Review
	Storvik's filter
	Liu and West's filter

	Particle Learning and Smoothing
	Discussion
	State Sufficient Statistics
	Smoothing
	Model Monitoring

	Conditional Dynamic Linear Models
	Particle Learning in CDLM

	Nonlinear Filtering and Learning
	Comparing Particle Learning to Existing Methods
	PL vs MCMC

	Final Remarks
	Acknowledgments
	References

