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RANDOM CONTINUED FRACTIONS WITH
BETA-HYPERGEOMETRIC DISTRIBUTION

BY GÉRARD LETAC AND MAURO PICCIONI

Université Paul Sabatier and Sapienza Università di Roma

In a recent paper [Statist. Probab. Lett. 78 (2008) 1711–1721] it has been
shown that certain random continued fractions have a density which is a prod-
uct of a beta density and a hypergeometric function 2F1. In the present paper
we fully exploit a formula due to Thomae [J. Reine Angew. Math. 87 (1879)
26–73] in order to generalize substantially the class of random continuous
fractions with a density of the above form. This involves the design of seven
particular graphs. Infinite paths on them lead to random continued fractions
with an explicit distribution. A careful study about the set of five real pa-
rameters leading to a beta-hypergeometric distribution is required, relying on
almost forgotten results mainly due to Felix Klein.

1. Introduction. Recall that 2F1 is the hypergeometric function defined as
follows: the sequence of Pochhammer’s symbols {(t)n}∞n=0 is given for any real
number t by (t)0 = 1 and (t)n+1 = (t + n)(t)n. For real numbers p,q, r such that
−r /∈ N = {0,1,2, . . .} and for 0 < x < 1, the number 2F1(p, q; r;x) is the sum of
the power series

∞∑
n=0

(p)n(q)n

n!(r)n xn.(1)

Let v = (a, b,p, q, r)∗ be in R
5, where ∗ means transposition. Consider the func-

tion

h(a, b,p, q, r;x) = xa−1(1 − x)b−1
2F1(p, q; r;x), 0 < x < 1,(2)

and suppose that it is nonnegative and integrable on (0,1). The distribution BH(v)

of X ∈ (0,1) with density proportional to h(a, b,p, q, r;x) is called a beta hyper-
geometric distribution. An important example is

BH(1,1,1,1,2)(dx) = 6

π2x
log

1

1 − x
1(0,1)(x) dx.(3)

If c, d > 0 and B(c, d) = �(c)�(d)
�(c+d)

, the probability measure

β
(2)
c,d(dw) = 1

B(c, d)

wc−1

(1 + w)c+d
1(0,∞)(w)dw
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is called a beta distribution of the second kind. For instance, if U ∼ γc and V ∼ γd ,
where

γc(du) = 1

�(c)
wc−1e−u1(0,∞)(w)dw

is the gamma distribution with shape parameter c and scale parameter 1, we have
U/V ∼ β

(2)
c,d . Next define the matrices

M =

⎡
⎢⎢⎢⎢⎣

−1 0 0 0 1
1 1 −1 0 0
0 1 −1 −1 1
0 1 0 0 0
0 1 0 −1 1

⎤
⎥⎥⎥⎥⎦ , � =

[
1 1 −1 0 0

−1 0 0 0 1

]
.(4)

We have the following
Basic identity: Let X ∼ BH(v) and W ∼ β

(2)
�v be independent. Then

1

1 + WX
∼ BH(Mv).(5)

If X ∼ BH(v), U ∼ γ(�v)1 and V ∼ γ(�v)2 are independent, another presentation
of the result is saying that V

V +UX
∼ BH(Mv).

In the paper by Asci, Letac and Piccioni (2008) a particular case of the basic
identity is proved (viz., for a = p and b = q). The proof presented there, directly
dealing with densities, could be adapted here in the general case. On the other
hand, the algebraic structure of the problem is more clearly outlined by means of an
alternative proof which will be given later, using a remarkable formula obtained in
1879 by Thomae, which is an identity concerning the generalized hypergeometric
function

3F2(A,B,C;D,E;x) =
∞∑

n=0

(A)n(B)n(C)n

n!(D)n(E)n
xn.(6)

The approach by the Thomae formula, using exactly five parameters like the basic
identity, is illuminating while compared to the long proof by densities. Around this
basic identity, various considerations arise:

What are the beta hypergeometric distributions? The exact knowledge of the
admissible set of parameters v = (a, b,p, q, r)∗ such that the distribution BH(v)

exists needs a careful study of the positivity of 2F1 on (0,1). We rely, for this prob-
lem, on a paper by [Klein (1890)], studying the number of zeros of 2F1. Section 2
is devoted to a detailed description of a set P of parameters v = (a, b,p, q, r)∗
such that the distribution BH(v) exists. Actually the BH(v)s exist on a set of vs
which is slightly larger than P ; this larger set has an involved description and is
not really useful to our purposes.
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Identifiability of the beta hypergeometric distributions. Things are complicated
by the fact that the same beta hypergeometric distribution can be generically rep-
resented in four ways, first because of the symmetry (p, q), and more importantly
by the existence of the Euler formula for 2F1,

2F1(p, q; r;x) = (1 − x)r−p−q
2F1(r − p, r − q; r;x)(7)

[see Rainville (1960), page 60]. In other terms consider the two 5 × 5 ma-
trices T and S defined respectively by T (a, b,p, q, r)∗ = (a, b, q,p, r)∗ and
S(a, b,p, q, r)∗ = (a, b + r − p − q, r − p, r − q, r)∗. The symmetry between p

and q implies BH(v) = BH(T v) and the Euler formula implies BH(v) = BH(Sv).

Actually the group generated by T and S has four elements {I5, T , S, T S} and
is isomorphic to (Z/2Z)2. Therefore the same beta hypergeometric distribution
BH(v) of X can be generically represented in four ways by v, T v, Sv and T Sv.
On the other hand we have � = �T S,�T = �S. This implies that given v there
are only two ways, and not four, to use the basic identity:

Basic identity, revisited. Let X ∼ BH(v) and W ∼ β
(2)
�v = β

(2)
�T Sv be indepen-

dent. Then
1

1 + WX
∼ BH(Mv) = BH(MT Sv).

If X ∼ BH(v) and W ∼ β
(2)
�T v = β

(2)
�Sv are independent, then

1

1 + WX
∼ BH(MT v) = BH(MSv).

The reader can immediately verify that MT S = T M and MS = T MT .
Explicit distributions of some random continued fractions. The iteration of this

basic identity leads to various types of random continued fractions which are de-
scribed in Section 4. They are split into seven categories corresponding to the seven
partitions of the number 5, which are

5,4 + 1,3 + 2,3 + 1 + 1,2 + 2 + 1,2 + 1 + 1 + 1,1 + 1 + 1 + 1 + 1.(8)

For instance, as an application of Theorem 4.2 we see that since v = (1,1,1,1,2)∗
is an eigenvector of M for the eigenvalue 1 and that �v = (1,1), if the Wns with
n = 1,2 . . . are i.i.d. such that Pr(0 < Wn < w) = w

1+w
(i.e., if Wn ∼ β

(2)
1,1); then

X = 1

1 + W1

1+W2···
has distribution BH(v) given by (3). This example belongs to partition 5.

To sum up, Section 2 is a thorough study of BH distributions, Section 3 proves
the basic identity and introduces a crucial reparameterization of the BH laws for
which the particular symmetry due to the Euler formula appears clearly. Section 4
applies the previous material to random continued fractions after introducing the
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graphs associated to a BH law. This section contains Theorem 4.2, the main result
of the paper. Finally Section 5 is a detailed study of the cycles of the graphs defined
in Section 4, which makes simple the application of Theorems 4.2 and 4.3.

2. Beta-hypergeometric distributions. This long section (which can be
skipped in first reading) describes the class of probability densities on (0,1) with
five real parameters (a, b,p, q, r) called beta-hypergeometric densities. They have
the form x �→ Ch(a, b,p, q, r;x) where h is defined by (2) and where C is a suit-
able constant. To achieve this description of the beta-hypergeometric densities we
have to answer to the following questions:

1. Positivity problem. When 2F1(p, q; r;x) ≥ 0 on (0,1)? The set of admissi-
ble (p, q, r) will be denoted by P.

2. Integrability problem. If h = h(a, b,p, q, r;x) ≥ 0, when do we have∫ 1
0 hdx < ∞? We shall define at the end of Section 2.2 below a set P of admissible

(a, b,p, q, r) such that this is fulfilled, with (p, q, r) in P.
3. Identifiability problem. If h(a∗, b∗,p∗, q∗, r∗;x) and h(a, b,p, q, r;x) are

proportional, what are the relations between (a∗, b∗,p∗, q∗, r∗) and (a, b,p, q, r)?

For doing so we recall a few classical facts about hypergeometric functions. It is
clear that if p (or q) is a negative integer, then the power series (1) happens to be
a polynomial. In particular, if p = 0, then

2F1(0, q; r;x) ≡ 1(9)

for any value of q and r , whereas if p = −1 then

2F1(−1, q; r;x) = 1 − q

r
x,(10)

meaning that for q = sr , the function (10) is always equal to 1 − sx. Next recall
that, provided −t /∈ N, we can express (t)n as �(t +n)/�(t). Such a formula gives
meaning to �(t) when t < 0 and t /∈ −N.

When p and q are not negative integers (this condition is always assumed on r)
we can apply Stirling’s approximation to the Gamma function to evaluate the order
of the general term of the power series (1). It turns out that it is equivalent (up to
a multiplicative constant) to n−1−(r−p−q). This implies that its radius of conver-
gence is equal to 1; therefore the series is certainly well defined for x ∈ (0,1). It
is convergent in x = 1 if and only if r − p − q > 0, in which case [see Rainville
(1960), page 49]

lim
x↑1

2F1(p, q; r;x) = �(r)�(r − p − q)

�(r − p)�(r − q)
.(11)

This makes sense also if r − p ∈ −N and/or r − q ∈ −N, in which case the r.h.s.
is equal to zero. For r − p − q = 0 we have

lim
x↑1

2F1(p, q;p + q;x)

− log(1 − x)
= �(p + q)

�(p)�(q)
.(12)
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2.1. Positivity. The well-known fact that 2F1(p, q; r;x) = z(x) is an analytic
solution of the second order differential equation

x(1 − x)z′′ + [r − (p + q + 1)x]z′ − pqz = 0(13)

shows that the zeros of 2F1(p, q; r;x) in the unit disk, and in particular on (0,1),
are simple. For if z(x0) = z′(x0) = 0 we easily see by induction using (13) that
z(k)(x0) = 0 for all k ∈ N and thus z ≡ 0 which contradicts z(0) = 1. For this
reason 2F1(p, q; r;x) ≥ 0 for x ∈ (0,1) if and only if 2F1 has no zeros in (0,1).

Denote

P = {(p, q, r) :∈ R
3; r /∈ −N,F (p, q; r;x) > 0,∀x ∈ (0,1)}.(14)

The aim of this subsection is to describe P.
The determination of the number of zeros of 2F1 is a difficult question which

has been investigated in a number of papers, including [Klein (1890), Hurwitz
(1891), Van Vleck (1902)]. To this aim Klein introduces the function x �→ E(x)

on the real line defined by E(x) = 0 if x ≤ 1 and E(x) = N if N is the positive
integer such that N < x ≤ N + 1. Klein finally introduces the nonnegative integer

X = X(p,q, r) = E
(1

2(|p − q| − |r − 1| − |r − p − q| + 1)
)

(15)

and proves the following theorem:

THEOREM 2.1. Suppose that r /∈ −N. Then the number Z = Z(p,q, r) of
zeros of x �→ F(p,q; r;x) in (0,1) is either X or X + 1. Therefore, a necessary
condition for Z = 0 is X = 0.

According to the definition given before, X = 0 if and only if the argument of
the function E at the r.h.s. of (15) does not exceed 1. By a simple calculation it is
realized that this happens if and only if:

1. either r ≥ 1, r − p − q ≥ 0 and r − p, r − q ≥ 0;
2. or r ≥ 1, r − p − q < 0 and p,q ≥ 0;
3. or r < 1, r − p − q ≥ 0, p, q ≤ 1;
4. or r < 1, r − p − q < 0, r − p, r − q ≤ 1.

It is immediately verified that either of the first two conditions is also sufficient
for (p, q, r) ∈ P. But this is not true in the remaining cases. Luckily, the question
is settled by adding a further necessary condition which allows us to control the
positivity of the hypergeometric function near 1. To this aim we introduce the
following notation: for x ∈ R the number s(x) ∈ {−1,0,1} is the sign of 1/�(x)

with the convention sign(0) = 0. Therefore s(x) = 1 for x > 0 or −2k − 2 < x <

−2k − 1 with k ∈ N, s(x) = −1 for −2k − 1 < x < −2k with k ∈ N. We need to
define the set

S = {(x, y, z) ∈ R
3; s(x)s(y)s(y) ≥ 0}.(16)
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Therefore the part of S which is in the octant x, y, z ≤ 0 is a union of unit
cubes; in the octant x, y ≤ 0, z ≥ 0 the set S is a union of columns with unit square
section; in the octant x ≤ 0, y, z ≥ 0 the set S is the union of slices of unit height;
in the octant x, y, z ≥ 0 S is the octant itself.

THEOREM 2.2. Suppose that r /∈ −N. Then (p, q, r) ∈ P if and only if:

• either 1 holds;
• or 2 holds; or
• 3 and (r − p, r − q, r) ∈ S hold;
• or 4 and (p, q, r) ∈ S hold.

PROOF. The case 3 and (r − p, r − q, r) ∈ S, with r − p − q > 0.
Since r − p − q > 0, formula (11) holds. Moreover �(r − p − q) > 0, thus

(r−p, r−q, r) ∈ S guarantees that 2F1(p, q; r;1) is positive as well, provided r−
p, r − q /∈ −N. This, together with X = 0 implies Z = 0, therefore (p, q, r) ∈ P.
When r −p or r − q ∈ −N this argument does not work since 2F1(p, q; r;1) = 0.
Suppose, for example, r − p = −n, where n ∈ N. Then by Euler’s identity (7) and
the fact that X(p,q, r) = X(r − p, r − q, r) it is enough to apply the previous
argument to 2F1(r − p, r − q; r;x), which is a polynomial of degree at most n,
whose value in 1 is given by

2F1(−n, r − q; r;1) = 1

(1 − n − r)n

n∑
k=0

(−1)k
(

n

k

)
(r − q)k(1 − n − r)n−k

(17)

= (1 − n − q)n

(1 − n − r)n
> 0

given that −n − q = r − p − q > 0 (thus the numerator is positive) and −n − r =
−p > −1 (thus the denominator is positive as well).

Case 3, with r = p + q , and (p, q,p + q) ∈ S.
This time we need to use (12) to prove the positivity of 2F1(p, q; r;x) in a left

neighborhood of 1 in order to conclude as before.
Case 4 and (p, q, r) ∈ S.
Again using Euler’s identity we reduce to apply the previous argument to

2F1(r − p, r − q; r;x), since p + q − r > 0. �

2.2. Integrability.

PROPOSITION 2.3. Let (a, b,p, q, r) ∈ R
5 such that r /∈ −N. Assume that

h(a, b,p, q, r;x) > 0 on (0,1), that is, (p, q, r) ∈ P defined by (14). The condition

a, b, r + b − p − q > 0(18)
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is sufficient for having I = ∫ 1
0 h(a, b,p, q, r;x)dx finite. Under these circum-

stances

I = �(a)�(b)

�(a + b)

∞∑
n=0

(p)n(q)n(a)n

n!(r)n(a + b)n
= B(a, b) 3F2(p, q, a; r, a + b;1).(19)

Conversely, if:

1. either r − p − q ≥ 0, r − p /∈ −N and r − q /∈ −N;
2. or r − p − q < 0, p /∈ −N and q /∈ −N.

(18) is also necessary to have I finite.

PROOF. The first part can be found in Erdelyi et al. (1954), page 399. Con-
versely, if r − p − q > 0 and none of r − p and r − q is in −N, we can claim that
the limit in (11) exists and is not zero. If, furthermore, h is integrable, clearly a

and b are positive, and a fortiori r + b − p − q > 0. The case r − p − q < 0 is
dealt similarly by means of the Euler identity (7). For r − p − q = 0 we use ex-
pression (12). If (p, q,p + q) is in P, Theorem 2.2 implies that for p + q ≥ 1,
then p and q are positive, and for p + q < 1 we must have (p, q,p + q) in S; thus
B(p,q) > 0, anyway. Clearly from (12), if h is integrable, then a, b > 0. �

For the sake of completeness in the following proposition we consider the cases
where conditions 1 and 2 of the previous proposition are violated.

PROPOSITION 2.4. Let (a, b,p, q, r) ∈ R
5 such that r /∈ −N. Assume that

h = h(a, b,p, q, r;x) > 0 on (0,1) or equivalently that (p, q, r) is in P.

1. If r − p − q ≥ 0 and r − p or r − q ∈ −N, then h is integrable in (0,1) if
and only if a, r + b − p − q > 0 (but b ≤ 0 is allowed).

2. If r − p − q < 0 and p or q ∈ −N, then h is integrable in (0,1) if and only
if a, b > 0 (but r + b − p − q ≤ 0 is allowed).

PROOF. To show the first part, recall that if (r,p, q) ∈ P, r −p−q ≥ 0 (case 3)
and r − p = −n, then, by Euler’s identity (7),

h(a, b,p, q, r;x) = xa−1(1 − x)r+b−p−q−1
2F1(−n, r − q; r;x),

the hypergeometric function at the r.h.s. being a polynomial which is positive in
x = 1 [see (17)]. Thus h is integrable if and only if a, r + b − p − q > 0. The
second part is proved in the same way, without the need to use Euler’s identity (7).

�

REMARK. From the two previous results the cases where
∫ 1

0 hdx < ∞ does
not imply min(b, r +b −p −q) > 0 are truly exceptional. An example is obtained
from Proposition 2.4, part 1, with r = p and q = −2; in this case

∫ 1
0 hdx < ∞ if

and only if a, b + 2 > 0. Thus, for instance, b = −1 is allowed. For this reason we
coin the following definition:
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DEFINITION. The beta hyperbolic distribution

BH(a, b,p, q, r)(dx) = xa−1(1 − x)b−1
2F1(p, q; r;x)

B(a, b)3F2(a,p, q; r;a + b;1)
1(0,1)(x) dx

[where 3F2 has been introduced in (6)] is defined if and only if:

1. r /∈ −N;
2. (p, q, r) is in P described in Theorem 2.2;
3. a > 0, b > 0 and r + b − p − q > 0.

In the sequel we denote by P the set of (a, b,p, q, r) satisfying the three condi-
tions above.

REMARK. It is immediately verified that the set P is invariant under both T

and S. It is also immediately seen that the positivity of all the components of the
vector v = (a, b,p, q, r)∗ (or Sv) together with the condition r + b − p − q > 0
(or b > 0) ensure that v ∈ P .

2.3. Identifiability. This subsection addresses to the problem of the identifia-
bility. We already know that BH(v) = BH(Sv) = BH(T v) = BH(T Sv). Therefore
BH distributions could have four different representations. On the other hand, for-
mulas (9) and (10) show that the number of representations of the same BH dis-
tribution can even be infinite. More generally we will discuss when a function h

defined by (2) can be represented with different values of the parameters a, b,p, q

and r . The following result says essentially that, aside from the symmetry of 2F1
in p and q and Euler’s identity (7), the only lack of a unique representation is due
to both relations (9) and (10). The theorem does not use the results of Sections 2.1
and 2.2.

THEOREM 2.5. Suppose that

h(a∗, b∗,p∗, q∗, r∗;x) = Ch(a, b,p, q, r;x), 0 < x < 1.

Then C = 1, a∗ = a and:

(a) either r∗ = r , and:

1. either b∗ = b, {p∗, q∗} = {p,q},
2. or b∗ = b + r − p − q, {p∗, q∗} = {r − p, r − q};

(b) or the function has the form

h(a, b,p, q, r;x) = xa−1(1 − x)u−1(1 − vx).(20)

1. If v = 0 either one between p and q is zero and u = b, or one between p

and q is equal to r , say p, and u = b − q (the same obviously holds for b∗,p∗, q∗
and r∗).
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2. If v �= 0,1 (which can be assumed without lack of generality) either one
between p and q is equal to −1, say p, u = b and v = q

r
, or one between p and q

is equal to r + 1, say p, u = b − q − 1 and v = r−q
r

(the same obviously holds
for b∗, p∗, q∗ and r∗).

REMARKS. We see that, when v = 0, and a,u > 0, the r.h.s. of (20) yields the
(unnormalized) density of the beta law βa,u = BH(a,u,p,0, r) where p and r are
arbitrary. By a proper choice of p and r we can ensure that (a,u,p,0, r) ∈ P. This
shows that beta distributions are BH distributions in the sense of the last remark in
Section 2.2.

Next notice that if the r.h.s. of (20) is positive in the whole interval (0,1), either
it is 0 < v < 1 or v is negative; if, moreover, a, b > 0, then h is integrable and can
be normalized to become the density of BH(a, u,−1, rv, r) where r is arbitrary.
If v is negative this is clearly a mixture of two beta distributions. By taking r large
enough we can ensure (a, u,−1, rv, r) ∈ P . The corresponding law will be called
quasibeta and indicated by qβa,u,v . Thus beta and quasi-beta distributions are beta
hypergeometric according to the definition given at the end of Section 2.2.

PROOF OF THEOREM 2.5. By assumption for x ∈ (0,1)

xa−1(1 − x)b−1
2F1(p, q; r;x) = Cxa∗−1(1 − x)b

∗−1
2F1(p

∗, q∗; r∗;x).

Dividing the r.h.s. by xa−1 and going to the limit as x ↓ 0 we get that the l.h.s.
converges to 1. Then the same has to hold for the r.h.s., which implies necessarily
that a∗ = a, and C = 1. We thus get

(1 − x)d2F1(p, q; r;x) = 2F1(p
∗, q∗; r∗;x),

where d = b − b∗. Recall that 2F1(p, q; r;x) = z(x) is a solution of the second
order differential equation (13). In the sequel we fix the four numbers p,q, r, d

and we define the linear differential operator Ld(y) as

x(1 − x)y′′ + [r + (2d − p − q − 1)x]y′
(21)

+ dr − pq + [d(d − p − q) + pq]x
1 − x

y.

It is easy to see that y(x) = (1 − x)d2F1(p, q; r;x) satisfies Ld(y)(x) = 0. On the
other hand y(x) = 2F1(p

∗, q∗; r∗;x), hence

x(1 − x)y′′ + [r∗ − (p∗ + q∗ + 1)x]y′ − p∗q∗y = 0

which subtracted from Ld(y) = 0 yields (Cx + D)y ′ + Ax+B
(1−x)

y = 0 where

A = d(d − p − q) + pq − p∗q∗, B = dr + p∗q∗ − pq,

C = 2d + p∗ + q∗ − p − q, D = r − r∗.
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Let us now suppose that C = D = 0, but A and B are not both zero. Then y ≡ 0,
which is impossible. Now assume C = 0, D �= 0. Thus y′ = − Ax+B

D(1−x)
y and thus

y = (1 − x)d2F1(p, q; r;x) = eA/Dx(1 − x)(B−A)/D.

Define d1 = d − B−A
D

and y1 = eA/Dx . Then y1 satisfies Ld1(y1) = 0 [using

notation of (21)]. Since Ld1(y1)(x) = P(x)
1−x

y1(x), where P is a polynomial of

degree 3 with leading coefficient ( A
D

)2 this implies that A = 0. Therefore y =
(1−x)(B−A)/D and we are in the second case. Next let C �= 0 and D = 0, in which
case

y′

y
= − Ax + B

Cx(1 − x)
= C1

x
− C2

1 − x
,

and therefore y = C3x
C1(1 − x)C2 . Since y(0) = 1, this implies that C1 = 0 so we

are in the second case again. If C �= 0 and D �= 0, then we can write

y′ = αx + β

(1 + cx)(1 − x)
y,

where c = C
D

�= 0. We now distinguish between the cases c �= −1 and c = −1. If
c �= −1, then

y′

y
= − cC1

1 + cx
− C2

1 − x

from which y = (1 + cx)−C1(1 − x)C2 . Define d2 = d −C2 and y2 = (1 + cx)−C1 .
Then y2 satisfies Ld2(y2) = 0. This implies that C1(C1 + 1) = 0, therefore either
C1 = 0 [thus we are in case (b)] or C1 = −1 [thus we are in case (c)]. Next suppose
that c = −1. Then

y′

y
= αx + β

(1 − x)2 = − C1

1 − x
− C2

(1 − x)2

from which y = (1 − x)C1 exp{ C2
1−x

}. Define d3 = d − C1 and y3 = exp{ C2
1−x

}.
Then y3 satisfies Ld3(y3) = 0 [using notation of (21)]. Since Ld3(y3)(x) =
P(x)

(1−x)3 y3(x), where P is a polynomial such that P(1) = C2
2 , which implies that

C2 = 0, which falls into case (b). Finally suppose that A = B = C = D = 0. From
D = 0 we get r∗ = r . Furthermore

A = B ⇐⇒ d(r + d − p − q) = 0.

Thus either d = 0: as a consequence b = b∗, moreover p + q = p∗ + q∗ (from
C = 0) and pq = p∗q∗ (from A = 0), which means {p,q} = {p∗, q∗}. Or d = p +
q − r : as a consequence b∗ = b+ r −p−q , moreover 2r −p−q = p∗ +q∗ (from
C = 0) and (r − p)(r − q) = p∗q∗ (from A = 0), which means {r − p, r − q} =
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{p∗, q∗}. Thus the condition A = B = C = D = 0 yields case (a) of the theorem.
To complete part (b), if fv(x) = xa−1(1 − x)c−1, we have

(1 − x)b−c
2F1(p, q; r;x) ≡ 1.

Thus define d4 = b − c and y4 ≡ 1. Then y4 satisfies Ld4(y4) = 0, which implies
d4r − pq = 0 and d4(d4 − p − q) + pq = 0. Summing the two equalities we get
d4(d4 + r − p − q) = 0. Thus either d4 = 0 (and c = b) and pq = 0; or d4 + r −
p − q = 0 (and c = b + r − p − q) and (r − p)(r − q) = 0. Finally, to complete
part (c), if fv(x) = xa−1(1 − x)b1−1(1 + cx), then

(1 − x)b1(1 + cx) = (1 − x)b2F1(p, q; r;x).

Define d5 = b − b1 and y5(x) ≡ 1 + cx. Then y5 satisfes Ld5(y5) = 0. This means

c(r + (2d5 − p − q − 1)x) + d5r − pq + (d5(d5 − p − q) + pq)x

1 − x
(1 + cx) = 0.

Since c �= −1,0, this implies d5(d5 + r − p − q) = 0. As a consequence the frac-
tional term is the constant d5r − pq , so by equating the coefficients of the polyno-
mial at the l.h.s. to zero we get the two equations{

c(2 + r)d5 = (p + 1)(q + 1),

(c + d5)r = pq.

Thus either d5 = 0, in which case b1 = b, and (p + 1)(q + 1) = 0 and cr = pq .
Thus if, say, p = −1, we get q = −cr as stated in the theorem. Or d5 = p + q − r ,
in which case b1 = b + r −p − q , and we get similarly (r −p + 1)(r − q + 1) = 0
and cr = (r − p)(r − q). Thus if, say, r − p = −1, we get r − q = −cr as stated
in the theorem. �

2.4. Examples. For illustrating the above results, recall that a few classi-
cal equalities can be found, for instance, in Abramovitz and Stegun (1965),
pages 556–557. The identities describing a hypergeometric function in terms
of x = sin2 θ are sometimes useful for describing the density of the image of
BH(a, b,p, q, r) under x �→ θ = arcsin

√
x which has a density proportional to

sin2a−1 θ cos2b−1 θ2F1(p, q; r; sin2 θ) on the interval (0, π/2). Let us comment
also on the case of the distributions

BH(a, a, a, a;2a)(dx) = C2F1(a, a;2a;x)βa,a(dx).

Since the vectors v = (a, a, a, a,2a)∗ satisfy Mv = v where M is defined by (4),
the application of (5) to W ∼ BH(v) is specially simple. The case a = 1 is (3).
It is possible to make the laws explicit when a = k is a positive integer: in this
circumstance the normalizing constant 1/C is

ck = 3F2(k, k, k;2k,2k;1) = (2k − 1)!)2

(k − 1)!3
∞∑

n=0

uk(n),
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where

uk(n) = (n + 1)(n + 2) · · · (n + k − 1)

(n + k)2(n + k + 1)2 · · · (n + 2k − 1)2 .

The sum of this series can be explicitely computed for fixed k by expansion of the

rational function n �→ uk(n) in partial fractions. The case c1 = π2

6 has been used
in (3). A hand calculation gives c2 = 18(10 − π2) and c3 = −(21/2)2 × 127 +
2850π2. More generally we have ck = ak + bkπ

2 where ak and bk are rational
numbers. The density uses

2F1(k, k;2k; z) = (2k − 1)!
(k − 1)!2

∞∑
n=0

vk(n)xn,

where

vk(n) = (n + 1)(n + 2) · · · (n + k − 1)

(n + k)(n + k + 1) · · · (n + 2k − 1)
.

Again, by expansion of the rational function n �→ vk(n) in partial fractions we get
that

2F1(k, k;2k;x) = Ak(1/x) + Bk(1/x) log
1

1 − x
,

where

Bk(x) = (2k − 1)!
(k − 1)!2

k∑
j=1

(−1)k−j (j)k−1

(j − 1)!(k − j)!x
k+j−1,

and where Ak(x) the unique polynomial of degree ≤ 2k − 2, with Ak(0) =
0, such that Ak(1/x) + Bk(1/x) log( 1

1−x
) is analytic on zero. In particular

A1(x) = 0, B1(x) = x, A2(x) = −6x2, B2(x) = −3x2 + 6x3 and A3(x) =
90x3(1 − 2x),B3(x) = 30x3(1 − 6x + 6x2). Therefore the densities on (0,1) of
BH(2,2,2,2,4) and BH(3,3,3,3,6) are respectively

1

10 − π2

[
−2

x
+ 2 − x

x2 log
1

1 − x

]
(1 − x),

900

c3

[
6 − 3x

x2 + 6 − 6x + x2

x3 log
1

1 − x

]
(1 − x)2.

These remarks are a significant specialization of 15.4.7 in [Abramovitz and Stegun
(1965)] where 2F1(a, b;2b;x) is rather expressed in terms of Legendre functions.

3. Proof of the basic identity. The θ parameterization. Mellin-like trans-
forms of BH(v). Assume now that v = (a, b,p, q, r)∗ is in P. Recall that this
set P has been defined at the very end on Section 2.2 and is

P = {(a, b,p, q, r); (p, q, r) ∈ P, r /∈ −N, a, b, r + b − p − q > 0}.(22)
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(The set P is described in the statement of Theorem 2.2.) Let us fix (s, t) such that
(a + s, b + t, p, q, r) is in P or equivalently such that s > −a and

t > −b − min{0, r − p − q}.

We get from (19) the important formula

∫ 1

0
xs(1 − x)t BH(v)(dx)

(23)

= B(a + s, b + t)3F2(p, q, a + s; r, a + b + s + t;1)

B(a, b)3F2(p, q, a; r, a + b;1)
.

The Thomae formula. It is a fundamental relation between Euler’s gamma func-
tion � and the generalized hypergeometric function 3F2 defined by (6) and evalu-
ated at x = 1.

LEMMA 3.1 (Thomae’s formula). The function

T (A,B,C,D,E) = �(C)3F2(A,B,C;D,E;1)

�(D)�(E)

has the invariance property

T (A,B,C,D,E)

= T (D − C,E − C,D + E − A − B − C,

D + E − A − C,D + E − B − C).

REMARK. This relation was originally obtained by Thomae (1879). In the pa-
pers by Maier (2006) and Beyer, Louck and Stein (1987) such a relation is reformu-
lated as the invariance of a suitably defined function with respect to the symmetric
group S5. See Bailey (1935) and Andrews, Askey and Roy (1999) for two differ-
ent proofs and Asci, Letac and Piccioni (2008) for a probabilistic one based on the
following idea: if U and V are two arbitrary beta random variables on (0,1) and
if s is real, compute E((1 − UV )s) in two ways: expansion in a series of powers
of UV or computation of the density of UV by multiplicative convolution. We ob-
tain in this way an identity involving the parameter s and the four parameters of the
beta distributions. This identity is equivalent to the Thomae’s formula. It should
be emphasized that Thomae’s formula is an equality between analytic functions in
their whole domain of analyticity, so it certainly holds true when all the arguments
A,B,C,D − C,E − C and D + E − A − B − C are positive.
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Proof of the basic identity (5).

THEOREM 3.2. Let v = (a, b,p, q, r)∗ be in P , and assume a + b − p > 0
and r − a > 0. Let M and � be the matrices defined in (4). Then Mv is in P and
if X ∼ BH(v) and W ∼ β

(2)
�v are independent we have

1

1 + XW
∼ BH(Mv).

PROOF. Denote Mv = (a′, b′,p′, q ′, r ′)∗. The facts that v is in P, b′ = a +
b − p > 0 and a′ = r − a > 0 imply that p′ = r + b − p − q > 0 and q ′ = b > 0.

It is more delicate to prove that r ′ = r + b − q > 0. This certainly holds when
q ≤ 0 and, from r + b − p − q > 0, it holds when p ≥ 0 as well. Next we assume
both p < 0 and q > 0. Since (p, q, r) ∈ P we make the following deductions.
Case 1 is impossible. In case 2, from r − q ≥ 0, we get r + b − q > 0. In case 3
we have (p, q, r) ∈ S, and since q > 0 and r > a > 0, it has to be 1/�(p) ≥ 0
which is fulfilled with p < 0 only when p = −n, n being a positive integer. This is
excluded since it would imply r − p > n, a contradiction with r − p ≤ 1. Finally,
in case 4 we have 0 < r < 1,0 < q ≤ 1 and 1/γ (r −q) ≥ 0. Thus either r −q > 0,
which implies r +b−q > 0, or −1 < r −q ≤ 0. The only possibility is thus r = q ,
in which r + b − q > 0 as well. Finally, the inequality r ′ + b′ − p′ − q ′ = a > 0
together with the previous ones implies Mv ∈ P [see the remark at the end of
Section 2.2].

Now denote Y = 1
1+XW

. This implies 1−Y
Y

= XW and therefore for t ∈ (−b, a)

we can write E((1−Y)tY−t ) = E(Xt)E(W t). Because in the following calculation
the constants are quite long to write, let us adopt the following convention: we say
that two positive functions f and g of t ∈ (−b, a) are equivalent if t �→ f (t)/g(t)

is a constant with respect to t. This fact is denoted f ≡ g or (with some abuse of
notation) f (t) ≡ g(t). With this convention we get by replacing (s, t) in (23) by
(t,0)

E(Xt) ≡ �(a + t)

�(a + b + t)3
F2(p, q, a + t; r, a + b + t;1)

as well as

E(Wt) ≡ �(a + b − p + t)�(r − a − t),

since the Mellin transform of the law β
(2)
c,d is t �→ �(c + t)�(d − t). This implies

E
(
(1 − Y)tY−t ) ≡ �(a + b − p + t)�(r − a − t)�(a + t)

�(a + b + t)
(24)

× 3F2(p, q, a + t; r, a + b + t;1).
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From formula (23) note that∫ 1

0
yt (1 − y)−t BH(Mv)(dy)

≡ �(a′ + t)�(b′ − t)

× 3F2(p
′, q ′, a′ + t; r ′, a′ + b′;1)(25)

≡ �(r − a + t)�(a + b − p − t)

× 3F2(r + b − p − q, b, r − a + t; r + b − q, r + b − p;1),

where

a′ = r − a, b′ = a + b − p, p′ = r + b − p − q,
(26)

q ′ = b, r ′ = r + b − q.

The knowledge of the function t �→ E((1−Y)tY−t ) over a nonempty open interval
determines the distribution of Y. More specifically, this function is the Laplace
transform of f (Y ) = log(Y−1 − 1), and f is injective on (0,1). Therefore enough
is to show that the r.h.s. of (24) and (25) are equivalent. To see this we simply
apply the Thomae formula (Lemma 3.1) to

A = p, B = q, C = a + t, D = r, E = a + b + t,

and this concludes the proof of Theorem 3.2. �

The θ parameterization. Up to now, the BH distributions have been parametr-
ized by v = (a, b,p, q, r) belonging to the subset P of R

5 described in (22). One
defect of this parameterization is the fact that

BH(v) = BH(Sv)

(as implied by the Euler formula) is not apparent. A second defect of the param-
eterization is that it makes complicated the application of the basic identity. For
these reasons we choose to make a linear transformation of v as follows. Introduce
a 5-tuple of parameters θ = (θ1, θ2, θ3, θ4, θ5) ∈ R

5. For notational convenience,
we set

a = θ4 + θ5, b = θ1 + θ3, p = θ3 + θ5,
(27)

q = θ3 + θ4, r = θ2 + θ3 + θ4 + θ5.

This can be inverted as

2θ1 = a + 2b − p − q, 2θ2 = −a − p − q + 2r,
(28)

2θ3 = −a + p + q, 2θ4 = a − p + q, 2θ5 = a + p − q.
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For the reader’s convenience these are compactly written as v = Qθ and θ =
Q−1v, where

Q =

⎡
⎢⎢⎢⎢⎣

0 0 0 1 1
1 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 1 1 1 1

⎤
⎥⎥⎥⎥⎦ , Q−1 =

⎡
⎢⎢⎢⎢⎣

1/2 1 −1/2 −1/2 0
−1/2 0 −1/2 −1/2 1
−1/2 0 1/2 1/2 0
1/2 0 −1/2 1/2 0
1/2 0 1/2 −1/2 0

⎤
⎥⎥⎥⎥⎦ .(29)

From now on we denote BHθ = BH(a, b,p, q, r) where (a, b,p, q, r) is given
by (27). For example, important particular cases like BH(1,1,1,1,2) and BH(k, k,

k, k,2k) considered in (3) and in Section 2.4 are rewritten as BHk/2,k/2,k/2,k/2,k/2 .

We say that BHθ exists when (a, b,p, q, r) ∈ P. Necessary and sufficient condi-
tions for this are given in Proposition 3.4 below. This new parameterization has
many advantages. We see immediately that exchange of p with q is equivalent to
the exchange of θ4 with θ5, whereas, since

r + b − p − q = θ1 + θ2, r − p = θ2 + θ4, r − q = θ2 + θ5

whereas Euler’s identity corresponds to exchange θ2 with θ3 and θ4 with θ5. There-
fore actually the distribution

BHθ1,θ2,θ3,θ4,θ5 = BHθ1,{θ2,θ3},{θ4,θ5}(30)

being symmetric in (θ2, θ3) and (θ4, θ5) has rather to be considered as depending
on θ1 and on the two sets {θ2, θ3}, {θ4, θ5}. This notation BHθ1,{θ2,θ3},{θ4,θ5} is, how-
ever, a slight abuse of language since the set {θ2, θ3} could be reduced at one point
if θ2 = θ3, and the language of multisets (sets with entire positive weights) could
be more adapted. Up to this, we consider that the notations (30) are sufficiently
informative. The revisited basic identity can be reformulated in this new notation
as follows:

THEOREM 3.3. Let X ∼ BHθ1,{θ2,θ3},{θ4,θ5}, W ∼ β
(2)
θ1+θ5,θ2+θ3

and W ′ ∼
β

(2)
θ1+θ4,θ2+θ3

such that (W,W ′) are independent of X. Then

1

1 + WX
∼ BHθ5,{θ1,θ4},{θ2,θ3},

1

1 + W ′X
∼ BHθ4,{θ1,θ5},{θ2,θ3} .

Theorem 3.3 shows again that there are two ways to apply the basic identity. It
shows also that the matrix M appearing in (4) is similar to a permutation matrix of
order 5.

The existence of BHθ . In order to check whether BHθ1,{θ2,θ3},{θ4,θ5} does exist
we dissymetrize {θ2, θ3} and {θ4, θ5} by assuming θ2 ≤ θ3 and θ4 ≤ θ5. Recall that
the subset S of R

3 has been defined in (16) and is the set of (x, y, z) such that
1/�(x)�(y)�(z) ≥ 0. The condition (a, b,p, q, r) ∈ P where P is given by (22)
gives the following:
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PROPOSITION 3.4. The distribution BHθ1,{θ2,θ3},{θ4,θ5}, where θ2 ≤ θ3 and
θ4 ≤ θ5 exists if and only if:

• θ1 + θ2 > 0 and θ4 + θ5 > 0, and
• either r = θ2 + θ3 + θ4 + θ5 ≥ 1 and θ3 + θ4 > 0,
• or r = θ2 + θ3 + θ4 + θ5 < 1 , θ2 + θ5 ≤ 1 and (θ3 + θ4, θ3 + θ5, r) ∈ S.

DEFINITION. We will call 	 the set of parameters θ1, θ2, θ3, θ4, θ5 ∈ R
5

which is the image of P by the linear map (a, b,p, q, r) �→ (θ1, . . . , θ5) described
by (28). The part of the set 	 such that θ2 ≤ θ3 and θ4 ≤ θ5 is also described by
Proposition 3.4.

REMARK. From (27) one can observe that a, b,p, q, r, r + b − p − q > 0 is
equivalent to

θ1 + θ2, θ1 + θ4, θ3 + θ4, θ4 + θ5, θ2 + θ3 + θ4 + θ5 > 0.(31)

Thus the vectors θ satisfying the inequalities (31) belong necessarily to 	. This
certainly happens if θ is such that θi + θj > 0 for all 1 ≤ i < j ≤ 5 except for
(i, j) = (2,4) (here θ2 ≤ θ3 and θ4 ≤ θ5). Thus in this case BHθ exists (this ob-
servation will turn out to be useful for Theorem 5.1 below). Moreover, recalling
the first part of the proof of Theorem 3.2 we see that the application of the basic
identity always yields beta hypergeometric distributions with the vector of param-
eters θ satisfying the inequalities (31).

4. Random continued fractions with a beta hypergeometric distribution.
It is clear that the iteration of the random transformations appearing in Theo-
rem 3.3, applied to X ∼ BHθ with θ ∈ 	, yields random variables whose dis-
tribution is of the form BHθ ′ where θ ′ ∈ 	 is obtained from a permutation of the
components of θ .

For this reason, for any θ ∈ R
5 we define the finite subset Vθ ⊂ R

5
s of vectors θ∗

which can be obtained in this way. Motivated by Theorem 3.3, we are going to
define a directed graph structure on Vθ . The possible forms of these graphs will be
quite limited.

4.1. The graphs Gθ and their subgraphs.
The role of the seven partitions of 5. There are seven partitions of 5 enumer-

ated in (8). To each point θ ∈ R
5 we attach the discrete measure on R which is∑5

j=1 δθj
= ∑n

k=1 mkδxk
where {x1, . . . , xn} is the image of j �→ θj and where mk

is the positive integer which is the number of j = 1, . . . ,5 such that θj = xk. Thus
n ≤ 5, and m1 + · · · + mn = 5 defines the partition of 5 induced by θ ∈ R

5. For
convenience in the sequel we take m1 ≥ m2 ≥ · · · ≥ mn, and we write

x = x1, y = x2, z = x3, u = x4, v = x5
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when these xk do exist. Suppose, for instance, that the partition attached to θ is
3 + 2. Therefore we shall use three times the letter x and two times the letter y;
the 5 elements of Vθ will be

(x, {x, x}, {y, y}), (y, {x, y}, {x, x}), (x, {y, y}, {x, x}),
(y, {x, x}, {x, y}), (x, {x, y}, {x, y}),

that we quickly code

x|x2|y2, y|xy|x2, x|y2|x2, y|x2|xy, x|xy|xy.(32)

The directed graph Gθ. According to Theorem 3.3, given θ ∈ R
5, if θ ∈ 	

(which means that BHθ exists) and if θ1 + θ5, θ2 + θ3 and θ1 + θ4 are positive
we can move to two new beta hypergeometric distributions. Ignore for a while the
constraints linked to inequalities. Let us extend the process to the whole θs in R

5

or rather to the elements of the quotient described by (θ1, {θ2, θ3}, {θ4, θ5}) : from
this element we move either to (θ5, {θ1, θ4}, {θ2, θ3}) or to (θ4, {θ1, θ5}, {θ2, θ3}).
These two elements may not be distinct.

We need to introduce in (32) the arrows

x|x2|y2 → y|xy|x2,

y|xy|x2 → x|xy|xy,

x|y2|x2 → x|x2|y2,

y|x2|xy → x|y2|x2, y|xy|x2,

x|xy|xy → y|x2|xy, x|xy|xy

getting the following directed graph, called the graph Gθ :

(33)

It is clear that the graph Gθ is the same for all θ ∈ R
5 sharing the same partition

of 5 given by the numbers m1 ≥ m2 ≥ · · · ≥ mn. Thus we explore the 7 possible
forms of this graph. We are particularly interested in determining the cycles in
these graphs. A cycle of order k ≥ 2 in a directed graph is a sequence v0, . . . , vk−1

of distinct vertices such that (vk−1, v0) and (vi, vi+1) are oriented edges of the
graph for i = 0, . . . , k − 2. A cycle of order 1 is a vertex v such that (v, v) is an
edge).
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Description of the seven graphs Gθ :

• Case 5. Here θ = (x, x, x, x, x), and the graph Gθ is rather trivial with one point
and one cycle of order 1

(34)

• Case 4 + 1. Here the graph has three vertices and is

(35)

It has two cycles of order 2 and 3.
• Case 3 + 2. The graph has already been drawn in (33). It has three cycles of

order 1, 3 and 5.
• Case 3 + 1 + 1. Here the graph has eight vertices and is

There is one cycle of order 2, two of orders 3, 5 and 6.
• Case 2 + 2 + 1. Here the graph has 11 vertices and is

(36)

There are two cycles of order 3, one of order 4, six of order 5, four of order 6,
two of order 7 and 9 and one of order 8.

• Case 2 + 1 + 1 + 1. The 18 vertices are

A = x|xu|yz, A′ = x|xy|uz, A′′ = x|xz|uy,

B = x|yz|xu, B ′ = x|uz|xy, B ′′ = x|uy|xz,

C = u|x2|yz, C′ = y|x2|yz, C′′ = z|x2|uy,
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D = u|yz|x2, D′ = y|uz|x2, D′′ = z|uy|x2,

E1 = u|xz|xy, E′
1 = y|ux|xz, E′′

1 = z|xy|ux,

E2 = u|xy|xz, E′
2 = y|xz|ux, E′′

2 = z|ux|xy.

Here is the graph.

(37)

There are two cycles of order 3, twelve of order 5, nine of order 6, three of
order 7, nine of order 8, eight of order 9, three of order 10, three of order 12, six
of order 13, six of order 14, two of order 15, nine of order 16.

• Case 1 + 1 + 1 + 1 + 1. The graph has 30 vertices and is too complicated to
be drawn here. The two edges issued from u|vx|yz are given by u|vx|yz →
y|uz|vx, z|uy|vx. There are exactly two incoming edges, coming from x|yz|uv

and v|yz|ux. There is a large number of cycles in this graph; the following
remark helps in their determination.

A remark about the automorphisms of the graphs and their cycles. The graphs
3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1 + 1 and 1 + 1 + 1 + 1 + 1 have automorphisms
induced by the permutations of the letters. For instance, the vertices of the graph
2 + 1 + 1 + 1 are coded by letters x2yzu and the 6 permutations of yzu induce a
group G of automorphisms of the graph. Clearly, G transforms a cycle of size k

into a cycle of size k. Therefore the set of cycles of size k is split into orbits. For
the simpler graphs 3 + 1 + 1,2 + 2 + 1, and 2 + 1 + 1 + 1 the number of orbits
can be easily found by hand. We indicate below the number of orbits of size k for
the graph 1 + 1 + 1 + 1 + 1, which have been determined by computer. We have
not displayed the sometimes quite large number of cycles of each order as we did
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for the six others. We get the following results:

3 + 1 + 1 : 2(1),3(1),5(1),6(1);
2 + 2 + 1 : 3(1),4(1),5(3),6(2),7(1),8(1),9(1);

2 + 1 + 1 + 1 : 3(1),5(2),6(2),7(1),8(2),9(2),

10(1),12(1),13(1),14(1),15(1),16(3);
1 + 1 + 1 + 1 + 1 : 5(1),6(1),8(1),9(1),12(2),13(1),

14(3),15(4),16(7),17(3),18(4),19(8),

20(7),22(7),23(10),24(2),26(15),30(4).

To understand this array, 30(4) on the last line means that the graph 1+1+1+1+1
has 4 different orbits on the set of cycles of order 30 (the existence of cycles of
order 30 implies that the graph is Hamiltonian).

The two subgraphs G∗
θ and G∗∗

θ of Gθ . Consider such a graph G = Gθ that we
have just defined. Denote

vθ = (θ1, {θ2, θ3}, {θ4, θ5})(38)

and write v0 = vθ . If (v0, v) is an edge of the graph recall that either v = v1 =
(θ5, {θ1, θ4}, {θ2, θ3}) or v = v2 = (θ4, {θ1, θ5}, {θ2, θ3}). We say that that the edge
(v0, v) is admissible if θ2 + θ3 > 0 and either θ1 + θ5 > 0 when v = v1 or
θ1 + θ4 > 0 when v = v2. We denote by G∗

θ the subgraph of G when we remove
the nonadmissible edges. Finally, in the graph G∗

θ let us remove the vertices v

such that BHv does not exist. We also remove the edges of G∗
θ which are adja-

cent to these erased vertices. The remaining graph is denoted by G∗∗
θ . A detailed

example is in order: we start from θ = z|y2|x2 where x, y, z are distinct real num-
bers. Therefore Gθ is of the 2 + 2 + 1 type, and it is graph (36). We now assume
x + y > 0, y + z > 0, y < 0. This leads to the following graph G∗

θ :

(39)
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We assume furthermore x + min(x, z) + 2y ≥ 1, and we get G∗∗
θ

Here is a second example with θ = x|x2|y2 where x + y ≥ 1/2 and y < 0.
Here Gθ is of the 3 + 2 type and the subgraphs G∗

θ and G∗∗
θ are respectively

The third example with θ = z|x2|y2 with y > x > 0, y > 1 and z = −x gives
the two graphs G∗

θ and G∗∗
θ . The graph G∗∗

θ has no cycle at all.

REMARK. If θi + θj > 0 for all 1 ≤ i < j ≤ 5, then Gθ = G∗∗
θ .

4.2. Random continued fractions attached to a path in G∗∗
θ .

The basic identity and the graphs. Let us fix θ ∈ R
5 and consider the directed

graph G∗∗
θ = (V ,E). To each vertex v ∈ V is attached a distribution BHv . To each

edge (v, v′) ∈ E is attached a pair of positive numbers corresponding to a β(2)

distribution that we denote by β(v,v′). The basic identity (Theorem 3.3) says that if
X ∼ BHv and W ∼ β(v,v′) are independent, then 1

1+XW
∼ BHv′ .

In the sequel, for w > 0, we denote by Hw the Moebius transformation

Hw(x) = 1

1 + wx
.

PROPOSITION 4.1. Let v0 → v1 → ·· · → vn be a path in G∗∗
θ of nonneces-

sarily distinct vertices. Let X0,W1, . . . ,Wn be independent random variables such
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that X0 ∼ BHv0 and Wj ∼ β(vj−1,vj ) for j = 1, . . . , n. Define the random Moebius
transformations Fj = HWj

. Then

Fn ◦ Fn−1 ◦ · · · ◦ F1(X0) = 1

1 + Wn

···+ W2
1+W1X0

∼ BHvn .

PROOF. We proceed by induction on n. This is trivially true for n = 0. If it is
true for n− 1 we apply the basic identity (Theorem 3.3) to the pair (vn−1, vn). �

Here is the simple theorem which can be considered as the main result of the
present paper:

THEOREM 4.2. Let

· · ·vn → vn−1 → ·· · → v2 → v1 → v0(40)

be an infinite path in G∗∗
θ , and let W1, . . . ,Wn, . . . be independent random vari-

ables such that Wn ∼ β(vn,vn−1). Define the random Moebius transformations
Fj = HWj

and Zn(x) = F1 ◦F2 ◦ · · · ◦Fn(x). Then the random continued fraction

Z = lim
n→∞Zn(x) = 1

1 + W1

1+ W2
1+W3···

associated to the infinite path almost surely exists and is independent of x ≥ 0. Its
distribution is Z ∼ BHv0 .

PROOF. Recall that if r > 0 and if Vr(u) = 1/(r + u), then the limit of the
continued fraction Vr1 ◦ · · · ◦Vrn(x) is finite if

∑∞
n=1 rn = ∞ [Henrici (1977)]. For

proving the convergence of Zn(x) = HW1 ◦ · · · ◦ HWn(x) the trick is to observe by
induction on n that

Zn(x) = Vr1 ◦ · · · ◦ Vrn(x/rn+1)

for the sequence (rn) defined by r1 = 1 and rnrn+1 = 1/Wn. Now

∞∑
n=1

rn =
∞∑

n=1

(r2n−1 + r2n) ≥ 2
∞∑

n=1

(r2n−1r2n)
1/2 = 2

∞∑
n=1

W
−1/2
2n−1 .

Since the W2n−1 are independent and since their distributions belong to a fi-
nite set, trivially the last series diverges almost surely as well as the sequence
of continued fractions (Zn(x)). Thus Z = limn→∞ Zn(x) exists and does not
depend on x. Since the graph G∗∗

θ is finite, there exists an edge (v, v′) such
that the set N = {n; (vn, vn−1) = (v, v′)} is infinite. Let now X be independent
of W1, . . . ,Wn, . . . such that X ∼ BHv . Let us apply Proposition 4.1 to Zn(X)
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when n ∈ N : we get that Zn(X) ∼ BHv0 for all n ∈ N. We deduce from this that
Z ∼ BHv0 . �

Comments and examples. In Theorem 4.2 we have called sequence (40) an infi-
nite path in the graph G∗∗

θ which can also be written as

v0 ← v1 ← v2 ← ·· · ← vn−1 ← vn ← ·· ·
If one insists that an infinite path should be a map from N to the set of vertices of
the graph and not a map on −N it would have been be more correct to say that we
work with an infinite path in the graph where all arrows have been inverted.

A simple example of application of Theorem 4.2 is the graph (34) with the
sequence (vn) equal to the constant x|x2|x2 where x > 0. Here the distribution of
Z is BHx,x,x,x,x(dz). These distributions have been studied in Section 2.4 when x

is an integer or a half integer. Another example of application of Theorem 4.2 is
graph (35) that we present in a simpler way as

(41)

where a = x|x2|xy, b = x|xy|x2, c = y|x2|x2. It is easily seen that x + y, x > 0
implies G∗∗

θ = Gθ. To any infinite word of {0,1} we associate an infinite path
v0 ← v1 ← ·· · ← vn−1 ← vn ← ·· · in this graph as follows: each one is replaced
by b ← c ← a ←, and each zero is replaced by b ← a ← . For instance the word
00101 . . . gives an infinite path ending at b as

b ← a ← b ← a ← b ← c ← a ← b ← a ← b ← c ← a ← ·· · .
Theorem 4.5 says that whatever is the infinite word of {0,1} the distribution of
the random continued fraction Z corresponding to the infinite path in graph (41)
deduced from this word is

BHb(dz) = Cz2x−1(1 − z)2x−1
2F1(2x,2x;3x + y; z)1(0,1)(z) dz.

A Cauchy distribution analogy. If w = a + ib with b > 0, consider the Cauchy
distribution Cw(dx) = 1

π
bdx

b2+(x−a)2 . Now let W1, . . . ,Wn, . . . be independent ran-

dom variables such that Wn ∼ Cwn. Assume that
∑∞

n=1 |wn|−1 = ∞. Define

Z = W1 − 1

W2 − 1
W3−···

, z = w1 − 1

w2 − 1
w3−···

.

Then Z ∼ Cz. We find some analogy between this elegant statement [due to Lloyd
(1969) in the particular case of a constant sequence (wn)

∞
n=1] and Theorem 4.2:

here we consider the Moebius transformations Fw(x) = w − 1
x

, and we are given
an arbitrary infinite word w1w2 · · · . It leads to the exact distribution Cz of

Z = lim
n→∞FW1 ◦ FW2 ◦ · · · ◦ FWn(x).
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4.3. Markov chains attached to a cycle in G∗∗
θ . A consequence of Theo-

rem 4.2 is about the stationary distribution of some Markov chains. It shows the
importance of cycles in the graphs G∗∗

θ (later in Theorem 5.1 below it will proved
that the cycles of G∗

θ and G∗∗
θ coincide). It is based on the “coupling from the

past” idea for Markov chains which can be found in Letac (1986) and Chamayou
and Letac (1991). Later on this idea was developed by Propp and Wilson (1996) in
order to design simulation algorithms which are able to sample from the station-
ary distribution of an ergodic Markov chain without any initialization bias (perfect
simulation).

THEOREM 4.3. Let v0 → v1 → ·· · → vk−1 → v0 be a cycle of order k in
G∗∗

θ ; let Wj ∼ β(vj−1,vj ) with j = 1,2, . . . be independent with the convention
vj = vj ′ if j ≡ j ′modk. Consider the random Moebius transformation

Gn(x) = HWnk
◦ HWnk−1 ◦ · · · ◦ HW(n−1)k+1(x)

and the homogeneous Markov chain (Xn(x))∞n=0 on (0,1) defined by X0(x) = x >

0 and

Xn(x) = Gn(Xn−1(x)) = Gn ◦ Gn−1 ◦ · · · ◦ G1(x).

Under these circumstances the stationary distribution of the chain is unique and is
BHv0 .

PROOF. Consider Zn(x) = G1 ◦ G2 ◦ · · · ◦ Gn(x). Consider the infinite path

v0 ← vk ← vk−1 ← ·· · ← v1 ← v0 ← vk ← vk−1 ← ·· · .
Theorem 4.2 shows that Z = limn→∞ Zn(x) exists almost surely and that Z ∼
BHv0 . Since convergence almost surely implies convergence in law, in terms of
the Markov chain (Xn(x)) this implies that it converges in law to BHv0, for any x.
Thus BHv0 has to be the unique stationary law for the chain. �

Comments and examples. For other random continued fractions there are some
analogs of Theorem 4.3 in literature with cycles only of size 1 or 2 [see Letac and
Seshadri (1983), Lloyd (1969), Dyson (1953), Marklov, Tourigny and Wolovski
(2008) and the one by Asci, Letac and Piccioni (2008) that we have men-
tioned before]. In this last paper two BH distributions BH(a, b, a, b, a + a′) and
BH(a′, b, a′, b, a + a′) are considered. Their θ parameterizations are

BHb/2,{b/2,a′−b/2},{b/2,a−b/2}, BHb/2,{b/2,a−b/2},{b/2,a′−b/2} .
These θs are of 3 + 1 + 1 type. With x = b/2, y = (2a − b)/2 and z = (2a′ − b)/2
the vertices x|xz|xy and x|xy|xz are the vertices of the unique cycle of order 2 of
the graph 3 + 1 + 1. The parameters of the beta type two random variable W , used
by the random Moebius transformation HW , sending the first law into the second,
are thus (b, a) (and (b, a′) for the opposite).



1130 G. LETAC AND M. PICCIONI

In Section 4.1 we have mentioned the existence of cycles of all sizes between 1
and 30 (except 11, 21, 25, 27, 28, 29). Each of these cycles is associated to explicit
distributions of periodic random continued fractions and stationary measures of
Markov chains. In particular we give the example of the homogeneous Markov
chain Gn ◦ Gn−1 ◦ · · · ◦ G1(z) with stationary distribution BHx,y,z,u,v , where the
random Moebius transformations Gk are i.i.d. with

G1 = HW30 ◦ · · · ◦ HW1

with the Wis independent with β(2) distribution with parameters (increasing from
i = 1 to i = 30)

(x + y,u + v), (y + u,x + z), (u + x, v + y), (x + v, z + u), (v + z, x + y),

(z + x,u + v), (x + u, z + y), (u + z, x + v), (z + x,u + y), (x + u, v + z),

(u + v, y + x), (v + y,u + z), (y + u, v + x), (u + v, z + y), (v + z,u + x),

(z + u, v + y), (u + v, z + x), (v + z, y + u), (z + y, x + v), (y + x, z + u),

(x + z, y + v), (z + y, x + u), (y + x, v + z), (x + v, y + u), (v + y, z + x),

(y + z,u + v), (z + u,y + x), (u + y, v + z), (y + v, x + u), (v + x, y + z).

We should also mention here that if

M =
[
a b

c d

]
is a nonsingular real matrix, and if hM(x) = (ax+b)/(cx+d) is the corresponding
Moebius transformation, we have necessarily hM ◦ hM ′ = hMM ′ . Therefore the
above results could be interpreted in terms of random walks on the group GL(2,R)

suitably quotiented since hλM = hM for any nonzero scalar λ.
To be more specific, denote by P d(R) the real projective space of dimension d ,

namely the set of equivalence classes of R
d+1 \ {0} for the following relation: we

say that x and x′ are equivalent if there exists λ in R \ {0} such that x′ = λx. The
space P d(R) is compact with the topology inherited from the quotient. We write x̃

for the equivalence class of x. The action of M ∈ GL(d + 1,R) on P d(R) is
defined by Mx̃ = M̃x. We say that a sequence (Mn)n≥0 of GL(d+1,R) converges
weakly if limn→∞ Mnx̃ exists in P d(R) for all x̃ ∈ P d(R). In particular for d = 1
the sequence (Mn)n≥0 of (2,2) invertible matrices converges weakly if and only
if limn→∞ hMn(x) exists in the set R of the real numbers compactified by one
point ∞ for all x ∈ R (with the convention hM(∞) = b/d and hM(−d/c) = ∞ if
hM(x) = (ax + b)/(cx + d)). Note that R can be identified to P 1(R): to x ∈ R we
associate all elements (λx,λ)∗, and to ∞ we associate all elements (λ,0)∗.

Let us apply this definition to the simple case of random matrices Mn =
A1A2 · · ·An where

An =
[

0 1
Wn 1

]
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and where W1, . . . ,Wn are i.i.d. with distribution β
(2)
a,a. Note that hAn = HWn and

that hMn(x) is expressed as a finite continued fraction. Theorem 4.2 says that in this
particular case the random walk (A1A2 · · ·An)n≥0 on GL(2,R) converges weakly
and that limA1A2 · · ·Anx̃ in R exists, does not depend on x̃ and has distribution
BH(a, a, a, a,2a) (Actually we proved it for x > 0, but it can be extended to all x̃).
Warning: (A1A2 · · ·An)n≥0 does not converge in GL(2,R). On the other hand
Theorem 4.3 says that (AnAn−1 · · ·A1x̃)n≥0 is simply a stationary Markov chain
on R with stationary distribution BH(a, a, a, a,2a). We have illustrated Theorems
4.2 and 4.3 in the simple case (34). Similar interpretations for the six other graphs
are available.

5. Cycles and positivity. Let G = Gθ be one of the seven graphs. In this
section we show the delicate result that the cycles of G∗

θ are always the cycles of
G∗∗

θ . Since the existence of β(v,v′) is easier to check than the existence of BHv,

Theorem 5.1 happens to be useful and practical. Use again the notation

vθ = (θ1, {θ2, θ3}, {θ4, θ5}),
and suppose that v0 = vθ is a vertex of G. If (v0, v) is an edge of the graph recall
that either v = v1 = (θ5, {θ1, θ4}, {θ2, θ3}) or v = v2 = (θ4, {θ1, θ5}, {θ2, θ3}) and
that (v0, v1) is said to be admissible if θ2 + θ3 > 0 and θ1 + θ5 > 0.

THEOREM 5.1. Let θ = (θ1, θ2, θ3, θ4, θ5) ∈ R
5, and consider the vertex v0 =

vθ of G∗
θ defined by (38). We assume without loss of generality θ2 ≤ θ3 and θ4 ≤ θ5.

Then v0 belongs to a cycle of G∗
θ if and only if θi + θj > 0 for all 1 ≤ i < j ≤ 5,

except possibly for (i, j) = (2,4). Furthermore if v0 belongs to a cycle of G∗
θ , then

v0 ∈ 	, which means that the distribution BHv0 exists, and v0 is a vertex of G∗∗
θ .

Finally, if θ2 + θ4 ≤ 0, then

v0 → v1 → v2 → v3 → v4 → v5 → v0,

where

v1 = (θ5, {θ4, θ1}, {θ2, θ3}), v2 = (θ3, {θ2, θ5}, {θ4, θ1}),
v3 = (θ1, {θ4, θ3}, {θ2, θ5}),(42)

v4 = (θ5, {θ2, θ1}, {θ4, θ3}), v5 = (θ3, {θ4, θ5}, {θ2, θ1})
and min{θ1, θ3, θ5} > −max{θ2, θ4}. In particular in this case v0 belongs to a
cycle of order 1, 2, 3 or 6.

LEMMA 5.2. In the graph G, let v−2 → v−1 → v0 → v1 → v2 such that
the four edges {(vk, vk+1);k = −2,−1,0,1} are admissible. If v0 = (θ1, {θ2, θ3},
{θ4, θ5}), then the six following numbers:

θ1 + θ2, θ1 + θ3, θ2 + θ3, θ1 + θ4, θ1 + θ5, θ4 + θ5

are positive (we do not assume θ2 ≤ θ3 and θ4 ≤ θ5 here).



1132 G. LETAC AND M. PICCIONI

PROOF. The edge (v0, v1) being admissible we get θ2 + θ3 > 0. The edge
(v−1, v0) being admissible we get θ4 + θ5 > 0. If v1 = (θ4, {θ1, θ5}, {θ2, θ3})
the fact that (v0, v1) is an edge implies θ1 + θ4 > 0, and the fact that (v1, v2)

is an edge implies θ1 + θ5 > 0. Similarly v1 = (θ5, {θ1, θ2}, {θ2, θ3}) implies
θ1 + θ4 > 0 and θ1 + θ5 > 0 as well. Finally if v−1 = (θ3, {θ4, θ5}, {θ1, θ2}) the
fact that (v−1, v0) is an edge implies θ1 + θ2 > 0 and θ1 + θ3 > 0. Similarly if
v−1 = (θ2, {θ4, θ5}, {θ1, θ3}) implies θ1 + θ2 > 0 and θ1 + θ3 > 0, and the lemma
is proved. �

PROOF OF THEOREM 5.1. Suppose that v0 is in a cycle of G∗
θ . Therefore

Lemma 5.2 is applicable to v0. Recall now that in the statement of the theo-
rem we have assumed θ2 ≤ θ3 and θ4 ≤ θ5. If v1 = (θ4, {θ1, θ5}, {θ2, θ3}), since
(v2, v3) is an edge we get the new inequality θ2 + θ4 > 0. Similarly if v1 =
(θ5, {θ1, θ2}, {θ2, θ3}) implies θ2 +θ5 > 0. Since θ4 ≤ θ5, the inequality θ2 +θ5 > 0
holds for both possible values of v1.

At this point observe that the only inequality to prove now is θ3 + θ4 > 0, which
implies the other one, θ3 + θ5 > 0. We discuss again the two possible values of
v1 for applying Lemma 5.2 to the sequence v−1 → v0 → v1 → v2 → v3. If v1 =
(θ4, {θ1, θ5}, {θ2, θ3}) we have seen that θ2 + θ4 > 0 which imply θ3 + θ4 > 0.

Therefore the result is proved in this case.
Now we assume v1 = (θ5, {θ1, θ2}, {θ2, θ3}) and we discuss according to the

two possible values of v2. If v2 = (θ2, {θ3, θ5}, {θ1, θ4}) we apply Lemma 5.2 to the
sequence v0 → v1 → v2 → v3 → v4. Among the six inequalities we find θ2 +θ4 >

0 which implies θ3 + θ4 > 0. The last case is v2 = (θ3, {θ2, θ5}, {θ1, θ4}): among
the inequalities given by Lemma 5.2 we find the desired one, θ3 + θ4 > 0. Finally
from (27) BHv always exists if v is in a cycle of G∗

θ since in this case all the
traditional parameters a, b,p, q, r are positive.

One can observe from the preceeding study that if θ2 + θ4 ≤ 0 then necessarily
v1 = (θ5, {θ1, θ2}, {θ2, θ3}) and v2 = (θ3, {θ2, θ5}, {θ1, θ4}). Iterating this remark
we see that the set (v0, v1, v2, v3, v4, v5) described in (42) is a cycle.

We now discuss the converse. Suppose that θi + θj > 0 for all 1 ≤ i < j ≤ 5. In
this case G = G∗

θ and since any vertex of G is the initial vertex and the end vertex
of some arrows, any vertex of G belongs to a cycle. Now suppose that θi + θj >

0 for all 1 ≤ i < j ≤ 5 except for (i, j) = (2,4). We have described above the
corresponding cycle. For seeing that min{θ1, θ3, θ5} > max{θ2, θ4} observe that we
have seen that in an element of the cycle θi + θj ≤ 0 can happen only for one
pair (i, j). For instance, for v0, we had (i, j) = (2,4), and therefore θ2 < θ3 and
θ4 < θ5 must be strict inequalities. Now making the same remark for the other
(v1, v2, v3, v4, v5) of (42) shows min{θ1, θ3, θ5} > max{θ2, θ4}. �

Cycles when θ2 + θ4 ≤ 0. Assume as in Theorem 5.1 that θ2 ≤ θ3 and θ4 ≤ θ5
and that θ2 + θ4 ≤ 0. In this case v0 as in Theorem 5.1 can belong to a cycle of
size 1, 2, 3 or 6. Let us indicate here without proof the necessary and sufficient
conditions for this. This is done by analyzing (42).
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• v0 is in a cycle of size 1 if and only if v0 = x|xy|xy with x + y > 0 and y ≤ 0.

• v0 is in a cycle of size 2 if and only if v0 = x|xy|xz with x + y, x + z > 0,

y + z ≤ 0 and y �= z.

• v0 is in a cycle of size 3 if and only if v0 = y|xz|xu with x +y, x +z, x +u > 0,

x ≤ 0 and y, z,u are not all equal.
• v0 is in a cycle of size 6 if and only if v0 = x|yz|uv with y +u ≤ 0, all the other

sums of pairs are positive y �= u and x, z, v are not all equal.

EXAMPLE. Let us use the identity 2F1(p,−p;1/2; sin2 θ) = cos 2pθ. It pro-
vides a hypergeometric function which is certainly positive on (0,1) if 0 < p ≤
1/2. Consider the distribution BH(2α,b,p,−p,1/2) for α,b > 0. From (28) it is
equal to BHθ with

θ1 = α + b, θ2 = −α, θ3 = −α + 1
2 , θ4 = α − p, θ5 = α + p.

Note that θ2 < θ3, θ4 < θ5 and θ2 + θ4 = −p < 0. It is easy to detect with the help
of Theorem 5.1 that that vθ belongs to a cycle of G∗

θ if and only if 1/4 > α and
b + 2α > p, with 0 < p < 1/2. Since θ2 + θ4 < 0 this cycle is described by (42).

A cycle of order 6 changed in a cycle of order 5. The above analysis in-
cludes θ2 + θ4 = 0. In this case BHvj

for j = 0, . . . ,5 are beta distributions or
quasi-beta distributions. Since in this case the same distribution has an infinite
number of θ parameters, it makes sense to ask if these different representations
could appear within a cycle. This happens only in the following case. Taking
v0 = (x, y, x + 2y,−y, x) with x > y > 0 we get v1 = (x,−y, x, y, x + 2y),

v2 = (x +2y, y, x,−y, x), v3 = (x,−y, x +2y, y, x), v4 = (x, y, x,−y, x +2y),

v5 = (x + 2y,−y, x, y, x) and

BHv0 = βx−y,x+y, BHv1 = βx+3y,x−y, BHv2 = βx−y,x+3y,

BHv3 = βx+y,x−y, BHv4 = βx+y,x+y, BHv5 = βx+y,x+y.

We observe that BHv4 = BHv5 . All the other BHvj
are different. Therefore, start-

ing with a cycle of order 6 we can design a beta distributed random continued
fraction of the type of Theorem 4.3 with period k = 5. One can prove that this
phenomenon appears only for the above choice of parameters.
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