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Nick Whiteley∗

This article addresses the problem of developing efficient methods for performing
inference when faced with very large data sets. The authors focus on a mixture modelling
problem arising in biology. Here the mixture model is used to classify and discriminate
between cell sub-types, the main interest being in the parameters associated with a
low-probability mixture component, with the latter identified by placing an ordering
constraint on the unobserved mixture weights. Computational methods for sampling
from the full Bayesian posterior in mixture models have been studied at great length.
Due to the model structure and the relative simplicity of its implementation, Gibbs
sampling is a popular choice, although it is widely recognized that this type of approach
can suffer from very poor mixing characteristics and there are various alternatives which
can be much more effective.

In any case, when the total number of data points is large, the cost of function evalu-
ations required as part of each MCMC iteration can be rather high. The authors propose
a method to avoid some of this cost, performing an approximation of full Bayesian in-
ference via a combination of Monte Carlo methods. Their idea is to avoid processing
all observations and concentrate computational effort on those data which are, in some
sense, most relevant to the mixture component of interest. This is an intriguing idea.
In the role of a discussant I will take this opportunity to pose some questions for the
authors regarding the principle of their method and to highlight some characteristics of
the Monte Carlo methods they employ.

In my understanding, there are two conceptual components to the proposed method:

• On the basis of an initial subset of the data, design an adaptive, sequential data
selection scheme, with the data subsets entering the definition of a sequence of
approximate posterior distributions.

• Use Monte Carlo methods to sample from this sequence of distributions, whilst
also updating the data selection scheme.

1 Principles of the approach

As the authors stress in the abstract and elsewhere in the article, their main concern is
over the trade-off between computational cost arising from the amount of data processed
and information obtained about particular quantities of interest. Upon reading the ab-
stract, my first impression was that this is naturally approached as a type of optimal
design problem: one is faced with a choice between different data collection strategies
(indexed in the present context by values of the weighting function parameters) and
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there is a stated requirement for the chosen strategy to fulfill certain criteria, in the
presence of uncertainty. However, this is not the approach which the authors adopt.
Most notably, they do not express a specific, quantitative characterization of the infor-
mation which they seek, or their preference for its accuracy. My first question to the
authors is: why did they not pursue an explicit formulation as an optimization problem,
with a utility function, optimality criterion, etc.? The authors hint at sequential design
in section 6 and I wondered if they had a formal optimization procedure in mind when
constructing their method, whether they can comment on what a procedure of this sort
would involve, or if they have reasons to consider such an approach inappropriate.

Apart from being a central component of an explicit optimization approach to the
problem, specification of a quantitative measure of the gain in information associated
with a particular data sampling strategy is important for assessing the effectiveness of
the proposed method, at least empirically. In the example of section 5.1, the authors
comment on the performance of their method in terms of the similarity in concentration
and location between an approximate marginal distribution they obtain and a corre-
sponding marginal of the full posterior. On the other hand, in the case of the example
of section 5.2, and the discussion of appendix A, the authors state:

“Here it’s not possible to draw a direct comparison between the posterior distribu-
tions of the component k∗, because the component structure in the random, targeted
and full data set case changes significantly.”

These two examples and the lack of a clear criterion for performance leave me unsure
as to the precise aims of the method and with no clear way to empirically characterize the
effectiveness of the proposed approach. The numerical examples rely on a comparison
with the full posterior, and whilst I realize that this is natural for purposes of exposition,
what reassurances can the authors provide about the approximate posteriors in the
general case? As with any form of approximation, it is natural to ask what it is we are
losing.

One of the key ideas of the article is the initial random selection of a subset of
the data, on the basis of which to construct a mechanism for subsequent observation
selection. As the authors comment in the discussion of section 6, the method they
propose is highly sensitive to the size of this initial subset. Can the authors suggest
some form of guideline as to how to choose this size? A requirement to approaching
this in a principled manner points again to the topic of optimal design and the need for
a quantitative performance criterion.

2 Monte Carlo scheme

In section 5 of the article the authors introduce a form of sequential Monte Carlo
method. My understanding is that this involves sampling a collection of processes, each
conditioned on a single draw of zR from the posterior associated with the initial random
sample. The authors adopt the distributional approximation displayed in equation (20)
in order avoid the computational expense which would be required to well-approximate
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the joint posterior of the parameters, zR and zT , updated as more observations are
considered.

Conditional on these draws from the initial posterior, each of the processes evolves
according to an inhomogeneous sequence of MCMC kernels, where the inhomogeneity
arises from the variation of the kernels’ target distributions, adapted to the joint history
of the processes and the auxiliary stochasticity arising from the random target data
selection. This is a non-standard algorithm and I found some of the indexing used in
the specification of the algorithm confusing. For example, j seems to be used to index
the processes (the particles), but also seems to index time steps. Is this what the authors
intended?

Regarding the conditioning of each sampled process on a single draw from the initial
posterior, there seems to be some algorithmic inefficiency here as, at least in the im-
plementation which the authors have made publicly available, this leaves many of the
initial samples unused. Isn’t this wasteful?

Another design issue which arises when using the proposed sequential method is
how to choose B, the size of the block of observations incorporated at each time step.
An intimately related issue, not mentioned explicitly in the article, is the number of
iterations of the MCMC kernel to employ at each time step. For simplicity, consider the
weighting function as fixed, assume a non-random ordering of the targeted observations
for incorporation and condition on the draws from the initial posterior distribution.
In this case, the proposed algorithm amounts to running a collection of independent,
inhomogeneous Markov chains.

The chains are not interacting via a resampling mechanism: the ability of these
chains to “keep up” with the changing target distributions (and therefore ultimately
reach stationarity with respect to the final distribution of interest), relies solely on
the ergodicity properties of the kernels employed. Changing the target distributions
too rapidly (roughly corresponding to large B), or using too few MCMC iterations at
each time step, can result in poor performance. This is a recognized phenomenon in
the context of standard sequential Monte Carlo methods and it seems reasonable to
conjecture that the proposed adaptive method is susceptible to the same issue.

In the case of more standard Sequential Monte Carlo methods employing a resam-
pling mechanism, a technique for adaptively choosing the sequence of distributions,
as the simulation progresses, has recently emerged (Jasra et al., 2010). This involves
choosing the sequence of distributions so as to prevent the effective sample size of the
particle population (computed in terms of a collection of importance weights) falling
below a given threshold. Whilst the theoretical consequences of this form of adapta-
tion are yet to be characterized, this is a natural method for automated selection of
the sequence of target distributions and resampling times. This approach does not
transfer to algorithms without resampling. In the algorithm proposed in the article
under consideration, the authors appear to choose B manually. Can they suggest any
guidelines?

Overall, I think that the general topic which the article addresses is an interesting
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one. However I am not convinced that the proposed methods are entirely well justified. I
found a quantitative specification of the aim of the method lacking, this seems important
for both motivating the method and assessing its performance. Guidelines for choosing
various tuning parameters of the method would be very welcome.
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