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ANALYSIS OF A DATA MATRIX AND A GRAPH: METAGENOMIC
DATA AND THE PHYLOGENETIC TREE

BY ELIZABETH PURDOM1

University of California, Berkeley

In biological experiments researchers often have information in the form
of a graph that supplements observed numerical data. Incorporating the
knowledge contained in these graphs into an analysis of the numerical data
is an important and nontrivial task. We look at the example of metagenomic
data—data from a genomic survey of the abundance of different species of
bacteria in a sample. Here, the graph of interest is a phylogenetic tree depict-
ing the interspecies relationships among the bacteria species. We illustrate
that analysis of the data in a nonstandard inner-product space effectively uses
this additional graphical information and produces more meaningful results.

1. Introduction. Relationships among either observations or variables are of-
ten conveniently summarized by a graph. Incorporating this outside information
into the analysis of numerical data is of increasing interest, particularly in biology
where many known properties of genes and proteins are described by complicated
networks. A common situation is to have numerical data from an experiment which
is of primary interest and also additional knowledge in the form of a graph relating
our observations or variables from the experiment. We would like to incorporate
the information in the graph with our analysis of the experimental data. By includ-
ing the graphical information directly in our analysis, we constrain the space of
possible solutions to those that are relevant from the point of view of the known
information.

The specific type of graph which we consider here is a phylogenetic tree. A phy-
logenetic tree is a ubiquitous graph in biology that describes the evolutionary rela-
tionship between a set of species. We are motivated to consider this graph by our
work with Eckburg et al. (2005) analyzing differences in bacterial composition
based on a genomic inventory of different samples. Such “metagenomic” studies
are a popular technique for measuring bacterial content. As we argue below, using
the phylogenetic information regarding the discovered bacteria is key in creating a
meaningful analysis—particularly because of the small sample size relative to the
number of bacteria found.
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There are numerous different strategies for using graphical information, such
as Bayesian networks and differential equation modeling; they require varying de-
grees of specificity in the graphical information. We focus here on a technique that
is simple to implement and uses the graph to define a nonstandard inner-product
space in R

p to perform the analysis of the numerical data.
The layout of the paper is as follows. First we will introduce the motivating ex-

ample of bacterial composition in more detail and will return to the example at the
end to demonstrate the techniques on the bacterial data. We review how PCA can
be succinctly reformulated for nonstandard inner-products and its development for
ecological studies of species abundance, a reformulation we will call generalized
PCA (gPCA). The rest of the paper delves further into the implications of incor-
porating outside graphical information through the use of such a metric space. In
particular, we give an appropriate metric for a phylogenetic tree and evaluate the
implications of that choice in the final data analysis. Throughout, we focus on the
example of the phylogenetic tree and metagenomic data to illustrate the concepts.
However, the same basic approach can be useful in including nonstandard forms
of knowledge—other types of graphical information in particular.

Notation. In all that follows, we will use boldface type to indicate vectors and
matrices and parenthetical subscripts to indicate elements of vectors and matrices.
Therefore, the j th component of a vector xi will be given as xi(j) and the i, j

element of a matrix A will be given as A(ij).

2. Motivating example. In Eckburg et al. (2005) the broad goal was to de-
scribe the kinds of bacteria found in the intestinal tract and compare the bacterial
communities found in different people. To that end, each of the three patients in
the study had biopsies taken at six locations in his/her colon in addition to provid-
ing a stool sample. Each of these seven samples (per patient) was then subjected
to genomic techniques to try to quantify the different types of bacteria as well as
their abundance.

Traditional techniques for identifying bacteria require growing the bacteria in
a culture and then classifying the bacteria as a species based on any observable
characteristics as well as the nutrients needed for it to grow. This gives only limited
ability to assess the presence of different types of bacteria. The increased ease of
DNA sequencing has led researchers to classify bacteria by genomic information
(“metagenomics”). We focus here on the results of sequencing a specific gene (16S
rDNA) found in bacteria. A random selection of all the copies of the gene present
in the sample are sequenced. Ideally, each version of the gene could be uniquely
identified as coming from a specific bacteria and the abundance of the different
gene versions would give an estimate of the abundance of each bacteria. In reality,
we do not have a direct link between a gene version and its originating bacteria,
but only an estimate of it, as we explain more fully below.

Bacteria species also share an evolutionary history which might affect their bi-
ological role in the sample. We summarize the evolutionary relationship by a phy-
logenetic tree that describes the evolutionary history of the bacterial species. We
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visualize both the phylogenetic tree relating the bacterial species and their numeri-
cal abundance in Figure 1. There is a great deal of sparsity in the data; many species
are present in low numbers and in only a few samples. At the same time, there are
some highly abundant species found at high levels in most samples. From this vi-
sual inspection, we can also see the importance of jointly considering both aspects
of the data—entire regions of the phylogenetic tree appear dissimilar between the
patients, such as the Bacteriodetes phylum (colored shades of blue) where patient
A has much less abundance across all of his/her samples than the other two pa-
tients.

Given the large number of species (395) as compared to the number of samples
(21), we could reorder the species and find other sets of species that are also very
different across the patients. However, the clusters defined by the phylogenetic
tree provide biological information regarding the relationships among the species
that is separate from the numerical abundances. Patterns of sparsity or differences
among the patients following the clusters in the tree are generally of greater in-
terest than an arbitrary grouping since there is known biological meaning to the
groupings. The additional information found by using the phylogenetic similari-
ties can serve as a check on the kind of relationships among the species that we
are interested in. This will be particularly important since we have so many more
species than samples. Focusing the analysis to follow the structure of the tree will
allow for more meaningful results.

This study was exploratory. It was the first sequence-based analysis of the bac-
terial composition of the colon that compared between individuals and/or locations
of the sample (many genomic experiments of this type either sampled only one pa-
tient or pooled patients together). The list of phylotypes found and their relation-
ship to known bacterial taxa was biologically informative. In addition to creating
an inventory, the goals of the experiment were to better describe the bacteria com-
munities and their differences along the intestinal tract or between patients. With
the small sample size, the analysis cannot extrapolate to the population in general
but can only focus on describing the patients observed.

2.1. Effect of imperfect species definition. In practice, we cannot identify a
bacterial species from the DNA sequence. Instead the sequences are themselves
used to define the species, based on the sequence similarity of different copies—
for example, the rule in Eckburg et al. (2005) for grouping sequences into one
“species” required all pairs in the group to have a minimum of 99% sequence
similarity. For this reason, the term “phylotype” is used instead of species to indi-
cate that these are merely proxies for the true species distinctions. A phylogenetic
tree for the phylotypes was built using maximum likelihood estimation of the tree
[Felsenstein (1981)]. Specifically, the tree was built using a representative instance
of the 16S rDNA sequence from each phylotype, generally a consensus sequence
of those sequences classified into that phylotype.
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FIG. 1. Depiction of the abundance matrix from Eckburg et al. (2005). Columns indicate samples,
grouped by patient, and rows correspond to different phylotypes. The grey scale indicates the level of
abundance on a log scale (see legend for conversion to original abundances). The colors on the phy-
logenetic tree indicate phylum, as in Eckburg et al. (2005), but with a different choice of colors:
blue—Bacteriodetes, green—Firmicutes, purple—various Proteobacteria, pink—Verrucomicrobia.
We additionally colored two portions of the Bacteriodetes phylum (blue) separately: roughly identi-
fiable as Prevotallae and B. vulgatus, they are colored lightest blue and darkest blue, respectively.
Also, we colored the Firmicutes (green) with two different shades for B. Mollicutes and Clostridia
(dark green and light green, respectively).
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The possible effect of using an arbitrary cutoff for defining phylotypes is seen
in Figure 1, where the length of the tree branch reflects the similarity between the
species. Some phylotypes clearly form tight bunches of very similar phylotypes,
particularly in the Clostridia family of the Firmicutes phylum (light green). If we
had changed the cutoff for defining phylotypes, we could imagine these groups
collapsing into a few distinct phylotypes. Therefore, we need to be careful to have
an analysis that is robust to such small changes and does not count each phylotype
as equally important.

The relationship between DNA sequences can be summarized in different ways,
such as its similarity to other sequences, the phylotype to which it has been as-
signed, or its location in a phylogenetic tree built between different sequences. The
analysis discussed in detail here will reduce the sequence data to the phylotype-
level, ignoring the individual sequence data: each of the N = 11,831 observations
(or sequenced strands of DNA) belongs to one of S = 395 phylotypes (or species)
and one of the L = 21 locations.

3. Incorporation of additional information via inner-products. For ob-
served data xi ∈ R

p we propose to use nonstandard inner-products or metrics in an-
alyzing the data. We argue that this is a simple way to include complicated outside
information, such as graphical information, in the analysis of high-dimensional
data.

By nonstandard inner-products, we specifically mean an inner-product between
two observations i and j given by 〈xi ,xj 〉Q = xi

T Qyj . Since Q also defines a
metric based on ‖xi − xj‖Q , we may at times refer to Q as a metric. For any
inner-product 〈·, ·〉 and a fixed set of n vectors xi , there exists a matrix Q so that
〈xi ,xj 〉 = xi

T Qxj , so this is a quite general definition. A common example of
such an inner-product is the Mahalanobis distance, where Q is chosen as the in-
verse covariance matrix of the observed random vectors [see Maesschalck, Jouan-
Rimbaud and Massart (2000)]. In this case, the choice of Q = �−1, where � is
the covariance matrix of the observed variables, removes the correlation among the
variables, also known as “sphering” the data. This is the most common choice of a
nontrivial Qp and is used, for example, in discriminant analysis for classification
problems.

The choice of an appropriate metric Q, however, can also be a method for in-
cluding outside information. In particular, assume that the additional information,
such as the phylogenetic tree, is such that one can model the covariance structure
� for the variables that this information would imply. The resulting covariance
matrix, �, is not the covariance for the observed variables in our data—which
is the result of a much more complicated relationship between the graph and the
data—but rather what would be expected if the data was completely created by
this outside process. In order to evaluate the data so as to give priority to rela-
tionships in the phylogenetic tree, we propose using the metric Qp = � for the
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variable space. Performed in this space, the analysis focuses on the aspects of the
data variables most congruent with the �.

Because most multivariate techniques are based on inner-products, they are eas-
ily generalized to a more general inner-product space. We will focus on PCA us-
ing Q, a technique known as generalized PCA (gPCA) or the duality principle
[Escoufier (1987); Holmes (2008); Dray and Dufour (2007)]; Jolliffe (2002) gives
a more in depth overview of gPCA, connecting gPCA with other techniques. We
give a short review of gPCA before we discuss more fully the interpretation of this
strategy. Other multivariate methods have been similarly extended and would be
also relevant for incorporation of outside information.

3.1. Generalized PCA. Quite generally, gPCA is an ordination procedure, that
is, each observed data point x ∈ R

p is transformed to new, lower-dimensional data
coordinates given by x̂ ∈ R

k which is a linear transformation of the original coordi-
nates: x̂ = ZT x for some matrix Z ∈ R

p×k. Most multivariate techniques are ordi-
nation procedures, common examples being PCA, Canonical Correlation Analysis
and Correspondence Analysis. The differences lie in the choice of the linear trans-
formation (Z), which is chosen based on the desired properties of the new, lower-
dimensional vector x̂. The most familiar example is standard PCA which seeks
successive vectors aj ∈ R

p so that the resulting j th coordinate, x̂(j) = 〈x,aj 〉,
has the largest variance, subject to being independent of previous coordinates
x(1), . . . ,x(j−1); the final transformation matrix is Z = Ak = (a1 · · ·ak).

The ordination procedure of generalized PCA (gPCA) is a generalization of
PCA in that it assumes an alternative inner-product for the data vectors x. We
assume an observed random variable x lies in R

p with a known inner-product de-
fined by Qp ∈ R

p×p . Then in analogy with standard principal components, gPCA
can be developed from the perspective of finding the vector a that maximizes the
population quantity, var(〈a,x〉Qp

), with a constrained to have unit Qp-norm and
successive aj constrained to be Qp-orthogonal to the preceding aj ,

‖aj‖Qp
= 1 and AT

k QpAk = Ik,

where, again, Ak ∈ R
p×k is the matrix with columns aj . The new coordinates for

x are then given by x̂ = AT
k Qpx (so Z = AT

k Qp in the notation given above). As
in PCA, the aj will be eigenvectors, but now of the matrix �Qp where � is the
covariance matrix of x. The matrix �Qp is not symmetric, but because Qp is
full rank, this is a well defined, positive definite generalized eigenequation, and
the eigenvectors of �Qp can be chosen to be a Qp-orthogonal set of vectors [see
Golub and van Loan (1996)].

Just as in PCA, there are multiple developments that result in the same ordi-
nation procedure. For example, gPCA provides the best k-dimensional approxi-
mation to the inter-point similarities when the similarities are calculated in the
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appropriate metric space. In particular, we could note that if distances between
observation i and j are given by

d(i, j) = (xi − xj )
T Qp(xi − xj ),

then gPCA is equivalent to Multidimensional Scaling (MDS) of the n observations
based on these distances. Similarly, for any Qp , there exists a (nonunique) matrix
C so that Qp = CCT , which means gPCA of x based on Qp is equivalent to first
transforming the vector x by C and then performing PCA on the resulting vector
CT x.

Metric for the columns. As an analysis of a n × p data matrix X, the above
presentation only considered a metric for the space of row vectors (observations)
of X. There can also be a relevant metric for comparison of the variables, a simple
example being when there are weights assigned to the observations. Generalized
PCA goes beyond the description given so far and allows also for a metric Qn ∈
R

n×n for the space of the column vectors of X. These combinations of choices
are generally abbreviated as the triplet (X,Qp,Qn) [see Escoufier (1987) for a
more general explanation of the role of two separate metrics when viewing X as
an operator simultaneously in R

p and R
n]. We note that in many cases either Qn

or Qp are chosen to be diagonal, in which case they simplify to weights on the
observations or variables, respectively.

Returning to the population development above, the inclusion of a metric for
the columns of X is incorporated in the estimation of �. In order to maximize the
quantity var(〈a,x〉Qp

), we must estimate � from our data matrix X; we include the
metric Qn for the columns in our estimate so that �̂ = XT QnX. Then our estimates
of aj are given by the eigenvectors of XT QnXQp . A geometric development that
includes the metric Qn for the columns shows that gPCA best preserves the total
inner-point similarities of the data matrix X when using a measure of inner-point
similarities incorporating the row and column matrix known as the inertia (see
Appendix C). In addition to the geometric view of gPCA, Jolliffe (2002) notes that
gPCA with Qn a diagonal matrix provides the maximum likelihood estimates of
the fixed effects version of a factor model,

x = Az + ε,

where ε ∼ N(0, σ 2Q−1
n Q−1

p ).

Connection between analysis of the rows and columns. In some data settings
either the rows or the columns can be meaningfully considered as the observa-
tions, such as analysis of large contingency tables that are our motivating exam-
ple. Furthermore, the importance of the different variables in describing a low-
dimensional representation of the observations is a common part of PCA. A gPCA
of the columns of X, also reduced to k dimensions, is technically the gPCA of
triplet (Y = XT ,Qn,Qp) and results in new coordinates for the columns given by
Ŷ = YQnBk ∈ R

p×k .



METAGENOMIC DATA AND THE PHYLOGENETIC TREE 2333

Again in analogy to PCA, a generalized form of the SVD of X yields the so-
lutions to gPCA on both the columns or the rows simultaneously. If the rank of
X = r , we can write X = B�1/2AT , where A ∈ R

p×r and B ∈ R
n×r , and the

columns of B are Qn-orthogonal and the columns of A are Qp-orthogonal. Then B
gives the solutions to the gPCA of the columns as observations, while A gives the
solutions to the gPCA of the rows as observations. The corresponding eigenequa-
tions are

XT QnXQpA = A�,

XQpXT QnB = B�,

and for any choice of k, Bk = XQpAk�
−1/2
k , where (·)k refers to the matrix with

the first k columns or diagonal elements, as appropriate.
This means the new coordinates from a gPCA of the rows can be completely

determined by the new coordinates from a gPCA of the columns of the data matrix.
Let x̂ ∈ R

k be the new coordinates for a vector x ∈ R
p based on the gPCA of the

rows of X. The new coordinates are given as

x̂T = xT QpŶ�
−1/2
k .

Put another way, the value of the j new coordinates of x̂ is given by

x̂(j) = 〈x, χj 〉Qp
,

where χj is the j th column of Ŷ�
−1/2
k , that is, the column of Ŷ normalized to have

standard deviation one. Thus, the j th coordinate of x̂ is a measure of the similarity
of x with the j th variable defining the reduced space of the columns.

3.2. Interpretation of nonstandard metrics. Using a metric for R
p has an obvi-

ous rationale when the metric is a diagonal, implying different weights for different
variables, or when the metric is �−1 where � is the covariance of the variables
(Mahalanobis distance). However, it is not immediately clear why a particular ma-
trix Qp , such as Qp = � as we propose above, would improve a given data anal-
ysis. One intuitive rationale for this comes from thinking of the metric as defining
a harmonic analysis of the data in the direction of the eigenvectors of Qp . This is
the perspective of Rapaport et al. (2007) in their proposal for the particular case of
general graphs (see Section 7).

Outside information, such as our phylogeny, when represented by � also de-
fines a basis given by the eigenvectors vj of �. The eigenvectors decompose our
overall covariance into hopefully informative directions with regards to our out-
side structure, and the vj can be ordered based on their overall contribution to �
based on the eigenvalues λj . The directions given by the vj can be weighted in
different ways to create a family of metrics, with each choice of weighting system
emphasizing different directions.
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More precisely, suppose � has an eigendecomposition given by V�VT ; V is
a p × p matrix with columns vj consisting of the eigenvectors of �, and � is
a diagonal matrix of eigenvalues λj . The vectors vj form a basis for R

p and,
therefore, a data vector x can be written as

x = ∑
j

〈vj ,x〉vj = Vx̆,

where x̆(j) = vj
T x gives the magnitude of x in the direction of the eigenvectors

of �.
This decomposition of x into its contributions due to the directions given by vj

creates no loss of information, being only a change of basis. But we can transform
the original x by giving weights w(j) to different directions in order to give more
emphasis to the features that vj represents, in which case we now have a new
vector fw ∈ R

p with

fw(x) = ∑
j

w(j)x̆(j)vj = VDwx̆,

where Dw is the diagonal matrix with diagonal given by w. For example, if our
outside structure could be represented in a smaller subspace so that � had rank
r < p, then defining w(j) = 1{j ≤ r} would give fw(x) as the projection of x onto
the smaller subspace defined as relevant by our outside structure. More generally,
the eigenvalues λj quantify the contribution of a direction vj to our outside struc-
ture �, and, therefore, the eigenvalues, or a monotone transformation of them, are
a smoother way to assign relative importance to the different basis defined by �.

For two vectors x and y, the standard inner-product between fw(x) and fw(y) is
given by

〈fw(x), fw(y)〉 = 〈x,y〉VD2
w VT ,

that is, the inner-product between x and y using the metric VD2
wVT . Then the

choice of a metric Qp = � is equivalent to the choice of weighting each vj by

λ
1/2
j and fw(x) = Q1/2

p x.

In this light, we can compare the effect of using Qp = � versus Qp = �−1.
Both obviously have the same eigenvectors and differ only in the weighting the
eigenvectors (λj versus 1/λj ). Thus, the choice of � as the metric for the vari-
ables places emphasis on the directions with more information about the outside
structure, while �−1 emphases directions that are most independent of the outside
information. Depending on whether this outside structure is thought to enlighten
or confound the analysis, the different weighting systems are appropriate.

From this harmonic perspective, the behavior of the eigenvectors is quite re-
vealing as to the intuitive interpretation that can be placed on the analysis. Such a
projection onto a relevant set of basis is, of course, analogous to harmonic analy-
sis or wavelet analysis for functional data. PCA could also be described similarly,
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only with the vj dependent on the observed variability of the data. In these cases,
the basis functions can be ordered to hopefully reflect increasingly less meaningful
variations of the data, so that the important information in the data for the analysis
in question is captured in the first few directions. More generally, eigenvectors of
a covariance matrix describe linear combinations of decreasing variance, and thus
presumably decreasing ability to reveal the structure of interest.

Beyond the ordering of the eigenvectors, a desirable behavior for the purposes
of interpretability is for the bases (eigenvectors) to be sparse—nonzero in a small
portion of the coordinate space (or, more generally, a clearly interpretable sub-
space). If so, the resulting coordinates of the transformed data are easily inter-
preted as contrasts or combinations of a small set of variables. This is the appeal
of wavelets or various sparse PCA algorithms. From the point of view of our out-
side information in the form of a graph or phylogenetic tree, this means we want
our representation of the outside information (via �) to result in eigenvectors that
are interpretable decompositions of the external information we have. As we will
see, certain covariance structures for phylogenies and also graphs have such de-
compositions, which is one reason that the analysis in a nonstandard inner-product
space can give highly interpretable results.

3.3. gPCA and analyses of variables as observations. Another interpretation
of Qp slightly different from the geometric one given above is that it is simply
an additional data matrix—one that defines similarities between the p variables—
which we wish to include into our analysis of the primary data matrix, X.

Pavoine, Dufour and Chessel (2004) accomplish this by their method of Double
Principal Coordinates Analysis (DPCoA), which explicitly transforms the similari-
ties between the variables given by Qp into a set of standard Euclidean coordinates,
Z ∈ R

p×r , using MDS (also known as Principal Coordinates Analysis). This can
be viewed as giving an alternative basis for R

p and Z as the new set of coordinates
of the original p variables in which X was measured. Then the next step of DPCoA
transforms the data X to this new basis as well, that is, to coordinates XZ. DPCoA
then performs PCA on the transformed X (we note that these steps are exactly the
same as the steps of DPCoA, but generalized here to apply to general data matri-
ces X and not just the contingency tables originally proposed; see Appendix A for
details).

The series of steps that make up DPCoA is exactly equivalent to a single gPCA
of the centered data matrix, X̃, with the choice of metrics given by the triplet
(X̃,Qp,Qn), provided that (1) the centered data matrix of X was the result of cen-
tering the columns (variables) and (2) the same centering matrix used in centering
X was also used in the MDS of Qp to find the matrix Z (Appendix A). DPCoA
was only proposed for the particular setting of ecological studies where the data is
a contingency table, and, thus, centering the columns of X is actually equivalent
to centering the rows because of the row and column weights that are typically
chosen for the centering (see Section 4.2), so the requirement is naturally satisfied.
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By recasting DPCoA as a gPCA, the technique now has general application and
is clearly extendable, since in many situations heterogenous information can be
similarly introduced into an analysis in this way.

We note that MDS is traditionally described based on an input of squared dis-
similarities or distances between points given by a p × p matrix δ; however, any
positive definite Qp that can be written as

Qp = 1pvT + v1T
p − 1

2δ

for some vector v ∈ R
p will result in the same MDS of the variables and thus the

same DPCoA results.
Another approach to analyzing two sources of data are multivariate kernel tech-

niques, such as kernel CCA [Bach and Jordan (2002)], which assume that the only
knowledge of the data is similarities between objects. In these techniques, two sets
of data provide two different sets of kernel similarity matrices K1 and K2 on the
same set of n objects, and the kernel analysis results in new coordinates ŷ1 and ŷ2
that are linear combinations of these kernel similarities that best relate the two data
sets (the prediction context is also possible). Then gPCA of the rows of X results in
equivalent coordinates for the rows as the choice of K1 = XQpXT and K2 = Qn,

for an extreme form of regularization of the CCA problem that only constrains the
norm ‖f ‖2 of the resulting functional, rather than the more common constraint on
estimated variance (see Appendix B).

In the current setting, we are instead interested in outside information on the p

variables in the form of Qp . In this case, the natural kernel analysis would provide
new coordinates for the p columns based on K1 = XT QnX and K2 = Qp, which
would correspond to a gPCA of the columns. As we noted above, however, the
row coordinates from a gPCA of the rows are recoverable from the gPCA of the
columns. Like DPCoA, this perspective of gPCA is that of finding a new set of
coordinates for the variables, based this time on explicitly relating the expected
similarities to the observed similarities, and then rotating the matrix X into this
basis.

4. Analysis of species abundance. The investigation of species composition
and comparison of species across different locations, such as in our motivating
example of the bacteria communities, form the core of ecological studies. A large
contingency table of species abundances for different locations is a common form
of data in this literature. Development of gPCA as described here has often been
in this setting, thus it is useful to review some important points before returning to
our bacteria example.

Our motivating example of the bacteria is ecological, but large contingency ta-
bles appear in many other situations. For example, in document classification, the
data could consist of the frequency of different words in different documents. An-
other example is allele frequency studies with the frequency of different alleles of
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a gene in different populations. We will continue to focus our notation and dis-
cussion on the phylogenetic/ecological scenario, but the methods presented here
could be of use for these different data types.

4.1. Notation. Assume that the abundance of certain species are measured at
L different locations and a total of S distinct species types are observed. We drop
the use of n and p for the rows and columns of our data matrix to emphasize
that there is not a canonical dimension that is considered the observations in this
setting, though we will focus on the locations as observations in our example. We
will similarly use matrices QS and QL for the row and column metrics.

Let A be the resulting L × S contingency table of the observed abundances of
species s at location �. Because we are interested in comparing the species com-
position of the locations, we will represent each location by the relative proportion
of the species in the location. A vector x� of relative proportions at location � is
called a profile vector in the ecological literature and is obtained by dividing each
row of A by its row sum. The corresponding data matrix is given by X ∈ R

L×S .
Namely, let wL = A1/N ∈ R

L be the row sums of A normalized to sum to one.
Then X is given by

X =
⎛
⎜⎝

xT
1
...

xT
L

⎞
⎟⎠ = D−1

wL
A/N ∈ R

L×S,

where DwL
is a diagonal matrix with diagonal elements given by wL respectively.

The vector wL also defines weights for each of the locations, and the weights
are proportional to the total number of observations in that location. The weighted
mean of the locations, x̄, is given by XT wL and the centered data matrix, X̃, is
given by X̃ = (I − 1wT

L)X.

4.2. A few important properties of contingency tables. The duality of rows and
columns. Note that the weighted mean, x̄, also sums to one and therefore is itself
a potential location profile. In fact, x̄ is proportional to the column sums of A and
thus is equal to the relative frequency of the species across all locations. If we
had instead chosen to analyze the columns (species) as the observations, choosing
weights wS for the species in the same way as the rows, we would have wS = x̄.

The equivalence of wS and x̄ has interesting repercussions for data analysis
because under these weighting schemes, we can equivalently center either the rows
or the columns,

X̃ = PwL
X = XPwS

,

where Pwm = (Im − 1mwT
m) is the projection matrix that centers m observations

based on a weighted mean with wm as weights.



2338 E. PURDOM

Interpretation of variables in gPCA. Because we analyze location profiles, there
is a simple way to plot the variables (species) jointly with the observations (loca-
tions). Let es be the standard basis vectors of R

S . Then es is also a profile vector
representing a theoretical location that consists solely of species s. If we transform
the data with an ordination technique, we can jointly transform es and plot its trans-
formation alongside the observed locations. Unlike the usual plots of variables, the
coordinates of our rotated axes have a meaning as a data point, not just as a direc-
tion in space, so we can legitimately visualize distances between the location and
species in a single plot.

Examples of gPCA with contingency tables. In addition to DPCoA described
above, different metric spaces are often used for analyzing contingency tables
via gPCA, particularly to retain additional information such as the weights wL

and/or wS . The most common example of gPCA is Correspondence Analysis
(CA), which is a gPCA of the row profiles of a contingency table, and uses the
triplet (X̃,D−1

wS
,DwL

) [see Greenacre (1984) for a detailed treatment]. This gives
an inner product of the form xT

k D−1
wS

x�, down-weighting the more frequent species.
This can be seen as counteracting a “size effect” for frequencies, where abundant
species dominate the analysis; without this correction, differences in rare species
(which will be on a smaller order of magnitude) are lost.

One can argue that the weighting of CA places too much importance on low
abundance species, even though those species are more likely to be miscounted
and are probably less trustworthy. Gimaret-Carpentier, Chessel and Pascal (1998)
propose no weighting of the species, only the locations, which gives a triplet
(X̃, IS,DwL

)—just a regular PCA with weights on each observation. Such an anal-
ysis in ecology is also called Non-symmetric Correspondence Analysis (NSCA).

4.3. Connection to diversity. We take a moment to comment on the connec-
tion of the choice of gPCA metrics to a common question in ecology—how “di-
verse” a location is. Diversity is a measurement of how close the distribution of
species is to uniform. Two popular measures of diversity are variations of the
Gini–Simpson index, HGS(x) = 1 − ∑S

s=1 x(s)
2, and the Shannon Diversity index,

HSh(x) = ∑S
s=1 x(s) log(x(s)).

Ecology studies often use the individual diversity of locations to make compar-
isons, but the diversity indices alone do not effectively compare the species com-
position. Locations can have quite different composition of species but with same
levels of individual diversity. Of interest is how the species composition changes,
and ordination techniques are used to address these problems, but as a separate
component of the analysis of the ecological data. However, the choice of diver-
sity and the choice of gPCA parameters are closely connected, as pointed out in
Pélissier et al. (2003). Namely, if QL is a simple diagonal matrix of weights on
the locations, gPCA of (X,QS,QL) gives the best representation of a particular
measure of dissimilarity between locations, and choice of this dissimilarity mea-
sure implies a diversity measure, and vice versa. Pélissier et al. (2003) stated this
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for several specific ordination techniques, and we state it more generally for any
choice of metric QS on R

S . Define diversity and dissimilarity measures for any
positive definite matrix QS = Q by

HQ(x) = xT diag(Q) − xT Qx = ∑
r

x(r)Q(rr) − ∑
rs

Q(rs)x(r)x(s),

DissQ(xk,xj ) = (xk − x�)
T Q(xk − x�).

These are clearly closely related to the norm and inner-product defined with the
choice of Q. With these choices of diversity and dissimilarity, the total diversity
across all locations is given by HQ(x̄) and can be decomposed into the average
diversity of individual locations and plus the average of pairwise dissimilarities of
locations,

HQ(x̄)

︸ ︷︷ ︸
ITotal

= 1/2
L∑

k=1

L∑
�=1

w
L(k)wL(�) DissQ(x�,x�)

︸ ︷︷ ︸
IBetween

+
L∑

�=1

w
L(�)HQ(x�)

︸ ︷︷ ︸
IWithin

.

gPCA of (X̃,Q,DwL
) gives the best low-dimensional representation of IB, the

average dissimilarity between locations (see Appendix C).
We can define a F -style statistic, as in ANOVA, to test for significant dissimi-

larity between the locations [Legendre and Legendre (1998)]

F = (N − 1)IB

LIW
.

Because the significance of F will generally be determined by permutation tests,
this F -test is functionally equivalent to using IB/IT, which has many appealing
connections to standard measures. We describe a few of them below given origi-
nally by Pélissier et al. (2003) and Pavoine, Dufour and Chessel (2004):

CA: For correspondence analysis, Q = D−1
wS

results in a dissimilarity between pro-
files measured by the χ2 distance,

(xk − x�)
T D−1

wS
(xk − x�),

which has also been proposed for document classification. As is well known
in CA, IB = χ2/N , where χ2 is the χ2-statistic for testing independence. The
implied diversity measurement for a profile x is

∑
w

S(r)x(r)(1 − x(r)), which
implies the total diversity IT is simply S − 1. Thus, IB/IT is proportional to the
χ2 statistic.

DPCoA: As we saw before, DPCoA can be written in terms of a general QS . If
we write QS = 1pvT + v1T

p − 1
2δ for some v ∈ R

S and species dissimilarities δ,
as in Section 3.3, then we have that HQ and DissQ are the Rao diversity and
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dissimilarity measures [Rao (1982)] given by

HQ(x) = ∑
rs

δ(rs)x(r)x(s),

DissQ(xk,xj ) = (xk − x�)
T (−1

2δ
)
(xk − x�).

Thus, gPCA with QS results in differences between locations profiles being
down-weighted for the species that are similar to each other and up-weighted
for very distinct species. Though stated in many individual steps and not a single
gPCA as we do here, the DPCoA method was motivated by searching for an or-
dination that maximized this notion of distance between observations. The ratio
IB/IT is commonly called the FST statistic [Martin (2002)] in biological appli-
cations and has been suggested for testing differences in bacterial communities,
where δ is usually chosen as the original measures of genetic distance between
the sequences. The FST statistic is also used in testing for differences of allele
composition in human populations [Excoffier, Smouse and Quattro (1992)].

NSCA: Since NSCA is standard PCA, except for the weighting of the observa-
tions, Q = I, and is equivalent to the Rao diversity and dissimilarity measures
when all the species are equally distant from each other. The resulting measure
of diversity in this case is the Gini–Simpson measure of diversity, HGS. The
ratio IB/IT is equivalent to Kendall’s τ [D’Ambra and Lauro (1992)].

5. A metric for species related by a phylogenetic tree. Returning to our
bacteria example, we want a matrix � that represents the phylogenetic relation-
ships of the species. As mentioned in Section 3, if we can model the covariance
structure of data expected based on just our outside information, this provides a
natural choice of �. The phylogenetic tree in fact is a representation of the process
of evolution, for which many possible probabilistic models could be created.

A common probabilistic model for the evolution of the value of a trait over time,
due to Cavalli-Sforza and Piazza (1975), is one of a Brownian motion model over
time, where at each speciation event the model assumes that the resulting sister
species continue to evolve independently [for alternative models of evolution, see
Hansen and Martins (1996); Pavoine et al. (2008)]. This model gives a covariance
structure for the trait as observed on the existing species (the leaves of the phylo-
genetic tree) and can be simply stated in terms of distances between species on the
phylogenetic tree. Moreover, the eigenvectors of this covariance matrix generally
demonstrate nice localization properties relative to the tree, implying interpretable
results in terms of the properties of the tree.

Specifically, assume that there is a known phylogenetic tree describing the an-
cestral relationship of S extant species and that a trait of interest for these species
has evolved over time according to the model of independent Brownian motion
with the speciation as depicted on this tree. The S extant species are observed, and
for each species s at a single time point t(s), the trait is measured, resulting in y(s).
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Then the vector of trait values, y, follows a multivariate normal distribution with
covariance between species r and s proportional to the total length of time that
the evolutionary history of the two species were identical, cov(y(s),y(r)) = σ 2trs,

where trs is the time at which the two lineages diverged, as measured from their
most common ancestor.

We can write this covariance quite simply in terms of the topology of the tree
and the length of the branches, assuming that the branch length is reflective of
evolutionary time. Let δ be the distance matrix of the leaves based on the distance
of the shortest path between them on the tree. Then we can write the covariance
matrix � as

� = 1/2(1tT + t1T − δ),

where t ∈ R
S is the vector of the distance of each species to the root.

This relationship between � and δ implies that gPCA with � as the species
metric will decompose a Rao Dissimilarity, with dissimilarities between species
given as their distance on the tree. For the bacterial example, use of this distance
has the effect of not declaring locations very different if the differences between
locations occur in phylogenetically similar phylotypes.

Properties of phylogenetic metric. We would like that the eigenvectors of �

be sparse in a useful way relative to the structure of the tree, for example, that
they contrast sister subtrees of the phylogenetic tree and be zero elsewhere. Fur-
thermore, we would like that eigenvectors give increasingly specific level of detail
so that eigenvectors corresponding to larger eigenvalues highlight deeper struc-
ture in the tree. Put together, these statements would imply that the eigenvectors
offer a multiscale analysis of the tree, with eigenvectors corresponding to large
eigenvalues interpretable as summarizing differences in the large initial partitions
of the tree and smaller eigenvalues giving eigenvectors reflecting the distinctions
between the later divisions of the tree.

Several authors in phylogenetics have asserted that the eigenvectors of � have
this multiscale structure [e.g., Cavalli-Sforza and Piazza (1975); Rohlf (2001);
Martins and Housworth (2002)], but only limited statements of this kind can be
rigorously made about a phylogenetic tree with more than four leaves/species [see
Purdom (2006) for a longer discussion]. But empirical observations of the eigen-
vectors show that they often do have some characteristics of this multiscale prop-
erty; for example, � has a block structure which guarantees that the eigenvectors
of � will, at a minimum, be nonzero for only one side or the other of the initial
split in the tree (Appendix E). Beyond this, if we ignore the comparatively small
values in the eigenvector, eigenvectors corresponding to smaller eigenvalues do
tend to divide the species into smaller and smaller closely-related groups based on
the sign of the entries, though the groups do not exactly correspond to subtrees
(see Figure 2).
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FIG. 2. An illustration of some eigenvectors of � for the intestinal data. Only 25 of the 395 eigen-
vectors are shown: those that correspond to the first five largest eigenvalues, the last two smallest
eigenvalues, and then a random sample in between. Each row represents an eigenvector, and the
value of each element of the vector is plotted alongside the phylotype with which it corresponds. Blue
represents a positive value, red a negative. The width indicates the absolute value of the element.
Again, each row has been normalized so that the maximum width is the same in each row. Next to
each row is printed the corresponding eigenvalue.
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(a) (b)

FIG. 3. Scatter plot of the species and samples with the first two coordinates given by DPCoA.
Species are shown as colored points in both plots. In plot (a), the samples are shown as the large
blue shapes: different shapes indicate different patients and different shades of blue indicate location
within the colon. In plot (b), samples are represented as ellipses that indicate the major directions
of the abundances of the samples. For simplicity, a single ellipse for the combined abundance in the
biopsies is shown because the internal biopsies are very similar.

6. gPCA applied to bacterial data and phylogenetic tree. In Eckburg et al.
(2005) our original analysis of the bacterial data was a gPCA of (X̃,�,DwL

),
which is equivalent to DPCoA choosing δ to be the distance among the phylo-
types. We display in Figure 3 the ordination of the locations (samples) and species
using the first two coordinates (using the implementation of DPCoA in the ade4
package in R [Chessel et al. (2005); R Development Core Team (2008)]). The first
obvious fact is that the patients are separated, almost entirely, by just their value
when projected onto the first axis. The first axis orders the patients B, C, A, which
correlates with visual examination of the data in Figure 1. Below we will compare
to other common choices of metrics and we will see that distinguishing the patients
is not difficult since all of the techniques accomplish this, though not always in just
one dimension. More interestingly, we also see in Figure 3 that the stool samples
are distinguished from the internal biopsies of the colon, and the second axis seems
to make this distinction. Again this makes sense from visually examining the data,
since within each patient the stool samples do stand out from the biopsies.

The most striking aspect of the plot from the gPCA is the additional information
provided from the inclusion of the phylotypes in the plot. Recall that when our data
matrix X consists of profile vectors, our original axes es correspond to a location
that is entirely concentrated in phylotype s. The coordinates of the phylotypes
given by gPCA will be the coordinates of our axis es centered and rotated like the
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observed profiles (see Appendix A). Looking at the ordination plot, we see that
the phylotypes’ coordinates provide an interpretation for the first two dimensions.
The phylotypes are in clusters much like the groupings on the tree—not surprising
if we recall that in the full space the distances between the species are exactly
the distances on the tree. What is interesting is how the clusters on the tree fill the
space once projected into these two coordinates that preserve the Rao Dissimilarity
among the locations. The distribution of the phylotypes indicate the importance of
these clusters in determining the dissimilarity between the patients. Those far from
the origin have more impact in defining the coordinates of the locations. We see
the tension between the various Bacteroides (blue) and the rest of the tree.

Furthermore, we can interpret the relationship between the locations and the
phylotypes. We see that patient B is comparatively much more in the direction of
the Prevotallae-like bacteria (light blue), while the other two patients are more in
the direction of the B. Vulgatus-like phylotypes (dark blue). Similarly, the biopsies
are comparatively more heavily represented in the Bacteroides (blue) portion of
the tree, while the stool samples are comparatively less so. Figure 3(b) depicts the
different samples as ellipses with the axes of the ellipses determined by the relative
proportion of the different species for the location (see Appendix F). This illustra-
tion emphasizes that the samples can be thought of giving weights to each phylo-
type, and the ellipse demonstrates the relative influence of the different species. We
see graphically the different influences of the two groups of Bacteriodes (blue) in
separating the biopsies of patient B from all of the rest of the samples. Transform-
ing the data in various ways before analysis does not dramatically change these
relationships (e.g., log-transforming the data or adding pseudo-counts).

All of these visualizations have, by necessity, focused on only the first two di-
mensions of the coordinates given by gPCA. These dimensions do cover a large
proportion of the Rao Dissimilarity, but still are only an approximation of the full
space. We are mainly focused on demonstrating the characteristics of the ordi-
nation procedure in terms of the coordinate system that it creates, but for more
rigorous testing of differences between the patients or between the biopsies and
stool samples, permutation tests based on the F -statistic described above would
generally want to compare with the entire coordinate system.

6.1. Comparison to other approaches. How do these results compare to the
other ordination techniques mentioned above? In Figure 4 we show the results
of the ordination from Non-symmetric Correspondence Analysis (NSCA), Cor-
respondence Analysis (CA) and a Mahalanobis-like distance based on �−1 (see
Section 5). We similarly center, rotate and project the axes es to get the species
coordinates in the same manner as DPCoA.

As we mentioned, all of the techniques separate the three patients, but we see
that the gPCA using the tree gives much more relevant results, both in terms of the
role of the species and in relating to our intuitive interpretation of the data. The
NSCA [plot (b)] is the same technique as our gPCA but with each species at equal
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(a) gPCA with Tree / DPCoA (b) NSCA (Gini–Simpson Distance)

(c) CA (d) gPCA with �−1

FIG. 4. Coordinates of species and samples from alternative ordination techniques.

distance from every other; it is also just a standard PCA with weights on the ob-
servations. In the first two coordinates of the NSCA, we see that instead of having
a smooth contribution from clusters of phylotypes, two individual phylotypes, far
removed from the rest, contribute to the division of the patients much more than
the rest. The bulk of the species have little contribution to these coordinates. Thus,
there is little from which to draw more general conclusions regarding the biolog-
ical characteristics of the species which are influential. This is a consequence of
treating each phylotype equally, rather than using the additional structure of the
tree to shape the analysis. CA [Figure 4(c)], on the other hand, spreads out the
importance of each phylotype. Here we can see the effect of the down-weighting
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metric in CA discussed earlier; differences found in the many low abundance phy-
lotypes are allowed to influence the analysis. Rather than a couple of phylotypes
dominating the analysis, as in NSCA, the phylotypes play more equal roles.

We might try to use any one of these techniques to reason out relationships
among the variables. Each technique would give a different story in the role of the
variables (phylotypes) dependent upon the assumptions inherent in the method.
The relevant feature for our analysis is that we presuppose that a certain type of
information is relevant—namely, how the structure of the tree relates to the data.
This approach focuses the analysis on finding an interpretation among the variables
that follows the tree structure.

We note that the abundance table from metagenomic studies discussed here has
many features common to high-throughput experiments in biology—in particular,
the number of biological samples is quite low compared to the number of measure-
ments. We sought to integrate the phylogenetic information into the data analysis a
priori. In this way, the analysis is constrained in a biologically relevant direction. In
contrast, we could think of analyzing this abundance data much like a microarray
experiment: test each phylotype individually for differences between the patients
and use multiple testing criteria to identify individual phylotypes showing signifi-
cant differences. A problem with this approach, which is also a common problem
in microarrays analyses, would be that a list of significant phylotypes is difficult to
interpret. In microarray studies, biological interpretation is often done a posteriori
by then examining biological knowledge of the list of genes. We could similarly
use the phylogenetic tree in this way. However, we just saw that an analysis inde-
pendent of the tree highlighted only a couple of specific phylotypes from which it
would be difficult to build a general connection to the tree.

6.2. Effect of the choice of metric. We can see the effect of using � in our
gPCA by examining the linear combinations that gPCA using � chooses. For any
ordination technique, let V be a matrix that rotates the original profiles X to give us
the final ordination; in gPCA of centered data, this will be the matrix PwS

QSA. We
examine the different linear transformations, vi , from gPCA with � as compared
to the transformation for a standard PCA on the data X̃ (equivalently, NSCA).
And we also compare to the eigenvectors of �: if the covariance between the
species was exactly the � predicted by the evolution model, then these would be
the principal components of such data. Thus, we can think of the eigenvectors of
� as PCA on the tree.

In Figure 5 we order the elements of vi from these three ordination techniques
so that they line up with the phylogenetic tree. In this way we can see the rela-
tive importance of the phylotypes in transforming the data. When we look at the
linear combinations for the first few coordinates, we see that the principal com-
ponents from our gPCA with � intuitively seem to be a trade-off between these
two options, and we could think of this as a shrinking of the data variability in the
“direction” of the tree. This is a particularly appealing idea, since we are treating
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FIG. 5. Shown are the first five linear combinations of gPCA using � that act on the observations
in X (the location profiles) to create the first five coordinates (vi ). The five dimensions are divided
by thick, dotted line. Also shown adjacent to each gPCA vector are the linear combinations from a
standard PCA of X̃ (labeled ‘X’) and the eigenvectors of � (labeled ‘�’).

the phylotypes as variables and there are far too many variables for the number of
samples we have.

Despite the intuitive results, the analysis depends on our choice of encoding
the tree using � (or, equivalently, for DPCoA, our choice of δ). In particular, the
block structure of � puts large emphasis on the first initial partition of the species
at the root of the tree; these two groups of species are considered independent,
conditional on the root ancestor. We can see this emphasis on this first divide from
the Rao Dissimilarity based on δ, where these two lineages will be far away from
each other and, thus, differences between will be accorded more weight in the
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analysis. However, as mentioned above, we see that the method depends only on δ,
so the definition of the root of the tree, per se, is not the deciding factor, but rather
the large amount of distance between these two subtrees.

Changes near the tips of the tree, both in the numerical data and the definition
of the tree, will have little impact on the gPCA. For the bacterial data that we
are interested in, the deeper tree structure is more trustworthy than the structure
near the leaves of the tree because of the approximate definition of species. It
is a reasonable compromise to put more weight on the deeper structure of the
tree, and base our analysis on this dependence, in exchange for resolving the more
fundamental problem in our definition of the species.

7. General graphs. It is clear that the same approach is applicable to other
situations where there is complicated information that is related to the experimen-
tal data. By understanding our phylogenetic analysis as a specific example in a
general approach to data analysis, we can compare with other techniques as well
as take advantage of insights from other data situations.

A closely related example is when we have not a phylogenetic tree, but a more
general graph structure that describes the relationship of our variables or obser-
vations. The analysis of experimental data in tandem with related biological net-
works by Rapaport et al. (2007) is equivalent to our metric approach. There, the
authors used the Laplacian matrix associated with a graph to represent the biologi-
cal graphs that related genes, where the the laplacian matrix L is given by Dd − A,
where A is the adjacency matrix of the graph and d is the vector of degrees of
each node. The Laplacian matrix is a natural choice for graphs; the eigenvectors
have similar multiscale properties as our metric for the phylogenetic tree. In Ap-
pendix D we briefly discuss the possibility of treating the phylogenetic tree as a
general graph and using the Laplacian as a metric. We chose another approach
here because such a choice does not well reflect the phylogenetic information in
the tree.

A related application is found in spatial analysis, where spatial relationships be-
tween observations are based on neighborhood relationships, or, more generally,
distances between points. While many analyses first remove the spatial dependen-
cies so as to have independent observations, it is often also of interest to evaluate
the relationship between the spatial patterns and the observed data. When spatial
connectivity between observations is simplified to a zero–one connectivity mea-
sure (usually based on a cutoff on the distance between the observations), the spa-
tial relationship is given by an adjacency matrix. Geary’s c and Moran’s I , two
common measures of the spatial autocorrelation of y ∈ R

n (a variable observed on
the n observations), can be written in terms of the adjacency matrix [Thioulouse,
Chessel and Champely (1995)],

c = (n − 1)
∑n

j=1
∑n

j=1 A(ij)(y(i) − y(j))
2

2Ne

∑
i (y(i) − ȳ)2 = n − 1

Ne

ỹT (Dd − A)ỹ
ỹT ỹ

,
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I = (n)
∑n

j=1
∑n

j=1 A(ij)(y(i) − ȳ)(y(j) − ȳ)

2Ne

∑
i (y(i) − ȳ)2 = n

Ne

ỹT Aỹ
ỹT ỹ

,

where ỹ = y − ȳ1n is y centered by the standard (unweighted) mean of the ele-
ments of y and Ne = ∑

ij Aij is twice the number of edges in the graph. In partic-
ular, we see that Geary’s c can be written in terms of an inner-product using the
Laplacian.

Thioulouse, Chessel and Champely (1995) note that the variance of y with ob-
servations weighted by their node-degree, given by varDd (y) = ỹT Ddỹ/Ne, can be
decomposed into related components,

varDd (y) = ỹT Dd − A
Ne

ỹ + ỹT A
Ne

ỹ.

Thus, Geary’s c and Moran’s I are similar to F measures described above, that
is, the ratio of component variability to total variability (note, however, that
Moran’s I can be negative). Several authors have proposed spatial multivariate
analyses which rely on L as a metric for the rows, or a row standardized ver-
sion L∗ = D−1

d (Dd − A) [Aluja-Ganet and Nonell-Torrent (1991); Thioulouse,
Chessel and Champely (1995); di Bella and Jona-Lasinio (1996); Dray, Saïd
and Debias (2008)]. [Note that the matrix L∗ as well as the similar matrix
L̃ = D−1/2

d (Dd − A)D−1/2
d are also considered in graph theory; see Biyikoğlu,

Leydold and Stadler (2007).]

8. Conclusion. There is a clear necessity for including phylogenetic informa-
tion in an analysis of metagenomic data. gPCA gives a simple and compelling
way to accomplish this. We also see from our recasting of DPCoA as a gPCA that
the framework of gPCA allows for easy comparisons between seemingly disparate
analyses as well as further exploration as to the effect of our choice of metrics.

The use of nonstandard metrics is quite natural in statistics and can be imple-
mented in a variety of ways, PCA being merely the simplest. Common examples,
such as Mahalanobis distance, are usually data-driven, but we see that metrics
based on outside knowledge can be used to include complicated and heterogeneous
information into the analysis of our numerical data. This kind of information can
help to give more context to the data, particularly when the number of variables
is large as compared to the samples. Moreover, since the metrics here correspond
to covariance matrices, probabilistic models give a simple approach for encoding
information appropriately. Often, as in the case of phylogenetic trees, the eigen-
vectors of such covariance matrices have nice localization properties that highlight
the relevant spatial or regional patterns of the prior information.

APPENDIX A: DPCOA AND GPCA

We state here the equivalence between DPCoA and gPCA described in Sec-
tion 3.3. First we describe more explicitly DPCoA, as described in Pavoine, Dufour
and Chessel (2004).
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DPCoA. Assume that the squared pairwise distances/dissimilarities between the
species are given by a S × S matrix δ. We also assume that the distances are Eu-
clidean (i.e., coordinates can be found for the points so that the standard Euclidean
distance between points is given by the square-root of the entries of δ).

Following the notation provided in Section 4, let Pwm = (Im − 1mwT
m) be the

projection matrix that centers m observations based on a weighted mean with wm

as weights:

1. Find Euclidean coordinates of the species using a weighted version of Multi-
diminsional Scaling, with weights for the species given by wS , typically [and
as proposed by Pavoine, Dufour and Chessel (2004)] the relative abundance of
the species in all the samples. Specifically, let U be the eigenvectors of

D1/2
wS

PwS
(−δ/2)PT

wS
D1/2

wS
.

Then the new coordinates of the species are given by the rows of Z ∈ R
S×s∗

(s∗ ≤ S − 1 is the dimension of the space required to contain the species).
Then we have Z = D−1/2

wS
U�1/2. Note that we could also start with a similarity

matrix between species, Sv = 1vT + v1T − 1
2δ for any v that implies Sv is

positive definite. Because

PwSvPT
w = Pw(−δ/2)PT

w

for any weights w and vector v the MDS will be equivalent. This is, of course,
the standard equivalence between starting with a similarity matrix or dissimil-
iarity matrix in MDS.

2. Set the coordinates of the locations to be at the barycenter of the species coordi-
nates. In other words, each location � is given coordinates that are the weighted
average of the coordinates of all the species and the weights are given by the
relative abundance of the species in that site (which is contained in the vector
x�). Let the rows of the L × s∗ matrix Y contain the coordinates of the sites, so

Y = XZ.

The squared pairwise Euclidean distance between the locations using these co-
ordinates will be equal to their Rao Dissimilarity using the dissimilarity ma-
trix δ.

3. Find a lower-dimensional representation of the locations using a generalized
principal components analysis on the triplet (Y, IS,DwL

), where DwL
is a di-

agonal matrix consisting of weights for the locations, wL (again, typically the
relative abundance of the locations in all the samples). Let r = rank(Y). Then
gPCA of (Y, IS,DwL

) gives the eigenvalue equations,

YT DwL
YF = F�, YYT DwL

G = G�,
(1)

where FT F = Ir , GT DwL
G = Ir
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and Y = G�1/2FT is the generalized SVD decomposition of Y. The final co-
ordinates of the locations are given by

L = YF.

We also transform the coordinates of the species to get species coordinates (see
Section 4.2),

K = ZF.

LEMMA. The coordinates for the locations given by L in DPCoA using δ are
equivalent to the coordinates X̂ = X̃SvA of the locations given by gPCA with the
triplet (X̃,Sv,DwL

), where X̃ = XPwS
is the column centered matrix of data. Fur-

thermore, the coordinates of the species given by DPCoA in the matrix K are
equivalent to the coordinates obtained by centering and then rotating the origi-
nal axes es by the transformation implied from the gPCA of (X̃,Sv,DwL

) so that
K = PwS

SvA.

PROOF. The fundamental eigenequations for a gPCA of the triplet (X̃,Sv,

DwL
) are

X̃T DwL
X̃SvA = A�, X̃SvX̃T DwL

B = B�,
(2)

where AT SvA = Ir , BT DwL
B = Ir ,

so that XPwS
= B�1/2AT is the corresponding gSVD.

Since X̃ = XPwS
, we see that B and G from DPCoA are both eigenvectors

for the same matrix, XPwS
SvPT

wS
XT DwL

, implying that B and G are the DwL
-

orthonormal eigenvectors of the same matrix. This implies that the eigenvalues are
the same (� = �) and that B and G are the same up to a sign change (assuming
unique eigenvalues).

The resulting coordinates for the locations under DPCoA are given by L =
YF = G�1/2. With gPCA of (X̃,Sv,DwL

), the location coordinates are X̂ =
XPwS

SvA = B�1/2 and, therefore, we have that L = X̂—the coordinates of the
locations are the same in the two methods.

The coordinates for the species are given by DPCoA as the rotation of the co-
ordinates given in Z by F: K = ZF. By the gSVD decomposition of Y, we can
write FT = �−1/2GT DwL

Y and, similarly, B�−1/2 = XPwS
SvA�−1. Remem-

bering that ZZT = PwS
δPT

wS
, the final coordinates of the species from DPCoA are

given by

K = ZYT DwL
G�−1/2 = ZZT XT DwL

G�−1/2

= PwS
δPT

wS
XT DwL

G�−1/2

= PwS
Sv PT

wS
XT DwL

XPwS
SvA︸ ︷︷ ︸

=A� from (2)

�−1 = PwS
SvA

up to the sign change difference between G and B. �
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APPENDIX B: KERNEL ANALYSIS AND GPCA

Multivariate kernel methods seek a set of functions f1, . . . , fk from our general
data space X into R, such that the possible set of functions f form a Reproducing
Kernel Hilbert Space with respect to a kernel function K on X [see Schölkopf
and Smola (2002) for details]. The solutions for a multivariate Kernel CCA (or
extensions) can be recovered from the eigenequations, assuming Ki are invertible

K−1
ξ2

K2K1U1 = Kξ1U1�

with the constraint that

UT
i Kξi

Ui = �i

and U2 is given by

U2 = K−1
ξ2

K1U1(��1�
−1
2 )−1/2,

where Kξi
= (1 − ξi)Ki/n + ξiI, and �i are diagonals of normalization constants

chosen by the user. Then the new coordinates of an object x from data set i are
given by (f1(x), . . . , fk(x))T = kT Ui , where k(j) = Ki (x, xj ).

Let K1 = Qn, K2 = XQpXT , and ξ1 = ξ2 = 1, then we have the eigenequation

XQpXT QnU1 = U1�.(3)

We see that these are equivalent to the gPCA equations, with U1 = B. Then the
coordinates associated with the data matrix X from the kernel method are

K2U2 = K2K1U1(��1�
−1
2 )−1/2 = XQpXT QnU1�

−1/2(�1�
−1
2 )−1/2,

while those from the gPCA are

XQpA = XQpXT QnB�−1/2.

Choosing the scaling of the eigenvectors so that (�1�
−1
2 ) = I makes the solutions

equivalent.

APPENDIX C: INERTIA AND DISSIMILARIES

We generalize the results of Pélissier et al. (2003) to show the derivation of the
dissimilarity and diversity results above.

In gPCA, the term inertia is used for the inter-point similarities, and the total
inertia between points is defined as I (X,Qp,Qn) = tr(QnXQpXT ) = ∑

λi. Then
if X̂(r) are the new coordinates of X restricted to the first r dimensions and X̂(−r)

the remaining p− r dimensions, we can decompose the total inertia into the inertia
of the first r dimensions and that of the remaining p − r ,

I (X,Qp,Qn) = I
(
X̂(r), Ip,Qn

) + I
(
X̂(−r), Ip,Qn

)
=

r∑
i=1

λi +
p∑

i=r+1

λi,
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and the first r dimensions give maximal possible inertia for r dimensions.
Let Y ∈ R

N×S be the incidence matrix for the species variable, where Y(is) is an
indicator of the ith observation being species s. Let Z ∈ R

N×L be a similar such
incidence matrix for the location variable. Then the inertia of the eigenanalysis
of the triplet (Ỹ,Q,DN), where Ỹ is the (nonweighted) centered Y and DN is a
diagonal matrix of N elements, will be equal to HQ(x̄). Regressing Y onto Z gives
predictions ỸZ and residuals Ỹ|Z = Ỹ − ỸZ . Then the total inertia (IT) can be
broken into the inertia due to differences between locations (IB) plus the remaining
inertia within locations (IW),

Inertia(Ỹ,Q,DN) = Inertia(ỸZ,Q,DN) + Inertia(Ỹ|Z,Q,DN).

Note that ỸZ = ZX̃, so that the inertia explained by Z is equal to the inertia of
the eigenanalysis of X̃,

IB = Inertia(ỸZ,Q,DN) = Inertia(X̃,Q,DwL
).

This implies that the ordination procedures described above best preserve the be-
tween location dissimilarities defined by the metric Q.

APPENDIX D: THE LAPLACIAN AND A LAPLACIAN FOR TREES

The Laplacian matrix that is associated with the graph is given by L = D − A,
where A is the adjacency matrix of the graph and D is the diagonal matrix con-
sisting of the degree of each vertex. The spectral decomposition of L is closely
related to certain properties of the graph; in particular, there are many results link-
ing the eigenvalues of L with fundamental characteristics of the graph [see Diestel
(2005)]. There are fewer explicit characterizations of the eigenvectors that hold
for all graphs. In a general way, the eigenvectors corresponding to small eigen-
values of L represent large divisions in the graph (indeed, for λ0 = 0, we have
the eigenvector 1 which is an average of all the nodes); they tend to be zero for
large portions of the graph and the nonzero components are the same sign distinct
regions of the graph. Those eigenvectors corresponding to large eigenvalues tend
be dominated by linear combinations of “close” nodes or smaller groups of nodes
and represent the “noisy,” small differences within neighboring vertices. Thus, the
eigenvectors of the Laplacian have “multiscale” characteristics, particularly those
eigenvectors corresponding to the largest and smallest of the eigenvalues. For data
x associated with a graph, with each element of x corresponding to a node in
the graph, the metrics for a graph based on the Laplacian will usually put greater
weight on the eigenvectors corresponding to small eigenvalues, for example, 1/λi

or exp(−1/λi). This choice corresponds to the behavior of the eigenvectors.
The Laplacian gives the covariance between nodes from a useful model for

describing relationships among the nodes—a model of diffusion of information
through the graph. The covariance from this model is given by exp(−2αL), known
as the heat kernel of the graph [see Kondor and Lafferty (2002) for review].
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Of course, this is equivalent to weighting the eigenvectors of the Laplacian with
weight function exp(−αλi).

A phylogenetic tree is, of course, a graph, and the Laplacian of a tree and the
distances between nodes on a tree are quite simply related [Bapat, Kirkland and
Neumann (2005)]. Let δT be the distance matrix of the patristic distances between
all the nodes of the tree (internal nodes as well as the leaves), and let L be the
Laplacian of the tree with weights 1/d(r, s) on each edge. Then we have that

L = vvT /
∑

d(r, s) − 2δ−1
T ,

where for a phylogenetic tree v is −1 or 1 depending on whether the node is a leaf
of the tree or not.

However, since our data is observed on only certain nodes of the graph—the
leaves of the tree—we need a metric that gives a relationship only between the
leaves. If we use the Laplacian as our phylogenetic metric, we would have to con-
strain ourselves to the portion of the metric that corresponds to the relationships
between just the leaves, LS . If we took as our metric the inverse of the Laplacian—
which corresponds to an appropriate ordering of the eigenvectors by weighting
each by 1/λi—we have that L−1

S is given by

L−1
S = cγ γ T − 1/2δS, where c = (81T δS×I 1)−1, γ = δT v,

and δS ∈ R
S×S is the distance matrix restricted to the distances between leaves of

the tree and δSI ∈ R
S×S−1 is the distance matrix restricted to the distances between

the leaves of the tree and S − 1 internal nodes of the tree. This is an expression
somewhat similar to our similarity matrix for DPCoA, but note that a gPCA based
on L−1

S is not equivalent to DPCoA because Pγ γ PT does not vanish.
However, restricting the metric to those portions dealing only with the leaves

makes the metric difficult to interpret. The Laplacian restricted to the leaves will
no longer have the same eigenvectors as the Laplacian and thus loses its connection
to the behavior shown by the eigenvectors of the Laplacian. Furthermore, from the
point of view of covariance modeling, the phylogenetic tree represents an evolu-
tionary story that is more directly modeled by �.

APPENDIX E: EIGENVECTORS OF � FOR A PHYLOGENETIC TREE

Note the block structure in �: if the root ancestor, R, has immediate descen-
dants P1 and P2, then the covariance between any of the existing descendants of
P1 and those of P2 will be 0. Thus, we can order the rows and columns of � so
that

� =
(

�1 ∅∅∅

∅∅∅ �2

)
,(4)

where �1 is a S1 × S1 matrix, S1 is the number of extant species descended from
P1, and similarly with �2. This means that the eigenvectors of � must be of the
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form (
v1i

∅∅∅

)
or

(
∅∅∅

v2j

)
,(5)

where {v1i}S1
i=1 are the eigenvectors of �1 and {v2j }S2

j=1 are the eigenvectors of �2.
Therefore, every eigenvector of �, at a minimum, must be only nonzero for one of
the lineages.

Indeed, if we think back to the definition of �, the elements of the blocks �1,�2
are themselves rank-1 perturbations of block diagonal matrices:

�1 =
(

�11 ∅∅∅

∅∅∅ �12

)
+ c111T , �2 =

(
�21 ∅∅∅

∅∅∅ �22

)
+ c211T ,(6)

where c1 = dT (R, P1) and c2 = dT (R, P2) (here we have assumed that t ∝ 1 for
simplicity). This same logic continues so that each sub-block can be written as a
block matrix plus a rank-one perturbation. � thus consists of such nested rank-1
perturbations of block matrices.

The claims in the literature for a relationship of the eigenvectors of � to the par-
titions of the tree all stem from the comments of Cavalli-Sforza and Piazza (1975).
They make assertions which they prove only in the case of a tree with four leaves
(S = 4) and under the assumption of a constant rate of evolution (t ∝ 1). One as-
sertion is true: for any terminal bifurcation node (a node whose two descendants
are existing species or leaves of the tree), there is an eigenvector of � that has
elements that are positive for one of the species, negative for the other and zero
for all other species. In addition, we see that because of the block structure, every
eigenvector of �, at a minimum, must consist of zero elements for one branch of
the tree.

Beyond this, Cavalli-Sforza and Piazza (1975) describe “usual” behavior of the
eigenvectors, but their ideas do not scale as the size of the tree increases. The nested
block structure of � still has the effect of creating eigenvectors with some structure
to them, though not as easily classified as suggested in Cavalli-Sforza and Piazza
(1975). Generally the structure of the eigenvectors will not be directly related to a
partition in the tree. In practice, the eigenvectors often have some relation to the
bifurcations of the tree, particularly the deeper (earlier in time) bifurcations and
of course the terminal bifurcations. The other eigenvectors often have clumps of
positive and negative elements that correspond to subtrees of the tree, and we often
empirically see as the eigenvalues get smaller some sort of concentration of large
values in only a few species.

APPENDIX F: ELLIPSES IN DPCOA PLOTS

The ellipse plots given in Figure 2(b) are provided by the ade4 package and
represent a location vector, x�, as an ellipse. For completeness, we explain here
what ade4 is plotting.
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Let the species coordinates as transformed into two dimensions by the ordina-
tion of the locations be given in the columns of K2 ∈ R

S×2. Then the ellipsoid for
x� ∈ R

S is defined by

vT (KT
2 Dxl

K2)
−1v = 1,

where the ellipse is centered at xl .
This curve consists of the points with norm 1 in the Mahalanobis metric, only

the estimate of the variance in Mahalanobis distance is calculated with weights on
the points (species) given by xl . Equivalently, the ellipses in Figure 2(b) will have
major and minor axes in the direction of the weighted principal components of the
coordinates of the species in K2, with the lengths of the axes given by the weighted
standard deviation of the species coordinates in those directions (an ellipse defined
by the equation xT Qx = 1 will have major and minor axes in the directions of the
eigenvectors of Q with lengths given by 1/

√
λi , where λi is an eigenvalue of Q).
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