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Measuring Statistical Significance for Full
Bayesian Methods in Microarray Analyses

Jing Cao∗ and Song Zhang†

Abstract. Full Bayesian methods are useful tools to account for complex data
structures in high-throughput data analyses. The Bayesian FDR, which is the pos-
terior proportion of false positives relative to the total number of rejections, has
been widely used to measure statistical significance for full Bayesian methods in
microarray analyses. However, the Bayesian FDR is sensitive to prior specification
and it is incomparable to the resampling-based FDR estimates employed by most
frequentist and empirical Bayesian methods. In this paper, we propose a computa-
tionally efficient algorithm to evaluate the statistical significance for full Bayesian
methods in the resampling-based framework. The resulting predictive Bayesian
FDR is robust to prior specifications and it can produce a more accurate estimate
of error rate. In addition, the proposed approach provides a general framework
for the objective comparison of performance between full Bayesian methods and
the other frequentist and empirical Bayes methods in microarray analyses, which
has been an unaddressed issue. A simulation study and a real data example are
presented.

Keywords: FDR, Bayesian models, microarray analysis, resampling method, sta-
tistical significance

1 Introduction

The advance of high-throughput technologies has presented statisticians with the chal-
lenge of testing thousands of genes simultaneously. In this paper, we consider multiple
testing in the context of detecting differentially expressed (DE) genes in microarray
experiments. Many statistical methods, including frequentist methods (Tusher et al.
2001; Cui 2005) , empirical Bayes (EB) methods (Efron et al. 2001; Lönnstedt and
Speed 2002), and full Bayesian models (Newton et al. 2004; Do et al. 2005; Lewin et al.
2006), have been proposed in microarray analysis. To control the error rate and compare
performance across different methods, it is important to assess statistical significance
such as the p-value and the false discovery rate (FDR). The FDR, which is the propor-
tion of false rejections relative to the total number of rejections, has been shown to be
useful in balancing between the numbers of true/false positives in large-scale multiple
testing (Benjamini and Hochberg 1995; Storey 2002; Genovese and Wasserman 2002).
It should be pointed out that the estimation of either p-value or FDR requires the null
distribution of the relevant test statistic.
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For most frequentist and EB methods, such as the SAM (Tusher et al. 2001) and the
posterior odds (Kendziorski et al. 2003), the null distribution of the test statistic does
not have a closed form. Furthermore, for some methods where the null distribution of
the test statistics can be derived analytically (eg., the moderated t-statistic by Smyth,
2004), the theoretical null distribution might fail. Efron (2008) listed four reasons why it
happens, including failed mathematical assumptions, unobserved covariates, correlation
across arrays, and correlation across genes. When the null distribution of a test statistic
is theoretically intractable or the theoretical null distribution fails, a simple way around
is to construct an empirical null distribution using a simulated null data set.

Let (X, Y ) = {(Xi, Yi), i = 1, · · · , n} be the collection of expression measurements
from n genes, where Xi and Yi are obtained under control and treatment, respectively.
Most frequentist and EB testing procedures are based on a test statistic function T (·).
Any gene with T (Xi, Yi) above a certain threshold is flagged as DE. Suppose we have a
null data set, denoted as (X0, Y 0) = {(X0

k , Y 0
k ), k = 1 · · · , n0}. Note that (X0

k , Y 0
k ) rep-

resents expression measurements for any non-DE gene in the experiment, while (Xi, Yi)
denotes the observed expression values for gene i. The null distribution of the test
statistic is approximated by {T (X0

k , Y 0
k ), k = 1, · · · , n0}. We can estimate the p-value

of gene i by

p̂i =
∑n0

k=1 I(T (X0
k , Y 0

k ) ≥ T (Xi, Yi))
n0

.

Storey et al. (2007) presented a procedure to estimate the FDR based on {T (X0
k , Y 0

k ), k =
1, · · · , n0}.

Resampling-based procedures (eg., bootstrap and permutation) have been developed
to generate the null data set (Rubin 1981; Tusher et al. 2001; Storey and Tibshirani
2003; Storey et al. 2007). The generation of (X0,Y 0) is beyond the scope of this paper.
We assume that through a certain procedure, we have a null data set (X0,Y 0) which
approximates the distribution of null gene expressions adequately well. Because the
same null data set can be utilized by different testing methods to assess the p-value
and FDR, the resampling-based procedures provide a general framework to objectively
compare performance across different methods (Storey et al. 2007).

For full Bayesian methods, the posterior probability of a gene being DE is often
used as the test statistic and its null distribution does not have a closed form. To
our knowledge, no approach has been proposed for full Bayesian methods to objectively
evaluate statistical significance in the resampling-based framework. We will demonstrate
that simply applying the Bayesian model on (X0,Y 0) does not produce a valid empirical
null distribution for the posterior probabilities. Newton et al. (2004) proposed the
Bayesian FDR (BFDR), which is the posterior proportion of false positives relative
to the total number of rejections. It has been widely used in full Bayesian methods to
assess statistical significance. However, the BFDR can be sensitive to prior specification,
and its assessment of statistical significance can be inaccurate. Furthermore, estimated
based on the posterior probabilities, the BFDR is incomparable to the resampling-based
FDR adopted by most frequentist and EB methods (Storey et al. 2007). Objectively
comparing the performance between full Bayesian methods and the other methods has
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remained a challenge in microarray analyses. In this paper, we present an approach
to assessing statistical significance for full Bayesian methods in the resampling-based
framework. We show that this approach is robust to prior specification, and it allows a
fair comparison between full Bayesian methods and other testing procedures.

The remainder of the paper is organized as follows. In Section 2 we introduce a
generic full Bayesian model and review the BFDR. In Section 3 we present the approach
to assessing statistical significance for full Bayesian methods in the resampling-based
framework. In Section 4 and 5, we illustrate the proposed approach in a simulation study
and a real microarray experiment, respectively. We conclude with a brief discussion in
Section 6.

2 A Generic Bayesian Model and the BFDR

We present a generic full Bayesian model for the detection of DE genes under two
conditions. For i = 1, · · · , n, it is assumed that Xi | θ0i, ηi, ξ ∼ [Xi | θ0i, ηi, ξ] and

Yi | θ0i, θ1i, ri, ηi, ξ ∼
{

[Yi | θ0i, ηi, ξ], if ri = 0,
[Yi | θ1i, ηi, ξ], if ri = 1.

(1)

We use [U | V ] to denote the conditional distribution of U given V . Thus Xi and Yi share
the same probability model when gene i is non-DE (ri = 0), and they follow different
models when gene i is DE (ri = 1). We use θ0i/θ1i to denote the distinctive model
parameters under ri = 0/1, ηi to denote the gene-specific parameters shared under the
two conditions, and ξ to denote the parameters shared by all genes. Depending on the
specific model, θ0i, θ1i, ηi, and ξ might be vectors, scalers, or empty sets. Parameter ri

is usually modeled by a Bernoulli distribution, ri | pr ∼ Bernoulli(pr), where pr is the
proportion of DE genes. Such a specification implies an equivalent model for Yi in the
mixture form,

Yi | θ0i, θ1i, ηi, ξ, pr ∼ (1− pr)[Yi | θ0i, ηi, ξ] + pr[Yi | θ1i, ηi, ξ].

Hierarchical priors are assumed for θ0i, θ1i and ηi to promote sharing of information
among genes. A general prior form can be written as θvi | θv ∼ [θvi | θv] for v = 0, 1, and
ηi | η ∼ [ηi | η] (Lönnstedt and Britton 2005; Lewin et al. 2006; Cao et al. 2009). We use
[θ0, θ1, η, ξ, pr] to denote the hyper-prior. Let Θ be the collection of model parameters,
which includes θ0i, θ1i, ηi, ri, θ0, θ1, η, ξ, pr. The joint posterior distribution of Θ is

[Θ | X, Y ] ∝
n∏

i=1

{[Xi | θ0i, ηi, ξ][Yi | θ0i, θ1i, ri, ηi, ξ][ri | pr][θ0i | θ0][θ1i | θ1][ηi | η]}

· [θ0, θ1, η, ξ, pr]. (2)

The posterior inference is usually based on zi = P (ri = 1 | X,Y ), the posterior
probability of gene i being DE. Müller et al. (2004, 2007) showed that under several
loss functions that combine false positive/negative counts (rates), the optimal decision
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rule is based on zi. Gene i is flagged as DE if zi > λ, where λ is a threshold. It can be
shown that

zi =
∫

P (ri = 1 | θ0i, θ1i, ηi, ξ, pr, Yi) · [θ0i, θ1i, ηi, ξ, pr | X,Y ]dθ0idθ1idηidξdpr,

with

P (ri = 1 | θ0i, θ1i, ηi, ξ, pr, Yi) =
pr[Yi | θ1i, ηi, ξ]

(1− pr)[Yi | θ0i, ηi, ξ] + pr[Yi | θ1i, ηi, ξ]
, (3)

and [θ0i, θ1i, ηi, ξ, pr | X, Y ] is the marginal posterior distribution of (θ0i, θ1i, ηi, ξ, pr)
derived from [Θ | X, Y ].

The BFDR (Newton et al. 2004) has been widely employed to control the error rate
for full Bayesian methods. It is estimated by

B̂FDR(λ) =
∑n

i=1(1− zi)δi

D
, (4)

where δi = I(zi > λ) is the decision (1 for DE and 0 for non-DE) on gene i at cutoff
λ, and D =

∑n
i=1 δi is the total number of rejections. Note that 1− zi is the posterior

probability of gene i being non-DE. The BFDR can be interpreted as the posterior
proportion of false positives in the list of identified genes. The straightforward inter-
pretation and easy computation based on zi have brought popularity for the BFDR.
A Bayesian model, however, in most cases only provides an approximation to the un-
known true expression distribution. As a result, zi may not accurately estimate the
unknown probability, even though it may serve as a good test statistic in screening DE
genes. Taking zi at the face value of estimated probability, the BFDR may produce an
inaccurate assessment of the error rate. In the simulation study we illustrate this point
using a Bayesian model with two different priors. We show that the ordering of zi’s is
robust to prior specification but the BFDR is not.

2.1 Assessing Statistical Significance Based on (X0, Y 0)

In most frequentist and EB microarray screening procedures, the inference is based on a
certain test statistic function T (·). Any gene with T (Xi, Yi) above a certain threshold is
flagged as DE. Under the resampling-based framework, by plugging (X0, Y 0) into T (·),
researchers have used {T (X0

k , Y 0
k ), k = 1, · · · , n0} to approximate the null distribution

of the test statistic. It forms the basis for the assessment of statistical significance,
such as p-value and FDR. Following this rationale, we rewrite the test statistic zi in full
Bayesian methods as a function of (Xi, Yi),

zi = P (ri = 1 | X, Y ) = P (ri = 1 | Xi, Yi,X(−i), Y(−i)) = hi(Xi, Yi),

where (X(−i),Y(−i)) = {(Xj , Yj) : j = 1, · · · , n and j 6= i}, and hi(·), depending
on (X(−i), Y(−i)), is a function uniquely defined for gene i. Based on the null data
set (X0, Y 0), the null distribution of zi is each approximated by {hi(X0

k , Y 0
k ), k =

1, · · · , n0}, for i = 1, · · · , n.
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The definition of hi(X0
k , Y 0

k ) suggests that simply applying the Bayesian model on
(X0,Y 0) will not produce a valid empirical null distribution for zi. To further explain
it, let

z0
k = P (r0

k = 1 | X0, Y 0) = P (r0
k = 1 | X0

k , Y 0
k ,X0

(−k),Y
0
(−k)) = h0

k(X0
k , Y 0

k ),

where the superscript 0 indicates that the data and parameters are for null genes in
(X0,Y 0). Different from hi(·), the definition of h0

k(·) depends on (X0
(−k), Y

0
(−k)), which

means that the null distribution of zi can not be approximated by {z0
k, k = 1, · · · , n0}.

We borrowed Table 1 from Do et al. (2005), which uses a simulation study to demon-
strate how the estimation of zi is affected by pr, the true proportion of DE genes,
given the same difference score (defined as X̄i − Ȳi). Each column of Table 1 com-
pares the estimated zi under different pr. We notice that zi increases/decreases when
pr increases/decreases. This observation suggests that using {z0

k, k = 1, · · · , n0} to
approximate the null distribution of zi will result in a gross inflation in significance,
because the proportion of DE genes is usually much lower in (X0,Y 0) than in (X, Y ).

Table 1: Comparison of zi under different pr

Observed difference scores
pr -5.0 -4.0 -3.0 -2.0 -1.0 -0.0 1.0 2.0 3.0 4.0 5.0
0.6 1.00 1.00 0.98 0.87 0.46 0.19 0.43 0.85 0.98 1.00 1.00
0.2 0.94 0.90 0.75 0.41 0.14 0.07 0.13 0.44 0.91 0.93 0.96
0.05 0.46 0.42 0.27 0.11 0.05 0.03 0.04 0.10 0.28 0.43 0.50

For i = 1, · · · , n, the null distribution of zi can each be approximated by {hi(X0
k , Y 0

k ),
k = 1, · · · , n0}. Such an approach to constructing the empirical null distribution of zi

poses a great computational challenge. Specifically, we need to fit the Bayesian model on
n×n0 data sets, i.e., {X0

k , Y 0
k , X(−i),Y(−i)} for k = 1, · · · , n0 and i = 1, · · · , n. Because

n and n0 are usually large (in thousands) and most full Bayesian models require MCMC
simulation, the above procedure is computationally infeasible.

To reduce the computational burden, we propose to approximate hi(X0
k , Y 0

k ) by

s(X0
k , Y 0

k ) =
∫

P (r0
k = 1 | θ0

0k, θ0
1k, η0

k, ξ, pr, Y
0
k )[θ0

0k, θ0
1k, η0

k | X0
k , Y 0

k , θ0, θ1, η, ξ, pr]

· [θ1, θ0, η, ξ, pr | X,Y ]dθ0
0kdθ0

1kdη0
kdθ0dθ1dηdξdpr. (5)

Here (r0
k, θ0

0k, θ0
1k, η0

k) denotes the model parameters for (X0
k , Y 0

k ), and [θ1, θ0, η, ξ, pr |
X,Y ] is the marginal posterior distribution of (θ1, θ0, η, ξ, pr) obtained from [Θ | X, Y ],
representing the statistical learning from (X, Y ). Furthermore,

[θ0
0k, θ0

1k, η0
k | X0

k , Y 0
k , θ0, θ1, η, ξ, pr] ∝ [X0

k | θ0
0k, η0

k, ξ][Y 0
k | θ0

0k, θ0
1k, η0

k, ξ, pr]

· [θ0
0k | θ0][θ0

1k | θ1][η0
k | η]

is the conditional distribution of (θ0
0k, θ0

1k, η0
k) given (θ0, θ1, η, ξ, pr) and (X0

k , Y 0
k ), and

P (r0
k = 1 | θ0

0k, θ0
1k, η0

k, ξ, pr, Y
0
k ) is similarly defined as in (3). We interpret s(X0

k , Y 0
k )
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as the predictive probability of a gene with measurements (X0
k , Y 0

k ) being DE given
(X, Y ).

Theorem 1 Under the assumed Bayesian model (1), hi(X0
k , Y 0

k )− s(X0
k , Y 0

k ) a.s.−→ 0
uniformly for each i, i = 1, · · · , n, as n → +∞.

Proof. See Appendix.

Because s(X0
k , Y 0

k ) provides good approximation to hi(X0
k , Y 0

k ), we propose to use
{s(X0

k , Y 0
k ), k = 1, · · · , n0}, instead of {hi(X0

k , Y 0
k ), k = 1, · · · , n0}, to approximate

the null distribution of zi (i = 1, · · · , n). In the following we provide an algorithm to
efficiently estimate {s(X0

k , Y 0
k ), k = 1, · · · , n0}, which only requires fitting the Bayesian

model once based on (X, Y ).

Algorithm 1

1. For iteration l = 1, · · · , L,

(a) Simulate (θ(l)
0 , θ

(l)
1 , η(l), ξ(l), p

(l)
r ) from [Θ | X,Y ].

(b) For k = 1, · · · , n0, simulate (θ0(l)
0k , θ

0(l)
1k , η

0(l)
k ) from the conditional distribu-

tion [θ0
0k, θ0

1k, η0
k | X0

k , Y 0
k , θ

(l)
0 , θ

(l)
1 , η(l), ξ(l), p

(l)
r ].

2. For k = 1, · · · , n0, estimate s(X0
k , Y 0

k ) by

ŝ(X0
k , Y 0

k ) =
1
L

L∑

l=1

P (r0
k = 1 | θ0(l)

0k , θ
0(l)
1k , η

0(l)
k , ξ(l), p(l)

r , Y 0
k ).

Step 1a is usually accomplished by the MCMC simulation for the Bayesian model based
on (X, Y ). In Step 1b, if [θ0

0k, θ0
1k, η0

k | X0
k , Y 0

k , θ
(l)
0 , θ

(l)
1 , η(l), ξ(l), p

(l)
r ] does not have

a closed form, a nested MCMC simulation given data (X0
k , Y 0

k ) can be employed to
simulate (θ0(l)

0k , θ
0(l)
1k , η

0(l)
k ).

Different measures of statistical significance can be computed based on {ŝ(X0
k , Y 0

k ),
k = 1, · · · , n0}. For example, the p-value of gene i is approximated by

P̂i =
∑n0

k=1 I(ŝ(X0
k , Y 0

k ) > zi)
n0

.

Using the procedure in Storey et al. (2007), we can estimate the FDR by

̂PBFDR(λ) =
π̂0n

∑n0

k=1 I(ŝ(X0
k , Y 0

k ) > λ)
n0

∑n
i=1 I(zi > λ)

, (6)

where π̂0 is the estimated proportion of null genes, computed based on P̂i (Storey and
Tibshirani 2003). The PBFDR stands for the predictive Bayesian FDR, indicating that
it is computed based on s(X0

k , Y 0
k ), the predictive probability of a gene with measure-

ments (X0
k , Y 0

k ) being DE given (X, Y ).
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3 Simulation Study

In this section we compare the performance of the PBFDR and the BFDR. We used
the full Bayesian model in Cao et al. (2009) as an example. Let Xi = (xi1, · · · , xim)′

and Yi = (yi1, · · · , yig)′ be the expression measurements from the ith (i = 1, · · · , n)
gene. Here m and g denote the number of arrays under the control and treatment,
respectively. Through a proper transformation, xij and yij are modeled by normal
distributions: xij | µi, σ

2
i ∼ N(µi, σ

2
i ) and

yij | µi, ∆i, σ
2
i , ri ∼

{
N(µi, σ

2
i ), if ri = 0,

N(µi + ∆i, σ
2
i ), if ri = 1,

where ri = 0/1 indicates that gene i is non-DE/DE. It is assumed that ∆i ∼ N(0, s2
∆)

and ri | pr ∼ Bernoulli(pr). To encourage sharing of information, a mixture structure
is introduced on the variances, σ2

i | σ2
0 , pv ∼ (1 − pv)δ(σ2

0) + pvIG(aσ, bσ). Here pv is
the mixing probability, δ(σ2

0) denotes a point mass at σ2
0 , and IG(aσ, bσ) denotes an

inverse Gamma distribution parameterized such that the mean equals bσ/(aσ− 1). The
Bayesian model includes hyper-priors, µi ∼ N(0, s2

µ), σ2
0 ∼ IG(a0, b0), pr ∼ U(0, 1),

and pv ∼ U(0, 1). More details can be found in Cao et al. (2009). This model fits in
the generic Bayesian model framework in (1).

To demonstrate how prior specification affects the PBFDR and the BFDR differently,
we considered two specifications of (aσ, a0, bσ, b0), denoted as Prior 1 and Prior 2. Prior
1 is data dependent, where we set aσ = a0 = 2.0 and both bσ and b0 (the prior means)
equal to the average of the pooled sample variances over all genes. Prior 1 is a diffuse
prior with an infinite variance. For Prior 2, we set aσ = a0 = bσ = b0 = 0.01, which is
also a commonly used diffuse prior.

The simulated data set contains n = 1000 genes and 6 replicates per gene per
condition. We generated xij and yij using µi = 0, pr = 0.1, ∆i ∼ N(0, 1), and
σ2

i ∼ IG(4, 1). For each simulated data set, we generated the null data set using the
permutation procedure described in Storey and Tibshirani (2003). We repeated the
simulation 100 times. MCMC simulation was conducted to fit the Bayesian model.

Figure 1 plots the estimated zi’s under Prior 1 versus those under Prior 2 based on
one simulation. It shows that zi can take different values under different priors, but the
ordering of zi is well preserved (the correlation coefficient is 0.989). Thus zi as a test
statistic to screen DE genes is robust to prior specification. However, zi as the estimate
of probability of a gene being DE is sensitive to prior specification.

Figure 2 plots the true FDR, the BFDR, and the PBFDR versus the total number
of rejections under Prior 1 and Prior 2, averaged over 100 simulations. The two curves
of the true FDR are very close, suggesting that, as a testing procedure, the Bayesian
model is robust to prior specification. The BFDR, which is calculated based on zi,
deviates from the true FDR and changes considerably between Prior 1 and Prior 2. By
comparison, the PBFDR almost overlaps with the true FDR. We have computed the
PBFDR under a number of different priors and obtained similar results. It suggests
that the PBFDR is robust to prior specification and it provides a reliable estimation of
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Figure 1: The scatter plot of the estimated zi’s under Prior 1 and Prior 2 in the
simulation study.

20 40 60 80

0.
0

0.
1

0.
2

0.
3

0.
4

total number of rejections

F
D

R

Figure 2: Comparison of the true FDR, the BFDR, and the PBFDR in the first simu-
lation study. The black curve is for Prior 1 and the red curve is for Prior 2. The solid
curve denotes the true FDR, the dotted curve denotes the BFDR, and the dashed curve
denotes the PBFDR.
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the true FDR.

In the first simulation study, the gene expression measurements are generated based
on the assumed model. We conducted another simulation study with a more realistic
gene expression distribution. Specifically, let Xi and Yi be the observed expression levels
for gene i from a real microarray study. Define the residual vector ei =(ei1, · · · , ei,m+g)′

by

eil =
{

xil − x̄i, for l = 1, · · · ,m,
yi,(l−m) − ȳi, for l = m + 1, · · · ,m + g,

where x̄i =
∑m

j=1 xij/m and ȳi =
∑g

j=1 yij/m. Then ei can be considered as a set
of random errors sampled based on the true gene expression distribution (Storey et al.
2007). We simulated 100 data sets according to the following steps. For iteration t
(t = 1, · · · , 100) and gene i (i = 1, · · · , n),

1. obtain a random permutation of (ei1, · · · , ei,m+g), denoted by ei
(t);

2. generate ∆(t)
i as described in the previous simulation study;

3. for j = 1, · · · ,m, compute x
(t)
ij = e

(t)
ij , and for k = 1, · · · , g, compute y

(t)
ik =

∆(t)
i + e

(t)
i,(m+k), where e

(t)
ij is the jth element of ei

(t).
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Figure 3: Comparison of the true FDR, the BFDR, and the PBFDR in the second
simulation study. The black curve is for Prior 1 and the red curve is for Prior 2. The
solid curve denotes the true FDR, the dotted curve denotes the BFDR, and the dashed
curve denotes the PBFDR.

The real data comes from a study comparing the gene expressions of breast cancer
tumors with BRCA1 mutations, BRCA2 mutations, and sporadic tumors (Hedenfalk
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et al. 2001), available at http://research.nhgri.nih.gov/microarray/NEJM Supplement.
Here we only considered the BRCA1 group and the BRCA2 group. There are 3226
genes, with 7 arrays in the BRCA1 group and 8 arrays in the BRCA2 group. We ana-
lyzed the data on the log2 scale. Following Storey and Tibshirani (2003), we eliminated
genes with aberrantly large expression values (> 20), which left us with measurements
on n = 3169 genes. Figure 3 compares the true FDR, the BFDR, and the PBFDR under
Prior 1 and Prior 2, where the residual vector ei was constructed based on the breast
cancer data. We kept the same replicate number in the experiment, with 7 replicates
per gene in one group and 8 replicates in the other group.

The BFDR is sensitive to prior specification and its assessment of statistical signif-
icance can be inaccurate. In the second simulation, the BFDR deviates substantially
from the true FDR because the assumed model was not an adequate fit to the data
(Figure 3). By comparison, the PBFDR under either prior closely follows the true
FDR. This is because the PBFDR utilizes an (artificially) augmented data set that in-
cludes (X0, Y 0) to construct the empirical null distribution for zi. The null data can
be generated independent of the working model. With a well constructed null data set,
the empirical null distribution of zi can characterize the behavior of test statistics for
non-DE genes, whether the working model is true or not, which leads to an accurate
and robust assessment of FDR.

4 Real Data Example

We analyzed the breast cancer microarray data (Hedenfalk et al. 2001) using the full
Bayesian model in Cao et al. (2009). As in the simulation study, we estimated the
PBFDR and the BFDR under Prior 1 and Prior 2. The null data set was generated
using the permutation procedure (Storey and Tibshirani 2003). Figure 4 plots the FDR
estimates versus the total number of rejections based on the breast cancer data. The
PBFDR is relatively stable under the two priors. The BFDR deviates from the PBFDR
and it changes substantially with different prior specifications.

We also used Figure 4 to demonstrate that the PBFDR allows objectively compar-
ing the performance between full Bayesian methods and frequentist and EB methods.
Specifically, we plot the permutation-based FDR for the SAM statistic (Tusher et al.
2001). It follows the PBFDR closely, suggesting that the full Bayesian model and the
SAM method have similar performance. This conclusion is supported by the large num-
ber of overlapping genes flagged by both methods. Among the top 100, 200, 300, 400,
500 selected genes, the number of genes selected by both the SAM and the Bayesian
model (under Prior 1) are 78, 167, 267, 355, and 440, respectively.

5 Discussion

Full Bayesian methods are useful tools to handle complex data structures in high-
throughput data analysis. In this paper we have proposed a generic approach to objec-
tively evaluate statistical significance for full Bayesian methods in the resampling-based
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Figure 4: The estimated FDR versus the total number of rejections in the breast cancer
data. The black solid curve is for the PBFDR under Prior 1, the black dashed curve is
for the BFDR under Prior 1, the red solid curve is for the PBFDR under Prior 2, the
red dashed curve is for the BFDR under Prior 2, and the green dotted curve is for the
permutation-based FDR of the SAM.

framework. The key idea is to construct an empirical null distribution for the posterior
probabilities (zi) using a computationally efficient algorithm. Based on this empirical
null distribution, commonly used significance measures, such as the p-value and the
FDR, can be estimated following the same procedure employed by frequentist and EB
methods. The resulting PBFDR is robust to prior specification and can produce ac-
curate estimate of the true FDR. In addition, when computed based on the same null
data set, the PBFDR is comparable to the resampling-based FDR estimated for other
testing procedures. It allows researchers to objectively compare the performance of full
Bayesian methods with other frequentist and EB methods.

The proposed algorithm only requires fitting the full Bayesian model once, which
reduces the computational burden tremendously. We acknowledge that the evaluation
of the PBFDR is more computationally intensive than the BFDR. We plan to develop
more efficient algorithms in future research.
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Appendix: Proof of Theorem 1

We rewrite s(X0
k , Y 0

k ) in (5) as

s(X0
k , Y 0

k ) =
∫

w(θ0, θ1, η, ξ, pr) · [θ0, θ1, η, ξ, pr | X, Y ]dθ0dθ1dηdξdpr, (7)

where

w(θ0, θ1, η, ξ, pr) =

∫
P (r0

k = 1 | θ0
0k, θ0

1k, η0
k, ξ, pr)[θ

0
0k, θ0

1k, η0
k | X0

k , Y 0
k , θ0, θ1, η, ξ, pr]dθ0

0kθ0
1kη0

k.

Effectively, we have w(θ0, θ1, η, ξ, pr) = P (r0
k = 1 | θ0, θ1, η, ξ, pr, X

0
k , Y 0

k ), which is
the predictive probability of a gene with measurements (X0

k , Y 0
k ) being DE, based on

parameters (θ0, θ1, η, ξ, pr).

Note that

hi(X0
k , Y 0

k ) =
∫

P (r0
k = 1 | θ0

0k, θ0
0k, η0

k, ξ, pr)

· [θ0
0k, θ0

1k, η0
k, θ0, θ1, η, ξ, pr | X0

k , Y 0
k , X(−i), Y(−i)]dθ0

0kdθ0
1kdη0

kdθ0dθ1dηdξdpr,

where

[θ0
0k, θ0

1k, η0
k, θ0, θ1, η, ξ, pr | X0

k , Y 0
k ,X(−i), Y(−i)] =

[θ0
0k, θ0

1k, η0
k | X0

k , Y 0
k , θ0, θ1, η, ξ, pr]gik(θ0, θ1, η, ξ, pr),

and

gik(θ0, θ1, η, ξ, pr) =
{∏n

j 6=i[Xj , Yj | θ0, θ1, η, ξ, pr]}[X0
k , Y 0

k | θ0, θ1, η, ξ, pr][θ0, θ1, η, ξ, pr]

[X0
k , Y 0

k , X(−i), Y(−i)]

∝ {
n∏

j 6=i

[Xj , Yj | θ0, θ1, η, ξ, pr]}{[X0
k , Y 0

k | θ0, θ1, η, ξ, pr][θ0, θ1, η, ξ, pr]}.

Then we have

hi(X0
k , Y 0

k ) =
∫

w(θ0, θ1, η, ξ, pr)gik(θ0, θ1, η, ξ, pr)dθ0dθ1dηdξdpr. (8)

We can consider gik(θ0, θ1, η, ξ, pr) as the posterior distribution of (θ0, θ1, η, ξ, pr) given
data (X(−i),Y(−i)), with the likelihood being

∏n
j 6=i[Xj , Yj | θ0, θ1, η, ξ, pr] and the prior

being [X0
k , Y 0

k | θ0, θ1, η, ξ, pr][θ0, θ1, η, ξ, pr].

The Bernstein-von Mises theorem (Ferguson 1996) indicates that as n → +∞, both
[θ0, θ1, η, ξ, pr | X,Y ] and gik(θ0, θ1, η, ξ, pr) converge almost surely at a rate of 1/

√
n to

the same normal distribution centered at the MLE of (θ0, θ1, η, ξ, pr), where the normal
density is denoted as f(θ0, θ1, η, ξ, pr).

Based on the convergence theorem in large sample theory (Ferguson 1996), both
s(X0

k , Y 0
k ) in (7) and hi(X0

k , Y 0
k ) in (8) converge almost surely to the same quantity C,

C =
∫

w(θ0, θ1, η, ξ, pr)f(θ0, θ1, η, ξ, pr)dθ0dθ1dηdξdpr,
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if w(θ0, θ1, η, ξ, pr) is a bounded and continuous function. Then we have hi(X0
k , Y 0

k ) −
s(X0

k , Y 0
k ) → 0 almost surely for any i as n → +∞. Note that how fast s(X0

k , Y 0
k ) and

hi(X0
k , Y 0

k ) converge depends on the specific function of w(θ0, θ1, η, ξ, pr).
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