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Discussion of “Calibrated Bayes, for
Statistics in General, and Missing Data in
Particular” by R. J. A. Little
Nathaniel Schenker

It is a pleasure and an honor for me to comment on
this article by Rod Little, who has contributed greatly
to statistics in general and to Bayesian statistics and
handling missing data in particular. Little provides
a nice discussion of the calibrated Bayes approach,
methods for missing-data problems and recent devel-
opments (SRMI and PSPP) that increase flexibility in
dealing with missing data.

1. DON’T FORGET THE PRAGMATISTS

Little begins his Section 2 by stating that the sta-
tistics world is still largely divided into frequentists
and Bayesians. Indeed, during the University of Mary-
land workshop (“Bayesian Methods that Frequentists
Should Know”) at which Little presented a talk on
the topic of his article, many of the speakers declared
themselves to be either frequentists or Bayesians. As
formal discussant of Little’s talk, however, I declared
myself to be a “pragmatist,” which Little (2006) de-
fined as one who does not have an overarching phi-
losophy and picks and chooses what seems to work
for the problem at hand. If I were forced to choose
a philosophy, I would probably go with the Bayesian
one. But I am happy to use either approach, depending
on the context, and many of my statistical colleagues
seem willing to use either approach as well. More-
over, although subject-matter specialists with whom
I work seem to be primarily familiar with point esti-
mates, standard errors and confidence intervals, they
seem to have no problems using Bayesian analogues
(e.g., posterior means, standard deviations and credi-
bility intervals) in the same way, when presented with
them.

Little (2006) argued that, to enhance the credibility
of our profession and avoid confusion and ambiguity,
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it would be preferable not to have the “split personal-
ity” that is inherent in the pragmatic approach. He has
made a strong case in that article and here for calibrated
Bayes as a unified inferential approach that combines
strengths of the Bayesian and frequentist approaches.
His arguments are compelling, but given the abundance
of good and easily accessible frequentist methods that
exist and are widely used, I imagine that it would be
difficult for our profession to rid itself of this split per-
sonality. Moreover, I think the key issue in most appli-
cations is the development of realistic models for the
data. Thus, I second Little’s emphasis on flexible mod-
els and methods, such as the SRMI and PSPP methods,
and his concluding call for further work on model di-
agnostics, especially in the area of missing data.

2. THE FREQUENTIST/BAYESIAN SCHISM IS
PERHAPS MAGNIFIED IN SURVEY SAMPLING

In the survey sampling world in which I primarily
work as a government statistician, the definition of be-
ing a frequentist versus being a Bayesian is not neces-
sarily clear, because inferences are often desired about
finite-population quantities rather than about model
parameters. Such inferences are often made using a
design-based paradigm (e.g., Cochran, 1977), that is,
based on the distribution of estimators in repeated sam-
pling from the finite population under a given design.
Thus, one possible definition of frequentist inference
in survey sampling is that it treats the finite-population
values, Y , as fixed parameters, and bases inferences
about a function of those parameters, say, Q(Y), on
a function of the sampled values and its distribution
in repeated sampling. The corresponding definition of
Bayesian inference (e.g., Rubin, 1987, Chapter 2) is
that it places a prior distribution on Y , say, p(Y |θ),
where θ represents hyperparameters with a hyperprior
p(θ), and bases inferences on the posterior predictive
distribution of Q(Y) given the sampled values.

The two-by-two table (Table 1) gives a simplified,
nonexhaustive depiction of the frequentist/Bayesian di-
chotomy within survey sampling on the one hand and

179

http://www.imstat.org/sts/
http://dx.doi.org/10.1214/10-STS318A
http://dx.doi.org/10.1214/10-STS318
http://www.imstat.org
mailto:nschenker@cdc.gov


180 N. SCHENKER

TABLE 1
Simplified, nonexhaustive 2-way table depicting the frequentist/Bayesian dichotomy within

survey sampling and in many areas outside of survey sampling

Mode of inference Within survey sampling In many areas outside of survey sampling

Frequentist • Estimate Q(Y) by Q̂(Yinc, I ), where Y = population values, • Formulate p(y|θ), where y = data and
Yinc = sampled values, and I = indicators of inclusion θ = parameters.
in the sample.
• Base inferences for Q(Y) on p(Q̂(Yinc, I )|Y ) induced • Base inferences for θ on p(θ̂(y)|θ),
by the distribution of the indicators I in repeated where θ̂ (y) estimates θ .
sampling, p(I |Y ).

Bayesian • Formulate p(Y |θ) and p(θ), in addition to p(I |Y ). • Formulate p(y|θ) and p(θ).
• Base inferences for Q(Y) on p(Q(Y )|Yinc, I ). • Base inferences for θ on p(θ |y).

in many areas outside of survey sampling on the other.
As Table 1 shows, both within and outside of survey
sampling, there are differences between the frequentist
and Bayesian approaches concerning which quantities
are treated as random, as well as whether prior distrib-
utions are specified. However, within survey sampling,
there is an additional distinction, which is perhaps the
most important in practice. The reference distribution
for inferences under the frequentist, or design-based
approach, is not induced by a model for the finite-
population values, Y , whereas the Bayesian posterior
predictive distribution does involve such a model.

Much has been written on design-based versus
model-based inference in sample surveys, but I would
particularly like to cite Hansen, Madow and Tepping
(1983) and Little (2004). Hansen, Madow and Tepping
(1983) concluded basically that for descriptive infer-
ence from reasonably large, well-designed sample sur-
veys, design-based inference is to be preferred, because
it avoids errors due to model misspecification that are
possible with model-based inference, and because it
loses little efficiency relative to model-based inference.
They acknowledged, however, that model-based meth-
ods for sample surveys can be useful and important in
the contexts of sample design, inference for small sam-
ples, inference in the presence of nonsampling errors,
and situations in which inferences under a model are
of intrinsic interest. One issue regarding the conclu-
sions of Hansen, Madow and Tepping (1983) is that it
is not always clear how large a sample is large enough.
Moreover, lately there has been increasing interest in
“pushing the data as far as possible,” for example, by
using a national survey to obtain estimates for a small
subpopulation.

Little (2004) concluded that the Bayesian paradigm
is flexible enough to provide practical and useful in-
ferences in the context of survey sampling. He pointed

out that the models used in Bayesian inference for sur-
veys need to properly reflect features of the sample de-
sign, such as weighting, stratification and clustering,
or else inferences are likely to be distorted. Similar
points were made in the discussions of Hansen, Madow
and Tepping (1983), in particular, those by Rubin, who
clarified the role of the probabilities of selection in
Bayesian modeling for sample surveys, and Little, who
advocated the use of model-based estimators that are
design-consistent. Hansen, Madow and Tepping (1983)
agreed with those points in their rejoinder. However, as
I will discuss in Section 4.3 in the context of applica-
tions to be presented in the next section, reflecting sam-
ple design features can be complicated in some prob-
lems for which model-based inference can be particu-
larly useful. Thus, I believe that further development
of methods for reflecting design features will be an im-
portant area of research.

3. A MAJOR REASON WHY THIS PRAGMATIST
LIKES BAYESIAN METHODS

From a pragmatic point of view, one of the major at-
tractions of Bayesian methods is their ability to handle
problems with complex data structures such as miss-
ing data in a relatively straightforward manner. As Lit-
tle points out, this has been true especially since the
development of Markov chain Monte Carlo methods
and multiple imputation. To complement Little’s dis-
cussion and to illustrate some of his points, I will now
describe a few applied projects for which Bayesian
techniques were very helpful.

3.1 Survival Analysis with Intermittently Observed
Covariates

Faucett, Schenker and Elashoff (1998) analyzed the
relationship between post-operative smoking and sur-
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vival using data from a clinical trial on survival of pa-
tients after surgery for lung cancer. At follow-up visits,
the patients had been asked about their current smok-
ing status. Faucett, Schenker and Elashoff (1998) dis-
cretized time using narrow time intervals, and they
specified a Markov chain model for current smoking
status together with a time-dependent proportional haz-
ards model with a piecewise constant baseline hazard
for survival given smoking behavior and covariates.
Gibbs sampling was used to approximate the joint pos-
terior distribution of the model parameters under dif-
fuse prior distributions.

The use of Gibbs sampling facilitated analyses under
two different survival models, one with current smok-
ing as the time-dependent covariate and another with
cumulative smoking as the time-dependent covariate. It
was found that the coefficient for cumulative smoking
(in the latter model) had much more posterior proba-
bility mass to one side of zero than did the coefficient
for current smoking (in the former model). Thus, the
evidence was stronger for a detrimental effect of cu-
mulative smoking than for a detrimental effect of cur-
rent smoking. The application of Faucett, Schenker and
Elashoff (1998) is an example of joint modeling of lon-
gitudinal and survival data, which has been a popular
area of research in the past decade.

3.2 Incorporating Auxiliary Variables into Survival
Analysis via Multiple Imputation

In a different type of application that jointly modeled
longitudinal and survival data, Faucett, Schenker and
Taylor (2002) developed an approach, based on multi-
ple imputation, to using auxiliary variables to recover
information from censored observations in survival
analysis. Applications of this type are mentioned by
Little in his Section 5, point (a) and Section 7. Faucett,
Schenker and Taylor (2002) analyzed data from an
AIDS clinical trial comparing zidovudine and placebo,
in which the outcome of interest was the time to devel-
opment of AIDS, and in which CD4 count was a time-
dependent auxiliary variable. Because AIDS can take
a long time to develop, most of the observations were
censored. Faucett, Schenker and Taylor (2002) speci-
fied a hierarchical change-point model for CD4 counts
and a time-dependent proportional hazards model for
the time to AIDS given CD4 and covariates. Markov
chain Monte Carlo methods were then used to multiply
impute event times for the censored cases.

The use of multiple imputation facilitated drawing
inferences about quantities whose posterior distribu-
tions could not be approximated directly using the

output of the Markov chain Monte Carlo simulations.
For example, Kaplan–Meier estimates of survival un-
der treatment and placebo were compared, and the
coefficient of treatment in a Cox regression analysis
was examined as well. Comparisons with analyses of
the censored data without imputation, and accompany-
ing simulation results, suggested that incorporating the
auxiliary variables via multiple imputation can lead to
improved efficiency as well as partial corrections for
dependent censoring. This application illustrated use
of a nonBayesian complete-data analysis with multiple
imputation; see Little’s Section 5, point (c).

3.3 Multiple Imputation for Missing Data in
Surveys

As Little discusses in Section 5, points (a) and (b),
multiple imputation has particular benefits in the con-
text of public-use data. SRMI was used recently in two
major applications of multiple imputation to public-
use data from the National Center for Health Statis-
tics. One involved missing income data in the Na-
tional Health Interview Survey (NHIS) (Schenker et
al., 2006), and the other involved missing body-scan
data from dual-energy X-ray absorptiometry (DXA) in
the National Health and Nutrition Examination Sur-
vey (NHANES) (Schenker et al., 2011). DXA scans
are used to measure body composition such as soft
tissue composition and bone mineral content. Public-
use data with multiple imputations from both appli-
cations have been released online (http://www.cdc.
gov/nchs/nhis/2009imputedincome.htm; http://www.
cdc.gov/nchs/nhanes/dxx/dxa.htm).

Both applications involved nontrivial amounts of
missing data—roughly 30% for the NHIS income data
and 20% for the NHANES DXA data—with missing-
ness related to characteristics of the persons surveyed,
so that analysis of only the complete cases would likely
result in biases as well as inefficiencies. The use of
SRMI facilitated inclusion of large numbers of pre-
dictors of different types (e.g., categorical, continuous,
count) in each application, with some of the predic-
tors having missing data themselves, although usually
at much lower levels than the main variables of interest.
As discussed in Meng (1994), Rubin (1996), Little and
Raghunathan (1997) and Reiter, Raghunathan and Kin-
ney (2006), the reasons for including several predictors
in imputation models, besides of course to help predict
the missing values, are to help “explain” the missing-
ness, that is, to make the assumption of missingness
at random more tenable, and to promote compatibility
between the imputation models and the analyses that
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would ultimately be carried out by secondary users of
the data. The issue of possible incompatibility is dis-
cussed further in Section 4.4.

Each application had other interesting features, some
of which were handled especially well by SRMI. For
example, in the NHIS project, for the majority of
the missing family income values, respondents had
provided coarse income categories, so that bounds
were available for the missing values. Also, there were
sometimes structural dependencies between variables
that needed to be imputed. For example, a person could
not have earnings unless he/she was employed, and oc-
casionally, employment status was missing along with
earnings.

In the NHANES project, the missing data were
highly multivariate. There were 32 DXA variables,
some of which were highly interrelated; and sometimes
the DXA data were only partially missing. Perhaps
the most interesting feature of the project, however,
was that missingness of DXA data often occurred for
people with high levels of truncal adiposity, because
the adiposity interfered with the ability to obtain valid
measurements. Thus, the levels of missingness tended
to be high at the largest values of other variables mea-
sured in the NHANES, such as BMI and waist circum-
ference. This necessitated some extrapolation beyond
the range of the observed DXA values.

3.4 Combining Information from Two Surveys to
Enhance Small-Area Estimation

A multi-organization project led by the National
Cancer Institute used Bayesian methods to compute
small-area estimates of the prevalence of cancer risk
factors and cancer screening by combining informa-
tion from two surveys for the years 1997–2003 (Raghu-
nathan et al., 2007; Davis et al., 2010). The surveys
were the Behavioral Risk Factor Surveillance System
(BRFSS), a large, state-based survey conducted by
telephone, and the NHIS, a smaller, face-to-face sur-
vey. The BRFSS included most of the counties in the
United States in its sample and thus provided some di-
rect information about them. However, it obtained data
only from households equipped with telephones, and
its nonresponse rates tended to be relatively high, as
is often the case with telephone surveys. The NHIS
surveyed both telephone and nontelephone households,
asked a question to identify the telephone status of the
household, and generally had lower nonresponse rates
than the BRFSS. However, its sample only included
about 25 percent of the counties.

A Bayesian, trivariate extension of the Fay–Herriot
(1979) model was formulated. Markov chain Monte
Carlo methods were used, together with county-level
telephone coverage rates from the 2000 census, to ap-
proximate the posterior distributions of the small-area
rates. Estimates from the project have been released
publicly (http://sae.cancer.gov/).

4. SOME AREAS FOR FURTHER RESEARCH

4.1 Flexible Models and Methods

In Section 1 I mentioned the need for more flex-
ible models and methods. SRMI and PSPP are two
examples of techniques that have increased flexibility
(see, e.g., Section 3.3 for examples in which SRMI
was used), and the development of more such tech-
niques would be welcome. For example, perhaps a flex-
ible univariate prediction model such as PSPP could be
used for each univariate regression in SRMI to develop
a robust procedure for multivariate imputation.

4.2 Diagnostics for Models

In Section 1 I also seconded Little’s call for work
in the area of model checking, especially for missing-
data problems. With missing data, checking prediction
models for the missing values is especially difficult, for
the obvious reason that the missing values are unavail-
able for use in model checking. Diagnostics for im-
putations of the general types mentioned in Abayomi,
Gelman and Levy (2008) were used in the NHANES
multiple-imputation project discussed in Section 3.3.

Little (Section 2) mentions methods such as pos-
terior predictive checks as being frequentist in spirit.
It would be helpful to investigate more fully the link
between use of such techniques and achieving well-
calibrated analyses, such as Bayesian credibility inter-
vals with good frequentist coverage properties. Also
useful for survey practitioners would be more research
on evaluating models from a design-based point of
view, especially in the context of complex sample de-
signs.

4.3 Incorporating Complex Sample Design
Features into Models

As I mentioned in Section 2, incorporating complex
sample design features into models for survey data can
be complicated. In the context of multiple imputation,
inclusion of survey weights and indicator variables for
strata and primary sampling units (PSUs) has been ad-
vocated (Rubin, 1996; Reiter, Raghunathan and Kin-
ney, 2006). Such techniques were used in the NHIS

http://sae.cancer.gov/
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and NHANES multiple-imputation projects described
in Section 3.3 above, although in the NHANES project,
there was some concern about parsimony, so a smaller
number of variables related to PSU selection were sub-
stituted for the full set of indicator variables. Further
work on methods for increasing parsimony, such as via
use of random effects, would be helpful.

In addition, incorporating complex sample design
features can be difficult in problems that involve com-
bining information across surveys, because the design
features of the two surveys might not be compara-
ble. This was one reason for using an area-level (Fay–
Herriot) rather than person-level model in the small-
area estimation project discussed in Section 3.4; see
Schenker and Raghunathan (2008). Schenker, Raghu-
nathan and Bondarenko (2010) also discussed such
issues in the context of using multiple-imputation to
combine information from two surveys.

4.4 Impacts of Secondary Analysts Using
Variables not Included in the Imputation Model

Little notes (Section 5) that an attractive feature of
multiple imputation is that the imputation model can
include variables not included in the final analysis. I
agree with this, and, furthermore, I have found multiple
imputation to be a very general and flexible method
for allowing secondary analysts of public-use data to
assess the uncertainty due to imputation.

A concern of mine, which applies to single imputa-
tion as well as multiple imputation, is biases that can
occur in point estimates of interest when a secondary
analyst uses the imputed data together with variables
that were not included in the imputation model. As
mentioned in Section 3.3, the NHIS and NHANES
projects used large numbers of predictors in order to
avoid such incompatibilities, and the predictors were
listed for secondary analysts in the technical documen-
tation for the projects. However, it is likely in general
that some secondary analysts of public-use data will at-
tempt analyses that “go beyond” the imputation model.
The biases in point estimates for such analyses will de-
pend in a sense on how well the variables included in
the imputation model account for the relations being
studied in the secondary analysis. Further research on
the possible extent of such biases, and guidelines and
diagnostics for secondary analysts, would be useful ar-
eas for research.

4.5 Real-Life Examples of the Utility of the
Calibrated Bayes Approach

As I mentioned in Section 1, I imagine that it would
be difficult to move our field completely away from

having a “split personality” and toward following Lit-
tle’s (2006) “Bayes/Frequentist Roadmap.” Excellent
papers such as Little’s current one will provide nudges
in that direction. Also helpful will be more real-life ex-
amples of how the calibrated Bayes approach can help
to achieve substantial gains in solving problems that
could not be achieved otherwise.

ACKNOWLEDGMENTS

The author thanks John Eltinge, Jennifer Madans,
Van Parsons and the guest editors for helpful com-
ments on earlier drafts of this discussion. The findings
and opinions expressed herein are those of the author
and do not necessarily reflect the views of the National
Center for Health Statistics, Centers for Disease Con-
trol and Prevention.

REFERENCES

ABAYOMI, K., GELMAN, A. and LEVY, M. (2008). Diagnostics
for multivariate imputations. J. Roy. Statist. Soc. Ser. C 57 273–
291. MR2440009

COCHRAN, W. G. (1977). Sampling Techniques, 3rd ed. Wiley,
New York. MR0474575

DAVIS, W. W., PARSONS, V. L., XIE, D., SCHENKER, N.,
TOWN, M., RAGHUNATHAN, T. E. and FEUER, E. J. (2010).
State-based estimates of mammography screening rates based
on information from two health surveys. Public Health Rep. 125
567–578.

FAUCETT, C. L., SCHENKER, N. and ELASHOFF, R. M. (1998).
Analysis of censored survival data with intermittently observed
time-dependent binary covariates. J. Amer. Statist. Assoc. 93
427–437.

FAUCETT, C. L., SCHENKER, N. and TAYLOR, J. M. G. (2002).
Survival analysis using auxiliary variables via multiple imputa-
tion, with application to AIDS clinical trial data. Biometrics 58
37–47. MR1891041

FAY, R. E. III and HERRIOT, R. A. (1979). Estimates of income
for small places: An application of James–Stein procedures to
census data. J. Amer. Statist. Assoc. 74 269–277. MR0548019

HANSEN, M. H., MADOW, W. G. and TEPPING, B. J. (1983).
An evaluation of model-dependent and probability-sampling in-
ferences in sample surveys (with discussion and rejoinder). J.
Amer. Statist. Assoc. 78 776–807.

LITTLE, R. J. (2004). To model or not to model? Competing modes
of inference for finite population sampling. J. Amer. Statist. As-
soc. 99 546–556. MR2109316

LITTLE, R. J. (2006). Calibrated Bayes: A Bayes/frequentist
roadmap. Amer. Statist. 60 213–223. MR2246754

LITTLE, R. J. A. and RAGHUNATHAN, T. E. (1997). Should im-
putation of missing data condition on all observed variables? In
Proceedings of the Section on Survey Research Methods 617–
622. Amer. Statist. Assoc., Alexandria, VA.

http://www.ams.org/mathscinet-getitem?mr=2440009
http://www.ams.org/mathscinet-getitem?mr=0474575
http://www.ams.org/mathscinet-getitem?mr=1891041
http://www.ams.org/mathscinet-getitem?mr=0548019
http://www.ams.org/mathscinet-getitem?mr=2109316
http://www.ams.org/mathscinet-getitem?mr=2246754


184 N. SCHENKER

MENG, X.-L. (1994). Multiple-imputation inferences with uncon-
genial sources of input (with discussion and rejoinder). Statist.
Sci. 9 538–573.

RAGHUNATHAN, T. E., XIE, D., SCHENKER, N., PAR-
SONS, V. L., DAVIS, W. W., DODD, K. W. and FEUER, E. J.
(2007). Combining information from two surveys to estimate
county-level prevalence rates of cancer risk factors and screen-
ing. J. Amer. Statist. Assoc. 102 474–486. MR2370848

REITER, J. P., RAGHUNATHAN, T. E. and KINNEY, S. K. (2006).
The importance of modeling the sampling design in multiple
imputation for missing data. Surv. Methodol. 32 143–149.

RUBIN, D. B. (1987). Multiple Imputation for Nonresponse in Sur-
veys. Wiley, New York. MR0899519

RUBIN, D. B. (1996). Multiple imputation after 18+ years (with
discussion and rejoinder). J. Amer. Statist. Assoc. 91 473–489,
507–515, 515–517.

SCHENKER, N. BORRUD, L. G. BURT, V. L. CURTIN, L. R. FLE-
GAL, K. M. HUGHES, J. JOHNSON, C. L. LOOKER, A. C. and

MIREL, L. (2011). Multiple imputation of missing dual-energy
X-ray absorptiometry data in the National Health and Nutrition
Examination Survey. Stat. Med. 30 260–276.

SCHENKER, N. and RAGHUNATHAN, T. E. (2008). Discussion of
“Assessing the value of Bayesian methods for inference about
finite population quantities” by Sedransk. J. Official Statist. 24
507–512.

SCHENKER, N., RAGHUNATHAN, T. E. and BONDARENKO, I.
(2010). Improving on analyses of self-reported data in a large-
scale health survey by using information from an examination-
based survey. Stat. Med. 29 533–545.

SCHENKER, N., RAGHUNATHAN, T. E., CHIU, P.-L.,
MAKUC, D. M., ZHANG, G. and COHEN, A. J. (2006).
Multiple imputation of missing income data in the National
Health interview survey. J. Amer. Statist. Assoc. 101 924–933.
MR2324093

http://www.ams.org/mathscinet-getitem?mr=2370848
http://www.ams.org/mathscinet-getitem?mr=0899519
http://www.ams.org/mathscinet-getitem?mr=2324093

	Don't Forget the Pragmatists
	The Frequentist/Bayesian Schism Is Perhaps Magnified in Survey Sampling
	A Major Reason Why This Pragmatist Likes Bayesian Methods
	Survival Analysis with Intermittently Observed Covariates
	Incorporating Auxiliary Variables into Survival Analysis via Multiple Imputation
	Multiple Imputation for Missing Data in Surveys
	Combining Information from Two Surveys to Enhance Small-Area Estimation

	Some Areas for Further Research
	Flexible Models and Methods
	Diagnostics for Models
	Incorporating Complex Sample Design Features into Models
	Impacts of Secondary Analysts Using Variables not Included in the Imputation Model
	Real-Life Examples of the Utility of the Calibrated Bayes Approach

	Acknowledgments
	References

