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Abstract: Microarray experiments often yield a normal data matrix X

whose rows correspond to genes and columns to samples. We commonly
calculate test statistics Z = Xw, where Zi is a test statistic for the ith
gene, and apply false discovery rate (FDR) controlling methods to find in-
teresting genes. For example, Z could measure the difference in expression
levels between treatment and control groups and we could seek differentially
expressed genes. The empirical cdf of Z is important for FDR methods,
since its mean and variance determine the bias and variance of FDR esti-
mates. Efron (2009b) has shown that if the columns of X are independent,
the variance of the empirical cdf of Z only depends on the mean-squared
row correlation.

Microarray data, however, frequently shows signs of column dependence.
In this paper, we show that Efron’s result still holds under column depen-
dence, and give a conservative (upwardly biased) estimator for the mean-
squared row correlation. We show Fisher’s transformation for sample cor-
relations is still normalizing and variance stabilizing under column depen-
dence, and use it to construct a permutation-invariant test of column inde-
pendence. Finally, we argue that estimating the mean-squared row corre-
lation under column dependence is impossible in general. Code to perform
our test is available in the R package “colcor,” available on CRAN.

Keywords and phrases: Fisher transformation, sample correlation, col-
umn dependence, root mean squared correlation, matrix normal.

Received October 2010.

1. Introduction

Microarray experiments often yield an N×n normal data matrix X whose rows
represent genes and columns represent samples. Usually, N is much larger than
n. One way to find “interesting” genes is to form a vector Z = Xw, where Zi is a
test statistic for gene i, and apply false discovery rate methods to find significant
Zis. For example, if the rows of X have unit variance and w = (1, . . . , 1) /

√
n,

Z consists of the rescaled mean expression levels (that is, the one-sample t-
statistics, but with known variance in the denominator). We could search for
significantly large Zi to find overexpressed genes.

∗Supported by an NSF VIGRE Fellowship

1527

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/10-EJS592
mailto:omkar@stanford.edu


O. Muralidharan/Column dependence 1528

The empirical distribution of the entries of Z, F̂ , is an important quantity
for false discovery rate methods. Its mean and covariance determine the bias
and variance of false discovery rate estimates. Efron (2009b) has approximated
the mean and covariance of F̂ when the columns of X are independent. But
many have noted that microarray data sets show signs of column dependence,
possibly caused by preparation and lab effects (Chen et al., 2004; Piper et al.,
2002). Efron (2009a) developed a permutation test that finds dependence in
standard datasets (Efron, 2009a; Cosgrove et al., 2010). In this paper, we con-
sider how to use Efron’s approximations under column dependence and propose
a permutation-invariant test for column dependence.

Suppose the columns of X are iid N (0,Σ), with Σii = 1, and let ρii′ =
Σii′/

√
ΣiiΣi′i′ be the correlation between Xij and Xi′j . Assuming the columns

are independent, Efron (2009b) approximates the mean and covariance of F̂
using only the mean and mean-squared correlations,

α1 =
1

(

N
2

)

∑

i<i′

ρii′

α2 =
1

(

N
2

)

∑

i<i′

ρ2ii′ ,

not the full correlation structure Σ. Efron shows that these quantities can be
estimated well, in contrast to Σ, which is very hard to estimate. If X is not
centered and scaled, then we also need the mean of X and the variances Σii.

Efron’s approximations let us calculate the bias and variance of FDR esti-
mates. Suppose we want to find rows with positive mean, and we reject the null
of zero mean for all Zi ≥ t. The standard estimator of the false discovery rate
for this rejection rule is

ˆFDR (t) =
π̂0 (1− Φ (t))

1− F̂ (t)
,

where π̂0 is the estimated fraction of Zis with zero mean. Since π̂0 is usually
close to 1 and Φ (t) is known, the bias and variance of F̂ determine the bias
and variance of ˆFDR. Efron’s approximations give us a better picture of the
behavior of ˆFDR by approximating the mean and variance of F̂ under row
correlation.

Most microarray analyses assume independent columns, but column depen-
dence can cause serious problems. For example, it can cause some of the over-
or underdispersion commonly seen in microarray data. Suppose X is a stan-
dardized matrix of expression levels and we want to find genes (rows) that are
significantly over- or underexpressed. A standard approach is to calculate a one-
sample t-statistic Zi for each row, then use an FDR procedure to find Zis that
are significantly far from 0. If the rows of X have unit variance, we can instead
use the scaled row means by taking w = (1, . . . , 1) /

√
n and Z = Xw. Each Zi

is N (0, 1) under the null - if the columns of X are independent. If the columns
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Fig 1. Histogram of Zi under column correlation. We took N = 10, 000, n = 100, Σ = I

and generated X with zero mean and common column correlation 0.05, then calculated the
scaled row means Zi =

1√
n

∑n
j=1

Xij . The Zi are highly overdispersed; the solid curve is the

N (0, 1) null. Lemma 2 shows that the Zi are N
(

0, 2.442
)

, which agrees with the histogram
(dashed curve).

are correlated the Zi can be substantially over- or underdispersed, as Figure 1
illustrates. Assuming column independence and using the N (0, 1) null can give
very misleading results when columns are correlated.

In Section 2 we show that Efron’s approximations still work under column
dependence, so they can be used to assess the variability of FDR estimates even
when columns are correlated. Estimating α1 and α2, however, becomes more
difficult. We find the uniformly minimum variance unbiased (UMVU) estimators
of α1 and α2 under column independence. The estimator of α1 remains unbiased
under column correlation, while the α2 estimator is upwardly biased. The bias
is small unless the columns are quite strongly correlated. Our estimators are
conservative: using them in Efron’s approximations when columns are correlated
gives an upwardly biased estimate of the variance of F̂ .

Efron (2009a) shows that the strong row correlations typically seen in mi-
croarray data (Qiu et al., 2005; Owen, 2005) make detecting column dependence
tricky. He gave a permutation-based test for column dependence, but desired a
test that does not depend on the ordering of the columns.

In Section 3, we show that Fisher’s transformation can explain why col-
umn dependence is hard to detect and why it makes estimating α2 difficult.
Let z (·) = tanh−1 (·) be Fisher’s transformation, and ρ̂ii′ the sample row cor-
relations. We show that when the columns are dependent, z (ρ̂ii′) is still ap-
proximately normal with mean z (ρii′) and constant variance, but the variance
depends on the strength of the column dependence. This explains why it is diffi-
cult to estimate α2 under column dependence: α2 is approximately the variance
of z (ρii′ ), so estimating it is like separating out the variance of z (ρ̂ii′) into the
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variance of z (ρii′ ) and the unknown noise variance. Transposing the argument
shows why row dependence makes column dependence hard to detect.

Finally, in Section 4, we use Fisher’s transformation to give a permutation-
invariant test for column correlation. Our test formalizes an FDR-based heuris-
tic that Efron uses. The test is particularly useful since its p-values are indepen-
dent of those produced by Efron’s permutation test. Our test has good power
in simulations, especially when most columns are weakly correlated but some
are highly correlated. It has little power when the column correlations are all of
similar size.

2. A conservative estimator

2.1. Setup

We use the matrix normal distribution to model correlated columns. Our model
is X ∼ N (0,Σ⊗∆), meaning that cov (Xij , Xi′j′ ) = Σii′∆jj′ . This notation for
the matrix normal is nonstandard, but is used by Efron (2009a), whose results
we will need. In this model, Σ controls the row covariance and ∆ controls the
column covariance.

We usually assume X is double standardized, so its rows and columns have
zero mean and unit variance. Nearly all matrices can be double standardized by
successive row and column standardization. Some pathological matrices cannot
be double standardized, but Olshen and Rajaratnam (2010) show that these
matrices are a set of Lebesgue measure zero in R

N×n. Accordingly, we will
assume throughout that X is double standardized.

In our model, double standardization lets us take Σii = ∆jj = 1, and forces
each row and column of Σ and ∆ to sum to zero. Double standardizing a normal
matrix, however, does not yield a normal matrix. Although centering preserves
normality, scaling does not. Modeling X as normal before double standardiza-
tion is more realistic, but makes many computations intractable. We will usually
approximate X as normal after double standardization to make computations
easier.

This approximation generally works well, though rigorously quantifying the
error of approximation is difficult. Lemma 1 approximates the kurtosis intro-
duced by the first row scaling. Since the double standardization procedure usu-
ally converges quickly (Olshen and Rajaratnam, 2010), Lemma 1 gives us some
idea of the non-normality introduced by double standardizing a normal matrix.

Lemma 1. Suppose X ∼ N (0,Σ⊗∆) and assume ∆jj = 1. Let Y be the row

standardized matrix, so Yij =
Xij√

1

n

∑
j X2

ij

. Then the skewness of Yij is zero and

the kurtosis is approximately − 4
n

∑

j′ ∆
2
jj′ + 2

‖∆‖2

F

n2 , where ‖A‖2F = tr (A′A) is
the Frobenius norm.

Lemma 1 says that row standardization produces no skew and small kurtosis
if column correlations are small. If ∆ is close to the identity, row standard-
ization introduces a small negative kurtosis, but depending on the correlation
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Fig 2. Normal quantile-quantile plots of double standardized normal matrix entries for var-
ious (N,n). We generated X ∼ N (0,Σ⊗∆), then double standardized. The off-diagonal
entries of Σ, ∆ were all 0.1 to simulate moderate row and column correlation.

structure, column correlation can introduce positive kurtosis as well. Transpos-
ing Lemma 1 shows that column standardization would introduce a kurtosis of

− 4
N

∑

i′ Σii′ + 2
‖Σ‖2

F

N2 , if it were done on a normal matrix. Thus if row stan-
dardization approximately preserves normality, the following column standard-
ization approximately preserves normality, as long as the row correlations are
not too extreme. Subsequent row and column standardizations have much less
of an effect, since after the first row and column standardizations, the matrix is
approximately centered and scaled.

The lemma suggests that approximating X as normal after double standard-
ization is reasonable, provided n,N are large and the row and column corre-
lations are not too extreme. Figure 2 shows the distribution of the entries of
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a double-standardized X with weak row and column correlation for different
values of n and N . The entries look fairly normal for N ≥ 100 and n ≥ 50.

We are interested in the empirical cdf F̂ of Z = Xw, taking without loss
of generality ‖w‖ = 1. When the columns are independent, Z ∼ N (0,Σ). It is
easy to calculate the mean and covariance of Z for general ∆.

Lemma 2. Suppose X ∼ N (0,Σ⊗∆) before double standardization. Then Z
has mean 0 and covariance (w′∆w) Σ. If we approximate X ∼ N (0,Σ⊗∆)
after double standardization, then Z ∼ N (0, (w′∆w) Σ).

Allen and Tibshirani (2010) find the variance of each Zi when Z is a vector of
two-sample t-statistics; Lemma 2 generalizes their result. It has two important
implications. First, as Allen and Tibshirani (2010) note, w′∆w changes the vari-
ance of each Zi. Column dependence can thus cause the over- or underdispersion
often seen in microarray data.

Second, the approximate normality of Z lets us use Efron’s approximations
for the mean and variance of F̂ . Efron’s approximations estimate the variance
of Z, so they can account for the factor w′∆w; it is easy to estimate since it
is common to all the Zi. The lemma shows that column dependence does not
affect the correlation structure of Z, so to use Efron’s approximations, we still
need the same mean and mean-squared correlations α1 and α2 as we would if
the columns were independent.

Estimating α1 and α2 becomes more difficult when the columns are depen-
dent. As Efron (2009a) notes, double standardization forces the row and column
sample correlations to have the same mean and variance. For example, the mean-
squared row correlation is 1

n2N2 tr ((XX ′) (XX ′)) = 1
n2N2 tr ((X

′X) (X ′X)),
which is just the mean-squared column correlation. This makes it hard to es-
timate α2 and to test for column correlation. Row correlation can create the
appearance of column correlation, and column correlation can inflate estimates
of row correlation.

2.2. The independence-UMVU estimator

We can, however, find conservative estimators of α1 and α2, in the sense that
under column correlation, the estimators are unbiased and positively biased,
respectively. We begin by calculating their uniformly minimum variance unbi-
ased (UMVU) estimators assuming the columns are independent. This result
assumes that X ∼ N (0,Σ⊗ I) and is not double standardized. This lets us
apply a result of Olkin and Pratt (1958) to find the UMVU estimators easily.

Lemma 3. Suppose X ∼ N (0,Σ⊗ I) is not double standardized. Let ρ̂ii′ be

the sample row correlations. Let F (z; a, b, c) =
∑∞

k=0
Γ(a+k)Γ(b+k)Γ(c)
Γ(a)Γ(b)Γ(c+k)

zk

k! be the

Gaussian (2,1) hypergeometric function, and let f1(r) = rF (1 − r2; 12 ,
1
2 ,

n−1
2 ),

f2(r) = 1− n−2
n−1 (1− r2)F (1− r2; 1, 1, n+1

2 ).
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Then the UMVU estimators of α1 and α2 are α̃1 = 1
(

N

2

)

∑

i<i′ f1(ρ̂ij) and

α̃2 = 1
(

N

2

)

∑

i<i′ f2(ρ̂ij). These are approximated to O(n−2) by

α̂1 =
1

(

N
2

)

Γ(n−1
2 )Γ(n−3

2 )

Γ(n−2
2 )2

∑

i<j

ρ̂ii′

α̂2 = − 1

n− 3
+

n− 1

n− 3





1
(

N

2

)

∑

i<i′

ρ̂2ii′





and the approximations are particularly accurate if most ρ̂ii′ are small.

Lemma 3 gives the independence-UMVU estimators of α1 and α2, and more
useful linear approximations (accuracy bounds for the linear approximations are
given in the Appendix). These approximations let us avoid forming the N ×N
sample row correlation matrix Σ̂, since

∑

i<i′ ρ̂
2
ii′ =

1
2 (‖Σ̂‖2F −N), and we can

compute the Frobenius norm using ‖XX ′‖2F = ‖X ′X‖2F .
We now calculate these estimators’ bias under column dependence. To do

this, we approximate X as N (0,Σ⊗∆) after double standardization. Centering
makes each row and column of Σ and ∆ sum to zero. This fixes α1 = − 1

N−1 .
The α1 estimators, however, are defined more generally, and the bias of the α1

estimators under column correlation may be of interest when α1 is not fixed.
We thus assume that Σii = ∆jj = 1, but do not require Σ and ∆ to be centered.
Our basic tool is the following lemma, proved by Efron (2009a).

Lemma 4 (Efron). Suppose X ∼ N (0,Σ⊗∆) with Σii = ∆jj = 1. Let σ̂ii′

be the sample covariance between columns i and i′ in the double standardized
model, and let ‖∆‖2F = tr(∆2) be the Frobenius norm. Then

E (σ̂ii′ ) = Σii′

cov (σ̂ii′ , σ̂kk′ ) =
‖∆‖2F
n2

(ΣikΣi′k′ +Σik′Σi′k)

Lemma 4 says that the sample row covariances are unbiased and have a
Wishart covariance structure, but column dependence reduces the degrees of

freedom from n to n2

‖∆‖2

F

. An analogous formula holds for column covariances.

We now apply Lemma 4 to approximate the bias of the independence-UMVU
estimators and their linear approximations. Lemma 5 gives a simple and accurate
approximation; messier but more precise formulas are in the Appendix.

Lemma 5. Suppose X ∼ N (0,Σ⊗∆) with Σii = ∆jj = 1. Let δ be the
mean-squared correlation of the columns, so δ = 1

(n

2
)

∑

∆2
jj′ . Then E(α̂2) =

α2 + δ(α2 + 1) +O(n−2) and E(α̃2) = α2 + δ(α2 + 1) +O(n−2). In particular,
if α2δ is small,

E (α̂2) ≈ E (α̃2) ≈ α2 + δ

In addition, α̂1 is nearly unbiased: E(α̂1) = α1 + O(n−1) and E(α̃1) = α1 +
O(n−1).
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Lemma 5 shows that our α estimators are conservative if the columns are in
fact correlated. Efron’s approximations for the variance of F̂ increase linearly
as α1 and α2 increase. The lemma thus guarantees that even under column
correlation, using our estimators in Efron’s approximations gives conservative,
upwardly biased, estimates of the variance of F̂ .

Lemma 5 also tells us that our α2 estimators’ bias is just the mean-squared
correlation of the columns. The bias is small unless the column correlations
are comparable in strength to the row correlations. In the microarray setting,
this would mean that the correlations between arrays are comparable to the
correlations between genes, which would be a very bad experimental situation.

For the rest of this paper, we assume that X has been centered, so α1 is known
and only α2 is left to estimate. To simplify notation, we drop the subscript and
denote α2 by α. This gives us different notation from Efron (2009b), who uses
α for the root -mean-squared correlation.

3. Transforming correlations

Estimating δ, the mean-squared column correlation, would let us assess the
extent of column correlation and improve our estimate of α. We will now see
why this is difficult – α and δ are hard to separate. Fisher’s transformation
reveals that estimating α and δ is like trying to estimate the variances of two
independent random variables based on observing their sum.

More generally, Fisher’s transformation simplifies the study of row and col-
umn correlations by making the sample correlation distribution easier to un-
derstand and manipulate. The distribution of a sample row correlation depends
on the true row and column correlations in a complicated way. Fisher’s trans-
formation simplifies this dependence by normalizing the sample row correlation
and stabilizing its variance. The transformed sample row correlation is approx-
imately normal with mean depending on the true row correlation and variance
depending on the mean-squared column correlation. The same holds for sample
column correlations as well, and we will use this to test for column correlation.

3.1. Fisher’s transformation

We first show that Fisher’s transformation for correlations still works when
columns are dependent. We assume that X is normal after double standardiza-
tion, so X ∼ N (0,Σ⊗∆) with Σii = ∆jj = 1, and Σ,∆ have zero row and
column sums.

Theorem 1. Let z (r) = tanh−1 r. Then

z (ρ̂ii′) ∼̇N
(

z (ρii′ ) ,
‖∆‖2F
n2

)

.

An analogous formula holds for the transformed column correlations. The-
orem 1 follows from the next two lemmas, which both use the delta method.
Lemma 6 shows that the transformation is still variance stabilizing.
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Lemma 6. The delta method approximation for the mean and variance of z(ρ̂ii′)

is z(ρ̂ii′)∼̇
(

z(ρii′),
‖∆‖2

F

n2

)

.

Lemma 7 shows Fisher’s transformation is still approximately normalizing.

Lemma 7. The skewness and kurtosis of ρ̂ii′ are approximately

skew (ρ̂ii′) ≈ 6Σii′ + 2Σ3
ii′

(1− Σ2
ii′ )

3

tr
(

∆3
)

‖∆‖3F

kurt (ρ̂ii′) ≈ 6 + 36Σ2
ii′ + 6Σ4

ii′

(1− Σ2
ii′ )

4

tr
(

∆4
)

‖∆‖4F
.

These are also the delta method approximations to the skewness and kurtosis of
z (ρ̂ii′ ).

Lemma 7 shows that the skewness and kurtosis of the sample correlations is

usually small. Since the off-diagonal elements of ∆k decay rapidly, the tr(∆k)

‖∆‖k
F

terms behave roughly like n1− k
2 . Switching Σ and ∆ gives analogous formulas

for the sample column correlations.
Lemmas 6 and 7 together show that Fisher’s transformation is still approx-

imately normalizing and variance stabilizing when the columns are correlated.
The variance of the transformed row correlations, though, depends on the mean-
squared column correlation, and vice versa. The transformation is not perfect.
It works very well in the center. If columns are highly correlated, however, the
transformed row correlations can have lighter or heavier tails, and vice versa.

3.2. Interpretation

Theorem 1 relates estimating α and δ to a more familiar problem. If the columns
were independent, the transformed row correlations z(ρ̂ii′) would have known,
equal variance. Since z(ρ) ≈ ρ for small ρ, α is roughly the variance of the
z(ρii′). We could thus estimate α by measuring the variance of the z(ρ̂ii′) and
subtracting the known noise variance.

When the columns are dependent, however, the variance of the z(ρ̂ii′) is
equal but unknown. This makes it impossible to separate the variance of the
z(ρ̂ii′) into row correlation (the variance of z(ρii′)) and column correlation (noise
variance) components.

Estimating α and δ this way is like trying to estimate the variances of two
independent random variables after only observing their sum. It is thus impos-
sible without some strong assumptions on Σ or ∆. This explains why estimating
α under column dependence is so difficult: any estimator must either rely on
the failure of Theorem 1 or use some information not captured by treating the
sample correlations as one large vector.

This view also explains the conservatism of our α estimators. Our estimators
were designed for independence; they essentially take the variance of the ρ̂ii′

and adjust it using the known noise variance. Dependence increases the noise
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variance by roughly δ, since ‖∆‖2F = n+ n(n− 1)δ. This widens the ρ̂ii′ distri-
bution and biases our estimates upward. Lemma 5 says that the bias of our α
estimators is roughly the increase in noise variance.

4. Testing for column correlation

Testing for column dependence is easier than estimating it. Efron (2009a) gave a
permutation test of column dependence, but desired a test that does not depend
on the ordering of the columns. In this section, we use our results on Fisher’s
transformation to give such a test.

Even if the columns are independent, standardization introduces small cor-
relations between them. Our null hypothesis is thus not ∆ = I, but ∆ =
n

n−1 (I − 1
n
11

′), where 1 is an n-vector of ones. Our previous results make it
easy to approximate the null distribution of the off-diagonal correlations, as-
suming X is normal after double standardization.

Lemma 8. Under the null hypothesis ∆ = n
n−1 (I− 1

n
11

′), if X ∼ N (0,Σ⊗∆),

z(∆̂jj′ )∼̇N (z(− 1
n−1 ),

‖Σ‖2

F

N2 ). Also, cor(z(∆̂jj′ ), z(∆̂ll′)) = O(n−1) for (j, j′) 6=
(l, l′).

The transformed correlations all have the same mean and variance, and are
themselves nearly uncorrelated. Testing for column dependence is thus approx-
imately the same as observing (n2 ) independent normal random variables of the
same unknown variance, and testing if they all have the same mean. If we center
and scale the z(∆̂jj′ ), this reduces to testing whether a collection of (n2 ) inde-
pendent N (0, 1) random variables all have zero mean, or if some have nonzero
mean.

Figure 3 illustrates this idea. They show the centered and scaled column
correlations for two data sets considered by Efron (2009a). There are many more
large correlations than we would expect under the N (0, 1) null. This suggests
both data sets have some column dependence, and indeed, our test strongly
rejects the null in both cases. Efron (2009a) used a similar idea to explore the
extent of column correlation. Our test builds on Efron’s idea by using Fisher’s
transformation to justify an approximately normal null, and a different test for
nonzero means.

Donoho and Jin (2004) introduced the “higher criticism” procedure to test
whether many independent random variables are all N (0, 1), or if some are nor-
mal with nonzero mean. The idea behind higher criticism is simple. For a fixed
rejection threshold t, we can test the N (0, 1) null by seeing if significantly many
variables fall outside [−t, t]. Donoho and Jin (2004) maximize the resulting t-
statistic over a range of t.

The higher criticism statistic takes the following form for our data:

Λ = max
t∈[a,b]

[

Ĝ (−t) + 1− Ĝ (1− t)
]

− [Φ (−t) + 1− Φ (1− t)]

[

1
n
(2Φ (−t)) (1− 2Φ (−t))

]
1

2

,
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Cardio data transformed correlations
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Fig 3. Centered, scaled, transformed column correlations for the “Cardio Data” (N = 20246
genes on n = 44 healthy controls) and the “Prostate Data” of Singh et al. (2002) (N = 6033
genes on n = 50 healthy controls). The red line gives the N (0, 1) distribution we expect under
column independence, which our test rejects for both data sets.

where Ĝ is the empirical cdf of the centered and scaled z(∆̂jj′ ). Based on the
recommended interval in Donoho and Jin (2004), we choose the maximizing
interval [a, b] to be [Φ−1(14 ),Φ

−1( 1
n(n−1) )] . The null distribution of Λ can be

calculated by repeatedly simulating (n2 ) N (0, 1) random variables, centering and
scaling them, and calculating Λ for each simulated collection.

The transformed column correlations can have slightly heavy tails, especially
under moderate row correlation. Figure 4 shows a normal quantile-quantile plot
of the centered and scaled z(∆̂jj′ ) under the null and moderate row correlation.
The figure shows that the correlations are quite normal in the center, but some-
what heavy-tailed. This deviation from normality can lead to spuriously large
values of Λ. Interestingly, the problem is worst for moderate row correlation.
When the row correlation is low, Lemma 7 says that the transformed corre-
lations have low kurtosis. When the row correlation is high, the normal after
double standardization approximation begins to break down, and the entries
of X are light-tailed, as Lemma 1 predicts. Figure 5 shows normal quantile-
quantile plots of the centered and scaled z(∆̂jj′ ), under the null and low or high
row correlation. The correlations are more normal than they are for moderate
correlation.



O. Muralidharan/Column dependence 1538

-4 -2 0 2 4

-4
-2

0
2

4

Normal QQ Plot of centered, scaled z

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s

Fig 4. Normal quantile-quantile plot of z(∆̂jj′ ) under null, with row correlations generated

from the block setup, α
1

2 = 0.083. The dashed line shows scaled t-quantiles with 14 degrees of
freedom, chosen to match the kurtosis of the z(∆̂jj′ ). The t distribution is too heavy in the
far tail.
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Fig 5. Normal quantile-quantile plots of z(∆̂jj′ ) under the null, with row correlations gen-

erated from the block setup, α
1

2 = 0.001 (left) and α
1

2 = 0.174 (right).
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Shrinking the z(∆̂jj′ ) can control the tails and yield better behaved Λs. The
obvious approach would be to use the t-distribution that matches the first four
cumulants of z(∆̂jj′ ). That is, we would base Λ on Φ−1(Ft(z)), where Ft is the
scaled t-distribution with appropriate degrees of freedom. However, the corre-
lations are not as heavy tailed as a t-distribution that matches their variance
and kurtosis, so the t-transformation overshrinks in the far tail. This hurts
power dramatically. One good compromise is a linear approximation to the
t-transformation, which shrinks the bulk of the data appropriately but does
not overshrink the far tail. Shrinking by a factor of 0.9 approximates the t-
transformation with 4 df reasonably well between [−3, 3]; this is a conservative
choice of degrees of freedom, since it gives the t distribution infinite kurtosis.

The test’s power depends on both the row and column correlations, and
indirectly on the sample size. The higher α is, the higher the variance of the
column correlations, so the lower our power. Increasing N will increase our
power if α decreases, but will have little effect if α remains the same. The
test is also sensitive to the particular configuration of column correlations. If
the nonzero column correlations are all small, they will only inflate the center
of the z(∆̂jj′ ) histogram; centering and scaling will eliminate this effect, and
we will be unable to detect the correlations. We have more power when most
column correlations are small but some are large. The larger and more numerous
the large correlations are, the more power the test will have. Increasing n will
increase power if the fraction of large correlations remains the same, since we
will get better estimates of the column correlation distribution.

4.1. Simulations

We investigate the level and power of our test using simulations. We took
N = 1000, n = 50 and generated data with a block row dependence structure.
We divided the rows into 5 blocks, with constant correlation within block and
no correlation between blocks, then standardized the row correlation matrix.
The row correlations ranged from small (independence before standardization)
to extreme (correlation of 0.9 within blocks before standardization). We check
the level of the test under column independence and its power to detect three
column correlation structures. The first corresponds to a “batch effect” - the
columns have a block correlation structure like the rows, with 10 blocks. The
second corresponds to an adjacent array effect, with ∆jj′ = ρ−|j−j′|. The third
corresponds to a contamination setting, where most columns are uncorrelated,
but a small block of 5 columns has constant correlation. All these descriptions
are before standardization, which changes the exact correlations slightly but
does not alter their broad structure. We determine the test’s power in each of
these settings under low, moderate or high row correlation. In every simulation,
we first generate X ∼ N (0,Σ⊗∆), then double standardize.

Table 1 shows our test maintains its level across the range of row dependence.
It is very conservative because of the shrinkage. This effect is most pronounced
for weak or strong row dependence, since the correlations are heaviest-tailed for
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Table 1

Level of test at different row correlations (simulation described in text). The range of αs
correspond to within block row correlation ranging from 0 to 0.9, before standardization. The

results are for 1000 replications, so standard errors are all less than 0.0055

α
1

2 = 0.001 0.041 0.083 0.128 0.173 0.222 0.272 0.325 0.380 0.438

Level at nominal 0.1 0.001 0.025 0.028 0.009 0.003 0.002 0 0 0 0
Level at nominal 0.05 0 0.013 0.016 0.005 0.001 0 0 0 0 0
Level at nominal 0.01 0 0 0.003 0.004 0.001 0 0 0 0 0

Table 2

Power to detect batch effect under low, medium, and high row correlation at level 0.05. The
within block correlations given are after standardization; about 8.2% of the column

correlations had this value, and the rest were small. To interpret the effect size, note that

the transformed correlations have standard deviation approximately α
1

2 . Power was
calculated over 1000 simulations, so the standard deviation is less than 0.016, and much

lower near 0 and 1

Within block cor. 0.074 0.159 0.245 0.334 0.423 0.514 0.605 0.699 0.793 0.890

α
1

2 = 0.020 0.13 1 1 1 1 1 1 1 1 1

α
1

2 = 0.128 0.011 0.011 0.080 0.586 1 1 1 1 1 1

α
1

2 = 0.325 0 0 0 0.001 0.003 0.043 0.224 0.650 0.980 1

moderate row dependence. To interpret the row dependence strength, note that
standard microarray datasets have α̂

1

2 in the range of 0 to 0.25. The prostate
data of Singh et al. (2002) and the BRCA data of Hedenfalk et al. (2001) have

α̂
1

2 = 0, the leukemia data of Golub et al. (1999) has α̂
1

2 = 0.1430 and the cardio

data used by Efron has α̂
1

2 = 0.2341 (all these correlations were estimated on
the controls).

Despite its conservatism, our test maintains decent power under low to mod-
erate row correlation. Tables 2, 3 and 4 show the results of the power simulations.
As we would expect, the power increases with the column correlation and the
number of large column correlations, but decreases with the row correlation.
The batch effect is easiest to detect, followed by the adjacent array effect and
the contamination effect. Surprisingly, the power of our test can actually fall
as the column correlations become stronger. In the adjacent-array scenario un-
der high row correlation, our test’s power falls when ρ increases from 0.800 to
0.888. This happens because when ρ becomes very large, many columns become
weakly correlated, and these small correlations widen the center of the z(∆̂jj′ )
histogram.

Our test seems to be able to detect the kinds of column dependence seen in
real data sets. Figure 3 shows that our test strongly rejects on the data sets
considered by Efron (2009a). We can gain additional power by combining our
test with Efron’s permutation test. Since our test is permutation-invariant, the
two methods yield independent p-values.

Code to perform our test is available in the R package “colcor,” on CRAN.
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Table 3

Power to detect adjacency effect at level 0.05. The columns have correlation ρ|j−j′|, where ρ

is given above. To interpret the effect size, note that the transformed correlations have

standard deviation approximately α
1

2 . Power was calculated over 1000 simulations, so the
standard deviation is less than 0.016, and much lower near 0 and 1

Adjacent column cor. 0.080 0.169 0.259 0.348 0.439 0.529 0.620 0.710 0.800 0.888

α
1

2 = 0.020 0.314 1 1 1 1 1 1 1 1 1

α
1

2 = 0.128 0.009 0.014 0.099 0.770 0.998 1 1 1 1 0.979

α
1

2 = 0.325 0 0 0 0 0 0.010 0.052 0.204 0.392 0.297

Table 4

Power to detect contamination effect under low, medium, and high row correlation at level
0.05. The within block correlations given are after standardization; about 0.82% of the

column correlations had this value, and the rest were small. To interpret the effect size, note

that the transformed correlations have standard deviation approximately α
1

2 . Power was
calculated over 1000 simulations, so the standard deviation is less than 0.016, and much

lower near 0 and 1

Contaminated block cor. 0.067 0.147 0.230 0.314 0.402 0.492 0.585 0.681 0.780 0.881

α
1

2 = 0.020 0.005 0.912 1 1 1 1 1 1 1 1

α
1

2 = 0.128 0.009 0.007 0.016 0.104 0.447 0.867 0.998 1 1 1

α
1

2 = 0.325 0 0 0 0 0.001 0.006 0.019 0.067 0.300 0.796
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Appendix A: Proofs

A.1. Proof of Lemma 1

Yij is centered, approximately unit variance, and symmetric, so we only need to
approximate the fourth moment. Since X is normal and ∆jj = 1, it is easy to
show that

E

(

1

n

∑

X2
ij

)

= Σii

E

(

(

1

n

∑

X2
ij

)2
)

= Σ2
ii

(

1 + 2
‖∆‖2F
n2

)

E
(

X2
ij

)

= Σii

E
(

X4
ij

)

= 3Σ2
ii
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(

X2
ij

(

1

n

∑

X2
ij

))

= Σ2
ii



1 +
2

n

∑

j′

∆2
jj′




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Using the Taylor series approximation

E

(

x

y

)

≈ E (x)

E (y)
+

(

1/E (y)

−E (x) /E (y)2

)′(
var (x) cov (x, y)
cov (x, y) var (y)

)(

1/E (y)

−E (x) /E (y)2

)

,

we have

E
(

Y 4
ij

)

≈ 1 +
1

Σ2
ii

(

1

−1

)′




2Σ2
ii Σ2

ii

(

2
n

∑

j′ ∆
2
jj′

)

Σ2
ii

(

2
n

∑

j′ ∆
2
jj′

)

Σ2
ii

(

2
‖∆‖2

F

n2

)





(

1

−1

)

= 3− 4

n

∑

j′

∆2
jj′ + 2

‖∆‖2F
n2

which yields the kurtosis approximation E(Y 4
ij)− 3 ≈ − 4

n

∑

j′ ∆
2
jj′ + 2

‖∆‖2

F

n2 .

A.2. Proof of Lemma 2

Clearly Z is normal with mean 0. We then have

cov (Zi, Zi′) = cov





∑

j

Xijwj ,
∑

j′

Xi′j′wj′





=
∑

j,j′

wjwj′∆jj′Σii′

= (w′∆w) Σii′ .

A.3. Proof of Lemma 3

The argument is the same for α̂1 and α̂2, so we will only prove the result for
α̂2. Olkin and Pratt (1958) show that for a bivariate normal with correlation ρ,
f2(ρ̂) is UMVU for ρ2. (Xij , Xi′j), j = 1, . . . , n are iid bivariate normal with cor-
relation ρii′ , so E(f2(ρ̂ii′ )) = ρ2ii′ . Summing this equality proves α̂2 is unbiased
for α2.

Now, ρ̂ii′ is complete sufficient for ρii′ , so f2(ρ̂ii′) is still UMVU for ρii′ in the
multivariate normal situation. This means it is uncorrelated with any unbiased
estimator of 0. Since α̂2 is a linear combination of these, it is also uncorrelated
with any unbiased estimator of 0, and is thus UMVU for α2.

The approximations come from fixing the hypergeometric functions at their
maximum at r = 0. For α1, we have

|α̃1 − α̂1| ≤





1
(

N
2

)

∑

i<i′

|ρ̂ii′ |





(

Γ(n−1
2 )Γ(n−3

2 )

Γ(n−2
2 )2

− 1

)
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and bounding F
(

1− r2; 1
2 ,

1
2 ;

n−1
2

)

above and below using its values at r = 0, 1,

∣

∣

∣

∣

∣

∣

1
(

N
2

)

∑

ρ̂ii′

∣

∣

∣

∣

∣

∣

≤ |α̃1| ≤ |α̂1| .

Similarly, since F (1 − r2; 1, 1, n+1
2 ) is decreasing and concave in r, F (1 − r2;

1, 1, n+1
2 )− F (1, 1, n+1

2 , 1) is in [− 2r2

n−3 , 0], giving

|α̃2 − α̂2| ≤ 2

n− 3

n− 2

n− 1





1
(

N
2

)

∑

i<i′

ρ̂ii′
(

1− ρ̂2ii′
)





and

− 1

n− 1
+

n− 2

n− 1





1
(

N

2

)

∑

i<i′

ρ̂2ii′



 ≥ α̃2 ≥ α̂2. (A.1)

A.4. Proof of Lemma 5

Since Σii = ∆jj = 1, we can approximate the correlations by covariances:
ρ̂ii′ ≈ σ̂ii′ . Applying Lemma 4 shows that

E





1
(

N
2

)

∑

i<i′

ρ̂2ii′



 =

(

1 +
‖∆‖2F
n2

)

α2 +
‖∆‖2F
n2

so

E (α̂) =

(

‖∆‖2F
n2

− 1

n− 3

)

+
n− 1

n− 3

(

1 +
‖∆‖2F
n2

)

α2

= α+ δ (α+ 1) +O
(

n−2
)

.

Similarly, we can show that the expectation of the upper bound in equation

A.1 is (− 1
n−1 +

‖∆‖2

F

n
) + n−2

n−1 (1 +
‖∆‖2

F

n2 )α = α+ δ(α+ 1) +O(n−2), so E(α̃) =

α+ δ(α+1)+O(n−2). The exact expectations of the bounds give exact bounds
for E(α̃). The proof for α1 is similar.

A.5. Proof of Lemma 6

Let D be the sample row covariance matrix of the centered, column standardized
matrix (so ∆jj = 1 but not necessarily Σii). Using the argument of Lemma 4, D

has the mean and covariance of a (
‖∆‖2

F

n2 )−1Wishart(∆,
‖∆‖2

F

n2 ) random matrix.
Now apply the delta method to get the variances of ρ̂ii′ as a function of D. The

only effect of dependence is to replace 1
N

with
‖Σ‖2

F

N2 , so the delta method under
independence yields the result.
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A.6. Proof of Lemma 7

We first approximate the third and fourth moments of the sample correlations.
The only approximation we make is to replace the standard deviations denom-
inator by their expectation, 1, yielding nρ̂ii′ =

∑

j xijxi′j .
Consider the third moment. We have

E
(

(nρ̂ii′)
3
)

=
∑

j,j′,j′′

E (xijxi′jxij′xi′j′xij′′xi′j′′ ) .

Isserlis’ theorem (Isserlis, 1918) for normal moments says that

E (xijxi′jxij′xi′j′xij′′xi′j′′ ) =
∑∏

E (y1y2)

where
∑∏

means we sum over all ways to partition the x’s into pairs, and
multiply the expectations for each partition. This representation, with a few
computational tricks, lets us find

E
(

(nρ̂ii′)
3
)

= Σ3
ii′ +

(

3Σii′ + 3Σ3
ii′

)

ntr
(

∆2
)

+ tr
(

∆3
) (

6Σii′ + 2Σ3
ii′

)

and,

E
(

(nρ̂ii′)
4
)

=
(

6 + 36Σ2
ii′ + 6Σ4

ii′

)

tr
(

∆4
)

+
(

3 + 6Σ2
ii′ + 3Σ4

ii′

)

tr
(

∆2
)2

+
(

24Σ2
ii′ + 8Σ4

ii′

)

ntr
(

∆3
)

+
(

6Σ2
ii′ + 6Σ4

ii′

)

n2tr
(

∆2
)

+ n4Σ4
ii′ .

Expanding the skewness and kurtosis in terms of the raw moments and some
algebra completes the proof.
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