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LAMA-Université Paris-Est Marne-la-Vallée and CMAP-École Polytechnique Paris
5 boulevard Descartes

77454 Marne-la-Vallée Cedex 2, France
e-mail: duvernet@cmap.polytechnique.fr

Christian Y. Robert

CREST-ENSAE
3 rue Pierre Larousse

92245 Malakoff Cedex, France
e-mail: chrobert@ensae.fr

and

Mathieu Rosenbaum
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1. Introduction

Semi-martingales are mathematically appealing quantities because they are
stochastic processes which can be used as integrators in the general theory of
stochastic integration. They are also natural modelling objects in various fields,
especially in finance (for their link with the “no free lunch” assumption) and tur-
bulence, see for example Delbaen and Schachermayer [11] and Barndorff-Nielsen
and Schmiegel [7]. A semi-martingale is simply the sum of a local martingale and
an adapted process with finite variation. Recall that any semi-martingale can
be written as the sum of a predictable process of finite variation, a continuous
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local martingale, and a compensated pure jump process (the rigorous defini-
tion will be given below). The very widely used notion of Itō semi-martingale
refers to the case where each of the following objects is absolutely continuous
with respect to the Lebesgue measure: the finite variation process, the quadratic
variation of the continuous local martingale, and the compensator of the jump
measure.

A very large number of studies has been devoted to the statistical properties
of Itō semi-martingales. Let us mention in particular a series of recent papers by
Aı̈t-Sahalia and Jacod [1, 2, 3] which will be of particular interest here. In these
papers, the authors provide test statistics that address the following questions
for Itō semi-martingales: Is the jump part of the semi-martingale equal to zero?
Do the jumps have finite or infinite activity? Is the Brownian part equal to
zero? A key element for the results of Aı̈t-Sahalia and Jacod is the asymptotic
behavior of the p-variation of the semi-martingale X , by which we mean the
following quantity for p > 0 and some n ∈ N that goes to +∞:

B(p, n−1) =

n∑

i=1

|Xi/n −X(i−1)/n|p. (1.1)

In this paper, our goal is to build test statistics aiming at answering questions
that could be asked before the preceding ones. More precisely, we are looking
for some statistical procedures allowing to say whether the data generating
process is an Itō semi-martingale, against the alternative hypothesis that the
data generating process belongs to a specific class of non-Itō semi-martingales,
namely the Multifractal Random Walks of Bacry and Muzy [6] – and conversely.
As explained below, the behavior of the p-variations will play a key role in our
study.

This problem might appear surprising. Indeed, the class of Itō semi-
martingales already yields a very large collection of models. However, in the
past two decades, some authors have proposed a new class of models of non-Itō
semi-martingales, namely multifractal processes. These processes have the nice
feature of well reproducing most major stylized facts observed in finance or fully
developed turbulence (in particular heavy-tail behavior, persistence and cluster-
ing of volatility, and intermittency of fluctuations), while remaining “simple” in
the sense that they rely only on a small number of scalar parameters. For the
introduction and pertinence of multifractal random models in turbulence and
finance, we notably refer among others works to Frisch [14], Mandelbrot [24],
Bouchaud and Potters [9], Bacry et al. [4], Calvet and Fisher [10].

In particular, Bacry et al. [5], Calvet and Fisher [10], and Duchon et al. [12]
provide a thorough discussion of the multifractal approach to volatility modelling
and pricing at various time scales. These authors notably show that multifractal
models lead to quite superior volatility or VaR forecasts than the more usual
methods based on GARCH, MS-GARCH and FIGARCH models – even when
the former are calibrated out of sample and the latter are calibrated in sample.
This indeed suggests that the multifractal setting should be of high interest for
providing an accurate mathematical model of the dynamic of financial assets.
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A distinctive property of these multifractal processes is the scaling behavior
of their moments: for all p’s in some real interval I ⊃ [0, 2] and t ≥ 0,

E[|Xt+s −Xt|p] ∼ γ(p)sτ(p)+1 as s→ 0, (1.2)

where p 7→ τ(p) is a strictly concave function and the γ(p)’s are some positive
constants. The term multifractal, or multifractal scaling behavior, refers to the
nonlinearity of the scaling exponent τ(·). Therefore one would expect that the
relation

n−1B(p, n−1) ≈ γ(p)n−(τ(p)+1) for large n (1.3)

holds for this class of processes, where the p-variation B(p, n−1) is as in (1.1).
Note that if X is a continuous Itō semi-martingale, one would obtain a linear
exponent τ(p) = p/2− 1 for all p ≥ 0. Thus, when confronted to observations,
it is natural to consider p-variations in order to assert whether the exponent τ
is linear or not.

It should also be mentioned that the interest for the nonlinear nature p 7→
τ(p) has rapidly grown since the seminal paper by Frisch and Parisi [15] who con-
jectured that this function τ(·) in (1.3) characterizes the wildly varying point-
wise Hölder regularity of the underlying function t 7→ Xt(ω). Following this
initial definition of the multifractal paradigm by Frisch and Parisi, the past two
decades have then seen a large production of empirical studies in turbulence and
finance, but also in DNA analysis or internet traffic among other fields, which
base themselves notably on (1.3) to investigate the multifractal nature of the
data – see for instance respectively for each of these four fields Gagne et al. [16],
Ghashghaie et al. [17], Yu et al. [31] and Park and Willinger [27].

Nevertheless, it is important to note that these empirical works rarely rely
on explicit random models; indeed, only a few research papers have directly
addressed the issue of detecting the nonlinear nature of τ . This is notably the
case of the works by Wendt, Abry and Jaffard [29, 30], who examine the perfor-
mances on simulations of some specific algorithms that attempt to state whether
some given signal is of “monofractal” or “multifractal” regularity. Note however
that while it is a similar issue to the one we consider here, the classes of sig-
nal that these authors consider do not coincide with the ones that we study
in the present work: for instance their “monofractal” regularity class contains
fractional Brownian motions (which we do not consider here), but not all Itō
type semi-martingales.

Some previous theoretical studies have already been devoted to the statis-
tical properties of multifractal processes, see notably Ossiander and Waymire
[26], Gloter and Hoffmann [18], Ludeña [22], Duvernet [13]. However, the elab-
oration of a probabilistic test of multifractal scaling behavior in the sense of
(1.2) (assuming this informal relation is given a rigorous meaning) has appar-
ently not been explicitly considered yet, with the exception of the studies in
[29, 30] already mentioned. We address here this problem in the limited setting
of multifractal processes that belong to the class of Multifractal Random Walks
(MRW’s for short) introduced by Bacry and Muzy [6]. These processes have the
nice theoretical property that the scaling relation (1.2) is satisfied with an exact
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equality for all s in some real interval [0, T ]. We give in Section 2 the proper
definition of these MRW processes.

In this paper, we do not aim at being very accurate in term of statistical
testing theory. We are just looking for simple quantities which have “opposite”
behaviors when the data generating process X is an Itō semi-martingale or an
MRW. More precisely, we are looking for two statistics, say T1 and T2, associated
to the null assumption H0 that X is an Itō semi-martingale (X = Itō for short)
and to the null assumption H0 that X is an MRW (X = MRW for short) such
that, when X = Itō (resp. X = MRW), the asymptotic law of T1 (resp. T2) is
non degenerate and known and T2 (resp. T1) goes to a degenerate limit.

The paper is organized as follows. In Section 2, we give a brief introduction
to semi-martinagles and MRW’s. We build our test statistics and give their
asymptotic behaviors in Section 3. These statistics are based on suitably chosen
p-variations of the process. An intensive simulation study can be found in Section
4. The proofs are relegated to Section 5. This paper is not technically very
innovative and the results could probably be improved, for example using p-
variations of higher orders. However, we believe it is a first step in order to solve
this new problem.

2. Definitions

2.1. Semi-martingales and Itō semi-martingales

A real valued processX defined on the filtered probability space (Ω,F , (Ft)t≥0,P)
is called a semi-martingale if it can be decomposed as X = X0 +M +A where
X0 is finite valued and F0-measurable,M is a local martingale on this space and
A is an adapted process of finite variation. Any semi-martingale can be written
as

Xt = X0 +Apt +Xc
t +

∫ t

0

∫

R

κ(x)(µ − ν)(ds, dx) +

∫ t

0

∫

R

κ′(x)µ(ds, dx),

where

- Ap is a predictable process of finite variation;
- Xc is a continuous local martingale with Xc

0 = 0, called the “continuous
martingale part” of X ;

- µ is the “jump measure” of X ;
- ν is the “compensator” of µ;
- κ is a continuous function with compact supports such that κ(x) = x for
all x in a neighborhood of 0 and κ′(x) = x− κ(x).

With this notation, the decomposition is unique (up to null sets), but the pro-
cess Ap depends on the choice of the truncation function κ. Let us denote by
Σ2 the quadratic variation of the “continuous martingale part” Xc. The triple
(Ap,Σ2, ν) is called the triple of characteristics of X because, in “good cases”
(see [20]), it completely determines the law of X .
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An Itō semi-martingale is a semi-martingale whose characteristics are abso-
lutely continuous with respect to the Lebesgue measure in the following sense

Apt (ω) =

∫ t

0

as(ω)ds, Σ2
t (ω) =

∫ t

0

σ2
s (ω)ds, ν(ω, dt, dx) = dt Fω,t(dx),

where a, σ are optional and Ft(C) is optional for all Borel subsets C of R. Itō
semi-martingales have a nice representation in terms of a Wiener process and a
Poisson random measure

Xt = X0 +

∫ t

0

asds+

∫ t

0

σsdWs +

∫ t

0

∫

R

κ ◦ δ(s, x)(µ− ν)(ds, dx)

+

∫ t

0

∫

R

κ′ ◦ δ(s, x)µ(ds, dx), (2.1)

where W denotes a (Ft)-standard Wiener process and µ is a (Ft)-Poisson ran-
dom measure on (0,∞)×R with intensity measure ν(dt,dx) =dt⊗λ(dx)̧ where
λ is a σ-finite and infinite measure without atom.

2.2. Presentation of the log-normal MRW

We first give an informal presentation of the MRW model in a specific Gaussian
case. Let us define the process X as a Brownian motion in random time,

Xt = Bθt , t ≥ 0,

where the process θ is increasing and independent of the standard (Ft)-Wiener
process B and can be for instance interpreted as an aggregated volatility. Let
us moreover suppose that we are in a relatively simple case where we have

θt = v2
∫ t

0

ew(u)du, t ≥ 0,

for some stationary, (Ft)-adapted, Gaussian process
(
w(t)

)
t
such that E

[
ew(s)

]
=

1, s ≥ 0, and for some constant v2 > 0 that is simply an average level for θ:
E
[
θt
]
= v2t. Then clearly, if we want the volatility of the process X to have

some persistence property – as it would be the case on financial data, then the
stationary Gaussian process w should have a slowly decaying autocovariance.
Define a time window [0, T ] for some T > 0, the MRW setting then consists in
specifying the following autocovariance function

Cov[w(s), w(t)] = λ2 max
(
log

(
T/|t− s|

)
, 0
)

(2.2)

for some constant λ2 > 0. The parameter λ2 can be interpreted as a “quantity”
of multifractality (indeed, in the degenerate case λ2 = 0 we obtain the very
basic model Xt = vBt), while the parameter T > 0 is a decorrelation scale,
which is evaluated as a few months or a few years in the case of financial data.



L. Duvernet et al./Itō against multifractal 1305

Of course, the specification of autocovariance in (2.2) does not lead to a well
defined random model since it implies that V[w(t)] = +∞. Nevertheless, this
approach can be made rigorous by either defining w as a generalized Gaussian
random process (see the presentation of the MRW model in Duchon et al. [12]
which is based on the multiplicative chaos of Kahane in [21]), or by introducing
a family of Gaussian processes

(
wl(t)

)
l,t

such that

Cov[wl(s), wl(t)] ↑ λ2 max
(
log

(
T/|t− s|

)
, 0
)

as l → 0 (2.3)

and defining θ as the limit θt = liml→0 v
2
∫ t
0 e

wl(u)du. Note that in this approach,
obtaining (1.2) for some even integer p ≥ 0 follows from a simple application
of Fubini’s theorem and the monotone convergence theorem: one then finds
τ(p) = p/2 − 1 + λ2p/4 − λ2p2/8. This construction of X through the limit
l → 0 has been proposed by Bacry and Muzy in [6] who also extended it to
the framework of non Gaussian, infinitely divisible processes w. We present this
construction in Section 2.3.

Let us also remark that in this construction, for all u ≥ 0, we have that the
random variable ewl(u) goes to 0 in probability as l → 0 while its moment of
order p > 1 goes to +∞. However, following Bacry and Muzy, we have that
the limit θt = liml→0 v

2
∫ t
0
ewl(u)du is valid and nondegenerate. It can more

generally be shown that the continuous, increasing process θ has actually no
derivative with respect to the Lebesgue measure (that is to say, almost surely,
the corresponding random measure θ[s, t] = θt − θs for 0 ≤ s ≤ t is singular:
it has no absolutely continuous nor discrete component.) It follows that X is a
non-Itō continuous (Ft)-martingale.

Finally, we mention that this log-normal MRW should provide a particularly
parsimonious model that allows one to reproduce most of the well documented
stylized facts observed on price fluctuations of assets. Bacry et al. [5] consid-
ered 29 of the largest French stocks of the Euronext market and estimated the
three parameters of the log-normal MRW (λ2, T, v2) using various methods. At
5% confidence level, they find that all the considered stock return series are
multifractal with a small intermittency coefficient λ2 ≃ 0.1. The ability of the
log-normal MRW model to forecast volatility and conditional Value at Risk is
also studied (see also Duchon et al. [12]). It appears that the MRW-based esti-
mation procedures outperform both GARCH or tGARCH models at any horizon
and any time scale.

2.3. General construction and properties of the Multifractal

Random Walks

Following Bacry and Muzy [6], we now present the construction of the class of
MRW’s. Fix an infinitely divisible distribution π(dx) on R. Let ψ be the Laplace
exponent of π

eψ(q) =

∫

R

eqxπ(dx)
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for q ≥ 0 (possibly ψ(q) = ∞). We assume the following on ψ

ψ(1) = 0, and ψ′(1) < 1. (2.4)

Let µ be the measure on the open half-plane R × (0,∞) given by µ(dt, dl) =
l−2dt ⊗ dl. We now assume that we have an infinitely divisible, independently
scattered random field P on R× (0,∞) with intensity µ and Laplace exponent
ψ, that is

• for every Borel set A in R× (0,∞), P (A) is an infinitely divisible random
variable such that

E[eqP (A)] = eµ(A)ψ(q)

for every q ≥ 0 such that ψ(q) <∞,
• for every sequence {Ak}k∈N of disjoint Borel sets in R× (0,∞), the vari-
ables P (Ak) are independent and

P (∪k∈NAk) =
∑

k∈N

P (Ak) almost surely.

Let Al(t) be the “cone” in R× (0,∞) defined by

Al(t) =
{
(t′, l′) ∈ R× (0,∞), l ≤ l′ and |t− t′| ≤ 1

2
min(l′, T )

}

and let Al(t, s) = Al(t) ∩ Al(s) the intersection of two cones. Then note that
µ(Al(t, s)) = log

(
T/|t−s|

)
for l ≤ |t−s| ≤ T and µ(Al(t, s)) = 0 for |t−s| > T .

We also assume that B and P are independent. Bacry and Muzy [6] then
proved that the following process is nondegenerate

θt = lim
l→0

v2
∫ t

0

eP (Al(u))du, t ≥ 0.

The process θ has continuous, positive and increasing sample paths, possesses
stationary increments and satisfies E[θt] = v2t for t ≥ 0. We now define the
MRW process as a subordinated Brownian motion

(Xt)t≥0 = (Bθt)t≥0

where v2 > 0 is the mean level of the volatility. When the random field P is a
2d-Gaussian white noise, we obtain the log-normal MRW described above.

The subordination of a Brownian process with a non decreasing process is
not new and has been introduced by Mandelbrot and Taylor [25]. The MRW
can also be understood as a Brownian motion in a “multifractal time” θt or as
a limit of a stochastic integral since

(Xt)t≥0
d
= lim

l→0

(
v

∫ t

0

eP (Al(u))/2dBs

)

t≥0

.
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It is easy to see that it is a continuous martingale with respect to F , but not
an Itō semi-martingale since θ is not absolutely continuous with respect to the
Lebesgue measure – see for instance [8].

Finally, we define p∗ as sup{p ≥ 2, ψ(p/2) < p/2 − 1}. Since ψ is strictly
convex (as a log-Laplace transform), (2.4) yields p∗ > 2. Bacry and Muzy show
that for 0 ≤ p < p∗ and 0 ≤ t ≤ T ,

E
[
|Xt|p

]
= γ(p)tp/2−ψ(p/2), (2.5)

where γ(p) is a positive constant. Thus, X satisfies (1.2) with

τ(p) = p/2− ψ(p/2)− 1.

We define pmax = sup{p ≥ 2, pτ ′(p) > τ(p)}. Then it is easy to check the
following facts from (2.4): τ(0) = −1, τ(2) = 0, pmax > 2 and 0 < τ(4) < 1
provided pmax > 4 (also, from basic convexity consideration, pmax ≤ p∗). Let
µ(p) be the absolute moment of order p of a centered standard Gaussian variable.
The following lemma shows that the rates of convergence of the p-variations of
X differ from those of an Itō semi-martingale.

Lemma 1. (Duvernet, [13]) For t > 0 and 0 ≤ p < pmax, almost surely:

2Nτ(p)
⌊2N t⌋∑

i=1

|Xi2−N −X(i−1)2−N |p → µ(p)θ
(p)
t ,

2Nτ(2p)
⌊2N t⌋∑

i=1

|θi2−N − θ(i−1)2−N |p → θ
(2p)
t ,

as N → +∞, where θ
(p)
t and θ

(2p)
t are some positive random variables, indepen-

dent of the Wiener process B.

Finally, we will speak of a log-normal MRW when the random field P (dt, dl) is
simply a 2d Gaussian white noise with expectation −λ2/2µ(dt, dl) and variance
λ2µ(dt, dl) for some λ2 > 0 (from (2.4) we also require λ2 < 2). It is then
straightforward to check that we then have τ(p) = p/2 − 1 − λ2p(p − 2)/8
and pmax = 2

√
2/λ, and that the autocovariance of the process

(
P (Al(t))

)
t
is

asymptotically given by (2.3) when l → 0.

3. Statistical problem and results

As usual in the multifractal context (see also Lemma 1), we consider n = 2N

and our asymptotic will be N goes to infinity. The semi-martingale is either an
MRW as described in the preceding section or, following Aı̈t-Sahalia and Jacod
[1], an Itō semi-martingale of the form (2.1). The coefficients at(ω), σt(w) and
δ(ω, t, x) are such that the various integrals in Equation (2.1) make sense and
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we will always assume that σt is also an Itō semi-martingale, of the form

σt = σ0 +

∫ t

0

ãsds+

∫ t

0

σ̃sdWs +

∫ t

0

σ̃′
sdW

′
s

+

∫ t

0

∫

E

κ ◦ δ̃(s, x)(µ− ν)(ds, dx) +

∫ t

0

∫

E

κ′ ◦ δ̃(s, x)µ(ds, dx), (3.1)

where W ′ is another Wiener process independent of (W,µ). Let δ′t(ω) =
∫ t
0
κ ◦

δ(ω, t, x)λ(dx) if the integral makes sense and +∞ otherwise. Finally, set tinf =
inf{t,∆Xt 6= 0}. As in [1], we will systematically consider the following assump-
tion for X when X is an Itō semi-martingale1.

Assumption 1.

- All paths t → at(ω), t → σ̃t(ω), t → σ̃′
t(ω), t → δ(ω, t, x), t → δ̃(ω, t, x)

are left-continuous with right limits.

- All paths t → ãt(ω), t → supx∈E
|δ(ω,t,x)|
γ(x) and t → supx∈E

|δ̃(ω,t,x)|
γ̃(x) are

locally bounded, where γ and γ̃ are (non random) nonnegative functions
satisfying

∫
E
(γ(x)2 ∧ 1)λ(dx) <∞,

∫
E
(γ̃(x)2 ∧ 1)λ(dx) <∞.

- All paths t → δ′t(ω) are left-continuous with right limits on the semi open
set [0, tinf (ω)).

- We have
∫ t
0 σ

2
sds > 0, a.s., for all t > 0.

3.1. The case H0: X = Itō

We are looking for a statistic whose behavior is different when X = Itō and
when X = MRW. To build this statistic, we will use p-variations of the form
(1.1). Before explaining why such quantities are natural in our problem, we need
to define the two following sets:

Ωj = {ω, s→ Xs(w) is discontinuous on [0, 1]},
Ωc = {ω, s→ Xs(w) is continuous on [0, 1]}.

Remark that the sample path of an Itō semi-martingale can be in Ωc even if
this semi-martingale is not continuous (if no jump occurs before t = 1).

Let us consider p > 2. From Jacod [19], we know that if X =Itō, in restriction
to Ωj , then the jumps dominate and B(p, 2−N) goes to

∑
t≤1 |∆Xt|p as N → ∞.

In restriction to Ωc, then

2N(p/2−1)B(p, 2−N)
P→ µ(p)

∫ 1

0

|σt|pdt, as N → ∞.

On the other hand, if X = MRW,

2Nc(p)B(p, 2−N)
P→ µ(p)θ

(p)
1 .

1In order to make the paper self contained, we rewrite here the definitions and assumptions
in [1].
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Thus, in the spirit of Aı̈t-Sahalia and Jacod [1] and Rosenbaum [28], we naturally
consider for some p > 2 the ratio

B(p, 2−(N−1))

B(p, 2−N)
. (3.2)

If X = Itō, this tends to 1 in restriction to Ωj and to 2p/2−1 in restriction to
Ωc. When X is a MRW, it goes to 2τ(p). Now, to have a feasible test, we need
a central limit theorem (CLT) associated to this quantity. Before stating the
results, we need to recall the definition of stable convergence in law. We say

that a sequence Tn on (Ω,F ,P) converges stably in law to the law φ (Tn
Ls→

φ), in restriction to A ∈ F , if for all bounded continuous functions f and all
F−measurable bounded variables Y vanishing outside A,

E[f(Tn)Y ] → E[Y ]E[f(U)], with U a random variable with law φ.

Let us also define the constant m(p) as

m(p) =

(
µ2(p)

2p−2(3µ(2p) + µ2(p))− 2p/2µ̃p

)1/2

,

with
µ̃p = E

[
|U |p|U + V |p

]

for U and V some independent standard N (0, 1) random variables.
Then from Aı̈t-Sahalia and Jacod [1], if X = Itō, in restriction to the set Ωc,

we have for p > 2

m(p)
B(p, 2−N)

(B(2p, 2−N))1/2
(B(p, 2−(N−1))

B(p, 2−N )
− 2p/2−1

) Ls→ N (0, 1).

The term

m(p)
B(p, 2−N )

(B(2p, 2−N))1/2
2−N/2

corresponds to an estimator of the asymptotical standard deviation of the ratio
in Theorem 3b) in [1].

However in restriction to the set Ωj , we have the following convergence in
probability

m(p)
B(p, 2−N)

(B(2p, 2−N ))1/2
(B(p, 2−(N−1))

B(p, 2−N)
− 2p/2−1

)

P→ −m(p)

∑
t≤1 |∆Xt|p

(
∑

t≤1 |∆Xt|2p)1/2
(2p/2−1 − 1).

This result can not be used to build a convenient test statistic. So, we finally
choose the following slightly modified test statistic:

TN1 = m(p)2(p/2−1)(⌊kNN⌋−N) B(p, 2−⌊kNN⌋)

(B(2p, 2−N))1/2
(B(p, 2−(N−1))

B(p, 2−N)
− 2p/2−1

)
,
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where (kN ) is a positive sequence such that kN ≤ 1 for all N , kN → 1 and
(1−kN )N → ∞ as N → ∞. The following theorem shows that TN1 is a suitable
test statistic when the null hypothesis is H0: X = Itō. Its proof is just a direct
application of the results of Aı̈t-Sahalia and Jacod [1] for the Itō case. In the
MRW case, it follows from Lemma 1 together with the fact that τ(2p)/2 > τ(p)
provided pmax > 2p.

Theorem 1. Let p > 2.

• Assume X is an Itō semi-martingale such the above assumptions hold.

– In restriction to the set Ωc, (TN1 )2
Ls→ χ2(1).

– In restriction to the set Ωj, (TN1 )2
P→ 0.

• Assume X is an MRW. If pmax > 2p, then (TN1 )2
P→ +∞.

Remark 1 : If we restrict ourself to continuous Itō semi-martingales in H0, we
can choose kN = 1.

Eventually, we can suggest the following rejection area for the test of asymptotic
level α in the case where H0 is X = Itō: {(TN1 )2 ≥ z1−α}, where z1−α is the
1 − α quantile of a χ2(1) distribution: P[X ≤ z1−α] = 1 − α if X has a χ2(1)
distribution.

3.2. The case H0: X = MRW

We now need to find a test statistic in the case H0: X = MRW. This statistic
should satisfy a CLT under the MRW assumption and go to some degenerate
limit under the Itō assumption. One idea would be to use once again quantities
of the form (3.2) to estimate τ(p) for p 6= 2 (since for p = 2, the ratio goes
to 1 under the Itō and the MRW assumption). However, to our knowledge, the
available results on the asymptotic behavior of the p-variations under the MRW
assumption, see [23], do not enable to obtain CLTs for quantities of the form

B(p, 2−(N−1))

B(p, 2−N)
− 2τ(p).

We suggest another strategy which is based on quadratic variations. What we
use is the difference between the rates of convergence of the quadratic variations
under the MRW and the Itō assumption. We first consider the case where the
null assumption is that X = MRW with a given value for τ(4).

3.2.1. The case H0: X = MRW and τ(4) = τ4

Here we assume that under the null, X is an MRW where τ(4) = τ4 is a given
value smaller than 1. Let us first consider the following statistic

V N =

√
3√

2(2τ4 − 1)

{B(2, 2−N)−B(2, 2−(N−1))}√
B(4, 2−N)

.
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The following proposition is proved in Section 5.1

Proposition 1. If X is an MRW with pmax > 4, then V N
L→ N (0, 1), as

N → ∞.

Now, to assess if V n is a suitable test statistic, we have to look at its behavior
when X is an Itō semi-martingale. From Jacod [19] (see also [1]), we know that
in restriction to the set Ωc, V N is of order 1 and in restriction to the set Ωj ,
V N goes to zero in probability. Therefore, the preceding statistic is suitable
only if, under the alternative, the sample path has jumps on [0, 1]. To solve this
issue, we use an alternative estimate for the asymptotic variance in the CLT for
the difference of quadratic variations (see Proposition 3 in Section 5.1). Indeed,
this new estimator has different rates of convergence when X = MRW and when
X = Itō. More precisely, we estimate this variance using only 2⌊kN⌋ data instead
of 2N for some k ∈ (0, 1). Hence we consider the following statistic

TN2 =

√
3√

2(2τ4 − 1)
2(N−⌊kN⌋)τ4/2

{B(2, 2−N)−B(2, 2−(N−1))}√
B(4, 2−⌊kN⌋)

.

If X is an Itō semi-martingale, in restriction to the set Ωc, the order of mag-
nitude of TN2 is 2(N−⌊kN⌋)(τ4−1)/2 and restriction to the set Ωj , this order is
2(N−⌊kN⌋)(τ4−1)/22−⌊kN⌋/2. Thus, we finally get the following result, which is
easily derived from Proposition 1.

Theorem 2.

• If X is an MRW with τ(4) = τ4 and pmax > 4, then (TN2 )2
L→ χ2(1).

• For k ∈ (0, 1), if X is an Itō semi-martingale, then (TN2 )2
P→ 0.

Remark 3 : If we restrict ourself to sample paths with jumps in the alternative,
we can take k = 1.

We can suggest the following rejection area for the test of asymptotic level α in
the case where H0 is X = MRW and τ(4) = τ4: {(TN2 )2 ≤ zα}.

3.2.2. The case H0: X = MRW with unknown τ(4)

We now want to build a test statistic without assuming that τ(4) is known.When
X = MRW, a natural convergent estimator of τ(4), providing an immediate
equivalent for 2Nτ(4), is given by

τ̂(4) =
2

N log(2)

{
log

(
B(4, 2−⌊N/2⌋)

)
− log

(
B(4, 2−N)

)}
.

However, this estimator is not really convenient since it might tend to 0 or 1 if
X = Itō. Thus we use the following modification of τ̂ (4)

τ∗(4) = (τ̂ (4) ∧ (1− vN )) ∨ uN ,
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with uN and vN two positive sequences tending to 0 such that 2NuN → +∞,
NuN is bounded and NvN → +∞. Thanks to the sequences uN and vN , τ∗(4)
can not tend to 0 or 1 too rapidly. We have the following proposition which is
proved in Section 5.2.

Proposition 2. If X is an MRW with pmax > 4, we have as N → +∞

2N(τ∗(4)−τ(4))/2 → 1.

If X is an Itō semi-martingale, we have as N → +∞

2N(τ∗(4)−1)/2

√
2(2τ∗(4) − 1)

→ 0.

We now naturally define our last test statistic the following way:

T̃N2 =

√
3√

2(2τ∗(4) − 1)
2(N−⌊kN⌋)τ∗(4)/2 {B(2, 2−N)−B(2, 2−(N−1))}√

B(4, 2−⌊kN⌋)
.

We can now state our last result which is easily deduced from Proposition 1 and
Proposition 2.

Theorem 3.

• If X is an MRW with pmax > 4, then (T̃N2 )2
L→ χ2(1).

• For k ∈ (0, 1), if X is an Itō semi-martingale, then (T̃N2 )2
P→ 0.

Eventually, we can suggest the following rejection area for the test of asymptotic
level α in the case where H0 is X = MRW: {(T̃N2 )2 ≤ zα}.

4. A simulation study

4.1. The setting

We begin here with some illustrations of our test procedures. For some integer
N ≥ 1, we simulated 100 times a sequence X2−N −X0, . . . , X1 −X1−2−N where
X is one of the following:

• A standard Brownian motion on [0, 1]
• An Itō semi-martingale which is the sum of a standard Brownian motion
and a compound Poisson process: Xt =Wt+

∑Nt

k=0Ak, given that there is
at least one jump. The Poisson process N has an intensity of 30 (Nt jumps
30 times on average for 0 ≤ t ≤ 1) and the Ak’s are uniformly distributed
on the interval [−1/2, 1/2]. The values 30 and 1/2 have been chosen such
that the sample path of the Itō semi-martingale seems at least visually
hard to discern from the sample paths of the MRW, see Figures 1 and 3.

• An MRW as described in Section 2, with ψ(p) = λ2p(p − 1)/2 for some
λ2 ∈ (0, 2) (thus the random field P (dt, dl) is a 2D Gaussian white noise
with expectation −λ2l−2/2dt⊗dl and variance λ2l−2dt⊗dl). We consider
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Fig 1. A sample path of the log-normal MRW process on [0,1], λ2 = 0.1.
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Fig 2. A sample path of the log-normal MRW process on [0,1], λ2 = 0.7.
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Fig 3. A sample path of the Brownian motion with Poissonian jumps on [0,1].

three possible values for λ2: 0.02, 0.1, or 0.7. When modelling financial
data, a common range for λ2 would roughly be [0.08, 0.20], see Bacry
et al. [5]. The parameter T and v are both set to 1, which is of little
consequence here, see again [5]. For this choice of MRW, we have τ(p) =
p/2− 1− λ2p(p− 2)/8 and pmax = 2

√
2/λ. We refer to Bacry and Muzy

[6] for the simulation procedure.
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4.2. Case H0: X = Itō

When using the test procedure in practice, it is of first importance to have some
idea of its power, that is how fast the test statistic does manifest a degenerate
behavior under the alternate hypothesis. Let us therefore give some orders of
magnitude for the statistic TN1 in the case where the null hypothesis is false,
that is the data generating process X is an MRW.

From (2.5), we have that

E
[
B(p, 2−⌊kNN⌋)

]
= γ(p)2⌊kNN⌋(p/2−ψ(p/2)−1)

so that
TN1 = OP

(
2N(1/2+kNψ(p/2)−ψ(p)/2)(2−ψ(p/2) − 1)

)
.

The statistic (TN1 )2 will therefore be large if 1/2 + kNψ(p/2) ≫ ψ(p)/2 and
ψ(p/2) ≫ 0. In the case of the log-normal MRW, we have ψ(p) = λ2p(p− 1)/2.
Hence, supposing that kN ≈ 1, we have

TN1 = OP
(
λ22N(1/2−λ2p2/8)

)
for small λ2.

Therefore, the value of (TN1 )2 may be small if either λ2 is too small (the MRW
process is “close” to a Brownian motion) or too large (indeed, Lemma 1 doesn’t
hold for low λ2 or large p, and B(2p, 2−N) becomes degenerate in such cases).

Tables 1 and 2 show the number of simulations for which H0: X = Itō is
rejected (out of 100 simulations of each process), that is the proportion of sim-
ulated sample paths for which the statistic TN1 is above z1−α, where z1−α is the
1−α quantile of a χ2(1) distribution and α = 10%, 5% or 1% is the asymptotic

Table 1

Number of rejections of H0: X = Itō for 100 simulations of an Itō semi-martingale
(p = 3, kN = 1)

Simulated Itō with Itō with
process no jumps jumps

Number n of data 32 768 1 048 576 32 768 1 048 576

Level of the test
10% 11 11 6 0
5% 3 5 2 0
1% 2 2 0 0

Table 2

Number of rejections of H0: X = Itō for 100 simulations of a log-normal MRW
(p = 3, kN = 1)

Simulated MRW, MRW, MRW,
process λ2 = 0.02 λ2 = 0.1 λ2 = 0.7

Number n of data 32 768 1 048 576 32 768 1 048 576 32 768 1 048 576

Level of the test
10% 12 13 15 66 7 7
5% 6 6 8 58 3 3
1% 1 2 1 30 0 1
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level of the test. These simulations were obtained with p = 3 and kN = 1. We
see that for λ2 = 0.7, the test statistic is very close to zero – indeed, Theorem 1
does not hold in this case. Also, we see that for the number of data we consid-
ered, our test statistic does not allow to recognize a log-normal MRW process
from a Brownian motion if the value of λ2 is too small. However, for a more
reasonable value of λ2 in the range of what can be estimated from financial data
[5], we find that our test performs reasonably well, provided that the number of
data is large enough.

4.3. Case H0: X= MRW, τ(4) known

Tables 3 and 4 present the test results of H0: X = MRW in the case where τ4
is known. If Itō semi-martingales are simulated, we consider two configurations:
either τ4 = 0.9 (that is, λ2 = 0.1 in the case of a log-normal MRW), or τ4 = 0.3
(λ2 = 0.7). Let us recall that if X is an Itō semi-martingale, then in restriction
to the set Ωc, the order of magnitude of TN2 is 2(N−⌊kN⌋)(τ4−1)/2 and restric-
tion to the set Ωj , this order is 2(N−⌊kN⌋)(τ4−1)/22−⌊kN⌋/2, which yields a first
approximation for the power of the test in this case.

When MRW’s are simulated, the rejection rates are close to the theoretical
rates 10%, 5%, 1%. This is in agreement with the Gaussian fit we obtain for
TN2 (see Figure 4). When Itō semi-martingales are simulated, we note that the
test is not very powerful for low n: the probability of correctly rejecting H0 is
rather low. However, this probability becomes quite high for N ≥ 20, especially
in the case of a Brownian motion with Poissonian jumps.

Table 3

Number of rejections of H0: X = MRW, τ(4) known, for 100 simulations of an Itō
semi-martingale (k = 1/2)

Simulated Itō with Itō with
process no jumps jumps

Number n of data 32 768 1 048 576 32 768 1 048 576

Value of τ4 0.9 0.3 0.9 0.3 0.9 0.3 0.9 0.3

Level of the test
10% 19 31 24 62 57 68 66 100
5% 4 16 5 26 19 34 40 89
1% 1 5 0 4 1 6 7 29

Table 4

Number of rejections of H0: X = MRW, τ(4) known, for 100 simulations of a log-normal
MRW (k = 1/2)

Simulated MRW, MRW, MRW,
process λ2 = 0.02 λ2 = 0.1 λ2 = 0.7

Number n of data 32 768 1 048 576 32 768 1 048 576 32 768 1 048 576

Level of the test
10% 10 12 11 11 10 9
5% 5 6 8 5 3 3
1% 1 0 1 2 2 1
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Fig 4. Empirical distribution of TN

2
and T̃N

2
when MRW’s are simulated, and fit with a

standard Gaussian distribution (n = 2N , N = 15, k = 1/2, vN = 1/
√

N , uN = 1/N). Top:

λ2 = 0.02, middle: λ2 = 0.1, and bottom: λ2 = 0.7. Left: TN

2
(case τ(4) known), right: T̃N

2

(case τ(4) unknown).
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Table 5

Number of rejections of H0: X = MRW, τ(4) unknown, for 100 simulations of an Itō
semi-martingale (k = 1/2, vN = 1/

√

N , uN = 1/N)

Simulated Itō with Itō with
process no jumps jumps

Number n of data 32 768 1 048 576 32 768 1 048 576

Level of the test
10% 15 23 67 100
5% 6 13 35 90
1% 2 2 8 34

Table 6

Number of rejections of H0: X = MRW, τ(4) unknown, for 100 simulations of a log-normal
MRW (k = 1/2, vN = 1/

√

N , uN = 1/N)

Simulated MRW, MRW, MRW,
process λ2 = 0.02 λ2 = 0.1 λ2 = 0.7

Number n of data 32 768 1 048 576 32 768 1 048 576 32 768 1 048 576

Level of the test
10% 17 20 11 18 8 5
5% 8 12 6 9 5 2
1% 1 2 1 2 1 2

4.4. Case H0: X= MRW, τ(4) unknown

Next, we consider in Tables 5 and 6 the case where τ(4) is unknown. The
results we find are very similar to the previous case. However, one can see that
the Gaussian fit we obtain when MRW processes are simulated is somewhat less
exact than in the case where τ(4) is known: the estimation of the variance of
the Gaussian limit is less accurate. Hence, we find that the rejection rates are
less close to the theoretical ones in this case.

In particular, this fit seems to be slightly worse for large n = 220 than for
n = 215, which might appear as surprising. This comes from the fact that the
estimator τ∗(4) achieves a very slow convergence rate on our simulations, so
that the estimation

√
3√

2(2τ∗(4) − 1)
2(N−⌊kN⌋)τ∗(4)/2

of the variance used in the statistic T̃N2 is actually less accurate for N = 20 than
for N = 15.

Finally, the rejection rates we obtain for Itō semi-martingales simulations are
still satisfactory, especially for processes with jumps.

5. Proofs

5.1. Proof of Proposition 1

We in fact prove a slightly more general result, Proposition 3, from which Propo-
sition 1 is easily deduced. We consider an MRW of the form Xt = Bθt , such
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that pmax > 4, where B is a Brownian motion with respect to some filtration
F ′. We fix here a path of θ (we will use afterwards the independence between B

and θ). Note that this also defines θ
(4)
t in Lemma 1. We set Gt = F ′

θt
and define

the G2i/n-measurable random vector ξni = (ξn,1i , ξn,2i ) by

ξn,1i = nτ(4)/2{(X2i/n −X(2i−1)/n)
2 + (X(2i−1)/n −X(2i−2)/n)

2

− (θ2i/n − θ(2i−2)/n)}
ξn,2i = nτ(4)/2{(X2i/n −X(2i−2)/n)

2 − (θ2i/n − θ(2i−2)/n)}.

For t ∈ [0, 1], let Ct be the 2× 2 matrix defined by

Ct = 2θ
(4)
t

(
1 1

1 2τ(4)

)

and defined the process Mn = {Mn
t , t ∈ [0, 1]} by

Mn
t =

⌊2N t/2⌋∑

i=1

ξni .

We have the following result.

Proposition 3. If pmax > 4, then for a given path θ, the process Mn converges
in law towards a continuous centered R2-valued Gaussian process Z, with inde-

pendent increments such that E
[
ZjtZ

k
t

]
= Cjkt . This entirely characterizes the

law of the limiting process.

Remark 4 : In Proposition 3, we retrieve in particular the result obtained by
Ludeña [23] in the one dimensional case.

For the proof of Proposition 3, we will consider the four following lemmas:

Lemma 2. We have

EG(2i−2)/n
[(ξn,1i )] = 0, EG(2i−2)/n

[(ξn,2i )] = 0.

Lemma 3. We have

⌊2N t/2⌋∑

i=1

EG(2i−2)/n
[(ξn,1i )2]

P→ 2θ
(4)
t ,

⌊2N t/2⌋∑

i=1

EG(2i−2)/n
[(ξn,2i )2]

P→ 21+τ(4)θ
(4)
t .

Lemma 4. We have

⌊2N t/2⌋∑

i=1

EG(2i−2)/n
[ξn,1i ξn,2i ]

P→ 2θ
(4)
t .
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Lemma 5. For some ε > 0

n/2∑

i=1

EG(2i−2)/n
[(ξn,1i )2+ε]

P→ 0,

n/2∑

i=1

EG(2i−2)/n
[(ξn,2i )2+ε]

P→ 0.

Since the time change θt is fixed, θ
(4)
t is deterministic. Thus, Proposition 3

follows from Lemmas 2–5 using a standard convergence result for triangular
arrays of semi-martingales, see for example [20]. We now turn to the proofs of
Lemmas 2–5.

Proof of Lemma 2

The result comes directly from the fact that

EG(2i−2)/n
[(X2i/n −X(2i−1)/n)

2] = θ2i/n − θ(2i−1)/n,

EG(2i−2)/n
[(X(2i−1)/n −X(2i−2)/n)

2] = θ(2i−1)/n − θ(2i−2)/n,

EG(2i−2)/n
[(X2i/n −X(2i−2)/n)

2] = θ2i/n − θ(2i−2)/n.

Proof of Lemma 3

For simplicity, we just give the proof for ξn,2, the result for ξn,1 being obviously
deduced. We easily get

EG(2i−2)/n
[(ξn,2i )2] = 21+τ(4)(n/2)τ(4)(θ2i/n − θ(2i−2)/n)

2.

We conclude using Lemma 1.

Proof of Lemma 4

Conditional on G(2i−2)/n, (X2i/n − X(2i−1)/n, X2i/n − X(2i−2)/n) is a centered
Gaussian vector with variance-covariance matrix equal to

(
θ2i/n − θ(2i−1)/n θ2i/n − θ(2i−1)/n

θ2i/n − θ(2i−1)/n θ2i/n − θ(2i−2)/n

)
.

Thus, it has the same law as

(
(θ2i/n − θ(2i−1)/n)

1/2Z1, (θ2i/n − θ(2i−2)/n)
1/2Z2

)
,

where (Z1, Z2) is a centered Gaussian vector with variance-covariance matrix
equal to 

 1
( θ2i/n−θ(2i−1)/n

θ2i/n−θ(2i−2)/n

)1/2
( θ2i/n−θ(2i−1)/n

θ2i/n−θ(2i−2)/n

)1/2
1


 .
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Then, note that

EG(2i−2)/n

[{
(X2i/n −X(2i−1)/n)

2 − (θ2i/n − θ(2i−1)/n)
}

×
{
(X2i/n −X(2i−2)/n)

2 − (θ2i/n − θ(2i−2)/n)
}]

is equal to

(θ2i/n − θ(2i−1)/n)(θ2i/n − θ(2i−2)/n)EG(2i−2)/n
[(Z2

1 − 1)(Z2
2 − 1)].

Using Mehler’s formula, the preceding conditional expectation is finally equal
to

2(θ2i/n − θ(2i−1)/n)
2.

In the same way, we get

n−τ(4)/2
EG(2i−2)/n

[ξn,2i {(X(2i−1)/n −X(2i−2)/n)
2 − (θ(2i−1)/n − θ(2i−2)/n)}]

= 2(θ(2i−1)/n − θ(2i−2)/n)
2.

Eventually, we obtain

EG(2i−2)/n
[ξn,1i ξn,2i ] = 2nτ(4){(θ2i/n − θ(2i−1)/n)

2 + (θ(2i−2)/n − θ(2i−2)/n)
2}.

We conclude using Lemma 1.

Proof of Lemma 5

Here again, we just give the proof for ξn,2. It is clear that conditional on G(2i−2)/n

the law of (ξn,2i ) is the same as the law of nτ(4)/2(θ2i/n−θ(2i−2)/n)(Z
2−1), with

Z a standard centered Gaussian variable. Since we are in the case pmax > 4,
some basic concavity consideration and the fact that τ(·) is necessarily a right-
continuous function show that we can choose some ε > 0 such that 4 < 4(1+ε) <
pmax and τ(4(1 + ε)) > (1 + ε)τ(4). Thus,

EG(2i−2)/n
[(ξn,2i )2(1+ε)] ≤ cn(1+ε)τ(4)(θ2i/n − θ(2i−2)/n)

2(1+ε)

≤ cn(1+ε)τ(4)−τ(4(1+ε))nτ(4(1+ε))(θ2i/n − θ(2i−2)/n)
2(1+ε).

We conclude using Lemma 1.

5.2. Proof of Proposition 2

Assume first that X is an MRW. We have

N(τ̂(4)− τ(4)) =
2

log(2)

{
log

(
2Nτ(4)/2B(4, 2−⌊N/2⌋)

)
− log

(
2Nτ(4)B(4, 2−N)

)}
.

Using Lemma 1, we get that

2⌊N/2⌋τ(4)B(4, 2−⌊N/2⌋)

2Nτ(4)B(4, 2−N)
→ 1.
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Since B(4, 2−⌊N/2⌋) tends to zero, we can replace ⌊N/2⌋ by N/2 and so we
obtain that N(τ̂ (4) − τ(4)) tends to 0 almost surely. Since 0 < τ(4) < 1, the
first assertion of Proposition 2 follows.

We now turn to the second assertion. In restriction to Ωc, we get the result
using that τ∗(4) tends to 1 together with the inequality

2N(τ∗(4)−1) ≤ 2−NvN + 2N(uN−1).

In restriction to Ωj , we use the inequality

2N(τ∗(4)−1) ≤ 2N(τ̂(4)−1) + 2N(uN−1),

and the facts that Nτ̂ (4) goes to zero and that 2τ
∗(4) − 1 is of the same order

than τ∗(4) which is greater than uN .
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L. Duvernet et al./Itō against multifractal 1322

[10] Calvet, L., and A. Fisher (2008). Multifractal volatility: theory, fore-
casting and pricing. Academic Press Advanced Finance Series.

[11] Delbaen, F. and W. Schachermayer (1994). A general version of the
fundamental theorem of asset pricing. Mathematische Annalen, 300 463–
520. MR1304434

[12] Duchon, J., Robert, R. and V. Vargas (2010). Forecasting volatil-
ity with the multifractal random walk model. To appear in Mathematical
Finance. MR2642887

[13] Duvernet, L. (2009). Convergence of the structure function of a multi-
fractal random walk in a mixed asymptotic setting. Stochastic Analysis and
Applications. 28(5) 763–792.

[14] Frisch, U. (1995). Turbulence: the legacy of A. N. Kolmogorov. Cambridge
University Press. MR1428905

[15] Frisch, U. and G. Parisi (1985). Fully developed turbulence and inter-
mittency. Proc. of Int. Summer school Phys. Enrico Fermi.

[16] Gagne, Y., Marchand, M., and B. Castaing (1994). Conditional ve-
locity pdf in 3D turbulence. Journal de Physique II,4 1–8.

[17] Ghashghaie, S., Breymann, W., Peinke, J., Talkner, P., and Y.

Dodge (1996). Turbulence cascades in foreign exchange markets. Nature,
381 767–770.

[18] Gloter, A., and M. Hoffmann (2010). Nonparametric reconstruction
of a multifractal function from noisy data. Probability Theory and Related
Fields, 146 155–187. MR2550361

[19] Jacod, J. (2008). Asymptotic properties of realized power variations and
related functionals of semi-martingales. Stochastic Processes and their Ap-
plications, 118 517–559. MR2394762

[20] Jacod, J., and A.N. Shiryaev (2003). Limit Theorems for Stochastic
Processes. Second Edition, Springer-Verlag. MR1943877

[21] Kahane, J. P. (1985). Sur le chaos multiplicatif. Ann. Sci. Math. Quebec
9(2) 105–150. MR0829798

[22] Ludeña, C. (2008). Lp-variations for multifractal fractional random walks.
Annals of Applied Probability, 18 1138–1163. MR2418240

[23] Ludeña, C. (2009). Confidence intervals for the scaling function of mul-
tifractal random walks. Statistics and Probability Letters, 79 1186–1193.
MR2519001

[24] Mandelbrot, B.B. (1997). Fractals and scaling in finance. Springer, New
York. MR1475217

[25] Mandelbrot, B.B. and H.M. Taylor (1967). On the distribution of
stock price differences. Operations Research, 15 1057-1062.

[26] Ossiander, M. and E.C. Waymire (2000). Statistical estimation for mul-
tiplicative cascades. The Annals of Statistics, 28 1533–1560. MR1835030

[27] Parks, K., and W. Willinger (1999). Self-similar network traffic: an
overview. In Parks, K., and W. Willinger (eds) Self-Similar Network Traffic
and Performance Evaluation, Wiley.

[28] Rosenbaum, M. (2007). A new microstructure noise index. Quantitative
Finance, to appear.

http://www.ams.org/mathscinet-getitem?mr=1304434
http://www.ams.org/mathscinet-getitem?mr=2642887
http://www.ams.org/mathscinet-getitem?mr=1428905
http://www.ams.org/mathscinet-getitem?mr=2550361
http://www.ams.org/mathscinet-getitem?mr=2394762
http://www.ams.org/mathscinet-getitem?mr=1943877
http://www.ams.org/mathscinet-getitem?mr=0829798
http://www.ams.org/mathscinet-getitem?mr=2418240
http://www.ams.org/mathscinet-getitem?mr=2519001
http://www.ams.org/mathscinet-getitem?mr=1475217
http://www.ams.org/mathscinet-getitem?mr=1835030
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