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Abstract: This paper considers the problem of adaptive estimation of a
template in a randomly shifted curve model. Using the Fourier transform of
the data, we show that this problem can be transformed into a linear inverse
problem with a random operator. Our aim is to approach the estimator
that has the smallest risk on the true template over a finite set of linear
estimators defined in the Fourier domain. Based on the principle of unbiased
empirical risk minimization, we derive a nonasymptotic oracle inequality in
the case where the law of the random shifts is known. This inequality can
then be used to obtain adaptive results on Sobolev spaces as the number
of observed curves tend to infinity. Some numerical experiments are given
to illustrate the performances of our approach.
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1. Introduction

1.1. Model and objectives

The goal of this paper is to study a special class of linear inverse problems with
a random operator. We consider the problem of estimating a curve f , called
template or shape function, from the observations of n noisy and randomly
shifted curves Y1, . . . Yn coming from the following Gaussian white noise model:

dYj(x) = f(x− τj)dx + ǫdWj(x), x ∈ [0, 1], j = 1, . . . , n (1.1)

where Wj are independent standard Brownian motions on [0, 1], ǫ represents a
level of noise common to all curves, the τj ’s are unknown random shifts inde-
pendent of the Wj ’s, f is the unknown template to recover, and n is the number
of observed curves that may be let going to infinity to study asymptotic proper-
ties. This model is realistic in many situations where it is reasonable to assume
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that the observed curves represent replications of almost the same process and
when a large source of variation in the experiments is due to transformations
of the time axis. Such a model is commonly used in many applied areas dealing
with functional data such as neuroscience (see e.g. [IRT08]) or biology (see e.g.
[Ron98]). A well known problem in functional data analysis is the alignment
of similar curves that differ by a time transformation to extract their common
features, and (1.1) is a simple model where f represents such common features
(see [RS02], [RS05] for a detailed introduction to curve alignment problems in
statistics).

The function f : R → R is assumed to be of period 1 so that the model (1.1)
is well defined, and the shifts τj are supposed to be independent and identically
distributed (i.i.d.) random variables with density g : R → R with respect to
the Lebesgue measure dx on R. Throughout the paper, it is supposed that
the density g is known. Estimating f can be seen as an inverse problem with a
random operator. Indeed, the template f is not observed directly, but through n
independent realizations of the random operator Aτ : L2

per([0, 1]) → L2
per([0, 1])

defined by
Aτ (f)(x) = f(x− τ), x ∈ [0, 1],

where L2
per([0, 1]) denotes the space of squared integrable functions on [0, 1] with

period 1, and τ is random variable with density g. The additive Gaussian noise
makes this problem ill-posed, and [BG10] have shown that estimating f in such
models is in fact a deconvolution problem where the density g of the random
shifts plays the role of the convolution operator. For the L2 risk on [0, 1], [BG10]
have derived the minimax rate of convergence for the estimation of f over Besov
balls as n tends to infinity. This minimax rate depends both on the smoothness
of the template and on the decay of the Fourier coefficients of the density g.
This is a well known fact for standard deconvolution problem in statistics, see
e.g. [Fan91], [Don95], but the results in [BG10] represent a novel contribution
and a new point of view on template estimation in inverse problems with a
random operator such as (1.1). This appears also to be a new setting in the
field of inverse problem with partially known operators as considered in [CH05],
[EK01], [HR08], [Mar06] and [CR07].

However, the approach followed in [BG10] is only asymptotic, and the main
goal of this paper is to derive non-asymptotic results to study the estimation of
f by keeping fixed the number n of observed curves.

1.2. Fourier analysis and an inverse problem formulation

Supposing that f ∈ L2
per([0, 1]), we denote by θk its kth Fourier coefficient,

namely:

θk =

∫ 1

0

e−2ikπxf(x)dx.

In the Fourier domain, the model (1.1) can be rewritten as

cj,k :=

∫ 1

0

e−2ikπxdYj(x) = θke
−i2πkτj + ǫzk,j (1.2)
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where zk,j are i.i.d. NC (0, 1) variables, i.e. complex Gaussian variables with zero
mean and such that E|zk,j |2 = 1. This means that the real and imaginary parts
of the zk,j ’s are Gaussian variables with zero mean and variance 1/2. Thus, we
can compute the sample mean of the kth Fourier coefficient over the n curves as

c̃k :=
1

n

n∑

j=1

ck,j = θkγ̃k +
ǫ√
n
ξk, (1.3)

where

γ̃k :=
1

n

n∑

j=1

e−i2πkτj , (1.4)

and the ξk’s are i.i.d. complex Gaussian variables with zero mean and variance
1. The Fourier coefficients c̃k in equation (1.3) can be viewed as observations
coming from a statistical inverse problem. Indeed, the standard sequence space
model of an ill-posed statistical inverse problem is (see [CGPT02] and the ref-
erences therein)

ck = θkγk + σzk, (1.5)

where the γk’s are eigenvalues of a known linear operator, zk are random noise
variables and σ is a level of noise which goes to zero for studying asymptotic
properties. The issue in such models is to recover the coefficients θk from the
observations ck under various conditions on the decay to zero of the γk’s as
|k| → +∞. A large class of estimators for the problem (1.5) can be written as

θ̂k = λk
ck
γk

,

where λ = (λk)k∈Z is a sequence of reals called filter. Various estimators of this
form have been studied in a number of papers, and we refer to [CGPT02] for
more details.

In a sense, we can view equation (1.3) as a linear inverse problem (with
σ = ǫ√

n
) with a stochastic operator whose eigenvalues γ̃k = 1

n

∑n
j=1 e

−i2πkτj

are random variables that are not observed. Nevertheless, it is supposed that
the density g of the shifts is known. Therefore, one can compute the expectation
γk of the random eigenvalues γ̃k given by

γk := Eγ̃k = E
(
e−i2πkτ

)
=

∫ +∞

−∞
e−i2πkxg(x)dx.

Hence, if we assume that the density g of the random shifts is known, estimation
of the Fourier coefficients of f can be obtained by a deconvolution step of the
form

θ̂k = λk
c̃k
γk

, (1.6)

where c̃k is defined in (1.3) and λ = (λk)k∈Z is a filter whose choice will be
discussed later on. Theoretical properties and optimal choices for the filter λ
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are presented in the case where the coefficients γk are known. Such a framework
is commonly used in inverse problems such as (1.5) to obtain consistency results
and to study asymptotic rates of convergence, where it is generally supposed
that the law of the additive error is Gaussian with zero mean and known variance
σ2, see e.g [CGPT02]. In model (1.1), the random shifts may be viewed as a
second source of noise and for the theoretical analysis of this problem the law
of this other random noise is also supposed to be known.

Recently, some papers have addressed the problem of regularization with
partially known operator. For instance, [CH05] consider the case where the
eigenvalues are unknown but independently observed. They deal with the model:

ck = γkθk + ǫξk, γ̃k = γk + σηk, ∀k ∈ N, (1.7)

where (ξk)k∈N and (ηk)k∈N denote i.i.d. standard Gaussian variables. In this
case, each coefficient θk can be estimated by γ̃−1

k ck. Similar models have been
considered in [CR07], [Mar06] or [Mar09]. In a more general setting, we may
refer to [EK01] and [HR08].

In this paper, our framework is slightly different in the sense that the operator
is stochastic, but the regularization is operated using deterministic eigenvalues.
Hence the approach followed in the previous papers is no directly applicable
to model (1.1). We believe that estimating f and deriving convergence rates in
model (1.1) without the knowledge of g remains a difficult task, and this paper
is a first step to address this issue.

1.3. Previous work in template estimation and shift recovery

The problem of estimating the common shape of a set of curves that differ by
a time transformation is usually referred to as the curve registration problem,
and it has received a lot of attention in the literature over the last two decades.
Among the various methods that have been proposed, one can distinguish be-
tween landmark-based approaches which aim at aligning common structural
points of the curves (typically locations of extrema) see e.g [GK92], [GK95],
[Big06], and nonparametric modeling of the warping functions to align a set
of curves see e.g [RL01], [WG97], [LM04]. However, in these papers, studying
consistent estimates of the common shape f as the number of curves n tends to
infinity is generally not considered.

In the simplest case of shifted curves, various approaches have been devel-
oped. Self-modelling regression methods proposed by [KG88] are semiparametric
models where each observed curve is a parametric transformation of a common
regression function. Such models are usually referred to as shape invariant mod-
els and estimation in this setting is usually done by iterating the following two
steps: estimation of the parameters of the transformations (here the shifts) given
a reference curve, and nonparametric estimation of a template by aligning the
observed curves given a set of known transformation parameters. [KG88] studied
the consistency of such a two steps procedure in an asymptotic framework where
both the number of functions n and the number of observed points per curves
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grows to infinity. Due to the asymptotic equivalence between the white noise
model and nonparametric regression with an equi-spaced design (see [BL96]),
such an asymptotic framework in our setting would correspond to the case where
both n tends to infinity and ǫ is let going to zero. In this paper we prefer to
focus only on the case where n may be let going to infinity, and to leave fixed
the level of additive noise in each observed curve.

Based on a model with curves observed at discrete time points, semiparamet-
ric estimation of the shifts and the shape function is proposed in [GLM07] and
[Vim10] as the number of observations per curve grows, but with a fixed number
n of curves. A generalization of this approach for the estimation of scaling, rota-
tion and translation parameters for two-dimensional images is also proposed in
[BGV09], but also with a fixed number of observed images. Semiparametric and
adaptive estimation of a shift parameter in the case of a single observed curve
in a white noise model is also considered by [DGT06] and [Dal07]. Estimation
of a common shape for randomly shifted curves and asymptotic in n is consid-
ered in [Ron98] from the point of view of semiparametric estimation when the
parameter of interest is infinite dimensional.

However, in all the above cited papers rates of convergence or oracle inequal-
ities for the estimation of the template are generally not studied. Moreover, our
procedure differs from the approaches classically used in curve registration as
our estimator is obtained in only one very simple step, and it is not based on
an alternative scheme between estimation of the shifts and averaging of back-
transformed curves given estimated values of the shifts parameters.

Finally, note that [CL09] and [IRT08] consider a model similar to (1.1), but
they rather focus on the estimation of the density g of the shifts as n tends
to infinity. Using such an approach could be a good start for studying the
estimation of the template f without the knowledge of g. However, we believe
that this is far beyond the scope of this paper, and we prefer to leave this
problem open for future work.

1.4. Organization of the paper

In Section 2, we consider an estimator of the shape function f using monotone
filters when the eigenvalues γk are known. Based on the principle of unbiased
risk minimization developed by [CGPT02], we propose a data-based choice for
the filter λ in (1.6). Then, we derive an oracle inequality showing that the
resulting estimator has a risk close to an ideal one when choosing λ over a class
of monotone filters. In Section 3, as an example, we study the case of projection
filters. This gives an estimator based on the Fourier transform of the curves with
a data-based choice of the frequency cut-off. We study its asymptotic properties
in terms of minimax rates of converge over Sobolev balls. Finally in Section 4,
a detailed simulation study is proposed to illustrate the numerical properties of
such estimators. All proofs are deferred to a technical section at the end of the
paper.
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2. Estimation of the common shape

In the following, we assume that the Fourier coefficients γk are known. In this
situation it is possible to choose a data-dependent filter λ⋆ that mimics the
performances of an optimal filter λ0 called oracle that would be obtained if we
knew the true template f . The performances of this filter are related to the
performances of the filter λ0 via an oracle inequality. In this section, most of
our results are non-asymptotic and are thus related to the approach proposed in
[CGPT02] to study standard statistical inverse problems via oracle inequalities.

2.1. Smoothness assumptions for the density g

In a deconvolution problem, it is well known that the difficulty of estimating
f is quantified by the decay to zero of the γk’s as |k| → +∞. Depending how
fast these Fourier coefficients tend to zero as |k| → +∞, the reconstruction of
f will be more or less accurate. This phenomenon was systematically studied
by [Fan91] in the context of density deconvolution. In this paper, the following
type of assumption on g is considered:

Assumption 2.1. The Fourier coefficients of g have a polynomial decay i.e.
for some real β ≥ 0, there exists two constants Cmax ≥ Cmin > 0 such that for
all k ∈ Z

Cmin|k|−β ≤ |γk| ≤ Cmax|k|−β. (2.1)

2.2. Risk decomposition

Recall that an estimator of the θk’s is given by θ̂k = λkγ
−1
k c̃k, k ∈ Z, see

equation (1.6), where λ = (λk)k∈Z is a real sequence. Examples of commonly
used filters include projection weights λk = 1|k|≤j for some integer j, and the
Tikhonov weights λk = 1/(1 + (|k|/ν2)ν1) for some parameters ν1 > 0 and

ν2 > 0. Based on the θ̂k’s, one can estimate the signal f using the Fourier
reconstruction formula

f̂λ(x) =
∑

k∈Z

θ̂ke
−2ikπx.

The problem is then to choose the sequence (λk)k∈Z in an optimal way with
respect to an appropriate risk. For a given filter λ we use the classical ℓ2-norm
to define the risk of the estimator θ̂(λ) = (θ̂k)k∈Z

R(θ, λ) = Eθ‖θ̂(λ) − θ‖22 = Eθ

∑

k∈Z

|θ̂k − θk|2 (2.2)

Note that analyzing the above risk (2.2) is equivalent to analyze the mean

integrated square risk R(f̂λ, f) = E‖f̂λ − f‖2 = E
(∫ 1

0
(f̂λ(x) − f(x))2dx

)
. The

following lemma gives the bias-variance decomposition of R(λ, θ). A detailed
proof can be found in [BG10].



J. Bigot et al./Template estimation for shifted curves 1000

Lemma 2.1. For any given nonrandom filter λ, the risk of the estimator θ̂(λ)
can be decomposed as

R(θ, λ) =
∑

k∈Z

(λk − 1)2|θk|2

︸ ︷︷ ︸

Bias

+
1

n

∑

k∈Z

λ2
k

ǫ2

|γk|2
︸ ︷︷ ︸

V1

+
1

n

∑

k∈Z

[

λ2
k|θk|2

(
1

|γk|2
− 1

)]

︸ ︷︷ ︸

V2

(2.3)

For a fixed number of curves n and a given shape function f , the problem
of choosing an optimal filter in a set of possible candidates is to find the best
trade-off between low bias and low variance in the above expression. However,
this decomposition does not correspond exactly to the classical bias-variance
decomposition for linear inverse problems. Indeed, the variance term in (2.3) is
the sum of two terms and differs from the classical expression of the variance
for linear estimator in statistical inverse problems. Using our notations, the

classical variance term is V1 = ǫ2

n

∑

k∈Z

λ2
k

|γk|2 and appears in most of linear

inverse problems. However, contrary to standard inverse problems, the variance
term of the risk also depends on the Fourier coefficients θk of the unknown
function f to recover. Indeed, our data γ−1

k c̃k are noisy observations of θk:

γ−1
k c̃k = θk +

(
γ̃k
γk

− 1

)

θk +
ǫ√
n
γ−1
k ξk. (2.4)

Hence, using the sequence (γk)k∈N instead of (γ̃k)k∈N introduces an additional
error. This explains the presence of the second term V2.

A similar phenomenon occurs with the model (1.7), although it is more dif-
ficult to quantify it. Indeed, in this setting:

γ̃−1
k ck = θk +

(
γk
γ̃k

− 1

)

θk + ǫγ̃−1
k ξk, ∀k ∈ N. (2.5)

Hence, we also observe an additional term depending on θ. This term is con-
trolled using a Taylor expansion but the quadratic risk cannot be expressed in
a simple form. Let us stress that the difficulty of studying problem (2.5), when
compared to our estimator (2.4), comes from the fact that in (2.5) there is a
random term in the denominator. We refer to [Mar09] for a discussion with some
numerical simulation and to [CH05], [EK01], [HR08], [Mar06] and [CR07].

2.3. An oracle estimator and unbiased estimation of the risk (URE)

Suppose that one is given a set Λ of cardinality N ≥ 1 of possible candidate
filters, that is Λ = (λj)j∈{1,...,N}, with λj = (λj

k)k∈Z, j = 1, . . . , N which satisfy
some general conditions to be discussed later on. In the case of projection filters,
Λ can be for example the set of filters λj

k = 1|k|≤j , k ∈ Z for j = 1, . . . , N .
Given a set of filters Λ, the best estimator is defined as the filter λ0 (called

oracle) which has the smallest risk R(θ, λ) over Λ, that is

λ0 := argmin
λ∈Λ

R(θ, λ). (2.6)
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This filter is an ideal one because it cannot be computed in practice as the
sequence of coefficients θ is unknown. However, the oracle λ0 can be used as a
benchmark to evaluate the quality of a data-dependent filter λ⋆ chosen in the set
Λ. This is the main interpretation of the oracle inequality that we will develop
in the next section.

2.4. Oracle inequalities for monotone filters

2.4.1. Definitions

First, let us introduce the following class of monotone filters:

Λmon :=

{

λ=(λk)k∈Z :λk =λ−k,
∑

k∈Z

λ2
k < +∞, 1≥λ0 ≥ · · · ≥ λm ≥ · · · ≥ 0

}

,

In practice, the filters λ in the set Λ are such that λk = 0 (or vanishingly small)
for all k large enough. Hence, for such choices of filters, numerical minimization
of criterions such as (2.6) is feasible, since it only involves the computation of
finite sums. Let us thus define the following threshold m0 beyond which all
values of the filters λ in Λ vanish

m0 = inf

{

k : |γk|2 ≤ log2 n

n

}

− 1. (2.7)

Then, Λ is supposed to be a finite set of cardinality N of monotone filters λ
which satisfies λk = 0 as soon as |k| ≥ m0, that is

Assumption 2.2. For N ≥ 1, Λ = (λj)j∈{1,...,N} ⊂ Λmon with λj
k = 0 for

|k| ≥ m0 and j = 1, . . . , N .

The choice of the filter λ⋆ will be obtained by minimization of a data-based
criterion whose derivation is guided by the unbiased risk estimate (URE) mini-
mization principle developed by [CGPT02]. Typically, one cannot minimize such
a criterion over filters (λk)k∈Z of infinite length. Indeed, each coefficient θk is
estimated by γ−1

k c̃k where γk = Eγ̃k. Hence, the ratio γ−1
k γ̃k should be as close

as possible to 1. Since γk → 0 as k → +∞ and the variance of γ̃k is equal to
1
n + (1 − 1

n )|γk|2, it is clear that large values of k should be discarded. Bounds
similar to (2.7) on the maximum number of non-vanishing values for the filters
are used in papers related to partially known operator, see for instance [CH05] or
[EK01]. This bounds have to be carefully chosen but are not of first importance.
In general, estimating the operator is easier than estimating the function f .

In this paper, we have chosen to present an adaptive estimator based on
the URE principle. Given the finite family Λ, our aim is to select the best
possible filter among this family. We are aware that different adaptive schemes
are available in the literature. For instance, the penalized blockwise Stein’s rule
(see [CT02] and references therein) provides a filter for the model (1.5) leading to
an oracle inequality among all monotone filters. In some sense, the generalization
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of such kind of result to our model would be more powerful. Nevertheless, we
think that our approach is also interesting in this setting since it does not
impose a particular regularization scheme. Moreover, the differences between
model (1.5) and model (1.3) are easier to underline with our method.

2.4.2. Adaptive regularization scheme

Let us now explain how to compute an estimator U(Y, λ) of the risk R(θ, λ).
First, recall that Lemma 2.1 yields the following expression of the quadratic risk
R(θ, λ)

R(θ, λ) =
∑

k∈Z

(1− λk)
2|θk|2

︸ ︷︷ ︸

:=Bias

+
ǫ2

n

∑

k∈Z

λ2
k|γk|−2

︸ ︷︷ ︸

:=V1

+
1

n

∑

k∈Z

λ2
k|θk|2

(
1

|γk|2
− 1

)

︸ ︷︷ ︸

:=V2

,

and suppose that it is possible to construct an estimator Θ̂2
k of |θk|2 from the

observations of the shifted curves Y = (Yi)i=1...n. For any non-random filter λ
satisfying Assumption 2.2, by replacing |θk|2 in (2.3) by Θ̂2

k, the above decom-
position of the risk R(θ, λ) suggests to compute a data-based criterion U(Y, λ)
(depending only on (Y, λ)) of the form

U(Y, λ) :=
∑

|k|≤m0

(λ2
k−2λk)Θ̂

2
k+

ǫ2

n

∑

|k|≤m0

λ2
k|γk|−2+

1

n

∑

|k|≤m0

λ2
k|γk|−2Θ̂2

k. (2.8)

The criterion U(Y, λ) is thus an approximation of R(θ, λ) − ‖θ‖22. Then, for
choosing a data-dependent filter λ⋆, the principle of URE, see [CGPT02] for
further details, simply suggests to minimize the criterion U(Y, λ) over λ ∈ Λ.
Following the principle of URE, a data-dependent choice of λ would thus be
given by

λ⋆ := argmin
λ∈Λ

U(Y, λ). (2.9)

In the following, we use Θ̂2
k = γ−2

k

[

|c̃k|2 − ǫ2

n

]

as an estimator of |θk|2. Remark

that EθΘ̂
2
k 6= |θk|2. Hence, the criterion U(Y, λ) is not an unbiased estimation

of R(θ, λ)−‖θ‖22, meaning that we rather use the principle of minimization of a
risk estimate. Nevertheless, we will prove that this bias can be controlled, and
that it is in some sense negligible compared to R(θ, λ).

Note that for the computation of U(Y, λ), we have taken into account all
the terms (Bias, V1 and V2) in the decomposition of the risk R(θ, λ). Unfortu-

nately, when using Θ̂2
k = γ−2

k

[

|c̃k|2 − ǫ2

n

]

as an estimator of |θk|2, minimization

of such a criterion does not lead to satisfactory results. This is due the term
1
n

∑

k∈Z
λ2
k|γk|−4|

{

|c̃k|2 − ǫ2

n

}

in (2.8) which is an estimation of the variance

term V2 in the decomposition (2.3) of the risk R(θ, λ). The main issue is that
the study of this term requires a control of |γk|−4, and not only |γk|−2 as for
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the study of the classical variance term V1 = ǫ2

n

∑

k∈Z
λ2
k|γk|−2 in standard in-

verse problem. Nevertheless, by definition (2.7), one has that log2(n)
n γ−2

k ≤ 1
for all |k| ≤ m0. Therefore, this suggests to rather consider filters minimizing a
criterion of the form

U1(Y, λ) :=
∑

|k|≤m0

(λ2
k − 2λk)|γk|−2

{

|c̃k|2 −
ǫ2

n

}

+
ǫ2

n

∑

|k|≤m0

λ2
k|γk|−2

+
log2(n)

n

∑

|k|≤m0

λ2
k|γk|−4

{

|c̃k|2 −
ǫ2

n

}

. (2.10)

Alternatively, following [CH05], it is sometimes possible to neglect the error
generated by the use of an approximation of the unknown random eigenvalues
γ̃k by γk which yet corresponds to the term V2. Indeed, remark that one may
find ρ > 0 such that

V2 ≤ 1

n

∑

k∈Z

λ2
k|θk|2
|γk|2

≤ 1

n
‖θ‖2 sup

k∈Z

λ2
k|γk|−2 ≤ ρ‖θ‖2 1

n

∑

k∈Z

λ2
k|γk|−2 = ρ‖θ‖2V1

ǫ2
.

Hence, depending on the values of ρ, ǫ2 and ‖θ‖2, the variance term V2 may be
negligible compared to V1. In this case, one could rather consider the following
criterion U0(Y, λ) derived from the decomposition on the classic quadratic risk
(i.e. Bias + V1), and defined as

U0(Y, λ) :=
∑

|k|≤m0

(λ2
k − 2λk)|γk|−2

{

|c̃k|2 −
ǫ2

n

}

+
ǫ2

n

∑

|k|≤m0

λ2
k|γk|−2. (2.11)

In the sequel, we summarize these two approaches by considering the more
general criterion Uα(Y, λ) given by

Uα(Y, λ) :=
∑

k∈Z

(λ2
k − 2λk)|γk|−2

{

|c̃k|2 −
ǫ2

n

}

+
ǫ2

n

∑

k∈Z

λ2
k|γk|−2

+α
log2 n

n

∑

k∈Z

λ2
k|γk|−4

{

|c̃k|2 −
ǫ2

n

}

. (2.12)

where 0 ≤ α ≤ 1 is a parameter to be discussed. All the following results of the
paper are given for any value of the parameter α in [0, 1]. Following the URE
principle, we will study the theoretical properties of the filters λ⋆

α ∈ Λ defined
as

λ⋆
α = argmin

λ∈Λ
Uα(Y, λ). (2.13)

for 0 ≤ α ≤ 1. Note that Uα(Y, λ) can be written as a penalized version of the
empirical risk Uα(Y, λ) defined in (2.11) and α can hence be considered as a
penalty constant. The choice of this term has no real influence on the rate of



J. Bigot et al./Template estimation for shifted curves 1004

convergence (see Section 3 below) although this is a delicate problem in nonpara-
metric statistic from a non-asymptotic point of view. Nevertheless, the following
heuristic arguments can be given. The presence of the additional penalized term
V2 is due to the variability along the time axis (random translation) of the tem-
plate f . When ǫ is small compared to ‖θ‖2, the white noise deconvolution may
be considered as negligible comparing to the alignment issue of the observed
curves. The mean error will be larger when the signal to reconstruct possesses
a large number of modes. Thus, in a framework with a small ǫ and a large ‖θ‖2,
it may be reasonable to choose α 6= 0. To the contrary, if the level of noise ǫ is
large, the model (1.1) can certainly be considered as being close to the standard
white noise deconvolution problem. In this setting, setting α = 0 may be rec-
ommended. Moreover, an optimal choice of α is certainly related to the number
of observed curves n. The problem of choosing α is thus discussed in detail in
Section 4 on numerical experiments.

2.4.3. Sharp estimator of the oracle risk

We are now able to propose an adaptive estimator of θ. In the following, α
will belong to [0, 1] and we denote by θ⋆α the estimator related to the filters λ⋆

α

defined in (2.13) that is

θ⋆k,α =
c̃k
γk

λ⋆
k,α for θ⋆α = (θ⋆k,α)k∈Z and λ⋆

α = (λ⋆
k,α)k∈Z. (2.14)

To simplify the notations, we omit the dependency of θ⋆α and λ⋆
α on α, and write

θ⋆ = θ⋆α and λ⋆ = λ⋆
α. Through a simple oracle inequality, the next theorem

relates the performances of θ⋆ to the ideal filter λ0 minimizing the risk R(θ, λ)
over λ ∈ Λ. We denote by LΛ the term introduced in [CGPT02] which in some
sense measure the complexity of the family Λ. The proof of the theorem and a
complete definition of LΛ are given in the Appendix.

Theorem 2.1. Suppose that Assumption 2.2 holds and that the density g sat-
isfies Assumption 2.1. Let θ⋆ defined by (2.14). Then, there exists 0 < γ1 < 1
such that, for all 0 < γ < γ1,

Eθ‖θ⋆− θ‖2 ≤ (1 + hγ,n) inf
λ∈Λ

[

R(θ, λ) + α
log2 n

n

∑

k∈Z

λ2
k|γk|−2|θk|2

]

+ Γ(θ)

+ C1
ǫ2

n
LΛω

(
‖θ‖2LΛγ

−1
)
+ C2

log2 n

n
ω
(
(1− α)‖θ‖2 log2(n)γ−1

)

+ Ce−γ2 log1+τ n, (2.15)

where hγ,n) → 0 as γ → 0 and n → +∞, C1, C2 and τ > 0 are suitable constants
independent of n,

Γ(θ) =

∣
∣
∣
∣
∣
∣

∑

|k|>m0

ǫ2{λ0
k}2|γk|−2 + (1− (1 − λ0

k)
2)θ2k

∣
∣
∣
∣
∣
∣

,
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and ω(x) = max
λ∈Λ

sup
k

λ2
k|γk|−21









∑

i

λ2
i |γi|−2 ≤ x sup

i
λ2
i |γi|−2











∀x > 0.

Theorem 2.1 proves that the quadratic risk is comparable to the risk of the
oracle up to some residual terms. Before explaining these terms, just a few words
on the quantities in the infimum. First, if α = 0, then Eθ‖θ⋆−θ‖2 is comparable
to R(θ, λ0) but the price to pay is a residual term of order log2(n)/n. In the
case where α = 1, we reach the quadratic risk up to a log term. This lack
of precision can be explained by the processes involved in U1(Y, λ), which are
hardly controllable due to the dependency between the γ̃k. Previously, we have
only given some heuristic arguments on the way α could be chosen. Theorem
2.1 presents results for all possible values of α between 0 and 1. Therefore, the
above theorem can give some hints on how to choose α, but keeping in mind
that these results are derived from successive upper bounds that could certainly
be enhanced. Let us recall that the choice of α has no real influence on the
minimax rates of convergence (see Section 3). It is strongly related to the choice
of a good penalty in our criteria which is a classical issue in many statistical
problems.

The function ω was initially introduced in [CGPT02]. Under Assumption 2.1,
it is of order x2β for many kind of filters (spectral cut-off, Tikhonov, Landweber,
etc...). Hence, the two terms of (2.15) depending on ω are respectively of order
ǫ2/n and log2(n)/n. They can be reasonably considered as negligible compared
to R(θ, λ0) in many situations (see for instance Section 3 bellow). The same

remark hold for the term Ce−γ2 log1+τ n, which tends to 0 faster than n−1.
We conclude this discussion with the term Γ(θ). This term measures the

error associated to the truncation of the estimation at the order m0. Consider
for instance the particular case of a projection (or spectral cut-off) family: λj

k =
1{|k|≤j} for all j = 1, . . . , N . Denote by λj0 = λ0 the oracle filter. Then, Γ(θ) = 0
as soon as the oracle bandwidth j0 is smaller than m0. In some sense, the control
of (γ̃k)k∈Z is easier than the estimation of (θk)k∈Z (no inversion to perform).
Hence, in many cases, Γ(θ) = 0. A similar discussion holds for other kind of
filters.

3. Minimax rates of convergence for Sobolev balls

Let us now study the special case of projection filters. In this section, we prove
that such estimators attain the minimax rate of convergence on many functional
spaces. In particular, the term log2(n) added in (2.12) to control the estimation
of the variance term V2, and the maximal bandwidth m0 (2.7) have no influence
on the performances of our estimator from a minimax point of view.

Let 1 ≤ p, q ≤ ∞ and A > 0, and suppose that f belongs to a Besov ball
Bs
p,q(A) of radius A (see e.g. [DJKP95] for a precise definition of Besov spaces).

[BG10] have derived the following asymptotic minimax lower bound for the
quadratic risk over a large class of Besov balls.
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Theorem 3.1. Let 1 ≤ p, q ≤ ∞ and A > 0, let p′ = p ∧ 2 and assume that:
f ∈ Bs

p,q(A) and s ≥ p′ (Regularity condition on f), g satisfies the polynomial
decreasing condition (2.1) at rate β on its Fourier coefficients (Regularity con-
dition on g), s ≥ (2β+1)(1/p− 1/2) and s ≥ 2β+1 (Dense case). Then, there
exists a universal constant M1 depending on A, s, p, q such that

inf
f̂n

sup
f∈Bs

p,q(A)

E‖f̂n − f‖2 ≥ M1n
−2s

2s+2β+1 , as n → ∞,

where f̂n ∈ L2
per([0, 1]) denotes any estimator of the common shape f , i.e. a

measurable function of the random processes Yj , j = 1, . . . , n

Therefore, Theorem 3.1 extends the lower bound n
−2s

2s+2β+1 usually obtained in
a classical deconvolution model to the more complicated model of deconvolution
with a random operator derived from equation (1.1). Then, let us introduce the
following smoothness class of functions which can be identified with a periodic
Sobolev ball:

Hs(A) =

{

f ∈ L2
per([0, 1]) ;

∑

k∈Z

(1 + |k|2s)|θk|2 ≤ A

}

,

for some constant A > 0 and some smoothness parameter s > 0, where θk =
∫ 1

0 e−2ikπxf(x)dx. It is known (see e.g. [DJKP95]) that if s is not an integer
then Hs(A) can be identified with a Besov ball Bs

2,2(A
′).

Let Λ = (λj)j∈{1,...,N}, with λj
k = 1|k|≤j , k ∈ Z for j = 1, . . . , N and N ≤ m0

be a set of projection filters. In this case, the decomposition of the quadratic
risk for the filter λj ∈ Λ is

R(θ, λj) =
∑

|k|≥j

|θk|2 +
ǫ2

n

∑

|k|≤j

|γk|−2 +
1

n

∑

|k|≤j

|θk|2
(

1

|γk|2
− 1

)

,

Assuming that s ≥ 2β + 1 and f ∈ Hs(A), then the classical choice λ⋆
k = 1k≤j⋆

where j⋆ ∼ n
1

2s+2β+1 yields that

R(θ, λ⋆) ∼ inf
λ∈Λ

R(θ, λ) ∼ n
−2s

2s+2β+1 ,

provided that j⋆ ≤ m0. It can be checked that the choice (2.7) implies that

m0 ∼ n
1
2β and thus for a sufficiently large n,the condition j⋆ ≤ m0 is satisfied

since n
1

2s+2β+1 << n
1
2β . From the lower bound obtained in Theorem 3.1 we

conclude that the quadratic risk infλ∈Λ R(θ, λ) decays asymptotically at the
optimal (in the minimax sense) rate of convergence:

sup
f∈Hs(A)

inf
λ∈Λ

R(θ, λ) ∼ sup
f∈Hs(A)

inf
λ∈Λ

R(θ, λ) ∼ n
−2s

2s+2β+1 .

Now, remark that for the estimator θ⋆α defined by (2.14), Theorems 2.1 yields
that

Eθ‖θ⋆α − θ‖2 = O
(

inf
λ∈Λ

R(θ, λ)

)

as n → +∞, for any 0 ≤ α ≤ 1,
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since it can be checked that in the case of projection filters, the additional
terms in the upper bound (2.15) are of the order O( 1

n1−ζ ) for a sufficiently small
positive ζ. Thus, for any 0 ≤ α ≤ 1, the performances of the estimator θ⋆α is
asymptotically optimal from the minimax convergence point of view.

4. Numerical experiments

The goal of this section on numerical experiments is to study the influence
of the term α used in the definition (2.12) of the criterion Uα(Y, λ). For sake
of simplicity, we study the case of projection filters Λ = (λj)j∈{1,...,N}, with

λj
k = 1|k|≤j , k ∈ Z for j = 1, . . . , N and N = m0 even if our experiments could

be extended to more complex filters. In this case the choice of a filter amounts
to choose a frequency cut-off level 1 ≤ j ≤ m0. For λj ∈ Λ and 0 ≤ α ≤ 1, the
criterion to minimize over 1 ≤ j ≤ m0 is

Uα(Y, j) := −
∑

|k|≤j

|γk|−2

{

|c̃k|2 −
ǫ2

n

}

+
ǫ2

n

∑

|k|≤j

|γk|−2

+α
log2 n

n

∑

|k|≤j

|γk|−4

{

|c̃k|2 −
ǫ2

n

}

.

For the mean pattern f to recover, we consider the three test functions shown
in Figure 1. Then, for each test function, we simulate n = 20 randomly shifted

curves with shifts following a Laplace distribution g(x) = 1√
2σ

exp
(
−
√
2 |x|

σ

)
with

σ = 0.1. Gaussian noise is then added to each curve. The level of the additive
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Fig 1. Test functions and an example of randomly shifted curves. First line: (a) Bumps, (b)
Sine, (c) Blocks. Second line: sample of 10 curves out of n = 20 for each test function.
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Fig 2. An example of template estimation (n = 20 and rsnr = 7) with α = 0 and α = α∗

for each test function.

Gaussian noise is measured as the root of the signal-to-noise ratio (rsnr) defined
as

rsnr =

(∫ 1

0
(f(x) − f̄)2dx

ǫ2

)1/2

where f̄ =

∫ 1

0

f(x)dx.

A sub-sample of 10 curves for rsnr = 7 is shown in Figure 1 for each test
function. The Fourier coefficients of the density g are given by γk = 1

1+2σ2π2k2

which corresponds to a degree of ill-posedness β = 2. The condition (2.7) leads to
the choice m0 = 27. An example of estimation by spectral cut-off by minimizing
the criterion Uα(Y, j) with α = 0 is displayed in Figure 2. One can see that the
obtained estimators are rather oscillatory suggesting that the selected frequency
cut-off is somewhat too large when taking α = 0.

These results illustrate the problem of choosing the value of α. To better
understand the influence of this parameter, we present a short simulation study.
The factors are the number of curves n = 20, 50, 100 and the signal-to-noise
ratio rsnr = 3, 7. For each combination of these two factors, we generate
m = 1, . . . ,M (with M = 100) independent replications of the above described
simulations. For each replication m we compute the estimator θ∗α,m for α rang-
ing on a fine grid of [0, 1]. Then, since the template f and its Fourier coefficients
θ are known, one can compute for each value of α the following empirical mean
squared error (MSE)

MSE(α) =
1

M

M∑

m=1

‖θ∗α,m − θ‖22.

For each test function and each combination of the factors, we display in Figure 3
the curve α → MSE(α). The value α∗ minimizing α → MSE(α) depends on
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(a) Bumps, rsnr = 7
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(b) Sine, rsnr = 7
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(c) Blocks, rsnr = 7
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(d) Bumps, rsnr = 3
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(e) Sine, rsnr = 3
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(f) Blocks, rsnr = 3

Fig 3. Empirical Mean Square Error (MSE) over M = 100 simulations as a function of
α ∈ [0, 1] for n = 20, 50, 100 and rsnr = 7, 3 for each test function: Bumps (first column),
Sine (second Column), Blocks (third column).

the template to recover. These simulations show that α∗ tends to be smaller
as the number n of curves grows. The value of α∗ is also closer to zero when
the signal-to-noise ratio decreases (which corresponds to high values of ǫ). This
confirms the heuristic arguments developed in Section 2. If the level of noise ǫ is
large compared to ‖θ‖22 (case of a low signal-to-noise ratio), then the model (1.1)
is close to the standard white noise deconvolution problem. In this case, setting
α = 0 leads to satisfactory results which corresponds to taking the classical
decomposition of the risk in standard inverse problems to do the estimation.

To conclude this section, let us consider the estimation by spectral cut-off by
minimizing the criterion Uα(Y, j) with α = α∗ in the case n = 20 and rsnr = 7.
This example is displayed in Figure 1. One can see that the obtained estimators
are much smoother than those obtained with the choice α = 0. This confirms
the importance of the choice of α. However, finding a data-based value for α is
clearly challenging and is an interesting topic for future work.

Appendix

This Appendix is divided in two parts. In the first part, we detail the scheme used
for the proof of Theorem 2.1. The second part contains some technical lemmas.
Throughout the proof, C denote a generic positive constant whose value may
change from line to line. We provide first some short definitions which will be
used in the sequel. In some sense, these terms measure the complexity associated
to the set of filters Λ using the notations in [CGPT02].
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Definition 4.1. For each λ ∈ Λ, define

ρ(λ) = sup
|k|≤m0

|γk|−2λk
√∑

|i|≤m0
|γi|−4λ4

i

, ρΛ = max
λ∈Λ

ρ(λ),

S =

max
λ∈Λ

sup
|i|≤m0

|γi|−2λ2
i

min
λ∈Λ

sup
|i|≤m0

|γi|−2λ2
i

, M =
∑

λ∈Λ

e−1/ρ(λ), and LΛ = log(NS)+ρ2Λ log2(MS).

(4.1)

For a brief discussion on these quantities, we refer to [CGPT02]. For all λ ∈ Λ,
we also introduce Rα(θ, λ) as

Rα(θ, λ) =
∑

|k|≤m0

(1− λk)
2θ2k +

∑

|k|≤m0

λ2
k|γk|−2 +

∑

|k|>m0

|θk|2

+α
log2(n)

n

∑

|k|≤m0

λ2
k|θk|2|γk|−2, (4.2)

which corresponds to an approximation of the quadratic risk.

4.1. Proof of Theorem 2.1

The proof uses the following scheme. The first step consists in computing the
quadratic risk of θ⋆ and proving that it is close to Rα(θ, λ

⋆). The aim of the
second part is to show that Uα(Y, λ

⋆) is close to Rα(θ, λ
⋆), even for a random

filter λ⋆. Then, we use the fact that λ⋆ minimizes the criterion Uα(Y, λ
⋆) over

the filters in Λ and we compute the expectation of Uα(Y, λ) for all deterministic
λ in order to obtain an oracle inequality.

Step 1: remark that

Eθ‖θ⋆ − θ‖2

= Eθ

∑

k∈Z

|θ⋆k − θk|2,

= Eθ

∑

|k|≤m0

|λ⋆
kγ

−1
k c̃k − θk|2 +

∑

|k|>m0

|θk|2,

= Eθ

∑

|k|≤m0

∣
∣
∣
∣

(

λ⋆
k

γ̃k
γk

− 1

)

θk + λ⋆
kγ

−1
k

ǫ√
n
ξk

∣
∣
∣
∣

2

+
∑

|k|>m0

|θk|2,

= Eθ

∑

|k|≤m0

∣
∣
∣
∣
λ⋆
k

γ̃k
γk

− 1

∣
∣
∣
∣

2

|θk|2 +
ǫ2

n
Eθ

∑

|k|≤m0

{λ⋆
k}2|ξk|2|γk|−2 +

∑

|k|>m0

|θk|2

+2Eθ

∑

|k|≤m0

ǫ√
n
Re
[
(λ⋆

kγ
−1
k γ̃k − 1)θk × λ⋆

k γ̄
−1
k ξ̄k

]
,



J. Bigot et al./Template estimation for shifted curves 1011

where for a given z ∈ C, Re(z) denotes the real part of z and z̄ the conjugate
of z. In the following, we denote by R̃(θ, λ) the commonly used risk in inverse
problems, i.e.

R̃(θ, λ) :=
∑

|k|≤m0

∣
∣
∣
∣
1− λk

γ̃k
γk

∣
∣
∣
∣
|θk|2 +

ǫ2

n

∑

|k|≤m0

λ2
k|γk|−2 +

∑

|k|>m0

|θk|2, ∀λ ∈ Λ.

Then Eθ‖θ⋆ − θ‖2 can be rewritten as

Eθ‖θ⋆ − θ‖2 = EθR̃(θ, λ⋆) +
ǫ2

n
Eθ

∑

|k|≤m0

|γk|−2{λ⋆
k}2(|ξk|2 − 1)

+ 2Eθ

∑

|k|≤m0

ǫ√
n
Re
(
(λ⋆

kγ
−1
k γ̃k − 1)θk × λ⋆

kγ̄
−1
k ξ̄k

)
,

= EθR̃(θ, λ⋆) +A1 +A2. (4.3)

In order to bound A1, we follow the notations of [CGPT02]. Let us define

∆(λ) = LΛ
ǫ2

n
sup

|k|≤m0

λ2
k|γk|−2 and ∆̄(λ) =

log2(n)

n
sup

|k|≤m0

λ2
k|γk|−2 for all λ ∈ Λ,

(4.4)
where LΛ has been introduced in (4.1). Then, we apply the inequality (32) of
[CGPT02]: there exists a universal constant C such that for any γ > 0

A1 :=
ǫ2

n
Eθ

∑

|k|≤m0

|γk|−2{λ⋆
k}2(|ξk|2 − 1)

≤ γ
ǫ2

n
Eθ

∑

|k|≤m0

{λ⋆
k}2|γk|−2 + Cγ−1

Eθ∆(λ⋆). (4.5)

Now, consider a bound for A2 defined as

A2 := 2Eθ

∑

|k|≤m0

ǫ√
n
Re
(
(λ⋆

kγ
−1
k γ̃k − 1)θk × λ⋆

kγ̄
−1
k ξ̄k

)
.

We apply inequality (31) of [CGPT02] to obtain for any γ > 0

A2 ≤ γEθ

∑

|k|≤m0

∣
∣1− λ⋆

k γ̃kγ
−1
k

∣
∣
2 |θk|2 + Cγ−1

Eθ∆(λ⋆). (4.6)

Now, for all γ > 0, inequalities (4.3), (4.5) and (4.6) yield

Eθ‖θ⋆ − θ‖2 ≤ (1 + γ)EθR̃(θ, λ⋆) + Cγ−1
Eθ∆(λ⋆). (4.7)

for some positive constant C. At last, we show that R̃(θ, λ⋆) is close to Rα(θ, λ
⋆)

defined in (4.2). Remark that
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EθR̃(θ, λ⋆)

= Eθ

∑

|k|≤m0

(1− λ⋆
k)

2|θk|2 +
ǫ2

n
Eθ

∑

|k|≤m0

{λ⋆
k}2|γk|−2 + Eθ

∑

|k|>m0

|θk|2

+Eθ

∑

|k|≤m0

[
|1− λ⋆

k γ̃kγ
−1
k |2 − (1− λ⋆

k)
2
]
|θk|2,

= EθR0(θ, λ
⋆) + Eθ

∑

|k|≤m0

|θk|2{λ⋆
k}2

∣
∣
∣
∣

γ̃k
γk

− 1

∣
∣
∣
∣

2

︸ ︷︷ ︸

:=B1

+2Eθ

∑

|k|≤m0

λ⋆
k(1− λ⋆

k)Re

(

1− γ̃k
γk

)

|θk|2.
︸ ︷︷ ︸

:=B2

First, we apply the Lemma 4.1 with K = γ in order to bound B1. We obtain

B1 ≤ γ
log2 n

n
Eθ

∑

|k|≤m0

{λ⋆
k}2|γk|−2|θk|2 + Ce−γ log1+τ (n),

for some τ > 0. Concerning B2, we use the inequality 2ab ≤ γa + γ−1b for all
γ > 0 and Lemma 4.1 with K = γ2 in order to obtain

B2 = 2Eθ

∑

|k|≤m0

λ⋆
k(1− λ⋆

k)Re
(
1− γ−1

k γ̃k
)
|θk|2,

≤ γEθ

∑

|k|≤m0

(1− λ⋆
k)

2|θk|2 + γ−1
Eθ

∑

|k|≤m0

{λ⋆
k}2|θk|2|γk|−2|γk − γ̃k|2,

≤ γEθ

∑

|k|≤m0

(1− λ⋆
k)

2|θk|2 + γ
log2(n)

n
Eθ

∑

|k|≤m0

{λ⋆
k}2|θk|2|γk|−2

+ Ce−γ2 log1+τ (n).

Therefore, it follows that

EθR̃(θ, λ⋆)

≤ (1 + γ)EθR0(θ, λ
⋆) + 2γ

log2(n)

n
Eθ

∑

|k|≤m0

{λ⋆
k}2|θk|2|γk|−2 + Ce−γ2 log1+τ (n),

≤ (1 + 2γ)EθRα(θ, λ
⋆) + (1− α)γ‖θ‖2Eθ∆̄(λ⋆) + Ce−γ2 log1+τ (n).

Using (4.7), we get

Eθ‖θ⋆ − θ‖2 ≤ (1 + 2γ)2EθRα(θ, λ
⋆) + Cγ−1

Eθ∆(λ⋆)

+C(1− α)γ‖θ‖2Eθ∆̄(λ⋆) + Ce−γ2 log1+τ (n). (4.8)
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This concludes the Step 1.

Step 2: First, we write Uα(Y, λ
⋆) in terms of Rα(θ, λ

⋆). Remark that

Uα(Y, λ
⋆)

=
∑

|k|≤m0

({λ⋆
k}2 − 2λ⋆

k)|γk|−2

{

|c̃k|2 −
ǫ2

n

}

+
ǫ2

n

∑

|k|≤m0

{λ⋆
k}2|γk|−2

+α
log2(n)

n

∑

|k|≤m0

{λ⋆
k}2|γk|−4

{

|c̃k| −
ǫ2

n

}

,

= Rα(θ, λ
⋆) +

∑

|k|≤m0

[

({λ⋆
k}2 − 2λ⋆

k)|γk|−2

{

|c̃k|2 −
ǫ2

n

}

− (1− λ⋆
k)

2θ2k

]

−
∑

|k|≥m0

|θk|2 + α
log2(n)

n

∑

|k|≤m0

{λ⋆
k}2

[

|γk|−4

{

|c̃k| −
ǫ2

n

}

− |γk|−2|θk|2
]

.

(4.9)

Recall that for all k ∈ N

|c̃k|2 = |θkγ̃k|2 +
ǫ2

n
|ξk|2 + 2

ǫ√
n
Re(θkγ̃k ξ̄k),

and

|γk|−2|c̃k|2 = |θk|2
∣
∣
∣
∣

γ̃k
γk

∣
∣
∣
∣

2

+
ǫ2

n
|γk|−2|ξk|2 + 2

ǫ√
n
|γk|−2Re(θkγ̃k ξ̄k).

Hence, equality (4.9) can be rewritten as

Rα(θ, λ
⋆)

= Uα(Y, λ
⋆) + ‖θ‖2 + ǫ2

n

∑

|k|≤m0

(2λ⋆
k − {λ⋆

k}2)|γk|−2(|ξk|2 − 1)

+
∑

|k|≤m0

(2λ⋆
k − {λ⋆

k}2)θ2k

(∣
∣
∣
∣

γ̃k
γk

∣
∣
∣
∣

2

− 1

)

+2
ǫ√
n

∑

|k|≤m0

(2λ⋆
k − {λ⋆

k}2)|γk|−2Re(γ̃kθk ξ̄k)

+α
log2(n)

n

∑

|k|≤m0

{λ⋆
k}2

[

|γk|−2|θk|2 − |γk|−4

{

|c̃k|2 −
ǫ2

n

}]

,

= Uα(Y, λ
⋆) + ‖θ‖2 + C1 + C2 + C3 + C4. (4.10)
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First consider the bound of C1. Thanks to Lemma 4.2

C1 :=
∑

|k|≤m0

(2λ⋆
k − {λ⋆

k}2)θ2k

(∣
∣
∣
∣

γ̃k
γk

∣
∣
∣
∣

2

− 1

)

,

≤ γEθRα(θ, λ
⋆) +

(

γ +
γ−1

log2(n)

)

Rα(θ, λ
0) + (1− α)γ‖θ‖2Eθ∆(λ⋆)

+(1− α)γ−1‖θ‖2∆̄(λ0) + Ce−γ2 log1+τ (n).

Concerning C2, we use the inequality (36) of [CGPT02]. We get

C2 :=
ǫ2

n

∑

|k|≤m0

(2λ⋆
k − {λ⋆

k}2)|γk|−2(|ξk|2 − 1),

≤ 2γ
ǫ2

n

∑

|k|≤m0

{λ⋆
k}2|γk|−2 + Cγ−1

Eθ∆(λ⋆). (4.11)

Then, using Lemma 4.3

C3 :=
ǫ√
n

∑

|k|≤m0

(2λ⋆
k − {λ⋆

k}2)|γk|−2Re(γ̃kθkξ̄k)

≤ 3γEθR(θ, λ⋆) + 2γR(λ0, θ) + Cγ−1
Eθ∆(λ⋆) + Cγ−1

Eθ∆(λ0). (4.12)

We are now interested in C4, the last residual term of (4.10). Thanks to the
definition of c̃k:

C4 :=
log2 n

n
Eθ

∑

|k|≤m0

{λ⋆
k}2|γk|−2

{

−|γk|−2|c̃k|2 +
ǫ2

n
|γk|−2 + |θk|2

}

=
log2 n

n
Eθ

∑

|k|≤m0

{λ⋆
k}2|γk|−2|θk|2

(

1−
∣
∣
∣
∣

γ̃k
γk

∣
∣
∣
∣

2
)

+
ǫ2

n

log2 n

n
Eθ

∑

|k|≤m0

{λ⋆
k}2|γk|−4(1 − |ξk|2)

−2
log2 n

n

ǫ√
n
Eθ

∑

|k|≤m0

{λ⋆
k}2|γk|−4Re(θkγ̃k ξ̄k),

≤ DγEθRα(θ, λ
⋆) +DγRα(θ, λ0)

+(1− α)γ‖θ‖2Eθ∆(λ⋆) + (1 − α)γ−1‖θ‖2∆̄(λ0) + Ce− log1+τ (n), (4.13)

for some D,C > 0 independent of ǫ and n. Indeed, we can use essentially the
same algebra as for the bound of the terms C1, C2 and C3 and the inequality

|γk|−2 ≤ n

log2 n
, ∀k ≤ m0.
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Now, we are interested in the terms ∆(.) and ∆̄(.) introduced in (4.4). For all
λ ∈ Λ and x > 0, we have

sup
|k|≤m0

λ2
k|γk|−2

≤ 1

x

∑

|k|≤m0

λ2
k|γk|−2 + sup

|k|≤m0

λ2
k|γk|−2

1{x sup|k|≤m0
λ2
k
|γk|−2≥

∑

|k|≤m0
λ2
k
|γk|−2}

≤ 1

x

∑

|k|≤m0

λ2
k|γk|−2 + ω(x), (4.14)

where the function ω is introduced in Theorem 2.1. Hence, using (4.10)-(4.14)
with a suitable choice for x,

(1−Dγ)EθRα(θ, λ
⋆)

≤ EθUα(Y, λ
⋆) + ‖θ‖2 +D

(

γ +
γ−1

log2(n)

)

Rα(θ, λ
0) + Ce− log1+τ (n)

+C1
ǫ2

n
LΛω

(
(1 − α)‖θ‖2LΛγ

−1
)
+ C2

log2 n

n
ω
(
(1− α)‖θ‖2 log2(n)γ−1

)

Step 3: From the definition of λ⋆, we immediately get

(1−Dγ)EθRα(θ, λ
⋆)

≤ EθUα(Y, λ
0) + ‖θ‖2 +D

(

γ +
γ−1

log2(n)

)

Rα(θ, λ
0) + Ce− log1+τ (n)

+C1
ǫ2

n
LΛω

(
(1− α)‖θ‖2LΛγ

−1
)
+ C2

log2 n

n
ω
(
(1− α)‖θ‖2 log2(n)γ−1

)
,

where λ0 denotes the oracle bandwidth.

Step 4: Using that for all |k| ≤ m0,

Eθ

(

Θ̂2
k

)

= |θk|2
(

1− 1

n
+

1

nγ2
k

)

≤ |θk|2
(

1− 1

n
+

1

log2(n)

)

it follows that

EθUα(Y, λ
0) ≤

(

1 +
1

log2(n)

)
(
Rα(θ, λ

0)− ‖θ‖2
)
.

Using (4.8) and step 3 of the proof, we get for γ small enough the results of
Theorem 2.1. �
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4.2. Technical Lemmas

Lemma 4.1. For all K > 0, we have

Eθ

∑

|k|≤m0

{λ⋆
k}2

∣
∣
∣
∣

γ̃k
γk

− 1

∣
∣
∣
∣

2

|θk|2

≤ K
log2(n)

n
Eθ

∑

|k|≤m0

{λ⋆
k}2|γk|−2|θk|2 + Ce−K log1+τ (n),

where C, τ denote positive constants independent of ǫ and n.

Proof. Let Q > 0 a deterministic term which will be chosen later.

Eθ

∑

|k|≤m0

{λ⋆
k}2

∣
∣
∣
∣

γ̃k
γk

− 1

∣
∣
∣
∣

2

|θk|2 = Eθ

∑

|k|≤m0

{λ⋆
k}2|θk|2|γk|−2|γ̃k − γk|2,

≤ QEθ

∑

|k|≤m0

{λ⋆
k}2|θk|2|γk|−2

+Eθ

∑

|k|≤m0

{λ⋆
k}2|θk|2|γk|−2

{
|γ̃k − γk|2 −Q

}1{|γ̃k−γk|2>Q}.

Thanks to (2.7) and the monotonicity of λ, we have

Eθ

∑

|k|≤m0

{λ⋆
k}2|θk|2|γk|−2

{
|γ̃k − γk|2 −Q

}1{|γ̃k−γk|2>Q}

≤ C
n

log2(n)

∑

|k|≤m0

|θk|2Eθ

{
|γ̃k − γk|2 −Q

}1{|γ̃k−γk|2>Q}.

For all |k| ≤ m0, using an integration by part

Eθ

[
|γ̃k − γk|2 −Q

]1{|γ̃k−γk|2>Q} =

∫ +∞

Q

P (|γ̃k − γk|2 ≥ x)dx.

Let x ≥ Q. A Bernstein type inequality provides

P (|γ̃k − γk|2 ≥ x) = P

(∣
∣
∣
∣
∣

1

n

n∑

l=1

{
e−2iπkτl − E[e−2iπkτl ]

}

∣
∣
∣
∣
∣
≥ √

x

)

,

≤ 2 exp

{

− (n
√
x)2

2
∑n

l=1 Var(e
−2iπkτl) + n

√
x/3

}

,

≤ 2 exp

{

− n2x

2n+ n
√
x/3

}

.
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Hence, for all |k| ≤ m0,

Eθ

[
|γ̃k − γk|2 −Q

]1{|γ̃k−γk|2>Q}

≤
∫ +∞

Q

exp

{

− nx

2 +
√
x/3

}

dx,

≤
∫ 36

Q

exp
{

−nx

4

}

dx+

∫ +∞

36

exp
{
−Cn

√
x
}
dx ≤ C

n
e−Qn/4,

where C denotes a positive constant independent of Q. Let K > 0. Choosing
for instance Q = n−1K log2(n), we obtain

Eθ

∑

|k|≤m0

{λ⋆
k}2

∣
∣
∣
∣

γ̃k
γk

− 1

∣
∣
∣
∣

2

|θk|2

≤ K
log2(n)

n
Eθ

∑

|k|≤m0

{λ⋆
k}2|γk|−2|θk|2 + C

nm0

log2(n)
e−K log2(n)/4,

≤ K
log2(n)

n
Eθ

∑

|k|≤|m0|
{λ⋆

k}2|γk|−2|θk|2 + Ce−K log1+τ (n),

where C, τ denote positive constants independent of ǫ and n. This ends the proof
of Lemma 4.1.

Lemma 4.2. Let λ⋆ defined in (2.13). For all deterministic filter λ and 0 <
γ < 1, we have

Eθ

∑

|k|≤m0

|θk|2{λ⋆
k}2

(∣
∣
∣
∣

γ̃k
γk

∣
∣
∣
∣

2

− 1

)

≤ γEθRα(θ, λ
⋆) +

(

γ +
γ−1

log2(n)

)

Rα(θ, λ
0)

+(1− α)γ−1‖θ‖2∆̄(λ0) + (1− α)γ‖θ‖2Eθ∆̄(λ⋆) + Ce−γ2 log1+τ (n).

where C, τ denote positive constants independent of ǫ and n.

Proof. First, remark that

Eθ

∑

|k|≤m0

|θk|2{λ⋆
k}2

(∣
∣
∣
∣

γ̃k
γk

∣
∣
∣
∣

2

− 1

)

= Eθ

∑

|k|≤m0

|θk|2{λ⋆
k}2|γk|−2(|γ̃k − γk + γk|2 − |γk|2),

= Eθ

∑

|k|≤m0

|θk|2{λ⋆
k}2|γk|−2|γ̃k − γk|2

+2Eθ

∑

|k|≤m0

|θk|2{λ⋆
k}2|γk|−2Re((γ̃k − γk)γ̄k) (4.15)
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Let λ ∈ Λ be a deterministic filter, since Eθγ̃k = γk for all k ∈ N, we can write
that

Eθ

∑

|k|≤m0

|θk|2{λ⋆
k}2|γk|−2Re((γ̃k − γk)γ̄k)

= Eθ

∑

|k|≤m0

|θk|2({λ⋆
k}2 − λ2

k)|γk|−2Re((γ̃k − γk)γ̄k),

and simple algebra yields

|{λ⋆
k}2 − λ2

k| ≤ λ⋆
k|1 − λ⋆

k|+ λk|1− λk|+ λ⋆
k|1− λk|+ λk|1− λ⋆

k|, ∀k ∈ N.

Next, the Young inequality implies that for all γ ∈]0; 1]:

Eθ

∑

|k|≤m0

|θk|2
∣
∣{λ⋆

k}2 − λ2
k

∣
∣ |γk|−2Re((γ̃k − γk)γ̄k)

≤ γ−1
∑

|k|≤m0

[
[{λ⋆

k}2 + {λk}2
]
|θk|2|γk|−2|γ̃k − γk|2

+γ
∑

|k|≤m0

[
|1− λk|2 + |1− λ⋆

k|2
]
|θk|2. (4.16)

Hence, from equations (4.15) and (4.16), we obtain

Eθ

∑

|k|≤m0

|θk|2{λ⋆
k}2

(∣
∣
∣
∣

γ̃k
γk

∣
∣
∣
∣

2

− 1

)

≤ (1 + γ−1)Eθ

∑

|k|≤m0

|θk|2{λ⋆
k}2|γk|−2|γ̃k − γk|2

+γ−1
Eθ

∑

|k|≤m0

|θk|2λ2
k|γk|−2|γ̃k − γk|2 + γEθ

∑

|k|≤m0

[
|1− λk|2 + |1− λ⋆

k|2
]
|θk|2.

A direct application of Lemma 4.1 provides, for all K > 0

Eθ

∑

|k|≤m0

|θk|2
(∣
∣
∣
∣

γ̃k
γk

∣
∣
∣
∣

2

− 1

)

≤ (1 + γ−1)K
log2(n)

n
Eθ

∑

|k|≤m0

|θk|2{λ⋆
k}2|γk|−2

+
γ−1

n

∑

|k|≤m0

λ2
k|θk|2|γk|−2(1 − |γk|2)

+2γEθ

∑

|k|≤m0

[|1− λk|2 + |1− λ⋆
k|2]|θk|2 + Ce−K log1+τ (n).

Fix K = γ2 and remark that
∑

|k|≤m0

|γk|−2|θk|2λ2
k ≤ ‖θ‖2 sup

|k|≤m0

λ2
k|γk|−2, ∀λ ∈ Λ,

in order to conclude the proof of Lemma 4.2.
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Lemma 4.3. Let λ⋆ the filter defined in (2.13). For all deterministic filter λ
and 0 < γ < 1, we have

2ǫ√
n
Eθ

∑

|k|≤m0

(
2λ⋆

k − {λ⋆
k}2
)
|γk|−2Re(θkγ̃k ξ̄k) ≤ 2γR(θ, λ)

+3γEθR(θ, λ⋆) + Cγ−1
Eθ∆(λ⋆) + Cγ−1

Eθ∆(λ) + Ce− log1+τ (n),

for some τ > 0.

Proof. In the following, we first state the inequality

P

(
m0⋂

k=1

{∣
∣
∣
∣

γ̃k
γk

∣
∣
∣
∣
≤ 2

})

≥ 1− Cm0 exp(− log2 n),

for some τ > 0. Indeed

P

(
m0⋃

k=1

{∣
∣
∣
∣

γ̃k
γk

∣
∣
∣
∣
> 2

})

≤
m0∑

k=1

P

(∣
∣
∣
∣

γ̃k
γk

∣
∣
∣
∣
> 2

)

≤
m0∑

k=1

P (|γ̃k − γk| > |γk|) ,

≤
m0∑

k=1

P

(

|γ̃k − γk| >
log2(n)

n

)

,

≤ Cm0 exp(− log2 n).

Then, for all γ > 0, using the above result and inequality (35) of [CGPT02], we
obtain

2ǫ√
n
Eθ

∑

|k|≤m0

(
2λ⋆

k − {λ⋆
k}2
)
|γk|−2Re(θkγ̃k ξ̄k)

≤ γ







∑

|k|≤m0

(1 − λk)
2|θk|2 +

ǫ2

n
Eθ

∑

|k|≤m0

λ2
k|γk|−4|γ̃k|2






+ Cγ−1

Eθ∆(λ)

+γEθ







∑

|k|≤m0

(1− λ⋆
k)

2|θk|2 +
ǫ2

n

∑

|k|≤m0

{λ⋆
k}2|γk|−4|γ̃k|2






+ Cγ−1

Eθ∆(λ⋆),

≤ 4γ







∑

|k|≤m0

(1− λk)
2|θk|2 +

ǫ2

n
Eθ

∑

|k|≤m0

λ2
k|γk|−2






+ Ce− log1+τ (n)

+4γEθ







∑

|k|≤m0

(1 − λ⋆
k)

2|θk|2 +
ǫ2

n

∑

|k|≤m0

{λ⋆
k}2|γk|−2






+ Cγ−1

Eθ∆(λ⋆)

+Cγ−1
Eθ∆(λ).

This concludes the proof.
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