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Abstract. Let X be a regular continuous positively recurrent Markov process with state space R, scale function S and speed
measure m. For a ∈ R denote

B+
a = sup

x≥a
m

(]x,+∞[)(S(x) − S(a)
)
,

B−
a = sup

x≤a
m

(]−∞;x[)(S(a) − S(x)
)
.

It is well known that the finiteness of B±
a is equivalent to the existence of spectral gaps of generators associated with X. We show

how these quantities appear independently in the study of the exponential moments of hitting times of X. Then we establish a very
direct relation between exponential moments and spectral gaps, all by improving their classical bounds.

Résumé. Soit X un processus de Markov récurrent positif à trajectoires continues et à valeurs dans R. Soient S sa fonction
d’échelle et m sa mesure de vitesse. Pour a ∈ R notons

B+
a = sup

x≥a
m

(]x,+∞[)(S(x) − S(a)
)
,

B−
a = sup

x≤a
m

(]−∞;x[)(S(a) − S(x)
)
.

Il est bien connu que la finitude de B±
a est équivalente à l’existence d’un trou spectral du générateur associé à X. Nous montrons

comment ces quantités apparaissent d’une manière indépendante dans l’étude des temps d’atteinte de X. Ensuite nous établissons
une relation directe entre les moments exponentiels et le trou spectral, en améliorant en plus leurs encadrements classiques.
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Introduction

Let (Xt ; t ≥ 0) be a regular linear continuous Markov process with the state space R. We assume throughout the
paper that X is positively recurrent and conservative (the killing time is identically +∞). Denote by S(x) a scale
function of X and m(dx) the speed measure associated with S (cf. [23], Chapter VII). Recall that S is a continuous
strictly increasing function and m(dx) is a symmetric measure for X, charging every not empty open set. Moreover,
the positive recurrence of X implies limx→±∞ S(x) = ±∞ and m(R) < ∞.
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In this paper we study some relations between the exponential moments of hitting times of X, the finiteness of the
quantities B+

a , B−
a given by (0.1), the Hardy and Poincaré inequalities for Dirichlet forms associated with X. As a

consequence we give a chain of equalities linking all these objects.
Let a ∈ R and Ta = inf{t ≥ 0: Xt = a} be the hitting time of a by X. The first question we are interested in is the

estimation of exponential moments Ex[eλTa ], x ∈ R, λ > 0.
In some particular cases such moments have been well studied. We mention, for example, Ditlevsen [7] for

Ornstein–Uhlenbeck process, Giorno et al. [12] for Bessel and Ornstein–Uhlenbeck processes, Deaconu and Wantz
[6] for diffusion with strong drift, and the book of Borodin and Salminen [3] for an overview of known formulas.
But we were not able to find in the literature a simple general estimate of exponential moments in terms of the scale
function S(x) and the speed measure m(dx).

In the present paper this question receives a very satisfactory response with the quantities:

�+
a (x) = m

(]x,+∞[)(S(x) − S(a)
)
,

�−
a (x) = m

(]−∞;x[)(S(a) − S(x)
)
.

Namely, let λ+
a be the supremum of λ > 0 such that ExeλTa < ∞ for some x > a (hence for all x > a, see the

“all-or-none” property, Proposition 1.2). Respectively, let λ−
a be the supremum of λ such that ExeλTa < ∞ for some

(all) x < a. Put

B+
a = sup

x≥a
�+

a (x), B−
a = sup

x≤a
�−

a (x) (0.1)

and

C±
a = lim inf

x→±∞�±
a (x).

Our first result (see Section 1, Theorem 1.1) asserts that

1

4B±
a

≤ λ±
a ≤ 1

4C±
a

∧ 1

B±
a

, (0.2)

where B+
a or B−

a can eventually be infinite. The positivity of λ±
a is thereby equivalent to the finiteness of B±

a . More-
over, if λ±

a > 0 for some a ∈ R, it is so for all a ∈ R.
As it turns out, the importance of the quantities B±

a is well-known in some different context. Using Krein’s method,
Kac and Krein [15] and Kotani and Watanabe [17] have shown that the spectral gaps γ +

a (respectively γ −
a ) of the

generator of X killed when it exits ]a,+∞[ (resp. ]−∞, a[) satisfy

1

4B±
a

≤ γ ±
a ≤ 1

B±
a

. (0.3)

We see therefore that the positivity of λ±
a is equivalent to this of γ ±

a , a fact that can actually be derived e.g. from
the works of Down et al. [8] and Bakry [1] or Rökner and Wang [24]. But comparing (0.2) and (0.3) leads to the more
explicit conjecture λ±

a = γ ±
a . This identity would not be surprising, since for exit times from a bounded domain D it

is well known from the works of Khasminskii [16] and Friedman [10]. Namely, if τD is the exit time from D and XD

is a process killed at τD , then the equality holds between the width γD of the spectral gap of the generator of XD and
the supremum λD of λ such that ExeλτD < ∞ for all x ∈ D. However, the PDE methods of [16] require Exτ to be
bounded, which is not the case in general, and in particular for D =]a,∞[.

What was surprising, is that we have not found in the literature an analogue of Khasminskii identity for unbounded
domains. So in the second section of this article we firstly show (Theorem 2.1) in the setting of m-symmetric Hunt
processes that

λD = γD if λD = sup
{
λ: ExeλτD ∈ L

1(mID)
}

> 0.
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The proof is based on the spectral calculus, available thanks to the symmetry of the generator of XD . Since this
symmetry is automatically fulfilled in dimension one, we get for any a ∈ R,

γ +
a = λ+

a and γ −
a = λ−

a . (0.4)

Notice that we cannot establish such kind of equality directly on R, because our process is conservative and the
exit time from R is identically infinite. But it is well known that the spectral gap γ of a m-symmetric operator can be
characterized in terms of Poincaré inequality for its Dirichlet form. We recall in the sequel of Section 2 that

γ ±
a = 1

A±
a

and γ = 1

cP

,

where A±
a and cP are the best possible constants satisfying

∫ ∞

a

(
F(x) − F(a)

)2
m(dx) ≤ A+

a

∫ ∞

a

(
dF

dS

)2

(t)dS(t),

∫ a

−∞
(
F(x) − F(a)

)2
m(dx) ≤ A−

a

∫ a

−∞

(
dF

dS

)2

(t)dS(t)

and ∫ +∞

−∞

(
F(x) − m(F)

m(R)

)2

m(dx) ≤ cP

∫ +∞

−∞

(
dF

dS

)2

(x)dS(x)

for all F in an appropriate functional space F .
A classical Mukenhoupt result [22] yields

B+
a ≤ A+

a ≤ 4B+
a and B−

a ≤ A−
a ≤ 4B−

a .

Looking at (0.2) and (0.4), we see that the lower bounds above can actually be replaced by 4C±
a ∨ B±

a , which are
sometimes more precise. They also allow to recover (in our settings) the case of equality A±

a = 4B±
a studied in Miclo

[21].
Further, cP can be easily related to A±

a by

sup
a

(
A+

a ∧ A−
a

) ≤ cP ≤ inf
a

(
A+

a ∨ A−
a

)
which yields

sup
a

(
B+

a ∧ B−
a

) ≤ cP ≤ 4 inf
a

(
B+

a ∨ B−
a

)
.

In the works of Bobkov and Götze [2] and Malrieu and Roberto [20] it was shown that these inequalities can be
replaced by

1

2
B+

me ∨ B−
me ≤ cP ≤ 4

(
B+

me ∨ B−
me

)
,

where me is a median of m (see [20], Theorem 6.6.2). At the end of Section 2 we give another refinement of the bounds
on cP . After proving that A±

a are S-Hölder in a, we show that there exists a point c ∈ R such that A+
c = A−

c = cP ,
which yields

B+
c ∨ B−

c ∨ 4C+
c ∨ 4C−

c ≤ cP ≤ 4
(
B+

c ∧ B−
c

)
.

The point c is, however, unknown (except for obvious symmetric cases) and worths further investigations.
Finally, the last section contains some examples to illustrate the above-mentioned results.
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1. Exponential integrability of hitting times

In this section we study the exponential moments of hitting times Ta . For a ∈ R, denote

λ+
a = sup

{
λ ≥ 0: ∀x > a,ExeλTa < ∞};

and

λ−
a = sup

{
λ ≥ 0: ∀x < a,ExeλTa < ∞}

.

As we will see (Proposition 1.2), an important “all-or-none” property holds for any λ > 0:

∃x > a, ExeλTa < ∞ ⇐⇒ ∀x > a, ExeλTa < ∞,

the same being true for x < a.
Recall the definitions

B+
a = sup

x≥a
m

(]x,+∞[)(S(x) − S(a)
)
,

B−
a = sup

x≤a
m

(]−∞;x[)(S(a) − S(x)
)

and

C+
a = lim inf

x→∞ m
(]x,+∞[)(S(x) − S(a)

)
,

C−
a = lim inf

x→−∞m
(]−∞;x[)(S(a) − S(x)

)
.

The main result of this section is

Theorem 1.1. For all a ∈ R,

1

4B+
a

≤ λ+
a ≤ 1

4C+
a

∧ 1

B+
a

and
1

4B−
a

≤ λ−
a ≤ 1

4C−
a

∧ 1

B−
a

with the convention 1/∞ = 0.

In the sequel we often prove only assertions concerning B+
a and λ+

a , since the proofs of their “left” counterparts
are completely similar.

1.1. Kac formula

The Kac formula, first derived in [13,14] for linear Brownian motion, then generalized in [5] and in [9], permits to
calculate the moments of Av = ∫ T

0 v(Xt )dt for a function v of a Markov process (X) and a suitable random time T .
In our proof we need a particular case of this formula, where v = 1 and T is an exit time from an interval or a hitting
time.

For a < x < b consider

Ta,b = inf
{
t ≥ 0;Xt /∈]a, b[}.

The Green potential kernel on [a, b] is given by (see e.g. [23], Chapter VII)

G(a,b, x, y) = (S(b) − S(x ∨ y))(S(x ∧ y) − S(a))

S(b) − S(a)
.
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This kernel defines the Green operator

Gf (x) =
∫ b

a

G(a, b, x, y)f (y)dm(y).

Notice that since G(a,b, x, a) = G(a,b, x, b) = 0, the integration interval may or may not include a and b.
With the help of this operator we can calculate the moments of Ta,b using Kac formula

ExT
n
a,b = n

∫ b

a

G(a, b, x, y)EyT
n−1
a,b dm(y) = n!Gn1(x). (1.1)

To obtain an analogous formula for the moments of hitting times, recall that limt→±∞ S(t) = ±∞, and consider the
limits of G(a,b, x, y) when a → −∞ (resp. b → ∞):

G(−∞, b, x, ξ) =
{(

S(b) − S(ξ)
)
, x ≤ ξ ≤ b,(

S(b) − S(x)
)
, −∞ < ξ ≤ x,

G(a,+∞, x, ξ) =
{(

S(ξ) − S(a)
)
, a ≤ ξ ≤ x,(

S(x) − S(a)
)
, x ≤ ξ < ∞.

Taking monotone limits in (1.1), we get a formula for the nth moment of hitting times (see also [18]):

ExT
n
b = n

∫ b

−∞
G(−∞, b, x, ξ)Eξ T

n−1
b dm(ξ) if x < b,

(1.2)

ExT
n
a = n

∫ +∞

a

G(a,+∞, x, ξ)Eξ T
n−1
a dm(ξ) if x > a.

The summation over n yields a formula for exponential moments:

Ex exp(λTb) = 1 + λ

∫ b

−∞
G(−∞, b, x, ξ)Eξ exp(λTb)dm(ξ), x < b,

(1.3)

Ex exp(λTa) = 1 + λ

∫ +∞

a

G(a,+∞, x, ξ)Eξ exp(λTa)dm(ξ), x > a.

Remark. The expressions (1.2)–(1.3) are always defined, since all functions therein are positive.

The following proposition will be referred to as “all-or-none” property in the sequel:

Proposition 1.2 (All-or-none). Let a ∈ R and λ > 0. The following properties are equivalent:

• for some x > a, Ex exp(λTa) < ∞,
• for all x > a, Ex exp(λTa) < ∞,
• ∫ +∞

a
Eξ exp(λTa)dm(ξ) < ∞.

The same holds for x < a.

Proof. Observe that G(a,+∞, x, ξ) ≡ const > 0 for ξ > x, and that E• exp(λTa) is increasing on ]a,∞[. Using the
exponential Kac formula we then see that for x > a, Ex exp(λTa) < ∞ if and only if Eξ exp(λTa) is m-integrable
on ]a,∞[. In this case, since m charges every interval of R, Eξ exp(λTa) < ∞ for all ξ > a by monotonicity of
Eξ exp(λTa). �
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1.2. Exit time from an interval

It is known for a while (Khasminskii condition, see [9]) that the exit time Ta,b from a bounded interval [a, b] admits
an exponential moment for some λ > 0. Let

λa,b = sup
{
λ: ∀x ∈]a, b[,Ex exp(λTa,b) < ∞}

.

In this subsection we establish some upper and lower bounds for λa,b . The upper bound will be particularly important
in the proof of the Theorem 1.1.

Lemma 1.3. λa,b ≥ 1/Ca,b , where

Ca,b = 1

S(b) − S(a)

∫ b

a

(
S(b) − S(y)

)(
S(y) − S(a)

)
m(dy).

Proof. Observe that

G(a,b, x, y) ≤ (S(b) − S(y))(S(y) − S(a))

S(b) − S(a)
.

If f is positive and bounded, then

Gf (x) ≤ 1

S(b) − S(a)

∫ b

a

(
S(b) − S(y)

)(
S(y) − S(a)

)
f (y)m(dy) ≤ Ca,b‖f ‖∞.

It follows that ExT
n
a,b/n! = Gn1(x) ≤ Cn

a,b, whence ExeλTa,b < ∞ for λ < 1/Ca,b . �

Making b → ∞, we get ExeλTa < ∞ for all x > a if

1

λ
> Ca,∞ =

∫ ∞

a

(
S(y) − S(a)

)
m(dy),

but the last integral is generally infinite, so this inequality does not provide a satisfactory lower bound for λ+
a . Observe,

however, that when Ca,∞ < ∞, we get ExeλTa ≤ (1 − λCa,∞)−1 for all x > a and λ < 1/Ca,∞ (we postpone an
example for the last section).

To find an upper bound for λa,b , fix some interval [a′, b′] ⊂ ]a, b[. Define κ1 > 0 and κ2 > 0 by

S
(
a′) − S(a) = κ1

(
S
(
b′) − S

(
a′)), S(b) − S

(
b′) = κ2

(
S
(
b′) − S

(
a′)) (1.4)

and denote

c = κ1κ2

1 + κ1 + κ2

(
S
(
b′) − S

(
a′))m([

a′, b′]).
Lemma 1.4. If λ ≥ 1/c then for all x ∈ [a′, b′], ExeλTa,b = ∞. In particular, λa,b ≤ 1/c for any choice of [a′, b′].

Proof. Observe that for all x, y in [a′, b′],

G(a,b, x, y) ≥ (S(b) − S(b′))(S(a′) − S(a))

S(b) − S(a)
= κ1κ2

1 + κ1 + κ2

(
S
(
b′) − S

(
a′)).

It follows that for all x ∈ [a′, b′]

ExTa,b ≥
∫ b′

a′
G(a,b, x, y)dm(y) ≥ κ1κ2

1 + κ1 + κ2

(
S
(
b′) − S

(
a′))m([

a′, b′]) = c.
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By induction ExT
n
a,b ≥ n!cn, as seen from

ExT
n
a,b ≥ n

∫ b′

a′
G(a,b, x, y)EyT

n−1
a,b dm(y) ≥ n(n − 1)!cn−1

∫ b′

a′
G(a,b, x, y)dm(y) = n!cn.

Hence ExeλTa,b = ∞ pour λ ≥ 1/c and x ∈ [a′, b′]. �

At this stage let us mention a theorem of Carmona–Klein [4]

“spectral gap” ⇒ ExeλTU < ∞,

where U is a set of positive invariant measure. The formulation of this theorem is somewhat confusing, since it does
not precise that λ depends on U . In fact, the following corollary shows that the property ExeλTa < ∞ can not hold
simultaneously for all (x, a) with a common λ > 0.

Corollary 1.5. ∀λ > 0,∀x ∈ R, there exist a < x and b > x such that ExeλTa,b = ExeλTa = ExeλTb = ∞.

Proof. Fix λ > 0 and x ∈ R. Put, for example, κ1 = κ2 = 1 and chose [a′, b′] and [a, b] in such a way that x ∈
[a′, b′] ⊂ ]a, b[ and the equalities (1.4) hold. Then

1

c
= 3

(S(b′) − S(a′))m([a′, b′]) < λ

as soon as (S(b′) − S(a′))m([a′, b′]) > 3λ, which can always be achieved taking a′ or b′ large enough. Hence, ac-
cording to Lemma 1.4, ExeλTa,b = ∞ and thereby ExeλTa = ExeλTb = ∞ for such a and b. �

1.3. Hitting time moments

In this subsection we will prove the Theorem 1.1:

1

4B+
a

≤ λ+
a ≤ 1

4C+
a

∧ 1

B+
a

and
1

4B−
a

≤ λ−
a ≤ 1

4C−
a

∧ 1

B−
a

.

The proofs of two parts being completely similar, we only give one for λ+
a . It will be split in a number of propositions.

Proposition 1.6. ∀a ∈ R, λ+
a ≤ 1

B+
a

, where 1/∞ = 0.

Proof. Fix some a ∈ R. From Lemma 1.4 we deduce that for a < a′ < x < b′ < b, for all x ∈ [a′, b′], ExeλTa = ∞ if
λ ≥ 1/c, where

1

c
= 1 + κ1 + κ2

κ1κ2(S(b′) − S(a′))m([a′, b′]) .

Now fix a′ and b′ and make k2 → ∞ (so b → ∞), then

1

c
→ 1

κ1(S(b′) − S(a′))m([a′, b′]) = 1

(S(a′) − S(a))m([a′, b′]) .

We conclude that ExeλTa = ∞ for x ∈ [a′, b′] and

λ >
1

(S(a′) − S(a))m([a′, b′]) .
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It follows by the “all-or-none” Proposition 1.2 that ExeλTa = ∞ for any x > a, all a′, b′ and λ as above. Observing
that

sup
a′,b′

(
S
(
a′) − S(a)

)
m

([
a′, b′]) = sup

a′>a

(
S
(
a′) − S(a)

)
m

([
a′,∞[) = B+

a

by the continuity of S, we get ExeλTa = ∞ for any

λ > inf
a′,b′

1

(S(a′) − S(a))m([a′, b′]) = 1

B+
a

.

The inequality λ+
a ≤ 1/B+

a is thereby proved. �

The bounds (4C+
a )−1 ≥ λ+

a ≥ (4B+
a )−1 require more work. To simplify the notations we put B+

a = B .
Let b ≥ a and define for x > a and f ≥ 0 two positive linear operators, Jb and Kb:

Kbf (x) =
∫ x

a

(
S(y) − S(a)

)
f (y)1b≤ym(dy),

Jbf (x) = (
S(x) − S(a)

)
1b≤x

∫ ∞

x

f (y)m(dy),

where
∫ y

x
is understood as

∫
]x,y]. Notice that

Gf = Jaf + Kaf ≥ Jbf + Kbf = G(f 1[b,∞[).

Put

C(b) = inf
y>b

Jb1(y), B(b) = sup
y>b

Jb1(y),

so B = B(a).

Proposition 1.7. We have

n∑
l=0

an,lC
l(b)Kn−l

b 1(x) ≤ (Jb + Kb)
n1(x) ≤

n∑
l=0

an,lB
l(b)Kn−l

b 1(x)

where an,l ≥ 0 satisfy

an,l = 0 if l < 0 or l > n,

a0,0 = 1, an+1,l =
∑
i≤l

an,i .

Proof. For any f we have

JbKbf (x) = (
S(x) − S(a)

)
1b≤x

∫ ∞

x

dm(y)

∫ y

a

(
S(u) − S(a)

)
f (u)1b≤u dm(u)

= (
S(x) − S(a)

)
1b≤x

∫ ∞

x

dm(y)

∫ x

a

(
S(u) − S(a)

)
f (u)1b≤u dm(u)

+ (
S(x) − S(a)

)
1b≤x

∫ ∞

x

dm(y)

∫ y

x

(
S(u) − S(a)

)
f (u)1b≤u dm(u)

= Jb1(x)Kbf (x) + (
S(x) − S(a)

)
1b≤x

∫ ∞

x

f (u)dm(u)
(
S(u) − S(a)

)
1b≤u

∫ ∞

u

dm(y)

= Jb1(x)Kbf (x) + Jb(f Jb1)(x)
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whence

C(b)(Kbf + Jbf )(x) ≤ JbKbf (x) ≤ B(b)(Kbf + Jbf )(x),

the inequalities being trivially true for x ≤ b. By induction, we easily see that the following inequalities hold for all
n ∈ N:

C(b)
(
Cn(b) + Cn−1(b)Kb1(x) + · · · + Kn

b 1(x)
)

≤ JbK
n
b 1(x) ≤ B(b)

(
Bn(b) + Bn−1(b)Kb1(x) + · · · + Kn

b 1(x)
)
.

Now notice that for n = 0, (Jb + Kb)
n1(x) = 1 = a0,0. By induction again, for any x > a,

(Jb + Kb)
n+11(x) ≤ (Jb + Kb)

∑
l≥0

an,lB
l(b)Kn−l

b 1(x)

= Jb

∑
l≥0

an,lB
l(b)Kn−l

b 1(x) +
∑
l≥0

an,lB
l(b)Kn−l+1

b 1(x)

≤ B(b)
∑
l≥0

an,lB
l(b)

n−l∑
i=0

Bn−l−i (b)Ki
b1(x) +

∑
l≥0

an,lB
l(b)Kn−l+1

b 1(x)

=
∑
i≥0

Bn+1−i (b)Ki
b1(x)

∑
l≤n−i

an,l +
∑
i≥0

an,n+1−iB
n+1−i (b)Ki

b1(x)

=
∑
i≥0

Bn+1−i (b)Ki
b1(x)

∑
l≤n+1−i

an,l =
∑
j≥0

Bj (b)K
n+1−j
b 1(x)

∑
l≤j

an,l

=
∑
j≥0

an+1,jB
j (b)K

n+1−j
b 1(x).

The lower bound is proved in the same way. �

An explicit formula for an,l will now be derived.

Lemma 1.8. For 0 ≤ l ≤ n, an,l = Cl
n+l − Cl−1

n+l , with C−1
n = 0. This implies

4n

n + 2

8√
π(n + 2)

�
n∑

k=0

an,k = an+1,n ≤ 4n,

whence

lim
n→∞

n
√

an+1,n = 4.

Proof. The expression of an,l follows by induction from the recursive definition of an,l and the equality

C0
n + C1

n+1 + · · · + Cl
n+l = Cl

n+l+1.

The second assertion follows then easily by Stirling’s formula. �

Theorem 1.9. Recall that

B = B+
a = sup

x>a

(
S(x) − S(a)

)
m

(]x,∞])
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and

C+
a = lim inf

x→∞
(
S(x) − S(a)

)
m

(]x,∞]).
• If 0 ≤ λ < (4B+

a )−1 then for all x > a, ExeλTa dm(x) < ∞.
• If λ > (4C+

a )−1 then for all x > a, ExeλTa dm(x) = ∞.

Proof. Put ‖f ‖b = ∫ ∞
b

f (z)m(dz) for b ≥ a. We have for f ≥ 0

‖Kbf ‖b =
∫ ∞

b

m(dz)

∫ z

b

(
S(u) − S(a)

)
f (u)m(du) =

∫ ∞

b

f (u)m(du)
(
S(u) − S(a)

)∫ ∞

u

m(dz),

whence

C(b)‖f ‖b ≤ ‖Kbf ‖b ≤ B(b)‖f ‖b. (1.5)

The first point of the theorem being obviously true for B = ∞, we can suppose that B = B(a) < ∞. Combining
the inequality (1.5) for b = a with the Proposition 1.7 and Lemma 1.8, we can write

1

n!
∫ +∞

a

ExT
n
a dm(x) = ∥∥Gn1

∥∥
a

≤
n∑

l=0

an,lB
l
∥∥Kn−l

a 1
∥∥

a

≤
n∑

l=0

an,lB
lBn−l‖1‖a = an+1,nB

nm
(]a,∞[) ≤ 4nBnm

(]a,∞[),
which implies the first assertion.

In the same way, for any b ≥ a,

∥∥Gn1
∥∥

b
≥

n∑
l=0

an,lC(b)lC(b)n−l‖1‖b = an+1,nC(b)nm
(]b,∞[).

Lemma 1.8 now implies that
∫ ∞
b

ExeλTam(dx) = ∞ for any λ > (4C(b))−1. The second point follows by the “all-or-
none” property, since limb→∞ C(b) = C+

a . �

Finally, the Propositions 1.6 and 1.9 jointly imply the assertion of Theorem 1.1, namely

1

4B+
a

≤ λ+
a ≤ 1

4C+
a

∧ 1

B+
a

and
1

4B−
a

≤ λ−
a ≤ 1

4C−
a

∧ 1

B−
a

,

the inequalities concerning λ−
a being proved in the same way.

Remark. It is easy to see that B±
a < ∞ implies ∀a ∈ R, B±

a < ∞. So the Theorem 1.1 yields yet another “all-or-
none” property:

∃a ∈ R, λ±
a > 0 ⇐⇒ ∀a ∈ R, λ±

a > 0.

The Corollary 1.5 implies, however, that

lim
a→∞λ−

a = lim
a→−∞λ+

a = 0.
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2. Spectral gap

It turns out that the quantities B±
a have already appeared in the context of the operators theory (see, e.g., [15,17]). In

this section we discuss some relations between exponential moments of a diffusion and spectral gaps of associated
operators.

We begin with a general remark. Consider a Hunt process X on a Polish space E in the sense of Fukushima
et al. [11]. Let m be a Radon measure on E. Suppose that m is bounded and X is a m-symmetric process. Denote by
(Pt )t≥0 the transition semigroup of X. Denote by Px, x ∈ E, the law of the process X issued from x ∈ E.

For an open set G⊆ E, set

τG = inf{t > 0: Xt /∈ G}
the exit time of X from G. Introduce

P G
t [A](x) = Px[Xt ∈ A; t < τG]

for measurable subset A of E, and set

XG
t =

{
Xt, 0 ≤ t < τG,
	, t ≥ τG.

Then, according to [11], XG is a Hunt process on the state space G, symmetric with respect to the measure IG · m(dx)

with the transition semigroup (P G
t ). If AG denotes the infinitesimal generator of (P G

t ) in L
2(IG · m(dx)), AG is a self-

adjoint negative operator. Let us denote by (·, ·) the scalar product in L
2(IG · m(dx)) and by (Eξ , ξ ≥ 0) the spectral

family of −AG.
Recall now the usual properties of the spectral decomposition. For any bounded and continuous f on [0,∞[ one

can define f (−AG) by

f
(−AG)u =

∫
[0;∞[

f (ξ)dEξu, u ∈ L
2(

IG · m(dx)
)
,

with

(
f

(−AG)u,g
(−AG)v) =

∫
[0;∞[

f (ξ)g(ξ)d(Eξu, v).

In particular,

P G
t = exp

(
tAG) =

∫
[0;∞[

e−ξ t dEξ .

Denote by EG the Dirichlet form associated with −AG on L
2(m). Let Hξ be the image space of Eξ (which is

a projection operator). The elements of H0 are those who satisfy P G
t u = u for all t > 0. We know that −AG has a

spectral gap at 0 of width at least γ > 0 if and only if the following inequality

γ ‖u − E0u‖2 = γ

∫
]0,∞[

d(Eξu,u) ≤
∫

]0,∞[
ξ d(Eξu,u) = EG(u,u) (2.1)

holds for all u in the domain of EG.

2.1. Khasminskii identity

The main theorem of this section concerns the case τG < ∞.
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For any bounded non negative function u(x) ∈ L
2(IG · m(dx)), for all λ > 0, 0 < N < ∞, we have the formulas

∫ N

0
eλtP G

t 1(x)dt = 1

λ
Ex

[
eλτG∧N − 1

]
,

∫ N

0
eλtP G

t u(x)dt ≤ ‖u‖∞
1

λ
Ex

[
eλτG∧N − 1

]
.

The spectral calculus yields

1

λ
Ex

[
eλτG∧N − 1

] =
∫

[0,∞[
e(λ−ξ)N − 1

λ − ξ
dEξ 1.

Hypothesis (λ0). λ0 > 0 and for any λ < λ0, Ex[eλτG ] is an element of L
1(IG · m(dx)).

Theorem 2.1. Hypothesis (λ0) is equivalent to E(λ0−) = 0, i.e. −AG has a spectral gap of width at least equal to λ0.

Remark. This equivalence for bounded domains G ⊂ R
n is well-known since the works of Khasminskii [16] and

Friedman [10]. However, the proof of [16], Theorem 2, makes use of the boundedness of ExτG in G, which may not be
the case in our general setting.

The proof is divided in two parts.

Lemma 2.2. Hypothesis (λ0) implies
∫
[0,λ0[ dEξ = 0, i.e. E(λ0−) = 0.

Proof. Let 0 < λ < λ0. For any bounded non negative function f (x) ∈ L
2(IG · m(dx)), for all λ > 0, 0 < N < ∞, we

can write

‖f ‖2∞
λ

(
E•

[
eλτG∧N − 1

]
,1

)

≥
(∫ N

0
eλtP G

t f dt, f

)

=
∫

[0,∞[
d(Eξf,f )

∫ N

0
e(λ−ξ)t dt

≥
∫

[0,λ[
d(Eξf,f )

∫ N

0
e(λ−ξ)t dt

=
∫

[0,λ[
e(λ−ξ)N − 1

λ − ξ
d(Eξf,f ).

Taking the limit when N ↑ ∞, the preceding computation gives

(E(λ−)f, f ) =
∫

[0,λ[
d(Eξf,f ) = 0.

The bounded non negative functions being dense in L
2(IG · m(dx)), we conclude that E(λ−) = 0. Since this holds for

any 0 < λ < λ0, the lemma is proved. �

Lemma 2.3. Let 0 < λ < λ0. Suppose that E(λ0−) = 0, i.e.
∫
[0,λ0[ dEξ = 0. Then, E•[eλ] is an element of L

1(IG ·
m(dx)) and therefore Hypothesis (λ0) is true.
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Proof. For 0 < λ < λ0 we look at the formula(
1

λ
E•

[
eλτG∧N − 1

]
,1

)
=

∫
[λ0,∞[

(
1 − e(λ−ξ)N

ξ − λ

)
d(Eξ 1,1).

Let N ↑ ∞. The dominated convergence theorem yields

1

λ

(
E•

[
eλτG − 1

]
,1

)
=

∫
[λ0,∞[

1

(ξ − λ)
d(Eξ 1,1)

≤ 1

(λ0 − λ)
(1,1)

= 1

(λ0 − λ)
m(G) < ∞

whence

EmeλτG ≤ m(G)

1 − λ/λ0
. (2.2)

�

Now, for G=]a,∞[ and G=]−∞, a[, denote by γ +
a and γ −

a the spectral gaps of the corresponding operators. In
virtue of the “all-or-none” Proposition 1.2, the Hypotheses (λ±

a ) are verified, and we obtain

Theorem 2.4. For any a ∈ R, γ ±
a = λ±

a , whence

1

4B±
a

≤ γ ±
a ≤ 1

4C±
a

∧ 1

B±
a

.

2.2. Hardy and Poincaré inequalities

The Theorem 2.1 and the above (in)equalities only make sense under the condition τG < ∞. In this subsection we
would like to estimate the spectral gap of a (not-killed) diffusion X on G= E= R. To do so, we use the well-known
relations between spectral gaps and Poincaré inequalities.

Recall that S and m are a scale function and the corresponding speed measure of X. Denote by dS the measure
induced by S(x). Let F(x) be a real function on R. We shall write dF � dS, if there exists a function f (x) in L

1(dS)

such that∫ b

a

f (x)dS(x) = F(b) − F(a) ∀a < b.

The function f (x) will be denoted dF
dS

(x). Introduce then the function spaces

F =
{
F ∈ L2(m): dF � dS,

dF

dS
∈ L2(dS)

}
, (2.3)

F]a,∞[ = {
F ∈ F : F(x) = 0, x ≤ a

}
,

F]−∞,a[ = {
F ∈ F : F(x) = 0, x ≥ a

}
.

Theorem 2.5. The diffusion X is m-symmetric. The Dirichlet space associated with X is the function space F given
by (2.3), and the Dirichlet form has the expression

E (F,F ) =
∫ ∞

−∞

(
dF

dS

)2

(x)dS(x), F ∈ F .
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The restriction of the Dirichlet form E on F]a,∞[ is the Dirichlet form E ]a,∞[ associated with the semigroup
(P

]a,∞[
t )t≥0 of the process X killed when it exits ]a,∞[. The killed process X]a,∞[ is symmetric with respect to

I]a,∞[ · m(dx).
The same is true (with obvious modifications) for E ]−∞,a[.

The proof of this theorem is given in [19].
For a ∈ R and 0 ≤ A ≤ ∞, we shall call what follows Hardy inequalities associated with the function space F ,

over the upper half space ]a,∞[ and the lower half space ]−∞, a[, with the constant A:

∫ ∞

a

(
F(x) − F(a)

)2 dm(x) ≤ A

∫ ∞

a

(
dF

dS

)2

(t)dS(t) ∀F ∈ F ,

∫ a

−∞
(
F(x) − F(a)

)2 dm(x) ≤ A

∫ a

−∞

(
dF

dS

)2

(t)dS(t) ∀F ∈ F . (2.4)

Denote by A+
a (resp. A−

a ) the infinum of the constants A in Hardy inequality over the upper (resp. the lower) half state
space.

Let c ≤ ∞ be a constant. We call the following inequality Poincaré inequality associated with the function space
F , with the constant c:∫ +∞

−∞
(
F(x) − m(F)

)2 dm(x) ≤ c

∫ +∞

−∞

(
dF

dS

)2

(x)dS(x) ∀F ∈ F , (2.5)

where m(F) = 1
m(R)

∫
F(x)dm(x). Denote by cP the lower bound of the constants c in Poincaré inequality.

It is easy to see now that the Poincaré inequality (2.5) with constant cP can be written as (2.1).

Proposition 2.6. The generator of the Dirichlet form associated with X has a spectral gap γ > 0 if and only if
cP < ∞. In this case, γ = 1/cP .

Proof. By the L1-ergodicity of the process X (see, e.g., [3]), the space H0 can contain only constants. As X is a
conservative process, Ptc = c for all t > 0, whence H0 = R. Notice that m is the orthogonal projection operator upon
H0, i.e. E0 = m. The equivalence

γ ‖F − E0F‖2 ≤ E (F,F ) ⇐⇒ γ
∥∥F − m(f )

∥∥2 ≤
∫ ∞

−∞

(
dF

dS

)2

dS

proves the proposition. �

Now we address the Hardy inequalities.

Proposition 2.7. The generator of E ]a,∞[ has a spectral gap γ +
a > 0 if and only if the Hardy inequality (2.4) holds

with A+
a < ∞. In this case, γ +

a = 1/A+
a .

Proof. Recall that if u ∈ H0, P
]a,∞[
t u = u. Take a bounded non negative fonction v. We have

(u, v) = (
P

]a,∞[
t u, v

) = (
u,P

]a,∞[
t v

)
.

But

lim
t→∞P

]a,∞[
t v(x) ≤ ‖v‖∞Px[t < Ta] = 0

due to the positive recurrence property of X. We get (u, v) = 0 for any such function v. This means that u = 0 and
therefore E0 = 0.
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Now, for all F(x) ∈ F]a,∞[,

γ ‖F − E0F‖2 ≤ E]a,∞[(F,F ) ⇐⇒ γ ‖F‖2 ≤
∫ ∞

a

(
dF

dS

)2

dS.

Clearly, for any F(x) ∈ F , F(x) − F(x ∧ a) ∈ F]a,∞[, which finishes the proof. �

The same property evidently holds for A−
a . From Theorems 1.1 and 2.4 we deduce that for all a ∈ R,

B±
a ∨ 4C±

a ≤ A±
a ≤ 4B±

a ,

which slightly improves the celebrated Muckenhoupt bounds [22] in our case.
Now, a well-known technique (see, e.g., [19]) allows to tie cP with A+

a and A−
a :

sup
a

A+
a ∧ A−

a ≤ cP ≤ inf
a

A+
a ∨ A−

a ,

whence

sup
a

B+
a ∧ B−

a ≤ cP ≤ 4 inf
a

B+
a ∨ B−

a .

These inequalities can be made somewhat more precise, if a is a median of m. Namely, Bobkov and Götze [2] have
shown that for such a,

1

2

(
B+

a ∨ B−
a

) ≤ cP ≤ 4
(
B+

a ∨ B−
a

)
.

We will give yet another estimation of cP , firstly showing that A±
a are locally Hölder w.r.t. S (see Miclo [21] for

some other regularity results).

Proposition 2.8. Let a ≤ b. Then

0 ≤
√

A+
a −

√
A+

b ≤
√(

S(b) − S(a)
)
m

(]a,∞])
and

0 ≤
√

A−
b −

√
A−

a ≤
√(

S(b) − S(a)
)
m

(]−∞, b]).
Proof. Let a < b and F ∈ F , f = dF/dS. Then∫ ∞

a

(
F(x) − F(a)

)2
m(dx) =

∫ b

a

(
F(x) − F(a)

)2
m(dx) +

∫ ∞

b

(
F(x) − F(a)

)2
m(dx).

Notice that

(
F(x) − F(a)

)2 =
(∫ x

a

f (u)dS(u)

)2

≤ (
S(x) − S(a)

)∫ x

a

f 2(u)dS(u).

The first integral above is hence bounded by:∫ b

a

(
F(x) − F(a)

)2
m(dx) ≤

∫ b

a

(
S(x) − S(a)

) ∫ x

a

f 2(u)dS(u)m(dx)

≤ (
S(b) − S(a)

)
m

(]a, b])∫ b

a

f 2(u)dS(u)

≤ (
S(b) − S(a)

)
m

(]a, b])∫ ∞

a

f 2(u)dS(u).
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The second one:∫ ∞

b

(
F(x) − F(a)

)2
m(dx)

=
∫ ∞

b

(
F(x) − F(b)

)2
m(dx) + (

F(b) − F(a)
)2

∫ ∞

b

m(dx) + 2
(
F(b) − F(a)

) ∫ ∞

b

(
F(x) − F(b)

)
m(dx)

≤ A+
b

∫ ∞

b

f 2(x)dS(x) + (
S(b) − S(a)

) ∫ b

a

f 2(u)dS(u)m
(]b,∞])

+ 2

√(
S(b) − S(a)

)∫ b

a

f 2(u)dS(u)m
(]b,∞]) ∫ ∞

b

(
F(x) − F(b)

)2
m(dx)

=
(√

A+
b

∫ ∞

b

f 2(x)dS(x) +
√(

S(b) − S(a)
)∫ b

a

f 2(u)dS(u)m
(]b,∞])

)2

≤ (√
A+

b +
√(

S(b) − S(a)
)
m

(]b,∞]))2
∫ ∞

a

f 2(x)dS(x).

Together with the first bound it yields√
A+

a −
√

A+
b ≤

√(
S(b) − S(a)

)
m

(]a,∞]).
The A− counterpart is proved in the same way. �

Recall that S is continuous, hence so are A±. Since

lim
a→±∞A±

a = lim
a→±∞

1

λ±
a

= ∞,

we deduce that there exists a point c ∈ R such that A+
c = A−

c = cP . This finally gives us the following inequalities:

B+
c ∨ B−

c ∨ 4C+
c ∨ 4C−

c ≤ cP ≤ 4
(
B+

c ∧ B−
c

)
.

To resume the main results of this section, let us state a concluding theorem.

Theorem 2.9. For any a ∈ R,

1

A+
a

= γ +
a = λ+

a and
1

A−
a

= γ −
a = λ−

a ,

whence

sup
a

(
1

λ+
a

∧ 1

λ−
a

)
≤ cP ≤ inf

a

(
1

λ+
a

∨ 1

λ−
a

)

or, equivalently,

sup
a

(
λ+

a ∧ λ−
a

) ≤ γ ≤ inf
a

(
λ+

a ∨ λ−
a

)
,

where γ = 1/cP is the spectral gap of X on R.
There exists a point c ∈ R such that A+

c = A−
c = cP , whence

B+
c ∨ B−

c ∨ 4C+
c ∨ 4C−

c ≤ cP ≤ 4
(
B+

c ∧ B−
c

)
.
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3. Examples

In this last section we give some examples to illustrate the above results. We suppose in what follows that a < x and
study ExeλTa , so it suffices to define Xt in some vicinity of [a,∞[.

Let Xt be given by

dXt = σ(Xt )dWt + β(Xt)dt.

Recall that in this case we can choose

S′(x) = s(x) = exp

(
−2

∫ x

•
β(u)

σ 2(u)
du

)
, m(dx) = 2 dx

σ 2(x)s(x)
.

We refer to Borodin and Salminen [3] for the known facts and formulas used below.

3.1. Drifted Brownian motion

Let 0 ≤ a < x and

dXt = dWt − β dt, β > 0,

on ]0,∞[, then ExeλTa < ∞ if and only if λ ≤ β2/2. On the other hand,

s(x) = exp

(
2
∫ x

0
β du

)
= exp(2βx), S(x) = 1

2β

(
exp(2βx) − 1

)
and

m
(]x,+∞[) = 2

∫ ∞

x

dt

s(t)
= 1

β
exp(−2βx),

whence

B+
a = sup

x>a

(
S(x) − S(a)

)
m

(]x,+∞[) = 1

2β2
,

so the product λ+
a B+

a equals 1/4, hence the lower bound λ+
a ≥ (4B+

a )−1 is sharp.
We actually see that

B+
a = lim

x→∞
(
S(x) − S(a)

)
m

([x,+∞[) = C+
a ,

so λ+
a = (4B+

a )−1 was to be expected. As shown in [21], the above condition is also necessary for the equality
λ+

a = (4B+
a )−1.

The exact value of EmeλTa is (here m means m|]a,∞[)

EmeλTa = 2
e−2aβ

β + √
β2 − 2λ

, λ <
β2

2
.

The estimate (2.2) yields

EmeλTa ≤ e−2aβ

β(1 − 2λ/β2)
, λ <

β2

2
,

which gives the exact exponential rate of EmeλTa in a, but is irrelevant in λ.
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3.2. “Geometric” Brownian motion on the natural scale

Suppose that 0 < a < x and that X is given by

dXt = σ(Xt )dWt, 0 < σ1x ≤ σ(x) ≤ σ2x,

so S(x) − S(a) = x − a and

2 dx

σ 2
2 x2

≤ m(dx) = 2 dx

σ 2(x)
≤ 2 dx

σ 2
1 x2

.

We then get

B+
a = sup

x

(
S(x) − S(a)

)
m

(]x,∞[) ≤ 2

σ 2
1

,

C+
a = lim inf

x→∞
(
S(x) − S(a)

)
m

(]x,∞[) ≥ 2

σ 2
2

,

so our bound λ+
a ≤ (4C+

a )−1 is better than λ+
a ≤ (B+

a )−1 as soon as σ2 < 2σ1. In particular, for σ1 = σ2 (geometric
Brownian motion) it gives the well-known value λ+

a = σ 2
1 /8.

3.3. Ornstein–Uhlenbeck process

Take

dXt = −1

2
Xt dt + dWt,

then

m(dx) = 2 exp
(−x2/2

)
dx, S(x) =

∫ x

0
exp

(
u2/2

)
du.

On the other hand, according to Borodin and Salminen [3], for x > a

Ex exp(λTa) = He2λ(x)

He2λ(a)
,

where Heν are the (modified) Hermite functions. We deduce that λ+
a = ν/2, where ν is the least positive index such

that Heν(a) = 0. Equivalently, a is the largest zero of Heν , whence λ+
a ≈ a2/2 for a � 1.

For a = 0, λ+
a = 1/2 and

λ+
a B+

a = 2 sup
x>0

∫ x

0
exp

(
u2/2

)
du ×

∫ ∞

x

exp
(−u2/2

)
du = 0.4788 . . . .

For a = −0.765: λ+
a = 1/4 and

λ+
a B+

a = 2λ+
a sup

x>a

∫ x

a

exp
(
u2/2

)
du ×

∫ ∞

x

exp
(−u2/2

)
du = 0.553 . . .

so λ+
a B+

a (varying between 1/4 and 1) is not constant here.
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3.4. Strongly entering diffusions

Consider the case when ExeλTa ≤ D for all x > a, as in [6]. Note that it implies Ka1(x) ≤ G1(x) = ExTa ≤ D/λ, so

sup
x>a

Ka1(x) =
∫ ∞

a

(
S(y) − S(a)

)
m(y)dy = C < ∞, (3.1)

which is the condition of entering boundary. On the other hand, (3.1) implies that B ≤ C and

1

n!ExT
n
a ≤ C

B
(4B)n,

as can be seen from the proof of Proposition 1.7 by switching the roles of J and K . Hence, for all x > a and
λ < (4B)−1,

ExeλTa ≤ C

B
(1 − 4Bλ)−1.

We conclude that the entering boundary condition (3.1) is equivalent to the uniform boundedness of ExeλTa for x > a

(at least for λ < (4B)−1).
To give an example, let a = 0 and S(0) = 0, and consider a diffusion

dXt = dWt − 1

2
b(Xt )dt.

One can write S(x) = ev(x) − 1 with v(x) = ln(S(x) + 1), hence s(x) = v′(x)ev(x)and

b(x) = v′′(x)

v′(x)
+ v′(x).

Then we have∫ ∞

0
S(y)m(y)dy =

∫ ∞

0

S(y)

s(y)
dy ≤

∫ ∞

0

dy

v′(y)
. (3.2)

The entering boundary condition (3.1) holds if and only if the last integral is finite. This is the case e.g. if v′(x) � x1+ε

as x → ∞, which leads to the main example b(x) = x1+ε of [6]. However, the condition (3.2) is more pertinent with
respect to the uniform boundedness of ExeλTa than those given in [6].
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