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EXACT CALCULATIONS FOR FALSE DISCOVERY PROPORTION
WITH APPLICATION TO LEAST FAVORABLE CONFIGURATIONS1

BY ETIENNE ROQUAIN AND FANNY VILLERS

UPMC University of Paris 6

In a context of multiple hypothesis testing, we provide several new exact
calculations related to the false discovery proportion (FDP) of step-up and
step-down procedures. For step-up procedures, we show that the number of
erroneous rejections conditionally on the rejection number is simply a bino-
mial variable, which leads to explicit computations of the c.d.f., the sth mo-
ment and the mean of the FDP, the latter corresponding to the false discovery
rate (FDR). For step-down procedures, we derive what is to our knowledge
the first explicit formula for the FDR valid for any alternative c.d.f. of the
p-values. We also derive explicit computations of the power for both step-
up and step-down procedures. These formulas are “explicit” in the sense that
they only involve the parameters of the model and the c.d.f. of the order statis-
tics of i.i.d. uniform variables. The p-values are assumed either independent
or coming from an equicorrelated multivariate normal model and an addi-
tional mixture model for the true/false hypotheses is used. Our approach is
then used to investigate new results which are of interest in their own right,
related to least/most favorable configurations for the FDR and the variance of
the FDP.

1. Introduction. When testing simultaneously m null hypotheses, the false
discovery proportion (FDP) is defined as the proportion of errors among all the
rejected hypotheses and the false discovery rate (FDR) is defined as the average
of the FDP. Since its introduction by Benjamini and Hochberg [1], the FDR has
become a widely used Type I error criterion, because it is adaptive to the number
of rejected hypotheses. However, the randomness of the denominator in the FDP
expression makes the study of the FDP distribution and of the FDR mathematically
challenging.

There is a considerable number of papers that deal with the FDR control under
different dependency conditions between the p-values (see, e.g., [1, 3–5, 30]). In
the latter, the goal is, given a prespecified level α, to provide a procedure with a
FDR smaller than α (for any value of the data law in a given distribution subspace,

Received April 2010; revised July 2010.
1Supported by the French Agence Nationale de la Recherche (ANR grant references: ANR-09-

JCJC-0027-01, ANR-PARCIMONIE, ANR-09-JCJC-0101-01) and the French ministry of foreign
and european affairs (EGIDE–PROCOPE Project 21887 NJ).

AMS 2000 subject classifications. Primary 62J15; secondary 62G10; tertiary 60C05.
Key words and phrases. False discovery rate, false discovery proportion, multiple testing, least

favorable configuration, power, equicorrelated multivariate normal distribution, step-up, step-down.

584

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/10-AOS847
http://www.imstat.org
http://www.ams.org/msc/


EXACT CALCULATIONS FOR FDP 585

e.g., for some dependency assumptions). For instance, the famous linear step-up
procedure (LSU), also called the Benjamini–Hochberg procedure [1] (based on the
Simes’s line [33]), has been proved to control the FDR under independence and
under a positive dependence assumption (see [1, 3]). While controlling the FDR,
one wants to maximize the power of the procedure, the power being generally
defined as the averaged number of correct rejections divided by the number of
false hypotheses.

In this paper, we deal with the “reversed” approach: given the procedure, we
aim to compute the corresponding FDR, or more generally the sth moment and
the c.d.f. of the FDP, and the Power. For procedures using a constant thresholding
and under a mixture model assuming independence between the p-values, Storey
[34] addressed theses questions, while introducing the positive false discovery rate
(pFDR) (see also Chi and Tan [7]). Considering step-up or step-down methods re-
quires more efforts: when the p-values are all i.i.d. uniform, the exact distribution
of the rejection number has been computed by Finner and Roters [16] for step-up
and step-down procedures, which leads to a computation of the FDR in the degen-
erate case where all the hypotheses are true [16]. When the p-values follow the
particular “Dirac-uniform” configuration, that is, when the p-values associated to
false hypotheses are equal to 0 and when the p-values associated to true hypothe-
ses are i.i.d. uniform, the FDP distribution has been computed by Dickhaus [8] for
general step-up-down procedures (see Section 3.7 in [8]). For an arbitrary distri-
bution of the p-values under the alternative, Ferreira and Zwinderman [13] gave
a first exact expression for the moment of the FDP of the LSU procedure under
independence [13]. Together with other recent approaches (see, e.g., [4, 26, 27,
30]), this puts forward a connection between the FDR expression and the rejec-
tion number distribution in the step-up case, under independence of the p-values.
Additionally, Sarkar [29] found an exact formula for the FDR, which is valid for
any step-up-down procedure [29]. However, it involves the c.d.f. of ordered com-
ponents of dependent variables. This contrasts with [8, 16] and the present paper
which use the c.d.f. of ordered components of i.i.d. uniform variables and thus lead
to substantially more explicit formulas.

Meanwhile, some of these approaches have also been investigated from the as-
ymptotic point of view, when the number of hypotheses m tends to infinity; Chi
[6] computed the asymptotic rejection number distribution of the LSU procedure
by introducing the criticality phenomenon [6], while Finner, Dickhaus and Roters
[15] computed the asymptotic FDR of the LSU procedure for positively correlated
p-values (following an equicorrelated multivariate normal model) in the particular
Dirac-uniform configuration [15]. In this paper, the point of view will be mainly
nonasymptotic.

The new contributions of the present paper are as follows:

• For a step-up procedure using a threshold (tk)k , we proved that the distribution
of the number of erroneous rejections conditionally on k rejections is a binomial
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variable of parameters k and pFDR(tk) = π0tk/G(tk), where π0 is the (averaged)
proportion of true nulls and G is the c.d.f. of the p-values. This provides new
explicit formulas for the c.d.f. of the FDP, the sth moment of the FDP (providing
a correction with respect to [13] for s ≥ 3) and for the FDR, for any alternative
distribution of the p-values. We also give an expression for the power, which
yields a considerably less complex calculation than in [20]; see Section 3.1.

• Considering a step-down procedure, a new explicit formula for the FDR and
the power is presented under any alternative distribution of the p-values. To our
knowledge, this expression is the first one that clearly relates the FDR to (joint)
rejection number distribution in the case of a step-down procedure and that is
valid under any alternative; see Section 3.1.

• All the previous results, valid under independence between the p-values, can be
easily extended to the case where the p-value family follows an equicorrelated
multivariate normal model, by using a simple modification; see Section 3.2.
However, this requires the use of a nonnegative correlation. The case of a possi-
bly negative correlation is considered when only two hypotheses are tested; see
Section 3.3.

• Our formulas corroborate the classical multiple testing results while they give
rise to several new results. The two main corollaries hold under independence
and are as follows. First, in Section 4.1.1, for the linear step-down procedure, we
prove that the Dirac-uniform configuration is a p-value configuration maximiz-
ing the FDR, that is, is a least favorable configuration (LFC) for the FDR. Addi-
tionally, considering a general step-down procedure, we define a new condition
on the threshold ensuring that the Dirac-uniform configuration is still a LFC. As
discussed in Section 4.1.1, this condition is different from the one of the step-up
case. Second, we find an exact expression of the minimum and the maximum
of the variance of the FDP of the LSU, these extrema being taken over some
p-value configuration sets of interest. The latter allows to better understand the
behavior of the FDP around the FDR. In particular, this puts forward that the
convergence of the FDP toward the FDR is particularly slow in the sparse case;
see Section 4.2.

For mathematical convenience, most of these results stand in “unconditional”
models (also called “two-groups mixture models”; see [10, 12]), which assume
that each null hypothesis is true with probability π0, independently from the other
hypotheses (the case of the more traditional “conditional” models is discussed in
Section 5.3). Next, all our formulas are valid nonasymptotically, that is, they hold
for each m ≥ 2. As a counterpart, they inevitably have a general form that can
appear somewhat complex at first sight. For instance, denoting by �m the c.d.f.
of the order statistics of m i.i.d. uniform variables on (0,1), the FDR formula for
step-up procedures requires the computation of �m at a given point of R

m (at
most), while the FDR formula for step-down procedures requires the computation
of �m at 2m different points of R

m (at most). However, let us underline what are
to our opinion the two main interests of this exact approach:
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- For some model parameter configurations and after possible simplifications, the
formulas are usable for further theoretical studies (monotonicity with respect
to a parameter, convergence when m tends to infinity, . . .), see Theorems 4.1
and 4.3.

- For m not too large (say m ≤ 1000), these formulas can be fully computed nu-
merically, for example, plotting exact graphs. Thus, they avoid using cumber-
some and less accurate simulation experiments (extensively used in multiple
testing literature); see, for instance, Section 4.1.2.

2. Preliminaries.

2.1. Models for the p-value family. On a given probability space, we consider
a finite set of m ≥ 2 null hypotheses, tested by a family of m p-values p = (pi, i ∈
{1, . . . ,m}). In this paper, for simplicity, we skip somewhat the formal definition
of p-values by defining directly a p-value model, that is, by specifying the joint
distribution of p.

In what follows, we denote by F the set containing c.d.f.’s from [0,1] into [0,1]
that are continuous and by F0(t) = t the c.d.f. of the uniform distribution over
[0,1] [we restricted our attention to the case where F0(t) = t only for simplicity,
all our formulas will be valid for an arbitrary increasing F0 ∈ F ].

DEFINITION 2.1 (Conditional p-value models).

• The p-value family p follows the conditional independent model with parame-
ters H = (Hi)1≤i≤m ∈ {0,1}m and F1 ∈ F , that we denote by p ∼ P I

(H,F1)
, if

p = (pi, i ∈ {1, . . . ,m}) is a family of mutually independent variables and for
all i,

pi ∼
{

F0, if Hi = 0,
F1, if Hi = 1.

• The p-value family p follows the conditional equicorrelated multivariate
normal model (conditional EMN model for short) with parameters H =
(Hi)1≤i≤m ∈ {0,1}m, ρ ∈ [−(m − 1)−1,1] and μ > 0, that we denote by
p ∼ P N

(H,ρ,μ), if for all i, pi ∼ �(Xi + μHi), where the vector (Xi)1≤i≤m is
distributed as a R

m-valued Gaussian vector with zero means and a covariance
matrix having 1 on the diagonal and ρ elsewhere and where � denotes the stan-
dard Gaussian distribution tail, that is, �(z) = P[Z ≥ z] for Z ∼ N (0,1). In
that model, the marginal distributions of the p-values are thus given by

pi ∼
{

F0, if Hi = 0,
F1(t) = �

(
�−1(t) − μ

)
, if Hi = 1.

The two models above are said to be “conditional” because the distribution
of the p-values are defined conditionally on the value of the parameter H =
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(Hi)1≤i≤m ∈ {0,1}m. The latter determines which hypotheses are true or false:
Hi = 0 (resp., 1) if the ith null hypothesis is true (resp., false). We then de-
note by H0(H) := {i ∈ {1, . . . ,m} | Hi = 0} the set corresponding to the true
null hypotheses and by m0(H) := |H0(H)| its cardinal. Analogously, we define
H1(H) := {i ∈ {1, . . . ,m} | Hi = 1} and m1(H) := |H1(H)| = m − m0(H).

To each one of the above models, we associate the “unconditional” version in
which we endow the parameter H with the prior distribution B(1−π0)

⊗m, making
(Hi)1≤i≤m ∈ {0,1}m a sequence of i.i.d. Bernoulli with parameter 1 −π0. From an
intuitive point of view, this means that each hypothesis is true with probability π0,
independently from the other hypotheses. We thus define the following models for
p [or more precisely for (H,p)].

DEFINITION 2.2 (Unconditional p-value models).

• The couple (H,p) follows the unconditional independent model with para-
meters π0 ∈ [0,1] and F1 ∈ F , which we denote by (H,p) ∼ P I

(π0,F1)
if

H ∼ B(1 − π0)
⊗m and the distribution of p conditionally to H is P I

(H,F1)
, that

is, conditionally on H , p follows the conditional independent model with pa-
rameters H and F1. In that model, the p-values are i.i.d. with common c.d.f.
G(t) = π0F0(t) + (1 − π0)F1(t).

• The couple (H,p) follows the unconditional equicorrelated multivariate normal
model (unconditional EMN model for short) with parameters π0 ∈ [0,1], ρ ∈
[−(m − 1)−1,1] and μ > 0, that we denote by (H,p) ∼ P N

(π0,ρ,μ), if H ∼
B(1 − π0)

⊗m and the distribution of p conditionally on H is P N
(H,ρ,μ), that is,

conditionally on H , p follows the conditional EMN model with parameters H ,
ρ and μ.

An important point is that the quantities m0(H) and m1(H) are deterministic in
the conditional models P I ,P N , while they become random in the unconditional
models P I ,P N with m0(H) ∼ B(m,π0) and m1(H) ∼ B(m,1 − π0).

The conditional independent model is one of the most standard p-value mod-
els and was, for instance, considered in the seminal paper of Benjamini and
Hochberg [1]. Its unconditional version, also called the “two-groups mixture
model,” is very convenient and has been widely used since its introduction by
Efron et al. [12]; see, for instance, [10, 19, 34].

The conditional EMN model is a simple instance of model introducing depen-
dencies between the p-values. It corresponds to a one-sided testing on the mean of
Xi +μHi , simultaneously for all 1 ≤ i ≤ m. It has become quite standard in recent
FDR multiple testing literature; for instance, it was used in [15] with μ = ∞ and it
has been considered in [2, 5] for numerical experiments. Furthermore, Efron [11]
recently showed that the EMN model may also be viewed as an approximation
for some nonequicorrelated models, which reinforces its interest for a practical
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use [11]. In this model, provided that ρ ≥ 0, the p-values are positively regres-
sion dependent on each one on the subset H0(H) [PRDS on H0(H)] which is one
dependency condition that suffices for FDR control (see [3]). The unconditional
version of this model is convenient because it provides exchangeable p-values (al-
though not independent when ρ �= 0).

Additionally, we will sometimes consider the “Dirac-uniform configuration”
for the above models. In that configuration, all the p-values corresponding to false
nulls (Hi = 1) are equal to zero, that is, F1 is constantly equal to 1 for the indepen-
dent model and μ = ∞ for the EMN model. This configuration was introduced in
[15] to increase the FDR as much as possible for the linear step-up procedures and
thus appears as a “least favorable configuration” for the FDR (see also Section 4.1).

2.2. Multiple testing procedures, FDP, FDR and power. A multiple testing
procedure R is defined as an algorithm which, from the data, aims to reject part
of the null hypotheses. Below, we will consider, as is usually the case, multi-
ple testing procedures which can be written as a function of the p-value family
p = (pi, i ∈ {1, . . . ,m}). More formally, we define a multiple testing procedure as
a measurable function R, which takes as input a realization of the p-value family
p ∈ [0,1]m and which returns a subset R(p) of {1, . . . ,m}, corresponding to the
rejected hypotheses [i.e., i ∈ R(p) means that the ith hypothesis is rejected by R

for the observed p-values p].
Particular multiple testing procedures are step-up and step-down procedures.

First, define a threshold as any nondecreasing sequence t = (tk)1≤k≤m ∈ [0,1]m
(with t0 = 0 by convention). Next, for any threshold t, the step-up procedure of
threshold t, denoted here by SU(t), rejects the ith hypothesis if pi ≤ t

k̂
, with

k̂ = max{k ∈ {0,1, . . . ,m} | p(k) ≤ tk}, where p(1) ≤ p(2) ≤ · · · ≤ p(m) denote
the ordered p-values (with the convention p(0) = 0). In particular, the procedure
SU(t) using tk = αk/m corresponds to the standard linear step-up procedure of
Benjamini and Hochberg [1], denoted here by LSU. In addition, for any thresh-
old t, the step-down procedure of threshold t, denoted here by SD(t), rejects the
ith hypothesis if pi ≤ t

k̃
, with k̃ = max{k ∈ {0,1, . . . ,m} | ∀k′ ≤ k,p(k′) ≤ tk′ }.

Analogously to the step-up case, the procedure SD(t) using tk = αk/m is called
the linear step-down procedure and is denoted here by LSD.

Next, associated to any multiple testing procedure R and any configuration of
true/false hypotheses H ∈ {0,1}m, we introduce the false discovery proportion
(FDP) of R as the proportion of true hypotheses in the set of the rejected hy-
potheses, that is,

FDP(R,H) = |H0(H) ∩ R|
|R| ∨ 1

,(1)

where | · | denotes the cardinality function. The FDP definition can be traced back
to [31]. Then, while for any multiple testing procedure R, the false discovery rate
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(FDR) is defined as the mean of the FDP (see [1]), the power is (generally) defined
as the expected number of correctly rejected hypotheses divided by the number
of false hypotheses. Of course, the FDR and the power depend on the distribution
that generates the p-values, and we may use the models defined in Section 2.1.
Formally, for any distribution P coming from a conditional model using parameter
H ∈ {0,1}m, we let

FDR(R,P ) = Ep∼P [FDP(R(p),H)],(2)

Pow(R,P ) = m1(H)−1
Ep∼P [|H1(H) ∩ R(p)|].(3)

Similarly, for any p-value distribution P coming from an unconditional model, the
FDR and the Power use an additional averaging over H ∼ B(1 − π0)

⊗m and are
defined by

FDR(R,P ) = E(H,p)∼P [FDP(R(p),H)],(4)

Pow(R,P ) = (π1m)−1
E(H,p)∼P [|H1(H) ∩ R(p)|].(5)

Note that, for convenience, (5) is not exactly defined as the expectation of (3),
because of the denominator. It corresponds precisely to the expected number of
correctly rejected hypotheses divided by the expected number of false hypotheses.

In the paper, to simplify the notation, we sometimes drop the explicit depen-
dency in p, H or P , writing, for example, R instead of R(p), H0 instead of H0(H),
FDP(R) instead of FDP(R,H) and FDR(R) instead of FDR(R,P ).

2.3. Some notation and useful results. For any k ≥ 0 and any threshold t =
(t1, . . . , tk), we denote

�k(t) = �k(t1, . . . , tk) = P
[
U(1) ≤ t1, . . . ,U(k) ≤ tk

]
,(6)

where (Ui)1≤i≤k is a sequence of k variables i.i.d. uniform on (0,1) and with the
convention �0(·) = 1. In practice, quantity (6) can be evaluated using Bolshev’s
recursion �k(t) = 1−∑k

i=1
(k
i

)
(1− tk−i+1)

i�k−i(t1, . . . , tk−i) or Steck’s recursion

�k(t) = (tk)
k − ∑k−2

j=0

(k
j

)
(tk − tj+1)

k−j�j (t1, . . . , tj ) (see [32], pages 366–369).
Additionally, the following relation holds (see Lemma 2.1 in [16]): for all k ∈ N

and ν1, ν2 ∈ R such that 0 ≤ ν1 + ν2 ≤ ν1 + kν2 ≤ 1:

�k(ν1 + ν2, . . . , ν1 + kν2) = (ν1 + ν2)
(
ν1 + (k + 1)ν2

)k−1
.(7)

From the �k’s, we define the following useful quantities: for any threshold t =
(tk)1≤k≤m and k ≥ 0, k ≤ m, we let

Dm(t, k) =
(

m

k

)
(tk)

k�m−k(1 − tm, . . . ,1 − tk+1),(8)

D̃m(t, k) =
(

m

k

)
(1 − tk+1)

m−k�k(t1, . . . , tk).(9)
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Above, note that (tk)
k and (1 − tk+1)

m−k are correct when k = 0 and k = m, even
if (tj )j is only defined for 1 ≤ j ≤ m. Note that Bolshev’s recursion provides∑m

k=0 Dm(t, k) = ∑m
k=0 D̃m(t, k) = 1 for any threshold t.

Finally, we will use the so-called Stirling numbers of the second kind, defined
as coefficients

{ s
�

}
for s, � ≥ 1 by

{ s
0

} = 0,
{ s

�

} = 0 for � > s,
{1

1

} = 1 and the

recurrence relation: for all 1 ≤ � ≤ s + 1,
{ s+1

�

} = �
{ s

�

} + { s
�−1

}
. For instance,{3

1

} = 1,
{3

2

} = 3,
{3

3

} = 1,
{4

1

} = 1,
{4

2

} = 7,
{4

3

} = 6,
{4

4

} = 1. From a com-
binatorial point of view, the coefficient

{ s
�

}
counts the number of ways to parti-

tion a set of s elements into � (nonempty) subsets. The latter is useful to com-
pute the sth moment of a binomial distribution: if X ∼ B(n, q), we have ∀s ≥ 1,
E[Xs] = ∑s∧n

�=1
n!

(n−�)!
{ s

�

}
q�.

3. New formulas.

3.1. Unconditional independent model, m ≥ 2.

3.1.1. Step-up case. Let us consider the unconditional independent model.
Finner and Roters [16] derived the exact distribution of the rejection number of
any step-up procedure in the case of i.i.d. uniform p-values (i.e., when all the hy-
potheses are true) [16]. In the unconditional model, the latter can be generalized
as follows: denoting G(t) = π0F0(t) + (1 − π0)F1(t) the common c.d.f. of the
p-values, we have for 0 ≤ k ≤ m that

P[|SU(t)| = k] = Dm([G(tj )]1≤j≤m, k)(10)

(this is straightforward from [16] because G is continuous increasing).
Next, for the procedure R(t) = {i | pi ≤ t} using a constant threshold t ∈ [0,1],

Storey [34] proved that the distribution of |H0(H) ∩ R(t)| conditionally on
|R(t)| = k is a binomial distribution B(k,π0F0(t)/G(t)) (see proof of Theorem 1
in [34], see also Proposition 2.1 in [7]). Later, Chi [6] proved that the distribution
of |H0(H) ∩ LSU| conditionally on |LSU| = k is asymptotically binomial (in a
particular “supercritical” framework); see [6]. Here, we show that the latter holds
nonasymptotically, for any step-up procedure, which, by using (10), gives exact
formulas for the c.d.f. of the FDP, the sth moment of the FDP, the FDR and the
Power.

THEOREM 3.1. When testing m ≥ 2 hypotheses, consider a step-up procedure
SU(t) with threshold t and the notation of Section 2.3. Then for any parameter
π0 ∈ [0,1] and F1 ∈ F , denoting G(t) = π0F0(t) + π1F1(t), we have under the
generating distribution (H,p) ∼ P I

(π0,F1)
of the unconditional independent model,

for any k ≥ 1,

|H0(H) ∩ SU(t)| conditionally on |SU(t)| = k ∼ B
(
k,

π0F0(tk)

G(tk)

)
.(11)
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In particular, we derive the following formulas, for any x ∈ (0,1), for any s ≥ 1,
denoting by

{ s
�

}
the Stirling number of second kind and by �z� the largest integer

smaller than or equal to z:

P[FDP(SU(t),H) ≤ x]

=
m∑

k=0

�xk�∑
j=0

(
k

j

)(
π0F0(tk)

G(tk)

)j(
π1F1(tk)

G(tk)

)k−j

(12)

× Dm([G(tj )]1≤j≤m, k);
E[FDP(SU(t),H)s]

=
s∧m∑
�=1

m!
(m − �)!

{
s

�

}
π�

0(13)

×
m∑

k=�

F0(tk)
�

ks
Dm−�

([G(tj+�)]1≤j≤m−�, k − �
);

FDR
(
SU(t),P I

(π0,F1)

)
= π0m

m∑
k=1

F0(tk)

k
(14)

× Dm−1
([G(tj+1)]1≤j≤m−1, k − 1

);
Pow

(
SU(t),P I

(π0,F1)

)
(15)

=
m∑

k=1

F1(tk)Dm−1
([G(tj+1)]1≤j≤m−1, k − 1

)
.

We can apply Theorem 3.1 in the case where tk = αk/m to deduce the following
results for the LSU procedure of Benjamini and Hochberg [1]: first, (14) leads to
FDR(LSU) = π0α, recovering the well-known result of Benjamini and Yekutieli
[3] in the unconditional model. Second, (15) provides the exact expression

Pow(LSU) =
m∑

k=1

F1(αk/m)

(
m − 1
k − 1

)(
G(αk/m)

)k−1

× �m−k

(
1 − G(αm/m), . . . ,1 − G

(
α(k + 1)/m

))
.

Glueck et al. [20] have obtained an exact expression for the power of the LSU
under independence (in the conditional model) [20], but the corresponding for-
mula was reported to have a complexity exponential in m, which is intractable
for large m. Here, we obtained a much less complex formula, requiring (at most)
the computation of the function �m at one point of R

m. Third, formula (13) used
with tk = αk/m is similar to expression (2.1) in Theorem 2.1 of [13], in which a
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formula for the sth moment of the FDP of the LSU was investigated (in the condi-
tional model). Our formula (13) uses additional factors

{ s
�

}
. As soon as s ≥ 3, they

are definitely needed and they seem forgotten in [13]; for instance, taking α = 1,
the corresponding linear step-up procedure rejects all the hypotheses and (13) re-
duces to the computation of the sth moment of a binomial distribution, which uses
at least one

{ s
�

}
> 1, see Section 2.3.

Fourth, expression (12) used with tk = αk/m yields what is to our knowledge
the first exact expression for the c.d.f. of FDP(LSU), valid for any m ≥ 2 and
for any alternative c.d.f. F1. For instance, taking a typical Gaussian setting where
F1(t) = �(�−1(t) − μ), we are able to evaluate the probability P(FDP(LSU) ≤
cα) for c ≥ 1; for μ = 3, α = 0.05, π0 = 1 − 1/

√
m, expression (12) pro-

vides P(FDP(LSU) ≤ α) � 0.724, P(FDP(LSU) ≤ 2α) � 0.787 for m = 100 and
P(FDP(LSU) ≤ α) � 0.557, P(FDP(LSU) ≤ 2α) � 0.826 for m = 1000. This
means that the LSU procedure, designed to control the FDR at level α, can have a
FDP larger than 2α with a “nonnegligible” probability, for some admittedly quite
standard values of the model parameters. As m tends to infinity while the model pa-
rameters stay constant with m, the FDP converges to the FDR and the latter effect
vanishes (see, e.g., [23]). However, we show in Section 4.2 that the convergence
can be slow in the sparse case.

Alternatively, some authors are interested in procedures R controlling the FDP,
that is, satisfying P[FDP(R) ≤ α] ≥ 1 − γ ; see, for example, [19, 22]. By using
(11), we directly deduce that the latter FDP control is satisfied by the step-up
procedure SU(t
) using the oracle threshold defined by t
m+1 = 1 (by convention)
and for any 1 ≤ k ≤ m,

t
k = max
{
t ∈ [0, t
k+1] | P[X ≤ αk] ≥ 1 − γ for X ∼ B

(
k,π0t/G(t)

)}
,

with t
k = 0 if the above set is empty. However, the latter threshold is unknown in
practice because it depends on the c.d.f. G and an interesting issue is to estimate it.
Chi and Tan [7] introduced the threshold tCT

k = max{t ∈ [0, tCT
k+1] | P[X ≤ αk] ≥

1 − γ for X ∼ B(k,1 ∧ (mt/k))} (with the convention tCT
m+1 = 1). As a matter

of fact, the latter can be seen as the empirical substitute of t
k , because G(t
k̂
) �

Ĝm(t
k̂
) = k̂/m for any step-up procedure rejecting k̂ hypotheses (Ĝm denoting the

e.c.d.f. of the p-values). Using the latter threshold, they established an asymptotic
FDP control (as m tends to infinity). Here, a plausible explanation is that their
procedure correctly mimics the oracle SU(t
) (asymptotically).

3.1.2. Step-down case. In this section, we still consider the unconditional in-
dependent model, but we focus on the step-down case. By contrast with the step-up
case, for a step-down procedure, the distribution of |H0(H)∩SD(t)| conditionally
on |SD(t)| = k is not binomial in general. For instance, we prove in the supple-
mentary file [28] the following: for any k ≥ 1, k ≤ m,

P[|H0(H) ∩ SD(t)| = k | |SD(t)| = k] = πk
0
�k(F0(t1), . . . ,F0(tk))

�k(G(t1), . . . ,G(tk))
=: ak;(16)
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P[|H0(H) ∩ SD(t)| = 0 | |SD(t)| = k] = πk
1
�k(F1(t1), . . . ,F1(tk))

�k(G(t1), . . . ,G(tk))
(17)

=: (1 − b)k,

and it turns out that a = b only for particular situations, such as t1 = · · · = tk ,
F1(x) = x or π0 ∈ {0,1}. Also, in the Dirac-uniform configuration F1 = 1 [and
thus G(t) = π0t + π1], we establish in the supplementary file [28] the following:
for any 1 ≤ j ≤ k, 1 ≤ k ≤ m,

P[|H0(H) ∩ SD(t)| = j | |SD(t)| = k]
(18)

=
(

k

j

)
π

j
0 π

k−j
1

�j(tk−j+1, . . . , tk)

�k(π0t1 + π1, . . . , π0tk + π1)
,

and the latter does not correspond to a binomial distribution in general. As a matter
of fact, we derived an exact expression for P[|H0(H) ∩ SD(t)| = j | |SD(t)| = k],
valid for any j , t and F1, but involving functions more complex than the �k (see
formula (1) in the supplement [28]).

As a consequence, we now investigate the calculation of the FDR and of the
power directly without using this exact FDP distribution expression. For this, let
us recall the exact formula for the distribution of |SD(t)|: for all k ∈ {0, . . . ,m},

P[|SD(t)| = k] = D̃m([G(tj )]1≤j≤m, k).(19)

(see formula (4), page 344 of [32], which can be directly generalized in the uncon-
ditional independent model because G is continuous increasing). The next result,
based on the calculation of the distribution of |SD(t′)| conditionally on |SD(t)| = k

(with t ′j = tj+1), connects the FDR to distributions of the type (19) (see the proof
in Section 6.2).

THEOREM 3.2. For m ≥ 2 hypotheses, consider the unconditional indepen-
dent model P I

(π0,F1)
, a step-down procedure SD(t) with threshold t and the no-

tation of Section 2.3. Then for any parameter π0 ∈ [0,1] and F1 ∈ F [denoting
G(t) = π0F0(t) + π1F1(t)], we have

FDR
(
SD(t),P I

(π0,F1)

)
= π0m

m∑
k=1

m∑
k′=k

F0(tk)

k′ D̃m−1
(
(G(tj ))1≤j≤m−1, k − 1

)
(20)

× D̃m−k

((
G(tk+j ) − G(tk)

1 − G(tk)

)
1≤j≤m−k

, k′ − k

)
;

Pow
(
SD(t),P I

(π0,F1)

)
(21)

=
m∑

k=1

F1(tk)D̃m−1
([G(tj )]1≤j≤m−1, k − 1

)
.
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To the best of our knowledge, (20) is the first exact expression for a step-down
procedure that relies the FDR to the (joint) distribution of rejection numbers for
any p-value alternative distribution. Furthermore, this result can be extended to
the more general case of step-up-down procedures; see Section 5.2. The main tool
to get (20) is Lemma 7.2.

One straightforward consequence of (20) is that, for a given threshold t such
that tk/k is nondecreasing in k, the FDR of the step-down procedure of threshold
t is always smaller than the FDR of the step-up procedure of threshold t:

COROLLARY 3.3. In the same setting as Theorem 3.2, consider a threshold t
such that tk/k is nondecreasing in k. Then we have

FDR(SD(t)) ≤ π0m

m∑
k=1

tk

k
D̃m−1

([G(tj )]1≤j≤m−1, k − 1
)

≤ FDR(SU(t)).

While the latter result should probably be considered as well known, it is not
trivial because when increasing the rejection number, both numerator and denom-
inator are increasing within the FDP expression (for further developments on this
issue, see Theorem 2 in [36]).

Next, by taking tk = αk/m in (20), we may compute exactly the FDR of the
LSD procedure. In the Dirac-uniform model P I

(π0,F1=1) and using (7), we deduce
the following expression:

FDR(LSD) = π0
α2

m

(
π1 + π0

α

m

)

×
m∑

k=1

m∑
j=k

k

j

(
m − 1
k − 1

)(
m − k

j − k

)
πm−k

0

(22)

×
(
π1 + π0

αk

m

)k−2(
α(j − k + 1)

m

)j−k−1

×
(

1 − α(j + 1)

m

)m−j

.

Finally, let us emphasize that expression (20) is also useful to investigate least
favorable configurations for the FDR of step-down procedures (see Section 4.1.1).

REMARK 3.4. If we only focus on the Dirac-uniform configuration, the
FDP distribution of a given procedure R (rejecting any p-value equals to 0)
only depends on the distribution of |R ∩ H0(H)| (conditionally on H ), because
|R ∩ H0(H)| = |R| − m1(H). As shown in Section 3.7 of [8], this leads to exact
computations of the FDR for step-up, step-down and more general step-up-down
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procedures in the particular Dirac-uniform configuration. In comparison, Theo-
rem 3.2 is valid for an arbitrary alternative c.d.f. F1, while it intrinsically uses the
exchangeability of the p-values (which requires to use an unconditional model).

3.2. Unconditional EMN model with nonnegative correlation m ≥ 2. In this
subsection, our goal is to obtain results similar to Theorems 3.1 and 3.2, but this
time in the unconditional EMN model of parameters π0, ρ and μ, with a non-
negative correlation ρ ∈ [0,1]. In that case, we easily see that the joint distribu-
tion of the p-values can be realized as follows: for all i, pi = �(

√
ρ �−1(U) +√

1 − ρ �−1(Ui) + μHi), where U , (Ui)i are all i.i.d. uniform on (0,1) [and in-
dependent of (Hi)i]. This idea can be traced back to Stuart [35] and Owen and
Steck [24]. As a consequence, conditionally on U = u, the p-values follow the un-
conditional independent model of parameters π0, F0(·|u,ρ) and F1(·|u,ρ) where
we let

F0(t |u,ρ) = �

(
�−1(t) − √

ρ�−1(u)√
1 − ρ

)
,

(23)

F1(t |u,ρ) = �

(
�−1(t) − √

ρ�−1(u) − μ√
1 − ρ

)

for ρ ∈ [0,1) and F0(t |u,1) = 1{u ≤ t}, F1(t |u,1) = 1{u ≤ �(�−1(t) − μ)} for
ρ = 1. As a result, to obtain formulas valid in the unconditional EMN model, we
may directly use formulas holding in the unconditional independent model (with
the above modified c.d.f.’s) and using an additional integration over u ∈ (0,1).
Hence, we deduce from Theorems 3.1 and 3.2 the following result (the formulas
are not fully written for short).

COROLLARY 3.5. For m ≥ 2 hypotheses, consider the unconditional EMN
model P N

(π0,ρ,μ) with parameters π0 ∈ [0,1], μ > 0 and ρ ∈ [0,1] and let
G(t | u,ρ) = π0F0(t | u,ρ) + π1F1(t | u,ρ) using notation (23). Then, for any
threshold t, under the generating distribution (H,p) ∼ P N

(π0,ρ,μ), the quantity
P[FDP(SU(t)) ≤ x] (resp. E[FDP(SU(t))s]; FDR(SU(t)); Pow(SU(t))) is given
by the right-hand side of (12) [resp. (13); (14); (15)], by replacing F0(·) by
F0(·|u,ρ), F1(·) by F1(·|u,ρ) and G(·) by G(·|u,ρ), and by integrating over u

with respect to the Lebesgue measure on (0,1). Additionally, a similar result holds
for step-down procedures using (20) and (21).

Applying Corollary 3.5 for the LSU procedure, we obtain

FDR
(
LSU,P N

(π0,ρ,μ)

)
= π0

m∑
k=1

(
m

k

)∫ 1

0
F0(αk/m | u,ρ)G(αk/m | u,ρ)k−1(24)

× �m−k

((
1 − G

(
α(m − j + 1)/m | u,ρ

))
1≤j≤m−k

)
du.
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An expression for limm FDR(LSU,P N
(π0,ρ,μ)) was provided by Finner, Dickhaus

and Roters [15], by considering the asymptotic framework where m tends to in-
finity [15]. We compared the latter to the formula (24) by plotting the graph cor-
responding to their Figure 3 (not reported here). The results are qualitatively the
same for π0 < 1, but present major differences when π0 = 1 and ρ is small. This
is in accordance with the simulations reported in the concluding remarks of Sec-
tion 5 in [15]. Hence, the asymptotic analysis may not reflect what happens for a
realistically finite m, which can be seen as a limitation with respect to our nonas-
ymptotic approach. For instance, when π0 = 1, Finner, Dickhaus and Roters [15]
proved that limρ→0 limm FDR(LSU) = �(

√−2 logα) < α whereas we have for
any m ≥ 2 that limρ→0 FDR(LSU) = α, as remarked in [15] using simulations and
as proved formally in the next result.

COROLLARY 3.6. For any m ≥ 2 and for any threshold t, the quantities
FDR(SU(t),P N

(π0,ρ,μ)) and FDR(SD(t),P N
(π0,ρ,μ)) are continuous in any π0 ∈

[0,1], any ρ ∈ [0,1] and any μ > 0.

Corollary 3.6 is a straightforward consequence of Corollary 3.5; to prove the
continuity in ρ = 1, we may remark that for any u outside the set S = {tk,1 ≤
k ≤ m} ∪ {�(�−1(tk) − μ),1 ≤ k ≤ m} of zero Lebesgue measure, the functions
F0(t | u,ρ) and F1(t | u,ρ) are continuous in ρ = 1.

In particular, Corollary 3.6 shows that the limit of the FDR when ρ tends to 1
is given by the degenerated case ρ = 1. In the latter case, the FDR is particu-
larly easy to compute because only one Gaussian variable is effective: for step-up
procedures, FDR(SU(t)) = π0tm; and for step-down procedures, FDR(SD(t)) =∑m

k=1
(m
k

)
πk

0 πm−k
1

k
m

min{tm−k+1,�(�−1(t1)−μ)} (the proof is left to the reader).
For instance, under the special p-value configuration where ρ = 1 and π0 = 1, the
above FDR expressions yield FDR(SU(t)) = tm and FDR(SD(t)) = t1. Thus, as
ρ � 1, the FDR value may considerably change as one considers a step-up or a
step-down algorithm.

Going back to Corollary 3.5, let us mention that the latter can be used in order
to evaluate the FDR control robustness under Gaussian equicorrelated positive de-
pendence for any procedure (step-up or step-down) that controls the FDR under
independence. For instance, the adaptive procedures of Blanchard and Roquain
[5] [step-up using tk = α min{1, (1 − α)k/(m − k + 1)}] and Finner, Dickhaus and
Roters [14] [step-up based on a modification of tk = αk/(m − (1 − α)k)] have
been proved to control the FDR at level α under independence (asymptotically
for [14]). A simulation study was done in [5] in order to check if their respective
FDR is still below α (or at least close to α) in the EMN model. Using our exact
approach, we are able to reproduce their analysis without the errors due to the
Monte–Carlo approximation. However, we underline that our approach uses non-
random thresholds t; this is not always the case for adaptive procedures (see, e.g.,
[2, 5]).
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Finally, let us underline that the main theoretical obstacle brought by the EMN
model (ρ ≥ 0) with respect to the independent model is that the functions F0(t |
u,ρ) and F1(t | u,ρ) [u ∈ (0,1)] are much more difficult to study than the original
c.d.f.’s F0 and F1. As illustration, the concavity property is lost (see [15], Figure 1),
while the latter is often required in studies like the analysis of the least favorable
configurations (see Section 4.1.1) or the convergence of the FDP (see, e.g., [23]).

REMARK 3.7. As described in Section 2 of [15], the device that we used
to establish Corollary 3.5 also works for suitable test statistics of the form Ti =
g(Xi,U) where (Xi)i is a family of independent variables and the “disturbance
variable” U is independent from the Xi’s. Therefore, our methodology would also
apply in such framework.

3.3. EMN model with a general correlation and m = 2. When the correlation
ρ is negative, the approach presented in the last section is not valid anymore and
the problem seems much more difficult to tackle. We propose in this section to
focus on the case where only two hypotheses are tested, which should hopefully
give some hints concerning the behavior of the FDR under negative correlations for
larger m. The next result follows from elementary integration and does not require
the use of an unconditional model (see the proof in the supplementary file [28]).

PROPOSITION 3.8. For m = 2 hypotheses, consider the conditional EMN
model P N

(H,ρ,μ) with parameters H = (H1,H2) ∈ {0,1}2 (generating m0 ∈ {1,2}
true null hypotheses), ρ ∈ [−1,1] and μ > 0. Consider a threshold t = (t1, t2). Let
z1 = �−1(t2) and z2 = �−1(t1). Then FDR(SU(t),P N

(H,ρ,μ)) is given by

ρ ∈ (−1,1), 1
2

∫ �(z1−μ)
0 �(

z1−ρ�−1(w)√
1−ρ2

) dw

m0 = 1 + ∫ 1
�(z1−μ)

�(
z2−ρ�−1(w)√

1−ρ2
) dw

ρ ∈ (−1,1), t1 + ∫ t2
t1

�(
z1−ρ�−1(w)√

1−ρ2
) dw

m0 = 2 + ∫ 1
t2

�(
z2−ρ�−1(w)√

1−ρ2
) dw

ρ = −1,m0 = 1

⎧⎪⎨
⎪⎩

t1, if 0 < μ ≤ 2z1,
t1 + 1

2 t2 − 1
2�(μ − z1), if 2z1 < μ < z1 + z2,

1
2 t2 + 1

2�(μ − z1), if μ ≥ z1 + z2,

ρ = −1,m0 = 2

⎧⎨
⎩

2t1, if 1/2 ≥ t2,
2(t1 + t2) − 1, if 1/2 < t2, t1 + t2 ≤ 1,
1, if 1/2 < t2, t1 + t2 > 1,

ρ = 1,m0 = 1 1
2 t2

ρ = 1,m0 = 2 t2

(25)
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and FDR(SD(t),P N
(H,ρ,μ)) is given by

ρ ∈ (−1,1), 1
2

∫ �(z2−μ)
0 �(

z1−ρ�−1(w)√
1−ρ2

) dw

m0 = 1 + 1
2

∫ �(z1−μ)

�(z2−μ)
�(

z2−ρ�−1(w)√
1−ρ2

) dw

+ ∫ 1
�(z1−μ)

�(
z2−ρ�−1(w)√

1−ρ2
) dw

ρ ∈ (−1,1), t1 + ∫ 1
t1

�(
z2−ρ�−1(w)√

1−ρ2
) dw

m0 = 2

ρ = −1, m0 = 1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t1, if 0 < μ ≤ z1 + z2,
1
2(t1 + t2) − 1

2�(μ − z2)

+ 1
2�(μ − z1), if z1 + z2 < μ < 2z2,

1
2 t2 + 1

2�(μ − z1), if μ ≥ 2z2,

ρ = −1, m0 = 2 min(2t1,1)

ρ = 1, m0 = 1 1
2 min(t2,�(z2 − μ))

ρ = 1, m0 = 2 t1

(26)

4. Application to least/most favorable configurations.

4.1. Least favorable configurations for the FDR. In order to study the FDR
control, an interesting multiple testing issue is to determine which are the values
of the model parameter F1 (or μ) for which the FDR is maximum. The latter is
called a least favorable configuration (LFC) for the FDR.

4.1.1. Independent model. Let us focus on the unconditional independent
model. For a step-up procedure, expression (14) can be seen as π0mE0[tk̂/k̂]
(where k̂ = |SU([G(tj+1)]1≤j≤m−1)| + 1 and E0 denotes the expectation with
respect to m − 1 i.i.d. uniform p-values). This shows that the behavior of the
function k �→ tk/k is crucial to determine the LFCs of the FDR. Namely, if F1

and F ′
1 are two c.d.f.’s such that for all t ∈ [0,1], F1(t) ≤ F ′

1(t), then we have
FDR(SU(t),P I

(π0,F1)
) ≤ FDR(SU(t),P I

(π0,F
′
1)

) when tk/k is nondecreasing, while

we have FDR(SU(t),P I
(π0,F1)

) ≥ FDR(SU(t),P I
(π0,F

′
1)

) when tk/k is nonincreas-

ing. The latter recovers a well-known result of Benjamini and Yekutieli [3] which
was initially established in the conditional model; see Theorem 5.3 in [3]. As a
consequence, the LFC for the FDR is either F1 = 1 (Dirac-uniform) when tk/k is
nondecreasing, or F1 = 0 [F1(x) = x if we only consider concave c.d.f.’s] when
tk/k is nonincreasing. In the border case of a linear threshold, the FDR does not
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depend on F1 (e.g., it is equal to π0α for the LSU), hence any configuration is a
LFC.

An open problem is to determine the LFCs of a step-down procedure using a
given threshold t = (tj )1≤j≤m. Here, we introduce a new condition on the thresh-
old t which provides that the Dirac-uniform configuration is a LFC for the FDR of
the corresponding step-down procedure. We define for any threshold t = (tj )1≤j≤m

the following condition:

k ∈ {1, . . . ,m} �→
m−k∑
i=0

tk

k + i
D̃m−k

((
tk+j − tk

1 − tk

)
1≤j≤m−k

, i

)
(A)

is nondecreasing.

We now present the main result of this section which uses Theorem 3.2 and is
proved in Section 6.3.

THEOREM 4.1. For m ≥ 2 hypotheses, consider the unconditional indepen-
dent model P I

(π0,F1)
and a step-down procedure SD(t) with a threshold t =

(tj )1≤j≤m satisfying (A). Then for any π0 ∈ [0,1] and concave c.d.f. F1 ∈ F , we
have

FDR
(
SD(t),P I

(π0,F1)

) ≤ FDR
(
SD(t),P I

(π0,F1=1)

)
,(27)

meaning that the Dirac-uniform distribution is a least favorable configuration for
the FDR of SD(t). Moreover, for α ∈ (0,1), the linear threshold t = (αj/m)1≤j≤m

satisfies (A) and thus (27) holds for the linear step-down procedure LSD.

While condition (A) may be somehow difficult to state formally, it is very
easy to check numerically because it only involves a finite set of real numbers.
For instance, considering the threshold of Gavrilov, Benjamini and Sarkar [17]
tk = αk/(m + 1 − (1 − α)k) (for which the step-down procedure controls the
FDR, see [17]), we may see that (tk)k satisfies (A) for each (α,m) ∈ {0.01,
0.05,0.1,0.2,0.5,0.9} × {5,10,50,100}, for instance. In fact, we were not able
to find a value of (α,m) for which the corresponding threshold does not satisfy
(A) [unfortunately, we have yet no formal argument proving (A) for any value of
(α,m)]. As a consequence, Theorem 4.1 states that the LFC for the procedure of
Gavrilov, Benjamini and Sarkar [17] is still the Dirac-uniform configuration (over
the class of concave c.d.f.’s), at least for the previously listed values of (α,m),
which is a new interesting finding.

In comparison with the step-up case, for which the standard condition “k �→
tk/k nondecreasing” provides that the Dirac-uniform configuration is a LFC,
the new sufficient condition (A) in the step-down case may be written as
“k �→ ζ(t, k) × tk/k is nondecreasing,” where ζ(t, k) = ∑m−k

i=0 (1 + i/k)−1 ×
D̃m−k((

tk+j−tk
1−tk

)1≤j≤m−k, i). It turns out that the additional function ζ(t, ·) has a
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quite complex behavior, not necessarily connected to the one of tk/k, so that there
is no general relation between (A) and “k �→ tk/k nondecreasing”; for instance,
on the one hand, (A) does not hold for the piecewise linear threshold defined by
tk = αpk/m for 1 ≤ k ≤ a and by tk = α(pa − m)((a − m)m)−1k + α(1 − (pa −
m)(a − m)−1) for a + 1 ≤ k ≤ m (using, e.g., m = 50, p = 0.6, a = 4, α = 0.5),
while tk/k is nondecreasing. On the other hand, (A) holds for tk = 0.9(k/m)9/10

(using, e.g., m = 50) while tk/k is decreasing. In particular, for the latter thresh-
old and considering only the set of concave c.d.f.’s, a LFC for FDR(SU(t)) is
F1(x) = x while a LFC for FDR(SD(t)) is F1 = 1 [and we checked numerically
using Gaussian models that F1(x) = x is not a LFC for FDR(SD(t))]. This puts
forward the complexity of the issue: whether we consider a step-up or a step-
down procedure, the LFCs for the FDR may be different for some thresholds [e.g.,
tk = 0.9(k/m)9/10, m = 50] and they may coincide for some other thresholds (e.g.,
the one of [17] for suitable (α,m)).

4.1.2. EMN model. When the p-values follow the EMN model, we would like
to determine whether the Dirac-uniform distribution is still a LFC for the FDR of
the LSU. Here, this claim is supported when ρ ≥ 0 (corroborating the simulation
described in Section 1 of [15]) but disproved when ρ < 0.

In order to investigate this issue, we reported on Figure 1 the FDR of the LSU
procedure against μ in the EMN model when ρ > 0 (left) and when ρ < 0 (right),
by using Corollary 3.5 and Proposition 3.8. Under positive correlation, although
each curve is not necessarily nondecreasing (e.g., for ρ = 0.2), the case μ = ∞,
close to the right most point of Figure 1, seems to be a LFC. A challenging problem

FIG. 1. FDR(LSU) against the mean μ. Left: ρ ≥ 0 unconditional EMN model m = 100 and
π0 = 0.5. Right: ρ < 0 conditional EMN model with m = 2 and m0 = 1, α = 0.05.
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would be to state the latter formally. Under negative correlation and m = 2, how-
ever, μ = ∞ is not a LFC anymore. As a matter of fact, in the case where m = 2,
m0 = 1 and μ = ∞, the two p-values are independent (one p-value equals 0), so
that the FDR equals α/2 = αm0/m which is not a maximum for the FDR, as we
will show below.

Qualitatively, we observed the same behavior concerning the FDR of the LSD
procedure.

Under negative correlation, the Dirac-uniform is not a LFC for the FDR and we
can therefore legitimately ask what are the LFCs in that case. Here, we propose to
solve this problem when m = 2 in the conditional EMN model. Let z1 = �−1(α)

and z2 = �−1(α/2) and first consider the LSU procedure. Its FDR is plotted in Fig-
ure 2 (top). When m0 = 1, we can check that (ρ,μ) = (−1, z1 + z2) is a LFC be-

FIG. 2. Top/bottom: FDR against the correlation ρ ∈ [−1,1] in the conditional EMN model.
m = 2; α = 0.2. Left: m0 = 1, right: m0 = 2. Top: LSU, bottom: LSD. Middle: maxρ FDR(LSU)

against α ∈ (0,1/2). Conditional EMN model with m = m0 = 2.
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cause applying (25), the corresponding FDR is 3α/4, which equals the Benjamini–
Yekutieli’s (BY) upper-bound (1 + 1/2 + · · · + 1/m)αm0/m [3] (valid under any
dependency). Interestingly, in general, Guo and Rao [21] state that the BY bound
can be fulfilled using very specific dependency structures between the p-values
(not necessarily including those coming from a EMN model) [21]. Here, we re-
mark that the maximum value of the FDR still equals the BY bound for m0 = 1,
even for p-values coming from a EMN model. Next, for m0 = 2, we may differ-
entiate the corresponding expression in (25) in order to obtain that, assuming α ≤
1/2, the FDR (that does not depend on μ) attains its maximum in ρ = (−z1(z1 −
z2) − {(z2

1 − z1z2)
2 + 2 log(2)(z2

1 − z2
2) + 4(log(2))2}1/2)/(2 log(2)) ∈ (−1,0). In

that case, the BY bound is far from being fulfilled; see Figure 2 (middle).
Second, we consider the LSD procedure, whose FDR is plotted in Figure 2 (bot-

tom). In the case where m0 = 2, by differentiating the corresponding expression
in (25) (that does not depend on μ), we are able to state that the FDR attains its
maximum at ρ = −1 and that the value of the maximum is α. Furthermore, when
m0 = 1 the FDR is smaller than 3α/4 (applying Corollary 3.3). Hence, the FDR of
the LSD procedure is always smaller than α when m = 2 in the conditional EMN
model (for any m0) and thus also in the unconditional EMN model, even for a neg-
ative correlation. An interesting open problem is to know whether this holds for
larger m.

REMARK 4.2. Reiner-Benaim [25] also studied the value of μ maximizing
the FDR in the case m = 2 in the (conditional) EMN model with possibly negative
correlation [25]. The latter work focused on the two-sided testing with ρ ∈ {−1,1},
m0 = 1 and m = 2.

4.2. Least/most favorable configurations for the variance of the FDP. We fo-
cus here on the unconditional independent model and on the LSU procedure. Using
(13) with s = 2, we easily derive the following expression for the variance of the
FDP:

V[FDP(LSU)] = απ0

m∑
k=1

1

k
Dm−1

([
G

(
α(j + 1)/m

)]
1≤j≤m−1, k − 1

)
(28)

− (απ0)
2/m.

As a consequence, by contrast with the FDR which is constantly equal to π0α in
that case, the variance of the FDP depends on the alternative p-value c.d.f. F1.
Moreover, since the sum in (28) equals E0[(|SU([G(α(j + 1)/m)]1≤j≤m−1)| +
1)−1] (where E0 denotes the expectation with respect to m − 1 i.i.d. uniform p-
values), the smaller F1 (point-wise), the larger the variance. Therefore, over the
set F1 ∈ F , the least favorable configuration for the variance (i.e., the configu-
ration where the variance is the largest) is given by F1 = 0 while the most fa-
vorable configuration (i.e., the configuration where the variance is the smallest)
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is the Dirac-uniform configuration F1 = 1. Over the more “realistic” c.d.f. sets
F ′ = {F1 ∈ F | ∀x ∈ (0,1),F1(x) ≥ x} and Fε = {F1 ∈ F | ∀x ∈ (0,1),F1(x) ≥
ε}, 0 < ε ≤ 1, the least favorable configurations for the variance are given, respec-
tively, by F1(x) = x and F1(x) = ε. For these extreme configurations, expression
(28) can be simplified by using the next formula (proved in the supplementary file
[28]): for any threshold of the form tk = β + kγ , 1 ≤ k ≤ m, with β,γ ≥ 0,

E0
[(|SU(t)| + 1

)−1]
(29)

= 1

γ − β

[
(1 + γ − β)m+1 − 1

m + 1
− γ [(1 + γ − β)m − 1]

]
,

for γ �= β and E0[(|SU(t)| + 1)−1] = 1 − mγ otherwise (where E0 denotes the
expectation with respect to m i.i.d. uniform p-values). This leads to the following
result.

THEOREM 4.3. Consider the linear step-up procedure LSU in the uncon-
ditional independent model with parameters π0 and F1. Then for any m ≥ 2,
α ∈ (0,1), π0 ∈ [0,1] and ε ∈ (0,1], under the generating distribution (H,p) ∼
P I

(π0,F1)
, the following holds:

min
F1∈F

{V[FDP(LSU)]} = min
F1∈F ′{V[FDP(LSU)]}

= min
F1∈Fε

{V[FDP(LSU)]}

= απ0

m

1 − πm
0

1 − π0
− (απ0)

2

m

(
1 − πm−1

0

1 − π0
+ 1

)
;

max
F1∈F

{V[FDP(LSU)]} = απ0(1 − απ0);(30)

max
F1∈F ′{V[FDP(LSU)]} = απ0(1 − α) + (1 − π0)

π0α
2

m
;

max
F1∈Fε

{V[FDP(LSU)]} = απ0

m

1 − (1 − (1 − π0)ε)
m

(1 − π0)ε

− (απ0)
2

m

(
1 − (1 − (1 − π0)ε)

m−1

(1 − π0)ε
+ 1

)
.

The proof is made in Section 6.4. Using Theorem 4.3, we are able to inves-
tigate the following asymptotic issue: does the FDP converge to the FDR as m

grows? Establishing the latter is crucial because when one establishes FDR ≤ γ ,
one implicitly wants that for the observed realization ω, the control FDP(ω) ≤ γ ′
still holds for γ ′ � γ (at least with high probability and when m is large). Here,
the variance measure the L2 distance between the FDP and the FDR, and since



EXACT CALCULATIONS FOR FDP 605

FDP ∈ [0,1] the latter distance tends to zero if and only if the FDP converges
to the FDR in probability. First, if π0 ∈ (0,1) does not depend on m, the con-
vergence holds over the set of c.d.f.’s Fε , with a distance (E(FDP − FDR)2)1/2

converging to zero at rate 1/
√

m. This corroborates previous asymptotic studies
in the so-called “subcritical” case (see [6, 7]). By contrast, when considering the
classes F and F ′ the convergence does not hold in the least favorable configura-
tions F1(x) = 0 and F1(x) = x, respectively. The latter is quite intuitive because
the denominator in the FDP does not converge to infinity anymore in that cases
(see, e.g., [16]), so these configurations can probably be considered as “marginal.”
Second, our nonasymptotic approach allows to make π0 depends on m in the fol-
lowing way 1 − π0 = 1 − π0,m ∼ m−β with 0 < β ≤ 1, which corresponds to a
classical “sparse” setting (see, e.g., [9]). Expression (30) implies in this sparse
case that the variance is always larger than a quantity of order 1/m1−β . In par-
ticular, when 1 − π0,m ∼ 1/m, for any alternative c.d.f. F1, the FDP does not
converge to the FDR, and when 1 − π0,m ∼ m−β with 0 < β < 1, for all F1, the
convergence of the FDP toward the FDR is of order slower than 1/m(1−β)/2 (in L2

norm). As illustration, for m = 10,000, 1 − π0 = 1/100 and α = 0.05, expression
(30) gives (E(FDP − FDR)2)1/2 ≥ 0.0217, so the FDP has a distribution some-
what spread around the FDR equalling π0α � 0.05. As a conclusion, considering
a sparse signal slows down the convergence of the FDP to the FDR, so any FDR
control should be interpreted with cautious, even in this very standard framework
(independent p-values with the LSU procedure).

5. Extensions and discussions.

5.1. Calculations for false nondiscovery proportion. Our approach is also
useful to study the false nondiscovery proportion (FNP; see [18, 30]), that is,
the proportion of false null hypotheses among the nonrejected hypotheses, and
in particular the false nondiscovery rate (FNR), defined as the average of the
FNP. For this, we use the following “duality” property between step-up and step-
down procedures (which is straightforward but has not been noticed before to our
knowledge): point-wise, the hypotheses rejected by SD(t,p) are exactly the hy-
potheses nonrejected by SU(t,p) with pi = 1 − pi and t r = 1 − tm−r+1. Hence,
the distribution of the FNP of a step-down procedure can be deduced from the
distribution of the FDP of a step-up procedure. Precisely, for 0 ≤ k ≤ m − 1,
property (11) implies that the distribution of the erroneous nonrejection number
|H1(H) ∩ (SD(t))c| conditionally on |SD(t)| = k is binomial with parameters
m − k and π1(1 − F1(tk+1))/(1 − G(tk+1)). In particular, this leads to

FNR(SD(t),P I
π0,F1

) = mπ1

m−1∑
k=0

1 − F1(tk+1)

m − k
D̃m−1((G(tj ))1≤j≤m−1, k).

Moreover, applying once more the duality property between step-up and step-
down, we deduce from Section 3.1.2 that for a step-up procedure, the distribution
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of the erroneous nonrejection number conditional on the rejection number is not
binomial, in general, while we can still obtain an explicit expression for the FNR.

5.2. Step-up-down procedures. Our methodology can also be used to cal-
culate the FDR of the so-called generalized step-up-down procedure of order
λ ∈ {1, . . . ,m} (see, e.g., [14, 29]). The latter, denoted here by SUDλ(t), is de-
fined as rejecting the ith hypothesis if pi ≤ t

ǩ
, with ǩ = max{k ∈ {λ, . . . ,m} |

∀k′ ∈ {λ, . . . , k},p(k′) ≤ tk′ } if p(λ) ≤ tλ and ǩ = max{k ∈ {0, . . . , λ} | p(k) ≤ tk} if
p(λ) > tλ. We easily check that

SUDλ(t) =
{

SD
(
(tλ ∨ tj )1≤j≤m

)
, if

∣∣SD
(
(tλ ∨ tj )1≤j≤m

)∣∣ ≥ λ,
SU

(
(tλ ∧ tj )1≤j≤m

)
, if

∣∣SU
(
(tλ ∧ tj )1≤j≤m

)∣∣ < λ.

Therefore, by combining the proofs of formulas (14) and (20) and under the setting
of Theorem 3.1 (distribution P I

(π0,F1)
), we obtain the following expression:

FDR(SUDλ(t))

= π0m

λ−1∑
k=1

F0(tk)

k
Dm−1

((
G(tλ ∧ tj+1)

)
1≤j≤m−1, k − 1

)

+ π0m

m∑
k=λ

m∑
k′=k

F0(tk)

k′ D̃m−1
((

G(tλ ∨ tj )
)
1≤j≤m−1, k − 1

)

× D̃m−k

((
G(tk+j ) − G(tk)

1 − G(tk)

)
1≤j≤m−k

, k′ − k

)

(for the SD part, we should note that even if the rejection number index is k′ and
not k, the sum may start at k = λ as soon as k′ ≥ λ).

5.3. Formulas in the conditional model. We may legitimately ask whether we
may obtain similar explicit formulas for the FDP in the conditional model, that is,
conditionally on the vector H = (Hi)i [in fact, for studying the FDP of procedures
of the kind {i | pi ≤ t̂ (p)}, with t̂ (·) invariant by permutation of the p-values, it is
sufficient to work conditionally on the number of true hypotheses m0]. In the con-
ditional model (regarding, say, the independent case), while some of the technics
used in this paper can clearly be used (e.g., the lemmas of Section 7), the p-value
i.i.d. property is not true anymore, or more precisely, is only true within the set
{pi, i ∈ H0} and {pi, i ∈ H1}. Nevertheless, using technics similar to those prov-
ing (11) and (18), we can derive the following formulas, holding in the conditional
independent model: for any 0 ≤ j ≤ m0 and j ≤ � ≤ m1 + j ,

P[|H0(H) ∩ SU(t)| = j, |SU(t)| = �]
=

(
m0
j

)(
m1

� − j

)
(t�)

j (F1(t�))
�−j

× �m−�,m0−j,F 1
(1 − tm, . . . ,1 − t�+1);
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P[|H0(H) ∩ SD(t)| = j, |SD(t)| = �]
=

(
m0
j

)(
m1

� − j

)
(1 − t�+1)

m0−j

× (
1 − F1(t�+1)

)m1−�+j
��,j,F1(t1, . . . , t�),

where we let F1(t) = 1 − F1(1 − t) and �k,k0,F1(t1, . . . , tk) = P(p(1) ≤ t1, . . . ,

p(k) ≤ tk), in which the probability is taken over p-values such that (pi)1≤i≤k0 are
i.i.d. uniform, independently of (pi)k0+1≤i≤k i.i.d. of c.d.f. F1. In particular, the
distributions of |SU(t)| and |SD(t)| are also depending on functions of the form
�k,k0,F1 .

From the above formulas, the exact calculation of the FDP distribution in the
conditional model is feasible as soon as we can calculate the functions �k,k0,F1 .
As a matter of fact, compared to the calculation of the �k , computing the �k,k0,F1

is more complex. This issue will be investigated in a forthcoming paper.

6. Proofs.

6.1. Proof of Theorem 3.1. Let us first prove (11) by computing the joint dis-
tribution of |H0(H)∩SU(t)| and |SU(t)|. In the independent unconditional model,
we may use the exchangeability of (Hi,pi)i to obtain for any 0 ≤ j ≤ � ≤ m,

P[|H0(H) ∩ SU(t)| = j, |SU(t)| = �]
=

(
�

j

)(
m

�

)
P[H0(H) ∩ SU(t) = {1, . . . , j},SU(t) = {1, . . . , �}]

=
(

�

j

)(
m

�

)
P[SU(t) = {1, . . . , �},H1 = · · · = Hj = 0,

Hj+1 = · · · = H� = 1].
Next, by definition of a step-up procedure, we have SU(t) = {i | pi ≤ t

k̂
} with k̂ =

|SU(t)| (this expression is related to the “self-consistency” condition introduced
in [4]). Using Lemma 7.1, if k̂′

(�) denotes the number of rejections of the step-
up procedure of threshold (tj+�)1≤j≤m−� over m − � hypotheses and using the
p-values p�+1, . . . , pm, we have

SU(t) = {1, . . . , �} ⇐⇒ p1 ≤ t�, . . . , p� ≤ t�, k̂ = �

⇐⇒ p1 ≤ t�, . . . , p� ≤ t�, k̂′
(�) = 0.

Therefore,

P[|H0(H) ∩ SU(t)| = j, |SU(t)| = �]
=

(
�

j

)(
m

�

)
P

[
p1 ≤ t�, . . . , p� ≤ t�, k̂

′
(�) = 0,H1 = · · · = Hj = 0,

Hj+1 = · · · = H� = 1
]
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=
(

�

j

)(
m

�

)
P[p1 ≤ t�, . . . , pj ≤ t�,H1 = · · · = Hj = 0]

× P[pj+1 ≤ t�, . . . , p� ≤ t�,Hj+1 = · · · = H� = 1]P[
k̂′
(�) = 0

]
=

(
�

j

)(
m

�

)
(π0F0(t�))

j (π1F1(t�))
�−j

× �m−�(1 − G(tm), . . . ,1 − G(t�+1)),

where we used the independence between the (Hi,pi) in the second equality.
This leads to (11) and then to (12). For (13), we use the Stirling numbers of
second kind and the formula of the sth moment of a binomial distribution of
Section 2.3. Expression (14) is a direct consequence of (13) for s = 1. For the
power computation, from (11), the distribution of |H1(H) ∩ SU(t)| condition-
ally on k̂ = |SU(t)| is binomial with parameters k̂ and π1F1(tk̂)/G(t

k̂
). Therefore,

E[|H1(H) ∩ SU(t)|] = E[π1k̂F1(tk̂)/G(t
k̂
)] and (15) follows.

6.2. Proof of Theorem 3.2. Let us prove the FDR expression (the proof for the
power is similar). Define k̃ = |SD(t)| and k̃(1), k̃′

(1) as in Lemma 7.2. We get by
exchangeability of (Hi,pi)i and independence of the p-values,

FDR(R) =
m∑

i=1

E

[1{pi ≤ t
k̃
}

k̃ ∨ 1
1{Hi = 0}

]
= mE

[1{p1 ≤ t
k̃
}

k̃ ∨ 1
1{H1 = 0}

]

= mE

[1{p1 ≤ t
k̃(1)+1}

k̃′
(1) + 1

1{H1 = 0}
]

= π0mE

[F0(tk̃(1)+1)

k̃′
(1) + 1

]
.

Therefore, expression (20) will be proved as soon as we state that for any k, k′ with
0 ≤ k ≤ m and k ≤ k′ ≤ m, that we have

P[|SD(t)| = k, |SD(t′)| = k′]
= D̃m((G(tj ))1≤j≤m, k)(31)

× D̃m−k

((
G(tk+1+j ) − G(tk+1)

1 − G(tk+1)

)
1≤j≤m−k

, k′ − k

)
,

for any threshold (tj )1≤j≤m+1 and letting t = (tj )1≤j≤m and t′ = (tj+1)1≤j≤m.
Expression (31) is proved in the supplement [28].

6.3. Proof of Theorem 4.1. For any t ∈ [0,1], let G(t) = π0t + π1F1(t) and
G1(t) = π0t +π1. First, since F1 is concave, we have for t < t ′ ≤ 1, that (F1(t

′)−
F1(t))/(t

′ − t) ≥ (1 − F1(t))/(1 − t) and thus for t ≤ t ′, we obtain the inequality(
G(t ′) − G(t)

)
/
(
1 − G(t)

) ≥ (
G1(t

′) − G1(t)
)
/
(
1 − G1(t)

)
(32)
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(by convention, the left-hand side (resp., right-hand side) of (32) is equal to 0 if
G(t) = 1 [resp., G1(t) = 1]). From expression (20), we obtain

FDR
(
LSD,P I

(π0,F )

)
= π0m

m∑
k=1

D̃m−1
(
(G(tj ))1≤j≤m−1, k − 1

)

×
m−k∑
i=0

tk

k + i
D̃m−k

((
G(tk+j ) − G(tk)

1 − G(tk)

)
1≤j≤m−k

, i

)

≤ π0m

m∑
k=1

D̃m−1
(
(G(tj ))1≤j≤m−1, k − 1

)

×
m−k∑
i=0

tk

k + i
D̃m−k

((
G1(tk+j ) − G1(tk)

1 − G1(tk)

)
1≤j≤m−k

, i

)

= π0m

m∑
k=1

D̃m−1
(
(G(tj ))1≤j≤m−1, k − 1

)

×
m−k∑
i=0

tk

k + i
D̃m−k

((
tk+j − tk

1 − tk

)
1≤j≤m−k

, i

)
,

where the inequality comes from (32) and because for a fixed k, the sum over i can
be seen as the expectation of tk/(k + I ) where I is the rejection number of a step-
down procedure (point-wise nondecreasing in the threshold). Next, considering
this time the sum over k as an expectation, since G ≤ G1 and since a step-down
procedure is point-wise nondecreasing in the threshold, the proof is finished by
using condition (A). The reasoning proving that the linear threshold satisfies (A)
is done in the supplementary file [28].

6.4. Proof of Theorem 4.3. We combine (28) and (29), the latter using m − 1
hypotheses and some special values for β and γ : β = γ = π0α/m for F1(x) = 0;
β = γ = α/m for F1(x) = x; β = π0α/m + (1 − π0)ε and γ = π0α/m for
F1(x) = ε.

7. Useful lemmas. The following lemma is related to the proof of Theo-
rem 2.1 in [13] and to Lemma 8.1(i) in [27].

LEMMA 7.1. Consider a step-up procedure SU(t) using a given threshold
t testing m null hypotheses with p-values p1, . . . , pm and rejecting k̂ = |SU(t)|
hypotheses. For a given 1 ≤ � ≤ m, denote by k̂′

(�) the number of rejections of the
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step-up procedure of threshold (tj+�)1≤j≤m−� over m − � hypotheses and using
the p-values p�+1, . . . , pm. Then we have point-wise

∀i,1 ≤ i ≤ � pi ≤ t
k̂

⇐⇒ ∀i,1 ≤ i ≤ �, pi ≤ t
k̂′
(�)+�

⇐⇒ k̂ = k̂′
(�) + �.

For step-down procedures, we use the next lemma.

LEMMA 7.2. Consider a step-down procedure SD(t) using a given threshold
t testing m null hypotheses with p-values p1, . . . , pm and rejecting k̃ = |SD(t)|
hypotheses. Denote by k̃(1) (resp., k̃′

(1)) the number of rejections of the step-down
procedure of threshold (tj )1≤j≤m−1 [resp., (tj+1)1≤j≤m−1] over m−1 hypotheses
and using the p-values p2, . . . , pm. Then we have point-wise

p1 ≤ t
k̃

⇐⇒ p1 ≤ t
k̃(1)+1 ⇐⇒ k̃ = k̃′

(1) + 1.

In the above lemma, we underline that the assertion p1 ≤ t
k̃′
(1)+1 �⇒ p1 ≤ t

k̃
is

not true in general.
These lemmas are proved in the supplementary material [28].
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SUPPLEMENTARY MATERIAL

Supplement to “Exact calculations for false discovery proportion with ap-
plication to least favorable configurations” (DOI: 10.1214/10-AOS847SUPP;
.pdf). Supplement which provides some proofs for the present paper.
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