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Test, estimation and model comparison for the meiosis I
nondisjunction fraction in trisomies
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Abstract. Trisomies are numerical chromosomal anomalies (aneuploidies)
which are common causes of mental retardation, pregnancy losses and fe-
tal death. The determination of the meiosis I nondisjunction fraction plays
an important role in the identification of possible factors which could gener-
ate such aneuploidies. In this article, more flexible misclassification models
for the number of peaks in a polymorphic locus of trisomic individuals are
considered. They are compared to some others proposed in the literature. Es-
timation and tests for the nondisjunction fraction in meiosis I and for the
misclassification errors are introduced extending previous works. Using the
Decision Theory approach, we also build a criterion for making decisions un-
der Jeffreys and Pereira–Stern tests. We apply the results to Down Syndrome
data that is the most prevalent trisomy in humans.

1 Introduction

Trisomies are numerical chromosomal anomalies (aneuploidies) that, in general,
arise as a consequence of sporadic error in the chromosomal segregation (nondis-
junction) during the meiotic process. In humans, trisomies are common causes
of mental retardation, pregnancy losses and fetal death. Although the causes of
aneuploidies are unknown, it is known that the risk of having children with tri-
somies 21 (Down Syndrome), 18 (Edward’s Syndrome) or 13 (Patou Syndrome)
increases with the mother’s age (Valero et al., 1999). According to Pena (1998), in
trisomy 21, the increase in the rate of nondisjunction in meiosis II is higher than
for meiosis I if the mother’s age is between 35 and 39 years. For sexual chromo-
somes, however, high mother age influences only the fraction φ of nondisjunction
in meiosis I. Thus, the determination of φ plays an important role in the identifica-
tion of possible factors which could generate aneuploidies. See more about these
trisomies and other syndromes of genetic origin in the Genetics Home Reference’s
website (http://ghr.nlm.nih.gov/).

Methods to estimate φ which consider information coming from the affected
children and their parents are presented in Hassold and Hunt (2001), Nicolaidis
and Petersen (1998), Savage et al. (1998), Yoon et al. (1996), Koehler et al. (1996),
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Griffin (1996), Petersen et al. (1992), Zaragosa et al. (1994), Hassold and Jacobs
(1984) along many others. More recently, Bayesian and Classical approaches to
infer about φ, assuming models that do not take the parental information into con-
sideration, are presented by Franco et al. (2003) and Loschi et al. (2007).

Prenatal diagnosis of aneuploidies can be done by employing the polymerase
chain reaction (PCR) based approach followed by a quantitative analysis by
computer-assisted laser densitometry. Such procedure provides as a result a
graphic in which the peaks represent the different alleles in the loco of interest.
Data are obtained from such graphics. Since some other peaks can also be ob-
served as a consequence of residuals generated by the preparation of the genetic
material, misclassification can occur. For details, see Pena (1998), Valero et al.
(1999), Blake et al. (1999), Schmidt et al. (2000), Pont-Kingdon and Lyon (2003),
Ogilvie et al. (2005) among many others.

The model introduced by Franco et al. (2003) took into consideration that, in
trisomic patients submitted to such a test, the results display, in informative mi-
crosatellite loci, three fragment peaks of equal intensity, two fragments at an av-
erage 2:1 dosage or one individual fragment. The relative proportion of the three
cases depends on the type of nondisjunction (first or second meiosis division) and
on the heterozygosity level. It also considers the perfect classification of all indi-
viduals in the sample.

A misclassification model for the number of peaks in a polymorphic locus of
trisomic individuals was first considered by Loschi et al. (2008). As in the model
introduced by Franco et al. (2003), such a misclassification model is innovative
in the analysis of trisomies since its construction does not take into account the
parental information. Thus, the use of archive material is possible which is impor-
tant in studies of rare trisomies. However, it is not flexible enough to accommodate
more general situations where the misclassification errors are not equal.

This paper aims at obtaining exact posteriors and predictive distributions un-
der more flexible misclassification models for the number of trisomic individu-
als with one, two or three peaks. Extensions of Loschi et al. (2008) are twofold:
Weaker constraints for the misclassification errors are assumed (say, the errors are
assumed being different) and Jeffreys and Pereira–Stern tests under all misclas-
sification models are introduced. Among their other interesting properties, these
two test procedures are both Bayes rules, that is, they minimize the risk whenever
particular loss functions are assumed. Using such a characteristic, we propose a
criteria to obtain the cut points for the acceptance of the null hypothesis. The cri-
terion is building assuming that both procedures have the same prior risk. A case
study is presented where we analyze a sample of Brazilian individuals with Down
Syndrome using the models introduced here and the ones developed by Franco et
al. (2003) and Loschi et al. (2008). The models are compared using the DIC as
well as the Bayes factor.

This paper is organized as follows: Section 2 introduces two more flexible mis-
classification models for the number of individuals with one, two or three peaks,
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given φ. Predictive prior distributions and posteriors for all parameters are pre-
sented. We also prove that they are identifiable models. In Section 3 we present
procedures for hypotheses tests and model comparisons. A criteria is introduced to
define the critical values for tests. In Section 4, we analyze the data from Brazilian
patients with trisomy 21. Finally, presented in Section 5 are some conclusions to
end the paper.

2 Models description and posterior inferences

The misclassification model introduced by Loschi et al. (2008) is extended by con-
sidering more general constraints for the misclassification errors. As in Franco et
al. (2003), we assume that the hypothesis of Hardy–Weinberg equilibrium (Hartl
and Clark, 1997) has been verified for the population. Thus, we can obtain the
relative frequency pi , i = 1, . . . ,m, of the allele i in a multiallelic locus of mi-
crosatellites.

To establish notation, throughout this paper we denote by Yl the number of in-
dividuals with l peaks pattern, l = 1,2,3, to be observed in a sample of n trisomic
individuals. Denote by Y the random vector (Y1, Y2, Y3). The misclassification
models are constructed following Loschi et al. (2008). It is assumed two auxiliary
random variables X and Z, which denote the true (nonobserved) and the observed
number of peaks in a trisomic individual, respectively. (See more on misclassifica-
tion models in Swartz et al. (2004), Paulino et al. (2003) and Viana (1994).) More-
over, denote by θl(·) and πl(·), respectively, the probability of being l, l = 1,2,3,
the true and the observed number of peaks in the microsatellite locus of interest.
As proved in Franco et al. (2003), θl(φ) depends on φ, φ ∈ [0,1], and is such that

θ1(φ) = aφ + b(1 − φ),

θ2(φ) = cφ + d(1 − φ), (2.1)

θ3(φ) = eφ,

where a = ∑m
i=1 p3

i , b = ∑m
i=1 p2

i , c = 3
∑m

i=1
∑m

j=1 p2
i pj , for all i �= j , d =∑m

i=1
∑m

j=1 pipj , for all i �= j and e = 6
∑m

i=1
∑m

j=1
∑m

k=1 pipjpk , ∀i �= j �= k.

Notice that a + c + e = (
∑m

k=1 pk)
3 = 1 and b + d = (

∑m
k=1 pk)

2 = 1.
Let ηj |k = P(Z = j |X = k), j, k = 1,2,3, j �= k, be the probability of mis-

classifying an individual. It follows from probability calculus that the vector of
probabilities π(φ,η) = (π1(φ,η),π2(φ,η),π3(φ,η))t is given by

π(φ,η) = ηθ(φ), (2.2)

where θ(φ) = (θ1(φ), θ2(φ), θ3(φ))t and η is the following 3 × 3 matrix

η =
⎛
⎝η1|1 η1|2 η1|3

η2|1 η2|2 η2|3
η3|1 η3|2 η3|3

⎞
⎠ .
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Since
∑3

j=1 ηj |k = 1, for each k = 1,2,3, it can be proved that
∑3

j=1 πj (φ,η) =∑3
k=1 θk(φ) = 1.
As a consequence of the previous assumptions, Loschi et al. (2008) estab-

lish that Y|φ,η ∼ Multinomial(n,π1(φ,η),π2(φ,η),π3(φ,η)) which probability
function is

f (Y|φ,η) = n!
y1!y2!y3!

3∏
j=1

[πj (φ,η)]yj , (2.3)

where
∑3

j=1 yj = n. However, to make inference about φ, it is assumed that the
matrix η is such that

ηj |k =
{

1 − 2ψ, for j = k,
ψ, for j �= k.

(2.4)

This assumption removes the nonidentifiability from the model as has been
proven in Loschi et al. (2008). However, it is assumed as equal the probabilities
of classifying as having three peaks the individuals for which the true number of
different alleles is one or two. It cannot be a realistic assumption since the intensity
of peaks displayed in the diagnosis test depends on the number of different alleles
in the locos of interest (Valero et al., 1999).

In the following, we present posteriors and posterior moments for all param-
eters and also predictive prior distributions under more flexible misclassification
models. Such models will assume more general constraints on parameters in the
matrix η. Although more general, such new models still remain identifiable (see
details in Section 2.5).

Throughout this paper, we assume that a priori the misclassification errors are
independent of φ. It is also reasonable to assume that the probability of correctly
classifying the individual is higher than the total misclassification error. Since there
is little information available about the misclassification errors, we considered the
Bayes–Laplace approach to build non informative priors for them, say, we as-
sume uniform distributions to describe the prior uncertainty about all misclassi-
fication errors. Other procedures such as Jeffreys or Bernardo–Berger approaches
(Bernardo and Smith, 1994; Migon and Gamerman, 1999) can also be considered
in order to build non-informative priors for the parameters.

Some information about φ is available in the literature for other populations.
Such pieces of information could be used to build a more informative prior for φ.
We assume that the prior for φ is in the beta family which is very rich in form and
can represent well many different prior opinions about φ including informative
and non-informative ones.

To establish notation consider I1/2(α,β) = ∫ 1/2
0 xα−1(1 − x)β−1 dx which can

be approximated by (Abramowitz and Stegun, 1972)

I1/2(α,β) = (1/2)α+β

α

{
1 +

∞∑
i=0

[
1

2

]i+1 B(α + 1, i + 1)

B(α + β, i + 1)

}
, (2.5)
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where B(a, b) denotes the beta function with parameters a > 0 and b > 0.

2.1 Bayesian inference under proposed Model 1 (PM1)

In this section, we assume that, given the true number of peaks is k, k = 1,2,3,
the misclassification probabilities are equal for all possible values for the observed
number of peaks, say, ηj |k = ηi|k = ψk , for j �= i �= k, i, j, k = 1,2,3. Moreover,
we consider that the probability of correctly classifying an individual is such that
ηj |k = ηk , for j = k, j, k = 1,2,3. Since

∑3
j=1 ηj |k = 1, it follows that ηi = 1 −

2ψi , i = 1,2,3. Thus, the matrix η becomes

η =
⎛
⎝ 1 − 2ψ1 ψ2 ψ3

ψ1 1 − 2ψ2 ψ3
ψ1 ψ2 1 − 2ψ3

⎞
⎠ .

Consequently, from expressions (2.2) and (2.3) and using the binomial theorem
successively, the likelihood function becomes the following finite beta mixture

f (Y |φ,η) = n!
y1∑

r=0

y2∑
s=0

y3∑
t=0

y1−r∑
f =0

r∑
g=0

y1−r−f∑
h=0

y2−s∑
i=0

s∑
j=0

y2−s−i∑
k=0

y3−t∑
l=0

t∑
m=0

y3−t−l∑
q=0

AM1

× φn−δ(1 − φ)δψ
w1
1 (1 − 2ψ1)

w2

× ψ
w3
2 (1 − 2ψ2)

w4ψ
w5
3 (1 − 2ψ3)

l (2.6)

= n! ∑
PM1

AM1φ
n−δ(1 − φ)δψ

w1
1 (1 − 2ψ1)

w2

× ψ
w3
2 (1 − 2ψ2)

w4ψ
w5
3 (1 − 2ψ3)

l,

where

AM1 = ay2+y3+f −s−i−k−t−l−qbg+s+m−j cy1+i+q−r−f −h

f !g!h!i!j !k!l!m!q!(r − g)!(s − j)!(t − m)!

× dr+j+t−g−mew5+l

(y1 − r − f − h)!(y2 − s − i − k)!(y3 − t − l − q)! ,
δ = r + s + t,

w1 = y2 + y3 + m − i − j − k − t − l − q,

w2 = f + g,

w3 = y1 + t + q − h − m − w2,

w4 = i + j,

w5 = h + k.

We are assuming that the probability of correctly classifying the individual is
higher than the total misclassification error which implies that 1 − 2ψk > 2ψk , for
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all k = 1,2,3. Consequently, η = (ψ1,ψ2,ψ3) assume values in the cube [0,1/4]3

(see Figure 1). Thus, the joint Bayes–Laplace prior for η is the following uniform
distribution

f (η) =
{

64, for (ψ1,ψ2,ψ3) ∈ [0,1/4]3,
0, otherwise,

which marginals are the independent uniform priors considered in the following
proposition.

Proposition 1. Assume that Y|φ,ψ ∼ Multinomial(n,π1(φ,η),π2(φ,η),π3(φ,

η)) which probability function is given in (2.6). If, a prior, φ ∼ Beta(α,β), α > 0,
β > 0, and ψk ∼ Uniform(0,1/4), k = 1,2,3, then it follows that:

(i) the predictive distribution of Y is given by

fPM1(Y) = 64n![B(α;β)]−1
∑
PM1

AM1 B(α + n − δ;β + δ)I(w, l),

(ii) the posterior of φ is given by

π(φ|Y) =
∑

PM1
AM1 I(w, l)φα+n−δ−1(1 − φ)β+δ−1

ker(fPM1(Y ))
,

(iii) the ξ th posterior moment of φ is

E(φξ |Y) =
∑

PM1
AM1 I(w, l)B(ξ + α + n − δ;β + δ)

ker(fPM1(Y))
,

(iv) the posterior of ψ1 is given by

π(ψ1|Y) =
∑

PM1
AM1 J (w3,w4,w5, l)ψ

w1
1 (1 − 2ψ1)

w2

ker(fPM1(Y))
,

(v) the ξ th posterior moment of ψ1 is

E(ψ
ξ
1 |Y)

=
∑

PM1
AM1 J (w3,w4,w5, l)I1/2(ξ + w1 + 1;w2 + 1)2−(ξ+w1+1)

ker(fPM1(Y))
,

where I(w, l) = I1/2(w1 + 1;w2 + 1)I1/2(w3 + 1;w4 + 1)I1/2(w5 + 1; l +
1)2−(w1+w3+w5+3), J (w3,w4,w5, l) = B(α + n − δ;β + δ)I1/2(w3 + 1;w4 +
1)I1/2(w5 +1; l +1)2−(w3+w5+2), ker(fPM1(Y)) = fPM1(Y)B(α;β)[64n!]−1, and
AM1 , δ and w = (w1,w2,w3,w4,w5) are given in (2.6). The posteriors and pos-
terior moments of ψ2 and ψ3 are obtained similarly.

The proof of Proposition 1 follows straightforward from Bayes’s theorem and
some other well-known results of probability calculus. It is similar to the one pre-
sented in Loschi et al. (2008) and thus is omitted.



Test, estimation and model comparison in trisomies 129

2.2 Bayesian inference under proposed Model 2 (PM2)

As for PM1, we assume that the probabilities of correctly classifying the indi-
vidual are ηj |k = ηk , for j = k and j, k = 1,2,3, but now we assume a sym-
metric relationship among the misclassification errors, say, they are such that
ηj |k = ηk|j = ψk for all j �= k and j, k = 1,2,3. Since

∑3
j=1 ηj |k = 1, it follows

that the matrix η is given by

η =
⎛
⎝ 1 − ψ1 − ψ3 ψ1 ψ3

ψ1 1 − ψ1 − ψ2 ψ2
ψ3 ψ2 1 − ψ2 − ψ3

⎞
⎠ .

In this case, the likelihood function is given by

f (Y|φ,η) = n!
y1∑

r=0

y2∑
s=0

y3∑
t=0

y1−r∑
f =0

r∑
g=0

y1−r−f∑
h=0

y2−s∑
i=0

s∑
j=0

y2−s−i∑
k=0

y3−t∑
l=0

t∑
m=0

y3−t−l∑
q=0

f +g∑
u=0

i=j∑
v=0

l∑
x=0

CM2

(2.7)
× φn−δ(1 − φ)δψ

z1
1 (1 − ψ1)

uψ
z2
2 (1 − ψ2)

vψ
z3
3 (1 − ψ3)

x

= n! ∑
PM2

CM2φ
n−δ(1 − φ)δψ

z1
1 (1 − ψ1)

uψ
z2
2 (1 − ψ2)

vψ
z3
3 (1 − ψ3)

x,

where

CM2 = AM1

(
w2
u

)(
w4
v

)(
l

x

)
(−1)w2+w4+l−u−v−x,

z1 = y1 + y2 − w2 − w5 − v,

z2 = k + q + t + l − m − x,

z3 = w2 + h + y3 + m − u − t − l − q,

and AM1 and δ are as defined in (2.6).
The likelihood in (2.7) is also a finite beta mixture. However, it differs from the

one obtained in PM1 since the misclassification probabilities ψk now have differ-
ent interpretations. In both cases, however, we have a generalization of previous
models. If ψk = 0, for all k = 1,2,3, Franco et al.’s model (Franco et al., 2003)
is obtained and whenever ψk = ψ , for all k = 1,2,3, we get the misclassification
model introduced by Loschi et al. (2008).

Since the probability of correctly classifying the individual is assumed to
be higher than the total misclassification error, the possible values for η =
(ψ1,ψ2,ψ3) are in the set � = {(ψ1,ψ2,ψ3) ∈ [0,1/2]3 :ψ1 + ψ2 < 1/2,ψ2 +
ψ3 < 1/2,ψ1 + ψ3 < 1/2}. Thus, the joint Bayes–Laplace prior for η is

f (η) =
{

32, if (ψ1,ψ2,ψ3) ∈ V ,
0, otherwise,
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Figure 1 Prior domain.

where V is the region pointed out in Figure 1.
We consider an interesting simplification of PM2 (SPM2) which is obtained

whenever it is assumed ψ1 = ψ2 = ψ∗ and ψ3 = (ψ∗)2. By assuming these con-
straints we have a more parsimonious model that also assumes ψ3 < ψ1. In this
case, the likelihood becomes

f (Y|φ,ψ∗) = n!
y1∑

f=0

y1−f∑
g=0

y1−f −g∑
h=0

f∑
i=0

f −i∑
j=0

y2∑
k=0

y2−k∑
l=0

k∑
p=0

y3∑
r=0

y3−r∑
s=0

y3−r−s∑
t=0

r∑
u=0

ASPM2

× φn−w1(1 − φ)w1(ψ∗)w2 (2.8)

= n! ∑
SPM2

ASPM2φ
n−w1(1 − φ)w1(ψ∗)w2,

where

ASPM2 = (−1)j+t agbf +r−ucldp+ues(c − a)y1−f −g−h(d − b)f −i−j (e − a)h+t

g!h!i!j !l!p!s!t !u!(k − l)!(r − u)!(f − i − j)!

× (a + e − 2c)y2−k−l(b − 2d)k−p(c − e)y3−r−s−t

(y1 − f − g − h)!(y2 − k − l)!(y3 − r − s − t)! ,
w1 = f + k + r,

w2 = n + h + j + t + r − g − i − l − p − s − u.

By considering the prior conditions on the probability of correctly classifying
the individual mentioned previously, it follows that 1 −ψ∗ − (ψ∗)2 > ψ∗ + (ψ∗)2

and 1−ψ∗ −ψ∗ > ψ∗ +ψ∗. Thus, the support for the prior for ψ∗ is also (0,1/4)

which justify the uniform prior used in the following proposition.
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Proposition 2. Assume that Y|φ,ψ∗ ∼ Multinomial(n,π1(φ,η),π2(φ,η),π3(φ,

η)) which probability function is given in (2.8). If, a priori, φ ∼ Beta(α,β), α > 0,
β > 0, and ψ∗ ∼ Uniform(0,1/4), then it follows that:

(i) the predictive distribution of Y is given by

fSPM2(Y)

= n![B(α;β)]−1
∑

SPM2

ASPM2 B(α + n − w1;β + w1)4
−w2[w2 + 1]−1,

(ii) the posterior of φ is given by

π(φ|Y) =
∑

SPM2
ASPM24−w2[w2 + 1]−1φα+n−w1−1(1 − φ)β+w1−1

ker(fSPM2(Y))
,

(iii) the ξ th posterior moment of φ is

E(φξ |Y) =
∑

SPM2
ASPM24−w2[w2 + 1]−1B(ξ + α + n − w1;β + w1)

ker(fSPM2(Y))
,

(iv) the posterior of ψ∗ is given by

π(ψ∗|Y) = 4
∑

SPM2
ASPM2 B(α + n − w1;β + w1)ψ

∗w2

ker(fSPM2(Y))
,

(v) the ξ th posterior moment of ψ∗ is

E(ψ∗ξ |Y) =
∑

SPM2
ASPM2 B(α + n − w1;β + w1)4−ξ−w2[ξ + w2 + 1]−1

ker(fSPM2(Y))
,

where ker(fSPM2(Y)) = fSPM2(Y)B(α;β)[n!]−1, and ASPM2 , δ and w = (w1,

w2) are given in (2.8).

Following, we briefly review some models previously introduced in the litera-
ture.

2.3 Bayesian inference under a simplified misclassification model (SMM)

As mentioned before, the model presented by Loschi et al. (2008) is the particular
case of both, the PM1 and PM2, where the misclassification errors are those given
in (2.4). Under this simplification, the likelihood assumes the following form:

f (Y|φ,ψ) = n!
y1∑

r=0

y2∑
s=0

y3∑
t=0

y1−r∑
f =0

y2−s∑
g=0

ASMφλ1(1 − φ)λ2ψδ(1 − 3ψ)n−δ

= n! ∑
SMM

ASMφλ1(1 − φ)λ2ψδ(1 − 3ψ)n−δ,
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where ASM = af by1−r−f cgdy2−s−gey3−t [r!s!t !f !g!(y3 − t)!(y1 − r − f )!(y2 −
s − g)!]−1, λ1 = y3 + f + g − t , λ2 = y1 + y2 − r − s − f − g and δ = r + s + t .

Assuming that, a priori, φ ∼ Beta(α,β), α > 0, β > 0, and that ψ ∼
Uniform(0,1/4), Loschi et al. (2008) prove that the predictive distribution and
the posteriors for φ and ψ are given, respectively, by

fSMM(Y) = 4n![B(α,β)]−1
∑

SMM

ASMI3/4(δ + 1;n + 1 − δ)

× 3−(δ+1)B(α + λ1;β + λ2),

π(φ|Y) =
∑

SMM ASMI3/4(δ + 1;n + 1 − δ)3−(δ+1)φα+λ1−1(1 − φ)β+λ2−1

ker(fSMM(Y))
,

π(ψ |Y) =
∑

SMM ASMB(α + λ1;β + λ2)ψ
δ(1 − 3ψ)n−δ

ker(fSMM(Y))
,

where ker(fSMM(Y)) = fSMM(Y)B(α,β)[4n!]−1. These distributions will be used
in the next section for both hypotheses tests and model comparisons.

2.4 Inference under Franco et al’s model (FM)

Franco et al.’s (2003) model does not take into consideration the misclassifica-
tion errors that can occur when data are obtained. Thus, it is a particular case of
the models presented previously whenever ψ in (2.4) is equal to zero. Given φ,
Franco et al. (2003) show that the random vector Y has a multinomial dis-
tribution with parameters n, θ1(φ) > 0, θ2(φ) > 0 and θ3(φ) > 0, denoted by
Y|φ ∼ Mult(n, θ1(φ), θ2(φ), θ3(φ)), which has a probability function given by

f (Y|φ) = n!
y1!y2!y3! [θ1(φ)]y1[θ2(φ)]y2[θ3(φ)]y3 . (2.9)

For φ ∼ Beta(α,β), α > 0, β > 0, it follows that the predictive distribution and
the posteriori of φ are given, respectively, by

fFM(Y) = n!
y3!B(α,β)

y1∑
k=0

y2∑
t=0

DFMB(n + α − k − t, k + t + β),

π(φ|Y) =
∑y1

k=0
∑y2

t=0 DFMφn+α−k−t−1(1 − φ)k+t+β−1

ker(fFM(y))
,

where DFM = ay1−kcy2−key3bkdt [k!t !(y1 − k)!(y2 − t)!]−1 and ker(fFM(Y)) =
fFM(Y)y3!B(α,β)[n!]−1.

2.5 On identifiability in PM1 and PM2

Quoting Lindley (1971) “In passing it might be noted that unidentifiability causes
no real difficulty in the Bayesian approach.” This statement discloses, in fact,
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a school thought that suggests that noidentifiability is removed with the introduc-
tion of priors into the model. However, in the presence of nonidentifiability, data
information may not overcome the prior information, even if large samples are
available. Thus, a poor posterior inference is obtained. Nonidentifiability in the
likelihood may also lead to a poor posterior inference if there is strong posterior
correlation among the parameters. If the posterior is obtained throughout MCMC-
based methods, the presence of strong correlation can result in poor exploration
of the posterior. Discussion about nonidentifiability in the Bayesian context can
be found in Dawid (1979), Swartz et al. (2004), Gelfand and Sahu (1999) among
many others.

Since we are assuming that the misclassification probabilities are smaller than
the probability of correctly classifying the individual, the permutation-type non-
identifiability discussed by Swartz et al. (2004) is removed from the model. This
condition corresponds to the second set of constraints suggested by such authors
to overcome permutation-type nonidentifiability.

According to Dawid (1979), models are nonidentifiable whenever the poste-
rior and prior full conditionals are equal (see also Gelfand and Sahu, 1999). That
corresponds to the nonidentifiability in the likelihood. Let us consider the most
controversial case where noninformative priors are assumed for the parameters,
say, φ ∼ Beta(1,1) and ψk ∼ Uniform(0,1/4), k = 1,2,3. For PM1, for instance,
the posterior full conditionals for φ and ψ1 are given respectively by

π(φ|ψ1,ψ2,ψ3,Y)

=
(∑

PM1

AM1φ
n−δ(1 − φ)δψ

w1
1 (1 − 2ψ1)

w2ψ
w3
2 (1 − 2ψ2)

w4ψ
w5
3 (1 − 2ψ3)

l

)

/(∑
PM1

AM1 B(n + 1 − δ, δ + 1)ψ
w1
1 (1 − 2ψ1)

w2

× ψ
w3
2 (1 − 2ψ2)

w4ψ
w5
3 (1 − 2ψ3)

l

)
,

π(ψ1|φ,ψ2,ψ3,Y)

=
(∑

PM1

AM1φ
n−δ(1 − φ)δψ

w1
1 (1 − 2ψ1)

w2ψ
w3
2 (1 − 2ψ2)

w4ψ
w5
3 (1 − 2ψ3)

l

)

/(∑
PM1

AM1φ
n−δ(1 − φ)δI1/2(w1 + 1,w2 + 1)

× ψ
w3
2 (1 − 2ψ2)

w4ψ
w5
3 (1 − 2ψ3)

l

)
.

Similarly, we obtain the posterior full conditionals for ψ2 and ψ3. The posterior
full conditionals are equal to the prior ones whenever it follows that

φn−δ(1 − φ)δ = B(n + 1 − δ, δ + 1),
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ψ
w1
1 (1 − 2ψ1)

w2 = 2I1/2(w1 + 1,w2 + 1),

ψ
w3
2 (1 − 2ψ2)

w4 = 2I1/2(w3 + 1,w4 + 1),

ψ
w5
3 (1 − 2ψ3)

l = 2I1/2(w5 + 1, l + 1),

for all φ ∈ (0,1) and ψk ∈ (0,1/4), k = 1,2,3. But it is equivalent to assume as
constant the likelihood. Thus, the Bayesian nonindentifiability defined by David
(1979) is also removed from PM1. Similarly, we prove that SPM2 is also identifi-
able.

3 Selecting a model

Posteriors provide the most complete information about the parameters but pos-
terior summaries, such as posterior evidences for the null hypothesis, the Bayes
factors, and so one, make communication with other area researchers easy.

In this section we discuss some techniques that permit us to make decisions
about models. Such techniques include Bayesian procedures for hypotheses tests
as well as for model comparisons.

It is well known that Bayesian modeling is done in two stages. We build the like-
lihood expressing the opinion of the researchers about the data behavior and the
prior is constructed based on the researcher’s knowledge obtained before observ-
ing data. Thus, models can differ in their likelihood (as we have in PM1 and PM2)
or whenever different prior specifications are assumed (see Section 4). Model com-
parison procedures (Bayes factor, DIC, etc.) are useful tools in both situations. In
the first case, they are used to decide for the likelihood that best fit to data. Model
comparison tools are also used in the decision process of “choosing the prior.”
Sometimes the researcher knows only the prior family of distribution but the prior
remains unknown since there is not enough information to define the hyperparam-
eters. A possible strategy is to perform a sensitivity analysis in order to evaluate
the effect of different priors in the posterior inferences and to chose the best one.

We start this section presenting some procedures for hypotheses tests. In this
paper we consider that the population of interest is compared to another one that
is known. In this case, it is assumed that both populations have their behavior
described by the same likelihood and we should select the parameters which in-
dexes it.

Assuming Franco et al.’s model, Barros and Franco (2002) introduced bootstrap
procedures to test if φ = 0.68 for the Brazilian population with trisomy 21. Later,
Bayesian tests for such situation were presented by Loschi et al. (2007). Here, we
extend Loschi et al.’s (2007) ideas for all misclassification models discussed in the
previous section.
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3.1 Bayesian tests for precise hypothesis

Suppose that we are interested in testing the following sharp hypothesis for θ :

H0 : θ ∈ 
0 versus H1 : θ ∈ 
1, (3.1)

where {
0,
1} is a partition of 
, the parametric space of θ , 
0 = {θ0} and θ0 is
a known value.

Next we review the usual Bayesian procedures for testing and present the loss
functions that confer to them a theoretical decision aspect. We also introduce a
criteria for obtaining the cut points for accepting the null hypothesis under both
procedures. This criteria assumes that the prior risks under Jeffreys and Pereira–
Stern tests are the same.

3.1.1 Jeffreys test. The Jeffreys test is by far the most used procedure for test-
ing sharp hypothesis in Bayesian inference. The decision is made based on the
posterior of H0, P(H0|x), which is a function of the Bayes factor BF(H0,H1) =
f (x|H0)/f (x|H1) = BF(H1,H0)

−1 (Jeffreys, 1961; Lavine and Schervish, 1999).
Denoting by P(Hi) the prior probability for the hypothesis Hi, i = 0,1, the poste-
rior for H0 is given by

P(H0|x) =
[
1 + P(H1)

P (H0)
BF(H1,H0)

]−1

. (3.2)

The Jeffreys test is a Bayes rule and it is obtained whenever the following loss
function is assumed {

L(AcceptH0, θ) = ω11{θ ∈ 
1},
L(RejectH0, θ) = ω01{θ ∈ 
0}, (3.3)

where 1{A} denotes the indicator function of event A and ωi > 0, i = 1,2. We de-
cide for H0 when the posterior risk of accepting the null hypothesis is the smallest.
By assuming this strategy, we accept H0 whenever

P(H0|x) >
ω1

ω1 + ω0
. (3.4)

For a more detailed explanation about the Jeffreys test see Migon and Gamer-
man (1999), Bernardo and Smith (1994) and many others.

For the genetic problem discussed here, the main interest is to test hypothe-
ses about the parameter φ. Let us consider the following hypotheses: H0 :φ = φ0
versus H1 :φ �= φ0, where φ0 ∈ (0,1) is a known value.

In a general setting, for the misclassifications models, the Bayes factor is ob-
tained as follows:

BF(H0;H1) =
∫

f (Y|φ,ψ) dψ∫ ∫
f (Y|φ,ψ) dφ dψ

.
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Consequently, for the models 1 discussed in Section 2, we have that

BFPM1(H0;H1)

= B(α;β)
∑

PM1
A(r, s, t, f, g,h, i, j, k, l,m,q)I(w, l)φn−δ

0 (1 − φ0)
δ

ker(fPM1(Y))
,

BFSPM2(H0;H1)

=
(

B(α;β)
∑

SPM2

A(f,g,h, i, j, k, l,p, r, s, t, u)

× 4−w2[w2 + 1]−1φ
n−w1
0 (1 − φ0)

w1

)/(
ker(fSPM2(Y))

)
,

BFSMM(H0;H1)

= B(α;β)
∑

SMM A(r, s, t, f, g)I3/4(δ + 1;n + 1 − δ)3−(δ+1)φ
λ1
0 (1 − φ0)

λ2

ker(fSMM(Y))
,

BFFM(H0;H1)

= B(α;β)[θ1(φ0)]y1[θ2(φ0)]y2[θ3(φ0)]y3

ker(fFM(Y))
.

For the misclassification errors, the great interest is to test if the errors are equal
to zero. Bayes factors for hypotheses test about the misclassifications errors are
obtained similarly. Their formulas will be omitted.

3.1.2 Pereira–Stern test. The Pereira–Stern or the full Bayesian significance test
(FBST) does not introduce prior probabilities for the hypotheses Hi and makes
the test for precise hypotheses simple (Pereira and Stern, 1999; Pereira and Stern,
2001). Besides, it does not lead to the Jeffreys–Lindley paradox (Robert, 1993;
Tsao, 2006). The Pereira–Stern measure of evidence for H0 is based on the pos-
terior distribution for θ . In this case, H0 is accepted if 
0 is in a high posterior
probability region of 
.

Denote by π(θ |x) be the posterior density of θ . Consider the following highest
relative surprise (HRS) set

T (x) =
{
θ ∈ 
 :π(θ |x) > sup


0

{π(θ |x)}
}
. (3.5)

The posterior evidence for the null hypothesis is given by EV(H0,x) = 1 −
Pr(θ ∈ T (x)|x). See Madruga et al. (2003) for the FBST in its invariant formula-
tion.

As proved in Madruga et al. (2001), the FBST or Pereira–Stern test is also a
Bayes rule whenever the following loss function is assumed:{

L(AcceptH0, θ) = b + c1{θ ∈ T (x)},
L(RejectH0, θ) = a[1 − 1{θ ∈ T (x)}], (3.6)
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where b, ξ and c are real, positive numbers. We decide for the acceptance of H0

whenever

EV(H0,x) >
b + c

c + a
. (3.7)

For the genetic problem under consideration in this paper, the posteriors are
given in Section 2 and the posterior evidence for H0 is obtained through numerical
approximations.

3.2 Building a criteria for making decisions

When can the posterior evidences for H0 provided by Jeffreys and Pereira–Stern
test procedures be considered strong? The scale of evidence proposed by Jeffreys
(1961) has been widely used in the literature as a reference for making decision
using the Jeffreys test. However, for the Pereira–Stern test we have not found such
a scale.

In order to make the test procedures comparable, we propose finding the values
of w0, w1, a, b and c such that the prior risk of acceptance of the null hypothesis
under Jeffreys and Pereira–Stern test procedures are equal.

Let Ev(H0) ∈ (0,1) be the prior evidence for the null hypothesis. Assuming as
equal the prior risk of acceptance for the two test procedures, we have that

c = w1(1 − P(H0)) − b

(1 − Ev(H0))
.

Moreover, by considering the risk of rejecting the null hypothesis for the Jef-
freys test equal to the one obtained for Pereira–Stern test, it follows that

a = w0P(H0)

Ev(H0)
.

The cut points for both test procedures are obtained from (3.4) and (3.7) by ar-
bitrarily specifying P(H0), w0,w1 and b. Particularly, if P(H0) = P(H1) = 0.5
and w0 = w1 = 1, then the cut points for Pereira–Stern and Jeffreys test are, re-
spectively, Ev(H0) and P(H0), say, the prior evidences in favor of H0.

3.3 Model comparison tools

One of the most important characteristics of model comparison tools is that they
allow the comparison of models with different complexity degrees. In the follow-
ing, we briefly present some usual ones.

3.3.1 Bayes factor. Bayes factor is also used for model comparison. Let M1, . . . ,

Mk be the models that are being compared. Model Mi has parameter θMi
∈ 
Mi

.
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Denote by π(θMi
) the prior for θMi

. Thus, Bayes factor in favor of model Mi when
compared with model Mj (Kadane and Lasar, 2004) is given by

BF(Mi;Mj) =
∫

Mi

p(y|θMi
)π(θMi

) dθMi∫

Mj

p(y|θMj
)π(θMj

) dθMj

.

Let p(Mi) = 1/k be the priori for model Mi . Model Mi is preferred to
model Mj if BF(Mi;Mj) > 1. However, there is weak evidence in favor of Mi

if BF(Mi;Mj) assume values in the interval (1,3) and such evidence is consid-
ered substantial if BF(Mi;Mj) is in the interval (3,10). See more about model
selection in Kadane and Lasar (2004).

For the models presented in Section 2, the Bayes factors are

BF(PM1,SPM2) = [16 ker(fPM1(Y))][ker(fSPM2(Y))]−1,

BF(PM1,SMM) = [16 ker(fPM1(Y))][ker(fSMM(Y))]−1,

BF(PM1,FM) = [64 ker(fPM1(Y))][ker(fFM(Y))]−1,

BF(SPM2,SMM) = [ker(fSPM2(Y))][ker(fSMM(Y))]−1,

BF(SPM2,FM) = [4 ker(fSPM2(Y))][ker(fFM(Y))]−1,

BF(SMM,FM) = [4 ker(fSMM(Y))][ker(fFM(Y))]−1.

We consider Gauss–Legendre method to approximate the integrals needed in
the calculations of the Bayes factors.

3.3.2 Deviance Information Criterion (DIC). The Deviance Information Crite-
rion (DIC) was introduced by Spiegelhalter et al. (2002) and can be computed in a
simple way from samples of the posterior distributions. Decision is for model Mi ,
if it presents the smallest DIC.

Let us consider the deviance function D(θMi
) which depends on the likelihood

function associated to the model of interest Mi

D(θMi
) = −2 log[f (Y|θMi

)] + C,

where C is a constant. The DIC for model Mi is then given by

DIC(Mi) = −2 log[f (Y|θMi
)] + 2pD = D + pD,

where θMi
= E(θMi

|y) is the posterior mean of θMi
, D = E[D(θMi

)|Y] denotes
the posterior mean deviation that measures the model fit quality and pD = D −
D(θ) is the effective number of parameters in the model Mi .
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4 Case study: Down Syndrome data

Trisomy 21 is the most prevalent human genetic disorder and occurs in approx-
imately 1 in 700 births (Valero et al., 1999). It produces Down Syndrome and is
the most common cause of mental retardation of a genetic origin. Down Syndrome
affects kids’ cognitive abilities and around half of them can also have congenital
heart defects, problems with hearing and vision and they are prone to developing
pulmonary hypertension. Although the causes of Down Syndrome are unknown,
scientists do know that in the trisomy of chromosome 21, there is evidence that
the rate of nondisjunction increases with the age of the mother (see Pena, 1998).
Women age 35 and older have a significantly higher risk of having a child with
Down Syndrome. Moreover, the increase in the rate of nondisjunction in meio-
sis II is higher than for meiosis I if the mother’s age is between 35 and 39 years.
Thus, the determination of the rate φ of nondisjunction in chromosomal segrega-
tion, which takes place in meiosis I in each chromosome, plays an important role
in understanding aneuploidies. It is useful to identify possible factors, such as ge-
ography, nutrition, age and, reproductive practices, among others, which generate
such abnormalities.

We analyze the dataset reported in Franco et al. (2003) which consists of a ran-
dom sample of blood from 34 Brazilian individuals with trisomy of chromosome
21. For this dataset, the observed numbers of patients with one, two and three peaks
are 6, 22 and 6, respectively. The hypothesis of the Hardy–Weinberg equilibrium
is verified for the Brazilian population and six alleles are found with frequencies
0.12, 0.45, 0.09, 0.31, 0.01 and 0.02.

Several previous works make comparisons between affected individuals and
their parents for estimating φ. Some of them consider large groups of patients with
Down Syndrome, for instance, Lober et al. (1992), Petersen et al. (1992), Zaragosa
et al. (1994), Griffin (1996), Koehler et al. (1996), Yoon et al. (1996), Nicolaidis
and Petersen (1998) and Savage et al. (1998). Summarizing such estimates of φ,
we obtained an average of 0.6803 and standard deviation equal to 0.0678. These
previous studies help us to construct a more informative prior distribution of φ.
The priors for φ considered in this paper are the beta distributions of which the
parameters are pointed out in Table 1. The noninformative Bayes–Laplace prior
is also considered for comparison proposes. The only prior information we have
about the misclassification errors is that the probability of correctly classifying the
individual is higher than the total misclassification error. Thus, for the misclassifi-
cation errors, we assume the uniform distribution in the interval (0,1/4).

Besides estimates for φ and for the misclassification errors, we are also inter-
ested in testing the following hypotheses:

H0 :φ = 0.68 × H1 :φ �= 0.68,

H0 :ψ = 0 (ψk = 0) × H1 :ψ > 0 (ψk > 0).
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Table 1 Prior distribution for φ and their summaries

Prior parameters Summaries

α β Mean Variance

1
1

0.5000 0.0833

2
1

0.6667 0.0556

4
2

0.6667 0.0317

20 10 0.6667 0.0072

Table 2 Cut points for Jeffreys and Pereira–Stern tests for parameters φ and ψ ’s

Parameter Prior Pereira–Stern test Jeffreys test

φ Beta(1,1) 0.0003 0.5000
Beta(2,1) 0.4637
Beta(4,2) 0.7213

Beta(20,10) 0.9877

ψk Uniform(0,1/4) 0.9997 0.5000

This hypotheses test for φ was also considered by Loschi et al. (2007) assuming
Franco et al.’s model. To obtain the cut points for Jeffreys and Pereira–Stern tests
presented in Section 4, we assume P(H0) = 0.5, b = 10−6 and w0 = w1 = 1.
Table 2 presents the cut points for Jeffreys and Pereira–Stern tests whenever the
prior specifications in Table 1 are assumed.

4.1 Estimate and test for φ

Table 3 shows some posterior summaries for φ and the posterior evidences for
H0 provided by Jeffreys and Pereira–Stern tests. Franco et al.’s model provides
the highest posterior mean and median and the smallest variance, for all prior
specifications. It is followed by the simplification of PM2 considered here. The
PM1 tends to present the smallest posterior mean and the highest variance. Except
for the less informative priors, all four models provide similar mean, median and
mode. In these cases, the posterior means under the three misclassification models
are close to the maximum likelihood estimates (MLE) for φ obtained by Franco
et al. (2003) (MLE = 0.6552 and asymptotic variance = 0.0481). Figures 2 and 3
show that the posteriors have unique modes and are asymmetric. However, the de-
gree of skewness in such distributions tends to be smaller for more informative
priors.
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Table 3 Posterior summaries and hypothesis test for φ

Prior Posterior summaries Tests

α β Model Mean Variance Median Mode 95% HPD interval Ev(H0,y) P (H0|y)

1 1 PM1 0.5483 0.0652 0.5605 0.5920 (0.1025; 0.9955) 0.7683 0.5539
SPM2 0.5898 0.0493 0.6008 0.6201 (0.2060; 0.9988) 0.8100 0.6196
SMM 0.5703 0.0569 0.5848 0.6088 (0.1383; 0.9957) 0.7963 0.5930
FM 0.6596 0.0307 0.6621 0.6551 (0.3539; 0.9832) 0.9040 0.6699

2 1 PM1 0.6663 0.0482 0.6907 0.8345 (0.2655; 1.0000) 0.4840 0.5331
SPM2 0.6724 0.0364 0.6907 0.7223 (0.3335; 0.9999) 0.8250 0.5771
SMM 0.6665 0.0409 0.6841 0.7321 (0.3084; 0.9990) 0.8207 0.5625
FM 0.7043 0.0274 0.7107 0.7243 (0.4179; 0.9991) 0.8167 0.6077

4 2 PM1 0.6583 0.0290 0.6738 0.7162 (0.3368; 0.9519) 0.8460 0.5185
SPM2 0.6680 0.0241 0.6760 0.6953 (0.3871; 0.9511) 0.9367 0.5455
SMM 0.6589 0.0261 0.6681 0.6976 (0.3436; 0.9467) 0.9190 0.5365
FM 0.6798 0.0202 0.6875 0.7012 (0.4224; 0.9562) 0.8913 0.5673

20 10 PM1 0.6654 0.0073 0.6691 0.6750 (0.4986; 0.8224) 0.9567 0.5031
SPM2 0.6649 0.0062 0.6691 0.6728 (0.5017; 0.8108) 0.9337 0.5092
SMM 0.6633 0.0069 0.6645 0.6728 (0.5094; 0.8272) 0.9397 0.5070
FM 0.6697 0.0062 0.6711 0.6753 (0.5225; 0.8263) 0.9573 0.5163

Table 3 also provides the posterior evidence for H0 :φ = 0.68 × H1 :φ �= 0.68.
The Jeffreys test and the 95% HPD intervals lead to the acceptance of the null
hypothesis for all models and prior specifications. The same conclusion can be
drawn from the Pereira–Stern test, except when we assume that φ ∼ Beta(20,10).
In this case, we reject H0 for all models. Notice, that for such a prior, P(H0|y)

is close to 0.5, say, the posterior evidence for the null hypothesis provided by the
Jeffreys test is weak.

4.2 Estimate and test for the misclassification errors ψ’s

Table 4 shows some results related to the estimation and test for the misclassifica-
tion errors. Taken into consideration the posterior modes, we conclude that, under
the SMM and the SPM2, the misclassification errors ψ and ψ∗ are very close to
zero, for all prior specifications, which means that these models are almost equiv-
alent to Franco et al.’s model. Similar conclusions can be drawn whenever we
consider both test procedures presented in this paper. For PM1 and all priors for φ,
the misclassification errors ψ1 and ψ3 are high (higher than 0.189) and ψ2 is mod-
erate assuming values between 0.0238, whenever φ ∼ Beta(20,10), and 0.0377,
whenever it has been elicited a noninformative prior for φ. That is a reasonable
result since, for this model, ψk = P(Z = i|X = k) = P(Z = j |X = k), k �= j �= i.
For all models and prior specifications, the posterior means and medians assume
similar values. From Table 4 we can also observe that, for PM1, the Jeffreys test
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Figure 2 Posteriors for φ under all models, case Beta(1,1).

Figure 3 Posteriors for φ under all models, case Beta(20,10).
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Table 4 Posterior summaries and hypothesis test for ψ

Prior Posterior summaries Tests

Param. α β Mean Var Median Mode 95% HPDI Ev(H0.y) p(H0|y)

Proposed Model 1
ψ1 1 1 0.1433 0.0050 0.1509 0.2499 (0.0190; 0.2498) 0.0000 0.3554

2 1 0.1346 0.0048 0.1385 0.2237 (0.0174; 0.2500) 0.0000 0.4111
4 2 0.1323 0.0050 0.1365 0.2085 (0.0144; 0.2488) 0.0000 0.4109

20 10 0.1321 0.0049 0.1360 0.1916 (0.0146; 0.2480) 0.0000 0.4148

ψ2 1 1 0.0713 0.0024 0.0634 0.0377 (0.0000; 0.1647) 0.4057 0.6373
2 1 0.0639 0.0021 0.0546 0.0275 (0.0000; 0.1520) 0.4917 0.6695
4 2 0.0644 0.0021 0.0572 0.0261 (0.0001; 0.1506) 0.5313 0.6744

20 10 0.0647 0.0021 0.0568 0.0238 (0.0001; 0.1517) 0.5727 0.6815

ψ3 1 1 0.1284 0.0051 0.1302 0.1963 (0.0141; 0.2495) 0.0000 0.4537
2 1 0.1343 0.0049 0.1384 0.2205 (0.0189; 0.2499) 0.0000 0.4108
4 2 0.1337 0.0051 0.1398 0.2059 (0.0067; 0.2420) 0.0000 0.4177

20 10 0.1329 0.0049 0.1391 0.1891 (0.0163; 0.2486) 0.0000 0.4208

Simplified Proposed Model 2
ψ∗ 1 1 0.0755 0.0030 0.0644 0.0001 (0.0001; 0.1804) 1.0000 0.6724

2 1 0.0729 0.0029 0.0625 0.0000 (0.0001; 0.1737) 1.0000 0.6926
4 2 0.0707 0.0028 0.0590 0.0001 (0.0001; 0.1731) 1.0000 0.7007

20 10 0.0686 0.0028 0.0570 0.0001 (0.0000; 0.1729) 1.0000 0.7131

Simplified Misclassification Model
ψ 1 1 0.0815 0.0033 0.0726 0.0122 (0.0001; 0.1913) 0.8183 0.6474

2 1 0.0730 0.0028 0.0629 0.0001 (0.0002; 0.1761) 1.0000 0.6797
4 2 0.0724 0.0028 0.0623 0.0000 (0.0000; 0.1739) 1.0000 0.6931

20 10 0.0670 0.0026 0.0562 0.0000 (0.0000; 0.1708) 1.0000 0.7112

leads to the acceptance of the null hypothesis about ψ2, for all prior specifications.
In these cases, posteriors do not provide the same evidence (see also Figure 5). On
the other hand, the Pereira–Stern test and the 95% HPD interval provide evidence
that the misclassification errors ψ1, ψ2 and ψ3 in PM1 are all different from zero.

Figures 4–6 show that the posteriors for the misclassification errors have unique
modes and are strongly asymmetric. The common misclassification errors in SMM
and SPM2 put most of their mass in small values. Similar behavior is observed for
ψ2 in PM1.

4.3 Model comparison

Tables 5 and 6 show, respectively, the DIC and the Bayes factor for all models pre-
sented in Section 2 and for all prior specifications. From Table 5 we concluded that
Franco et al.’s model is the best and SPM2 tends to be the worst. PM1 should be
preferred to the SMM except when φ ∼ Beta(20,10). From Table 6 we also notice
that the strongest evidence is for the Franco et al. model. The Bayes factors for
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Figure 4 Posteriors for ψ∗, Simplified Proposed Model 2, cases Beta(1,1) and Beta(20,10).

Figure 5 Posteriors for ψ1, ψ2 and ψ3, Proposed Model 1, cases Beta(1,1) and Beta(20,10).

Figure 6 Posteriors for ψ , Simplified Misclassification Model, cases Beta(1,1) and Beta(20,10).
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Table 5 Model comparison—DIC

Prior DIC

α β PM1 SPM2 SMM FM

1 1 9.272 9.903 9.692 8.378
2 1 8.991 9.487 9.327 8.187
4 2 8.879 9.135 9.041 7.822

20 10 8.685 8.602 8.569 7.230

Table 6 Model comparison—Bayes factor

Prior Bayes factor

α β (PM1, SPM2) (PM1, SMM) (PM1, FM)

1 1 1.277 1.142 0.545
2 1 1.163 1.095 0.471
4 2 1.085 1.046 0.443

20 10 0.998 0.988 0.406

(SPM2, SMM) (SPM2, FM) (SMM, FM)

1 1 0.894 0.487 0.545
2 1 0.942 0.444 0.471
4 2 0.964 0.427 0.443

20 10 0.991 0.402 0.406

such a model assume values between 1.84 and 2.49. For comparisons among the
other models such evidence is not strong. In fact, the models are almost compara-
ble since the Bayes factors are close to one. Comparing only the misclassification
models, we conclude that PM1 is better than both, the SMM and SPM2, except
whenever φ ∼ Beta(20,10). The SMM is better than SPM2. In general, the Bayes
factor and the DIC lead to similar conclusions even when the Bayes–Laplace prior
was elicited.

5 Concluding remarks

We extended previous works by considering more general misclassification models
for the number of trisomic individuals with 1, 2 or 3 peaks. Such models are more
flexible than models introduced in the literature and also identifiable. Posteriors
and their moments were exactly obtained. Jeffreys and Pereira–Stern procedures
were considered for testing hypotheses about the meiosis I nondisjunction fraction
and the misclassification errors. Bayes factor and DIC were considered for model
comparison.
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In summary, for the dataset analyzed in this paper we concluded that the PM1
brings some improvement to the analysis if compared to the SMM introduced by
Loschi et al. (2008). Jeffreys and Pereira–Stern test procedures provided evidence
that the common misclassification errors included in the SMM and SPM2 can be
considered equal to zero, thus it is comparable to the Franco et al. model. How-
ever, that is not the rule for PM1, that is, such tests indicated that the presence
of misclassification errors in the model is significant. Thus, in other situations in
which the misclassification error is high, the proposed models could bring some
advantages to the analysis.

More importantly, we concluded that for the Brazilian population the meiosis I
nondisjunction fraction in Down Syndrome can be considered equal to the average
of the estimates of the nondisjunction fraction obtained in the literature for other
populations.
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