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Abstract. For the random walk among random conductances, we prove that the environment viewed by the particle converges
to equilibrium polynomially fast in the variance sense, our main hypothesis being that the conductances are bounded away from
zero. The basis of our method is the establishment of a Nash inequality, followed either by a comparison with the simple random
walk or by a more direct analysis based on a martingale decomposition. As an example of application, we show that under certain
conditions, our results imply an estimate of the speed of convergence of the mean square displacement of the walk towards its limit.

Résumé. Pour la marche aléatoire en conductances aléatoires, nous montrons que l’environnement vu par la particule converge
vers l’équilibre à une vitesse polynomiale au sens de la variance, notre hypothèse principale étant que les conductances sont
uniformément minorées. Notre méthode se base sur l’établissement d’une inégalité de Nash, suivie soit d’une comparaison avec la
marche aléatoire simple, soit d’une analyse plus directe fondée sur une méthode de martingale. Comme exemple d’application, nous
montrons que sous certaines conditions, ces résultats permettent d’estimer la vitesse de convergence vers sa limite du déplacement
quadratique moyen de la marche.
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1. Introduction

When considering some large scale property of a heterogeneous environment, it is natural to expect that the local
fluctuations average out, and that one can replace the irregular medium by an “averaged” one, described by a small
number of effective parameters. This problem of homogenization of heterogeneous media is old, and can be traced
back at least to [17] and [23]. Mathematical results concerning the homogenization of periodic environments began
to appear around 1970 (see, for instance, [11], Chapter 1, and references therein). The study of averaging of random
environments started with the works of [13,21,26], where stochastic homogenization was obtained for divergence
form elliptic operators. These analytic results have their probabilistic counterpart, in terms of invariance principles for
certain diffusions in random environment [15,20].

A central question follows any homogenization result: when can one replace, up to some given precision, the
heterogeneous medium by the averaged one?

As discussed in [18], pp. 199–205, and contrary to the periodic case (see, for instance, [18], pp. 151–152, and
[11], Section 2.6), the typical space scale of the averaging of a random environment may be unexpectedly large. As
a matter of fact, very little is known about this issue. A notable exception is [27], where the author considers the
Poisson equation on a bounded domain of Rd , for divergence form elliptic operators. It is shown that the solution
corresponding to a typical length scale of order ε converges, as ε tends to 0, to the solution of the averaged problem
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faster than some power of ε, where the exponent depends on the dimension d ≥ 3, the ellipticity constant and some
mixing condition.

The related problem of finding an efficient way to compute the effective parameters of the averaged environment
is also troublesome. Let us consider a random walk or a diffusion in random environment, and assuming it exists,
let us write D for the effective diffusion matrix. As the periodic case is better understood, it is natural to consider
periodizations of the initial random environment ω. For periods of size n, this procedure defines an effective diffusion
matrix Dn(ω), that might be a good approximation of D. Considering divergence form elliptic operators and using
results from [27], it is shown in [4] that Dn(ω) converges to D faster than Cn−α , where α depends on the dimension
d ≥ 3, the ellipticity constant and some mixing condition. In the case of a random walk among random independent
conductances, [5] and [3] have shown that, under an ellipticity condition, Dn(ω) converges to D almost surely (but
without quantitative estimates on this convergence), and provide estimates of the variance of Dn(ω) for fixed n.

Many proofs of homogenization results rely on the ergodicity of an auxiliary process introduced in [22], that is now
usually called the environment viewed by the particle (see, for instance, [7,12,14,20]). Naturally, the ergodic theorem
gives only an asymptotic result. Our main purpose here is to provide, in the context of random walks among random
conductances, an estimate of the speed of convergence to equilibrium of the environment viewed by the particle, our
central assumption being that the conductances are bounded away from zero. We obtain a polynomial decay of the
variance of a large class of functionals. Under the additional hypothesis that the conductances are also bounded from
above and when d ≥ 7, we can derive information on the rate of convergence of the mean square displacement of the
walk towards its limit.

We would like to draw the reader’s attention to the fact that, in the aforementioned papers, the proofs of algebraic
speed of convergence rely on analytical tools such as Harnack’s inequality. As a consequence, the exponent found in
the polynomial decay is kept implicit, and depends on the ellipticity constant. In contrast, the exponent we find here is
given explicitly in terms of the dimension only, and the polynomial decay holds for possibly non-elliptic environments.

We now define our present setting with more precision. Consider on Zd (d ≥ 1) the nearest-neighbour relation:
x, y ∈ Zd are neighbours (written x ∼ y) if and only if ‖x − y‖2 = 1. Drawing an (unoriented) edge between any two
neighbours turns Zd into a graph, and we write Bd for the set of edges. We define a random walk among random
conductances on Zd as follows.

Let Ω = (0,+∞)B
d
; we call an element ω = (ωe)e∈Bd ∈ Ω an environment. If e = (x, y) ∈ Bd , we may write ωx,y

instead of ωe. By construction, ω is symmetric: ωx,y = ωy,x .
For any ω ∈ Ω , we consider the Markov process (Xt )t≥0 with jump rate between x and y given by ωx,y . We write

Pω
x for the law of this process starting from x ∈ Zd , Eω

x for its associated expectation.
The environment ω will be itself a random variable, whose law we write P (and E for the corresponding expecta-

tion). There are translation operators (θx)x∈Zd acting on Ω , given by (θxω)y,z = ωx+y,x+z. We assume the measure P
to be invariant under these translations. Moreover, we assume, without further mention, that the random walk is well
defined for all times, or in other words, that it does not travel along its trajectory in finite time. This assumption is
satisfied whenever one can find a threshold such that the set of conductances above this threshold does not percolate.
In particular, it holds if P is a product measure.

We define the averaged (or annealed) law as

P[·] = P
[
Pω

0 [·]],
and E = E · Eω

0 for the corresponding expectation.
Assuming that the conductances are integrable, and that P is ergodic (with respect to (θx)x∈Zd ), [7] have shown

that the process (εXε−2t )t≥0 converges to a Brownian motion under the annealed law, as ε goes to 0. The proof of this
result uses the ergodicity of the environment viewed by the particle. This process is defined by ω(t) = θXt ω. It is a
Markov process for which the measure P is reversible, and whose infinitesimal generator is given by

Lf (ω) =
∑
|z|=1

ω0,z

(
f (θzω) − f (ω)

)
.

The aim of this note is to provide a quantitative information about the speed of convergence of (ω(t)) towards equi-
librium, our central assumption being that for any e ∈ Bd , ωe ≥ 1. More precisely, let us define ft (ω) = Eω

0 [f (ω(t))].
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We would like to find appropriate functional V and exponent α > 0 such that, for any function f :Ω → R satisfying
E[f ] = 0:

E
[
(ft )

2] ≤ V (f )

tα
, (1.1)

with V (f ) finite at least for functions that are bounded and depend only on a finite number of coordinates.
A first attempt to solve the problem could be to decompose Eω

0 [f (ω(t))] into∑
x∈Zd

f (θxω)Pω
0 [Xt = x],

and look for Gaussian bounds on the transition probabilities. Although this can be an efficient strategy when the
random walk is not influenced by the environment (and indicates that α should be equal to d/2), it seems bound to
fail in our context, as the random variables f (θxω) and Pω

0 [Xt = x] are correlated in a rather problematic way.
In the not so distant context of interacting particle systems, first results concerning polynomial convergence to

equilibrium were obtained in [8,16]. We will here rely on the general technique proposed in [16], Theorem 2.2,
where it is shown that, under some assumption on the functional V involved in (1.1), the polynomial convergence to
equilibrium of the process is equivalent to a certain Nash inequality.

In our context, we derive a Nash inequality from the knowledge of the spectral gap for the dynamics restricted to a
finite box, in a way that is similar to the one contained in [2] (Section 3).

An important issue is the choice of the functional V in Eq. (1.1). As one can see in [16], Theorem 2.2, a desirable
feature for V is to be contractive under the action of the semi-group. For the case of interacting particle systems, this
contractivity property is usually obtained using some monotonicity of the model considered. In our present context,
there is no such property at our disposal, and we are left with a functional that turns out not to be contractive.

We propose two different approaches to overcome this difficulty. The first is to consider instead the particular case
when the law of the random walk does not depend on the environment (Section 4). Here, the contractivity property
holds, and one thus easily obtains algebraic convergence to equilibrium, with exponent α = d/2. Using a comparison
of resolvents between the simple random walk and the random walk in random environment (Section 5), one can
partially transfer this result back to the original random walk among random conductances, obtaining (if one forgets
about logarithmic corrections) an exponent α = min(d/2,1).

This exponent is rather unsatisfactory, especially when the dimension is large. We therefore provide a second
method in Section 6 to circumvent the absence of contractivity, based on a martingale method. This enables us to
obtain an algebraic decay of the form (1.1) with a new functional and the exponent α = d/2 − 2. This improves the
previous result as soon as d ≥ 7, although it requires a more restrictive condition on f , implying in particular that it
is bounded.

One might argue that systems of particles and random walks in random environments are similar problems. Indeed,
they look close to one another, since a tagged particle in a system of interacting particles can be seen as a random
walk in a random environment. However, if one considers the environment seen by this tagged particle, it constantly
changes with time, even when the particle does not move. On the other hand, the environment seen by the random
walk among random conductances is static, and evolves only via translations, making the convergence to equilibrium
more difficult.

We now turn our attention to the consequences of our results. Observe that, as P is reversible for (ω(t))t≥0, the
associated semi-group is self-adjoint in L2(P). Hence, it comes that

E
[
(ft )

2] = E
[
f (ω)f2t (ω)

] = E
[
f

(
ω(0)

)
f

(
ω(2t)

)]
. (1.2)

As a consequence, our problem is in fact equivalent to a control of the decay of the correlations of (ω(t))t≥0. It is
shown in [12] that, provided these correlations are integrable, an annealed invariance principle holds for

Zt =
∫ t

0
f

(
ω(s)

)
ds. (1.3)

In fact, if the correlations in (1.2) decay faster than t−α for some α > 1, we will see that one can control the speed of
convergence of E[(Zt )

2]/t towards its limit. This kind of result can be seen as a (rather weak) quantitative annealed
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central limit theorem. As an example, when d ≥ 7 and the conductances are bounded from above, we can estimate the
speed of convergence of the mean square displacement E[(‖Xt‖2)

2]/t towards its limit.
As noted before, because of its relative simplicity and of the possibility to relate it with our initial problem, we

will also consider the simple random walk X◦
t (for which the jump rates are uniformly equal to 1), together with

ω◦(t) = θX◦
t
ω. This last process is also reversible with respect to P, and has for infinitesimal generator

L◦f (ω) =
∑
|z|=1

(
f (θzω) − f (ω)

)
.

We will write f ◦
t (ω) for Eω

0 [f (ω◦(t))].
Addendum. A referee pointed out to us the references [6,9,10], that we were not previously aware of. In these

papers, the problem of estimating the effective diffusion matrix D is investigated. This matrix can be expressed in
terms of a so-called “corrector field,” that solves a Poisson equation. Following [6,9,10,27] propose to approach this
corrector by the practically computable solution of a regularized Poisson equation. In [6], the authors consider the case
when the conductances can take only two different values, and give an explicit bound between the diffusion matrix
and its approximation. Most interestingly, in [9,10], the authors tackle the problem of general bounded conductances.
They decompose the difference between the matrix D and its approximation into the sum of two error terms, one
being due to the discrepancy between D and the expected value of the approximation, and the other to the random
fluctuations of the approximation. They provide the precise asymptotic behaviour of this second term in [9], and of
the first one in [10]. There is an interesting interplay between their approach and ours, which we will describe in the
last section of this paper.

2. Statement of the main results

From now on, we always assume that the conductances are uniformly bounded from below by 1: for any e ∈ Bd , we
impose that ωe ≥ 1. We define the following possible additional hypothesis on the regularity of P:

Assumption (I). The random variables (ωe)e∈Bd are independent and identically distributed.

Assumption (A). Assumption (I) is satisfied, and the conductances are uniformly bounded from above.

To state our main results, we need to fix some notations. We write Bn for {−n, . . . , n}d . For a function f :Ω → R,
let

Sn(f ) =
∑
x∈Bn

f (θxω) (2.1)

and

N (f ) = sup
n∈N

1

|Bn|E
[(

Sn(f )
)2]

. (2.2)

Note that, using the translation invariance of P, we have for f ∈ L2(P):

1

|Bn|E
[(

Sn(f )
)2] = 1

|Bn|
∑

x,y∈Bn

E
[
f (θxω)f (θyω)

] ≤
∑
x∈Zd

∣∣E[
f (ω)f (θxω)

]∣∣.
In particular, N (f ) is finite under Assumption (I) if f ∈ L2(P) satisfies E[f ] = 0 and depends only on a finite
number of coordinates. As a rule of thumb, the reader is advised to remember that the fact that N (f ) is finite should
imply that E[f ] = 0 (and our results, together with Birkhoff’s ergodic theorem, show that it is indeed the case).

For each edge e ∈ Bd , let:

|∇f |(e) = sup
∣∣f (ω) − f

(
ω′)∣∣, (2.3)



298 J.-C. Mourrat

where the sup is taken over all ω,ω′ in the support of P such that ω = ω′ except possibly on e. We define the semi-
norm:

|||f ||| =
∑
e∈Bd

|∇f |(e), (2.4)

and N(f ) = |||f |||2 + ‖f ‖2∞. For example, N(f ) is finite if f is a bounded function that depends only on a finite
number of coordinates. We write ln+(t) for max(1, ln(t)).

We first obtain a decay of the variance of f ◦
t for certain functions f .

Theorem 2.1. There exists C > 0 such that for any f :Ω → R, if N (f ) is finite, then for any t > 0, we have

E
[(

f ◦
t

)2] ≤ C
N (f )

td/2
.

This result has its partial counterpart concerning the random walk among random conductances, as follows.

Theorem 2.2. There exists C > 0 such that for any f :Ω → R, if N (f ) is finite, then for any t > 0, we have:

E
[
(ft )

2] ≤ C
N (f )√

t
if d = 1,

E
[
(ft )

2] ≤ C
N (f ) ln+(t)

t
if d = 2,

E
[
(ft )

2] ≤ C
N (f )

t
if d ≥ 3.

Moreover, if d ≥ 3, we also have∫ +∞

0
E

[
(ft )

2]dt ≤ CN (f ). (2.5)

Remarks. As the proof reveals, the constant C appearing in Theorems 2.1 and 2.2 can be chosen so that the results
hold for any law P (provided it satisfies the always assumed uniform lower bound ω ≥ 1). Moreover, one can generalize
these results to cases when N (f ) is infinite, see Proposition 7.1.

For larger dimensions, we obtain the following result.

Theorem 2.3. Under Assumption (I), there exists C such that for any f :Ω → R, if N(f ) is finite and E[f ] = 0,
then for any t > 0, we have

E
[
(ft )

2] ≤ C
N(f )

td/2−2
if d ≥ 5.

Remarks. If η is some positive real number, one can choose C so that the result in Theorem 2.3 is valid uniformly for
any law P satisfying the property given in Eq. (6.9). It turns out however that Theorem 2.2 is stronger when d ≤ 6.
Indeed, one can show using the martingale method introduced in Section 6 that, under Assumption (I), we have
N (f ) ≤ N(f ). Finally, we point out that, for a specific class of functionals, Proposition 7.2 provides a variation on
this result that is also of interest.

Our starting point (Section 3) is the existence of spectral gap inequalities for the dynamics restricted to a finite box
of size n. For this dynamics, it gives the rate of convergence of the environment viewed by the particle towards the
empirical measure (that is, the uniform measure over any translation of the environment, provided we keep the range
of the translations inside the box). We do some computation that makes the measure P come into play, and a corrective
term appears (see Proposition 3.2).
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In the case of (ω◦(t)), we show in Section 4 that this corrective term decays with the time evolution, thus leading
to Theorem 2.1. Noting that the Dirichlet form associated with (ω◦(t)) is dominated by the one of (ω(t)), we obtain
Theorem 2.2 in Section 5 by a comparison of the resolvents of these processes.

A second approach is to estimate directly this (not necessarily decreasing with time) corrective term for the random
walk under random conductances. We do so under Assumption (I) in Section 6 via a martingale method. We finally
prove Theorem 2.3 (together with some variations) in Section 7, using the former results.

We now present some consequences of the previous theorems.
Whenever f ∈ L2(P), we define ef as the spectral measure of −L (as a self-adjoint operator on L2(P)) projected

on the function f , so that for any bounded continuous Ψ : [0,+∞) → R

E
[
Ψ (−L)(f )(ω)f (ω)

] =
∫

Ψ (λ)def (λ). (2.6)

Lemma 5.1 states that∫ +∞

0
E

[
(ft )

2]dt = 2
∫

1

λ
def (λ). (2.7)

Hence, a consequence of Eq. (2.5) is that, whenever d ≥ 3 and N (f ) is finite,∫
1

λ
def (λ) < +∞.

This condition is shown in [12] to be necessary and sufficient to ensure that (Zt )t≥0 (defined in (1.3)) satisfies an
invariance principle. More precisely, the authors show that there exist (Mt)t≥0, (ξt )t≥0 such that Zt = Mt + ξt , where
(Mt) is a martingale with stationary increments under P (and the natural filtration), and (ξt ) is such that

1

t
E

[
(ξt )

2] −→[t→+∞] 0. (2.8)

Using this decomposition, they prove that (εZt/ε2)t≥0 converges, as ε goes to 0, to a Brownian motion of variance

σ 2 = E
[
(M1)

2] = 2
∫

1

λ
def (λ). (2.9)

We will show first that an algebraic decay (with exponent strictly greater than 1) of the variance of (ft ) is equivalent
to a particular behaviour of the spectral measure ef close to 0.

Theorem 2.4. Let α > 1 and f ∈ L2(P). The following statements are equivalent:

(1) There exists C > 0 such that for any t > 0,

E
[
(ft )

2] ≤ C

tα
.

(2) There exists C > 0 such that for any δ > 0,∫
[0,δ]

1

λ
def (λ) ≤ Cδα−1.

It turns out that this additional control of the spectral measure enables us to estimate the speed of convergence in
Eq. (2.8). This provides us enough information to estimate the speed of convergence of E[(Zt )

2]/t towards its limit.
For any α > 1, let ψα : [0,+∞) → R be defined by

ψα(t) =
{

tα−1 if α < 2,
t/

(
ln+(t)

)
if α = 2,

t if α > 2.
(2.10)
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Theorem 2.5. Under one of the equivalent conditions (1) and (2) of Theorem 2.4 (and in particular under Assump-
tion (I), if N(f ) is finite and d ≥ 7):

(1) One can construct (Mt), (ξt ) such that Zt = Mt + ξt , where (Mt) is a martingale with stationary increments
under P, and (ξt ) is such that, for some C > 0:

1

t
E

[
(ξt )

2] ≤ C

ψα(t)
.

(2) There exists C > 0 such that for any t ≥ 0:

0 ≤ σ 2 − 1

t
E

[
(Zt )

2] ≤ C

ψα(t)
,

where σ is defined by (2.9).

In [12], Section 4, and [7], Section 4, the authors prove in particular that under Assumption (A), the random walk
satisfies an invariance principle: (εXt/ε2)t≥0 converges, as ε goes to 0, to a Brownian motion of covariance matrix

σ 2Id. A consequence of Theorems 2.3 and 2.5 is that, when d ≥ 7, we can give an estimate of the speed of convergence
of the mean square displacement towards its limit.

Corollary 2.6. Under Assumption (A) and when d ≥ 7, there exists C > 0 such that for any t ≥ 0:

0 ≤ 1

t
E

[(‖Xt‖2
)2] − dσ 2 ≤ C

ψα(t)
with α = d

2
− 2. (2.11)

Theorems 2.4 and 2.5 are proved in Section 8, together with Corollary 2.6.

Remark. As we discuss in the addendum, results from [10] enable to strengthen Corollary 2.6 when d ≤ 8 (see in
particular Corollary 9.3).

Some more notations. We introduce the Dirichlet forms associated with the processes (ω(t)) and (ω◦(t)), respec-
tively:

E (f,f ) = −E
[

Lf (ω)f (ω)
] = 1

2

∑
|z|=1

E
[
ω0,z

(
f (θzω) − f (ω)

)2]

and

E ◦(f,f ) = −E
[

L◦f (ω)f (ω)
] = 1

2

∑
|z|=1

E
[(

f (θzω) − f (ω)
)2]

.

For A a subset of Zd , we will write |A| for its cardinal. We also define its inner boundary as

∂A = {
x ∈ A: ∃y ∈ Zd \ Ax ∼ y

}
.

The letter C refers to a strictly positive number, that may not be the same from one occurrence to another.

3. From spectral gap to Nash inequality

Proposition 3.1 (Spectral gap). There exists CS > 0 such that for any n ∈ N and any function g :Bn → R, we have

∑
x∈Bn

(
g(x) − mn(g)

)2 ≤ CS

4
n2

∑
x,y∈Bn

x∼y

(
g(y) − g(x)

)2
,
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where mn(g) is given by

mn(g) = 1

|Bn|
∑
x∈Bn

g(x).

Proof. A lower bound on the isoperimetric constant is given by [24], Theorem 3.3.9, which implies a lower bound on
the spectral gap via Cheeger’s inequality ([24], Lemma 3.3.7). �

Proposition 3.2. For any function f ∈ L2(P) and any n ∈ N, we have

E
[
f (ω)2] ≤ CSn2 E (f,f ) + 2

|Bn|2 E
[
Sn(f )2],

where Sn(f ) was defined in (2.1). Moreover, the same inequality holds with E replaced by E ◦.

Proof. As we assumed that ω ≥ 1, it is clear that E (f,f ) ≥ E ◦(f,f ), so it is enough to show the claim for E ◦.
Let g(x) = f (θxω). Using the translation invariance of P and the fact that (a + b)2 ≤ 2a2 + 2b2, we have

E
[
f 2] = E

[
g(x)2] ≤ 2E

[(
g(x) − mn(g)

)2] + 2E
[
mn(g)2].

Summing this inequality over all x ∈ Bn, and using Proposition 3.1, we obtain

|Bn|E
[
f 2] ≤ CS

2
n2

∑
x,y∈Bn

x∼y

E
[(

f (θyω) − f (θxω)
)2] + 2|Bn|E

[
mn(g)2].

Note that∑
x,y∈Bn

x∼y

E
[(

f (θyω) − f (θxω)
)2] ≤

∑
x∈Bn

∑
y∈Zd

y∼x

E
[(

f (θyω) − f (θxω)
)2]

.

As P is invariant under translation, the sum∑
y∈Zd

y∼x

E
[(

f (θyω) − f (θxω)
)2]

is in fact independent of x, and it comes that

|Bn|E
[
f 2] ≤ CS

2
n2|Bn|

∑
|z|=1

E
[(

f (θzω) − f (ω)
)2] + 2|Bn|E

[
mn(g)2].

We get the result dividing by |Bn| and noting that mn(g) = Sn(f )/|Bn|. �

We need to modify slightly N (ft ), to ensure that it does not become too small when t goes to infinity. We define
N ′(ft ) = max(N (ft ),‖f ‖2

2).

Proposition 3.3 (Nash inequality). There exists C > 0 such that for any f ∈ L2(P) and any t ≥ 1:

E
[
(ft )

2] ≤ CE (ft , ft )
d/(d+2)N ′(ft )

2/(d+2),

and the same inequality holds with ft , E replaced by f ◦
t , E ◦.

We first prove the following classical result.
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Lemma 3.4. For any f ∈ L2(P) and any t > 0, we have

E ◦(ft , ft ) ≤ E (ft , ft ) ≤ 1

2et
‖f ‖2

2.

Proof. As was already mentioned, the first inequality is clear due to the assumption that ω ≥ 1.
The Dirichlet form E (ft , ft ) can be expressed in terms of the spectral measure ef as (see (2.6) for the definition of

ef ):

E (ft , ft ) =
∫

λe−2λt def (λ).

Noting that for any x ≥ 0, we have xe−x ≤ 1/e, we obtain that λe−2λt ≤ 1/(2et), and the result follows. �

Proof of Proposition 3.3. Using the fact that |Bn| ≥ 2nd , together with the definition of N (f ) given in (2.2), Propo-
sition 3.2 gives

E
[
(ft )

2] ≤ CSn2 E (ft , ft ) + n−d N ′(ft ). (3.1)

Let w be the positive real number satisfying

wd+2 = N ′(ft )

2eE (ft , ft )
.

Using the fact that N ′(ft ) ≥ ‖f ‖2
2, we know by Lemma 3.4 that w ≥ 1 whenever t ≥ 1. In particular, the integer part

�w� satisfies w/2 ≤ �w� ≤ w. Taking n = �w� in Eq. (3.1) (and t ≥ 1), we obtain

E
[
(ft )

2] ≤ CE (ft , ft )
d/(d+2)N ′(ft )

2/(d+2),

with

C = CS(2e)−2/(d+2) + 2d(2e)d/(d+2).

�

Proposition 3.5. There exists C > 0 such that for any f ∈ L2(P) and any t ≥ 1:

E
[
f 2

t

] ≤ C

(∫ t

1
N ′(fs)

−2/d ds

)−d/2

,

and the same inequality holds with ft , fs replaced by f ◦
t , f ◦

s .

Proof. Noting that ∂tE[f 2
t ] = −2E (ft , ft ), the inequality obtained in Proposition 3.3 becomes a differential inequal-

ity

E (ft , ft )
(
E

[
f 2

t

])−(1+2/d) = d

4
∂t

[(
E

[
f 2

t

])−2/d] ≥ C−(1+2/d)N ′(ft )
−2/d .

Integrating this inequality, we are led to:

(
E

[
f 2

t

])−2/d ≥ 4

d
C−(1+2/d)

∫ t

1
N ′(fs)

−2/d ds,

which shows the proposition for ft . The same proof applies to f ◦
t as well. �



Variance decay for functionals of the environment viewed by the particle 303

4. Variance decay for the simple random walk

Proposition 4.1. For any integer n and any f ∈ L2(P), the function

t �→ E
[(

Sn

(
f ◦

t

))2]
is decreasing. On the other hand, there exist a law P satisfying Assumption (A), a bounded function f :Ω → R that
depends on a finite number of coordinates, and an integer n such that the function

t �→ E
[(

Sn(ft )
)2]

is not decreasing.

Proof. When the walk is independent from the environment, environment translations and time evolution commute,
in the sense that

E
[
Sn

(
f ◦

t

)2] = E
[((

Sn(f )
)◦
t

)2]
, (4.1)

and as a consequence:

∂tE
[
Sn

(
f ◦

t

)2] = −2E0
((

Sn(f )
)◦
t
,
(
Sn(f )

)◦
t

) ≤ 0.

The commutation property (4.1) no longer holds for the random walk on random conductances (Xt ). We construct
an example showing that t → E[Sn(ft )

2] may increase. We fix d = 1, n = 1. Computing the derivative at t = 0, we
have

1

2

(
∂tE

[
S1(ft )

2])
|t=0 = E

[(
S1(Lf )

)
(ω)S1(f )(ω)

]
,

and we obtain

1

2

(
∂tE

[
S1(ft )

2])
|t=0 = E

[{
ω1,2

(
f (θ2ω) − f (θ1ω)

) + ω−2,−1
(
f (θ−2ω) − f (θ−1ω)

)}
× (

f (θ−1ω) + f (ω) + f (θ1ω)
)]

.

We choose f (ω) = ω−1,0 + (ω2,3)
2. Writing μi for E[(ω0,1)

i], a computation shows that the latter is equal to

μ1μ2 − μ3 + μ4 − (μ2)
2 + 2μ1(μ2)

2 − 2μ1μ4 ≥ μ4(1 − 2μ1) − μ3 − (μ2)
2.

Letting ε > 0 and p ∈ [0,1], we choose the following law for ω0,1:

(1 − p)δ0 + p(4 + ε)x−(5+ε)1{x≥1} dx.

Then, for i ≤ 4:

μi = p
4 + ε

4 + ε − i
.

If we choose p = 1/4, then μ1 ≤ 1/3 and it comes that:

μ4(1 − 2μ1) − μ3 − (μ2)
2 ≥ 1

3
μ4 − μ3 − (μ2)

2.

Now taking ε close enough to 0, μ4 becomes the dominant term, making the last expression strictly positive.
Yet, this example is inappropriate as it does not satisfy the uniform lower bound ω ≥ 1. It is clear that the law can

be modified so that its support lies in [λ,+∞) for some λ > 0. Then changing ω for ω′ = ω/λ, and taking f ′ so that
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f ′(ω′) = f (ω) completes this requirement. In a similar way, one can ensure that the support of ω is bounded, so that
P satisfies Assumption (A), in which case f ′ becomes bounded. �

Proof of Theorem 2.1. Let f :Ω → R be such that N (f ) is finite. Note first that for any t ≥ 0, we have by Jensen’s
inequality E[(f ◦

t )2] ≤ ‖f ‖2
2 ≤ N (f ). Then according to Proposition 4.1, for any s ≥ 0:

N
(
f ◦

s

) ≤ N (f ).

Proposition 3.5 now gives that for any t ≥ 1:

E
[(

f ◦
t

)2] ≤ CN (f )(t − 1)−d/2.

�

5. Resolvents comparison

For any μ > 0 and any f ∈ L2(P), we define the resolvents as

Rμf = (−L + μ)−1f, R◦
μf = (−L◦ + μ

)−1
f. (5.1)

We write (·, ·) for the scalar product in L2(P). We begin by recalling some classical results about resolvents.

Lemma 5.1. We have

(Rμf,f ) =
∫ +∞

0
e−μtE

[
(ft/2)

2]dt,

and the same equality holds replacing Rμ,ft/2 by R◦
μ,f ◦

t/2. Moreover, the following comparison holds

(Rμf,f ) ≤ (
R◦

μf,f
)
.

Proof. The spectral theorem gives

(Rμf,f ) =
∫

1

μ + λ
def (λ)

=
∫ ∫ +∞

0
e−(μ+λ)t dt def (λ)

=
∫ +∞

0
e−μt

∫
e−λt def (λ)dt,

using Fubini’s theorem. The equality comes noting that

E
[
(ft/2)

2] = (ft/2, ft/2) = (ft , f ) =
∫

e−λt def (λ).

The second part of the lemma is due to [1] (see also [25], Lemma 2.24). We recall the proof here for convenience.
Observe that −L◦ + μ defines a positive quadratic form. Hence, applying the Cauchy–Schwarz inequality, we get

(Rμf,f )2 = (
Rμf,

(−L◦ + μ
)
R◦

μf
)2

≤ (
Rμf,

(−L◦ + μ
)
Rμf

)(
R◦

μf,
(−L◦ + μ

)
R◦

μf
)
. (5.2)

Note that (Rμf,−L◦Rμf ) is the Dirichlet form E ◦(Rμf,Rμf ), which, as we saw before, is smaller than
E (Rμf,Rμf ) = (Rμf,−LRμf ), thus leading to(

Rμf,
(−L◦ + μ

)
Rμf

) ≤ (
Rμf, (−L + μ)Rμf

) = (Rμf,f ).
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Using this result in Eq. (5.2), one obtains

(Rμf,f )2 ≤ (Rμf,f )
(
R◦

μf,f
)
,

which proves the result. �

Proof of Theorem 2.2. As ∂tE[(ft )
2] = −2E (ft , ft ) is negative, the function t �→ E[(ft )

2] is decreasing, so we have,
for any μ > 0:

E
[
(ft/2)

2] ≤
∫ t

0 e−μsE[(fs/2)
2]ds∫ t

0 e−μs ds
≤ μ

(Rμf,f )

1 − e−μt
.

Using Lemma 5.1, we obtain

E
[
(ft/2)

2] ≤ μ
(R◦

μf,f )

1 − e−μt
. (5.3)

For d = 1, Theorem 2.1 implies that there exists C > 0 such that for any f with N (f ) finite:

(
R◦

μf,f
) ≤ CN (f )

∫ +∞

0

√
2

t
e−μt dt ≤

√
2CN (f )√

μ

∫ +∞

0

e−u

√
u

du.

Using this bound in Eq. (5.3), we get

E
[
(ft/2)

2] ≤ C
√

μN (f )

1 − e−μt
.

Choosing μ = 1/t in the last expression gives the desired result.
For d = 2, Theorem 2.1 implies that

(
R◦

μf,f
) ≤ ‖f ‖2

2 + CN (f )

∫ +∞

1

2e−μt

t
dt

≤ ‖f ‖2
2 + CN (f )

∫ +∞

μ

2e−u du

u
.

Assuming that μ ≤ 1 (and using the fact that N (f ) ≥ ‖f ‖2
2), it comes that

(
R◦

μf,f
) ≤ ‖f ‖2

2 + CN (f )

(
C +

∫ 1

μ

2 du

u

)
≤ CN (f )

(
1 + ln(1/μ)

)
.

By Eq. (5.3), it comes that, for any μ ≤ 1:

E
[
(ft/2)

2] ≤ μCN (f )
1 + ln(1/μ)

1 − e−μt
.

The result comes choosing μ = 1/t , whenever t ≥ 1. As is always the case, E[(ft/2)
2] is controlled for smaller times

by the bound E[(ft/2)
2] ≤ ‖f ‖2

2 ≤ N (f ).
In larger dimension (d ≥ 3), (R◦

μf,f ) remains bounded as μ goes to 0, and choosing μ = 1/t in Eq. (5.3) gives
the desired upper bound. Using the comparison lemma once again and Theorem 2.1, we also obtain∫ +∞

0
E

[
(ft )

2]dt ≤
∫ +∞

0
E

[(
f ◦

t

)2]dt ≤
∫ +∞

0

CN (f )

max(1, td/2)
dt ≤ CN (f ). �

In the next section, we focus on finding upper bounds for E[Sn(ft )
2].
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6. A martingale method

Recall the definition of ||| · ||| in (2.4). In this section, we will always assume, without further mention, that Assump-
tion (I) is satisfied. Under this assumption, we will prove the following upper bound on E[Sn(ft )

2].

Theorem 6.1. There exists c ≥ 0 such that for any f ∈ L∞(P) with E[f ] = 0, any integer n and any t ≥ 0, we have

E
[
Sn(ft )

2] ≤ 2|||f |||2|Bn| + c‖f ‖2∞(1 + t)2|Bn|.

Proof. We choose an enumeration of the edges Bd = (ek)k∈N, and define Fk as the σ -algebra generated by
(ωe0, . . . ,ωek

), F−1 = {∅,Ω}. For any t ≥ 0, we define the martingale Mk(t) = E[Sn(ft )|Fk] and the corresponding
martingale increments �k(t) = Mk(t) − Mk−1(t). We have the following decomposition:

Sn(ft ) =
+∞∑
k=0

�k(t).

This convergence holds almost surely. As f ∈ L∞(P), the dominated convergence theorem ensures that it holds also
in L2 sense. Due to the orthogonality of the increments, we get

E
[
Sn(ft )

2] =
+∞∑
k=0

E
[
�k(t)

2].
We will now estimate the right-hand side of this equality. First, we introduce a representation (that we learned from
[3]) for Mk(t) that we find convenient. For two environments ω,σ ∈ Ω , we define

[ω,σ ]k(ei) =
{

ωei
if i ≤ k,

σei
otherwise,

and we write Eσ to refer to integration with respect to dP(σ ). As we assume in this section that (ωe)e∈Bd are indepen-
dent random variables, we can rewrite Mk(t) as

Mk(t)(ω) = Eσ

[
Sn(ft )

([ω,σ ]k
)] =

∑
x∈Bn

Eσ

[
ft

(
θx[ω,σ ]k

)]
.

But note that

ft (θxω) = Eθxω
0

[
f (θXt+xω)

]
,

and as the law of Xt + x under Pθxω
0 is the same as the one of Xt under Pω

x , we are led to

ft (θxω) = Eω
x

[
f (θXt ω)

]
,

which implies that

Mk(t) =
∑
x∈Bn

Eσ

[
E[ω,σ ]k

x

[
f

(
θXt [ω,σ ]k

)]]
.

We obtain

�k(t) =
∑
x∈Bn

Eσ

[
E[ω,σ ]k

x

[
f

(
θXt [ω,σ ]k

)] − E[ω,σ ]k−1
x

[
f

(
θXt [ω,σ ]k−1

)]]
.
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Let V (ek) be the set of endpoints of ek . We want to distinguish whether the walk already met the set V (ek) at time t

or not. For this purpose, we introduce the following events:

At (y) = {{Xs,0 ≤ s ≤ t} ∩ V (ek) = ∅ and Xt = y
}
, (6.1)

A′
t = {{Xs,0 ≤ s ≤ t} ∩ V (ek) �= ∅

}
. (6.2)

Then one can decompose �k(t) as Ak(t) + A′
k(t), where

Ak(t) =
∑
x∈Bn

y∈Zd

Eσ

[
E[ω,σ ]k

x

[
f

(
θXt [ω,σ ]k

)
1At (y)

] − E[ω,σ ]k−1
x

[
f

(
θXt [ω,σ ]k−1

)
1At (y)

]]

=
∑
x∈Bn

y∈Zd

Eσ

[
f

(
θy[ω,σ ]k

)
P[ω,σ ]k

x

[
At (y)

] − f
(
θy[ω,σ ]k−1

)
P[ω,σ ]k−1

x

[
At (y)

]]
, (6.3)

and

A′
k(t) =

∑
x∈Bn

Eσ

[
E[ω,σ ]k

x

[
f

(
θXt [ω,σ ]k

)
1A′

t

] − E[ω,σ ]k−1
x

[
f

(
θXt [ω,σ ]k−1

)
1A′

t

]]
, (6.4)

so that we have

E
[
Sn(ft )

2] ≤ 2
+∞∑
k=0

E
[
Ak(t)

2] + 2
+∞∑
k=0

E
[
A′

k(t)
2]. (6.5)

We now turn to evaluate each of these terms. Theorem 6.1 is proved once we have shown the following results.

Proposition 6.2. For any integer n and any t ≥ 0:

+∞∑
k=1

E
[
Ak(t)

2] ≤ |||f |||2|Bn|.

There exists c ≥ 0 (independent of f ) such that for any integer n and any t ≥ 0:

+∞∑
k=1

E
[
A′

k(t)
2] ≤ c‖f ‖2∞(1 + t)2|Bn|.

Proof. Note that Pω
x [At (y)], as a function of ω, does not depend on ωek

. Therefore, for almost every ω, we have

Ak(t) =
∑
x∈Bn

y∈Zd

Eσ

[(
f

(
θy[ω,σ ]k

) − f
(
θy[ω,σ ]k−1

))
P[ω,σ ]k

x

[
At (y)

]]
,

∣∣Ak(t)
∣∣ ≤

∑
x∈Bn

y∈Zd

|∇f |(ek − y)Eσ

[
P[ω,σ ]k

x [Xt = y]],

where ek − y stands for the edge obtained when translating the edge ek by the vector (−y) (|∇f | is defined in (2.3)).
Due to reversibility, we have that P[ω,σ ]k

x [Xt = y] = P[ω,σ ]k
y [Xt = x], and it comes that

∣∣Ak(t)
∣∣ ≤

∑
y∈Zd

|∇f |(ek − y)Eσ

[
P[ω,σ ]k

y [Xt ∈ Bn]
]
. (6.6)
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Using the fact that P[ω,σ ]k
y [Xt ∈ Bn] ≤ 1, we get that for almost every ω, |Ak(t)| ≤ |||f |||. Using this together with

Eq. (6.6), we obtain

+∞∑
k=1

E
[
Ak(t)

2] ≤
+∞∑
k=1

|||f |||
∑
y∈Zd

|∇f |(ek − y)EEσ

[
P[ω,σ ]k

y [Xt ∈ Bn]
]
.

Noting that the law of [ω,σ ]k under EEσ is the same as the one of ω under E, the latter simplifies into

|||f |||
∑
y∈Zd

+∞∑
k=1

|∇f |(ek − y)E
[
Pω

y [Xt ∈ Bn]
] ≤ |||f |||2

∑
y∈Zd

E
[
Pω

y [Xt ∈ Bn]
]
.

Using once again reversibility, we have

∑
y∈Zd

E
[
Pω

y [Xt ∈ Bn]
] =

∑
x∈Bn

y∈Zd

E
[
Pω

x [Xt = y]] = |Bn|,

which shows the first part of the proposition.
We now turn to A′

k(t). From Eq. (6.4), we have the following estimate:

∣∣A′
k(t)

∣∣ ≤ ‖f ‖∞
∑
x∈Bn

Eσ

[
P[ω,σ ]k

x

[
A′

t

] + P[ω,σ ]k−1
x

[
A′

t

]]

≤ 2‖f ‖∞
∑
x∈Bn

Eσ

[
P[ω,σ ]k

x

[
A′

t

]]
,

where, in the last step, we used the fact that the event A′
t does not depend on the conductance ωek

. If we define Ak(t)

to be

Ak(t) =
∑
x∈Bn

P[ω,σ ]k
x

[
A′

t

]
, (6.7)

then the last equation can be rewritten as∣∣A′
k(t)

∣∣ ≤ 2‖f ‖∞Eσ

[
Ak(t)

]
. (6.8)

In order to estimate Ak(t), we would like to compare the probability to hit V (ek) (the event A′
t ) with the expected

time spent inside this set. However, because conductances may take arbitrarily large values, this comparison is not
possible, as the walk may exit the set V (ek) very fast. In order to circumvent this difficulty, we will compare the
probability to hit V (ek) with the expected time spent in a larger set, to be defined below.

Let pω(x) be the total jump rate of site x:

pω(x) =
∑
y∼x

ωx,y .

For a reason that will become clear in the proof of part (2) of Lemma 6.4, we now introduce a parameter η, chosen
large enough so that

q := P
[
pω(0) > η

]
<

1

(2d)(2d+1)
. (6.9)

We say that a point x ∈ Zd is good in the environment ω if pω(x) ≤ η; we say that it is bad otherwise.
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We now define V ω(ek) the following way:

y ∈ V ω(ek) ⇐⇒ y ∈ V (ek) or ∃γ = (γ1, . . . , γl): γ1 ∈ V (ek), γl = y, γ1, . . . , γl−1 bad points, (6.10)

where γ is a nearest-neighbour path. The set V ω(ek) contains V (ek), and any point in its inner boundary is a good
point (in fact, it is the smallest such set). Indeed, the fact that it contains V (ek) is clear from the definition. Moreover,
let y be a bad point in V ω(ek). Then there exists a nearest-neighbour path γ1, . . . , γl as in (6.10) (if y ∈ V (ek), then
one can choose the path that is made only of the point y). Observe that as γl = y, γl is a bad point. Hence, if z is a
neighbour of y, considering the path γ1, . . . , γl, z, one can see that z belongs to V ω(ek). We have shown that any bad
point in V ω(ek) has all its neighbours in V ω(ek). This implies that any point in the inner boundary of V ω(ek) is a good
point.

The following lemma relates the probability to hit V (ek) with the expected time spent inside V ω(ek).

Lemma 6.3. For every x ∈ Zd and every ω, we have

Pω
x

[
A′

t

] ≤ eη
∫ t+1

0
Pω

x

[
Xs ∈ V ω(ek)

]
ds. (6.11)

Proof. Let T be the hitting time of the set V (ek):

T = inf
{
s ≥ 0: Xs ∈ V (ek)

}
.

One can bound from below the integral appearing in the right-hand side of (6.11) as follows:

∫ t+1

0
Pω

x

[
Xs ∈ V ω(ek)

]
ds ≥ Eω

x

[
1T ≤t

∫ t+1

0
1
Xs∈V ω(ek)

ds

]

≥ Eω
x

[
1T ≤t

∫ T +1

T

1
Xs∈V ω(ek)

ds

]
.

By the Markov property at time T , the latter equals

Eω
x

[
1T ≤tEω

XT

[∫ 1

0
1
Xs∈V ω(ek)

ds

]]
.

As Pω
x [T ≤ t] = Pω

x [A′
t ], the lemma would be proved if we can show that

Eω
XT

[∫ 1

0
1
Xs∈V ω(ek)

ds

]
≥ 1

eη
. (6.12)

Let T be the exit time from V ω(ek):

T = inf
{
s ≥ 0: Xs /∈ V ω(ek)

}
.

The left-hand side of (6.12) is greater than

Eω
XT

[
min(T ,1)

]
.

As we want to show that the exit from V ω(ek) occurs slowly enough, we are interested in the first time Tg that the
walk visits a good site:

Tg = inf{s ≥ 0: Xs is a good site},
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and also in the time εg spent between Tg and the next jump of the walk. Conditionally on XTg , the random variable εg is
exponentially distributed, with parameter pω(XTg ). But by definition of Tg , the site XTg is good, hence pω(XTg ) ≤ η,
and we obtain that for any y ∈ Zd :

Pω
y

[
εg ≥ η−1] ≥ e−1. (6.13)

Moreover, if the walk starts from a site inside V ω(ek), then it is clear that T ≥ εg . This is due to the fact that any site
in the inner boundary of V ω(ek) is a good site, so the walk must meet a good site before exiting V ω(ek). We finally
obtain

Eω
XT

[
min(T ,1)

] ≥ Eω
XT

[
min(εg,1)

] ≥ η−1Pω
XT

[
εg ≥ η−1],

which, together with (6.13), proves the lemma. �

Recalling the definition of Ak(t) from (6.7), and using the estimate provided by the lemma, we obtain

Ak(t) ≤ eη
∑
x∈Bn

∫ t+1

0
P[ω,σ ]k

x

[
Xs ∈ V [ω,σ ]k (ek)

]
ds. (6.14)

Using reversibility, one can rewrite it as

Ak(t) ≤ eη
∫ t+1

0

∑
y∈V [ω,σ ]k (ek)

P[ω,σ ]k
y [Xs ∈ Bn]ds

≤ eη(t + 1)
∣∣V [ω,σ ]k (ek)

∣∣. (6.15)

Besides, by (6.8) and Jensen’s inequality, note that

E
[
A′

k(t)
2] ≤ 4‖f ‖2∞E

[(
Eσ

[
Ak(t)

])2] ≤ 4‖f ‖2∞EEσ

[
Ak(t)

2]. (6.16)

Hence, in order to prove the second part of Proposition 6.2, it is enough to show that there exists c ≥ 0 such that for
any integer n and any t ≥ 0:

+∞∑
k=0

EEσ

[
Ak(t)

2] ≤ c(t + 1)2|Bn|.

Using inequalities (6.14) and (6.15), we obtain

+∞∑
k=0

EEσ

[
Ak(t)

2] ≤ e2η2(t + 1)

+∞∑
k=0

∑
x∈Bn

∫ t+1

0
E

[∣∣V ω(ek)
∣∣Pω

x

[
Xs ∈ V ω(ek)

]]
ds, (6.17)

where the integration of [ω,σ ]k under EEσ has been replaced by integration of ω under E. In this last expression, we
can rewrite the expectation the following way:

+∞∑
k=0

E
[∣∣V ω(ek)

∣∣Pω
x

[
Xs ∈ V ω(ek)

]] =
+∞∑
k=0

∑
y∈Zd

E
[∣∣V ω(ek)

∣∣1
y∈V ω(ek)

Pω
x [Xs = y]]. (6.18)

We introduce the following function of the environment:

W(ω) =
+∞∑
k=0

∣∣V ω(ek)
∣∣10∈V ω(ek)

.
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From the definition of V ω(ek) given in (6.10), it is not hard to check that

V θyω(ek) = −y + V ω(y + ek),

where we understand y + ek as the edge obtained from ek by a translation of the vector y. This observation implies
that

W(θyω) =
+∞∑
k=0

|V ω(y + ek)|1y∈V ω(y+ek)
=

+∞∑
k=0

∣∣V ω(ek)
∣∣1

y∈V ω(ek)
.

As a consequence, the right-hand side of Eq. (6.18) becomes∑
y∈Zd

E
[
W(θyω)Pω

x [Xs = y]] = EEω
x

[
W

(
ω(s)

)]
. (6.19)

As the measure P is stationary for the environment viewed by the particle, this last expectation does not depend on s.
We thus obtain that the expression appearing in the right-hand side of (6.17) is equal to

E
[
W(ω)

]
e2η2(t + 1)2|Bn|,

and Proposition 6.2 is proved, provided E[W(ω)] is finite. We prove this fact in the next lemma.
Before stating it, we introduce C the set of z ∈ Zd such that there exists a path from 0 to z visiting only bad points,

except possibly 0 and z:

z ∈ C ⇐⇒ ∃γ = (γ0, . . . , γl): γ0 = 0, γl = z, γ1, . . . , γl−1 bad points, (6.20)

where γ is a nearest-neighbour path.

Lemma 6.4. (1) For any ω, we have

W(ω) ≤ 2d|C|2. (6.21)

(2) The random variable W(ω) is integrable.

Proof. To prove the first part of the lemma, it is enough to show the following implication:

0 ∈ V ω(ek) ⇒ V ω(ek) ⊆ C. (6.22)

Indeed, it would imply that

W(ω) ≤ ∣∣{k: V ω(ek) ⊆ C
}∣∣|C| ≤ ∣∣{k: V (ek) ⊆ C

}∣∣|C|.
Moreover, |{k : V (ek) ⊆ C}| is the number of edges between any two points of C . Any point having at most 2d edges
attached to it, it is clear that this number is smaller than 2d|C|, and we obtain (6.21). We now proceed to prove (6.22).

Let us assume that 0 ∈ V ω(ek), and let z ∈ V ω(ek). We will show that z ∈ C , distinguishing various cases and using
the characterizations given in (6.10) and (6.20).

Suppose first that 0 ∈ V (ek). If z belongs to V (ek) as well, then considering the path (0, z) (or simply (0) if z = 0),
one can see that z ∈ C . Otherwise, there exists γ ′ = (γ ′

1, . . . , γ
′
l′) such that γ ′

1 ∈ V (ek), γ ′
l′ = z, and γ ′

1, . . . , γ
′
l′−1 are

bad points. The path (0, γ ′
1, . . . , γ

′
l′) (or (γ ′

1, . . . , γ
′
l′) if γ ′

1 = 0) satisfies the conditions needed to show that z ∈ C .
Now if 0 /∈ V (ek), then there exists a path γ = (γ1, . . . , γl) as in (6.10). If z is in V (ek), then the path (γl, . . . , γ1, z)

(or (γl, . . . , γ1) if γ1 = z) shows that z ∈ C . Otherwise, there exists γ ′ = (γ ′
1, . . . , γ

′
l′) as before, and the path

(γl, . . . , γ1, γ
′
1, . . . , γ

′
l′) (or (γl, . . . , γ1, γ

′
2, . . . , γ

′
l′) if γ1 = γ ′

1) is an appropriate choice. This finishes the proof of
(6.22).
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We now turn to part (2). For x = (x1, . . . , xd) ∈ Zd , we define the graph norm ‖x‖1 = |x1| + · · · + |xd |. Let B(r)

be the ball centered at the origin and of radius r with respect to ‖ · ‖1. For any r ∈ N:

P
[

C � B(r)
] ≤ P

[∃γ = (γ0, . . . , γr ) simple path with γ0 = 0 and γ1, . . . , γr bad points
]
.

Let Gx be the event ‘x is a good point.’ Note that Gx is independent of (Gy), for all y that is neither x nor one
of its neighbours (there are 2d + 1 such sites). So from {γi,1 ≤ i ≤ r}, we can extract a subset γ ′ of cardinal at
least k = �r/(2d + 1)�, and such that (Gx)x∈γ ′ are independent random variables. Recalling that we write q for the
probability to be a bad site, and bounding the number of possible paths by (2d)r , we get

P
[

C � B(r)
] ≤ (2d)rqk.

Using the hypothesis on q made in (6.9), the quantity μ = 2dq1/(2d+1) is strictly smaller than 1, and we obtain

P
[

C � B(r)
] ≤ μr.

Also, note that, for some C > 0:

P
[|C| ≥ r

] ≤ P
[

C � B
(
Cr1/d

)]
.

Combining these two facts, we obtain that

P
[|C| ≥ r

] ≤ μCr1/d

.

This decay of the tail probability ensures that |C|2 is integrable, and hence W(ω) as well as a consequence of the first
part of the lemma. �

Part (2) of Lemma 6.4 was the last required step in the establishment of Proposition 6.2. �

Theorem 6.1 now follows from Proposition 6.2, as can be seen from inequality (6.5). �

7. Theorem 2.3 and extensions

We will now combine the results of the preceding sections to obtain the decay of the variance of ft as t goes to infinity.

Proof of Theorem 2.3. We recall that N(f ) = |||f |||2 + ‖f ‖2∞. We have shown in Theorem 6.1 that under Assump-
tion (I), there exists c > 0 such that for any f ∈ L∞(P) with E[f ] = 0, any integer n and any t ≥ 0:

E
[
Sn(ft )

2] ≤ cN(f )(1 + t)2|Bn|,

or in other terms, that N (ft ) ≤ cN(f )(1 + t)2. This, together with Proposition 3.5, implies that there exists C > 0
such that for any t ≥ 1:

E
[
(ft )

2] ≤ CN(f )

(∫ t

1
(1 + s)−4/d ds

)−d/2

.

This estimate (together, for smaller times, with the fact that E[(ft )
2] ≤ ‖f ‖2

2 ≤ N(f )) leads to the announced result. �

Our method of proof has the following direct generalization, which holds true without the additional Assump-
tion (I).
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Proposition 7.1. Let δ, γ ≥ 0 be such that δ > 2γ . There exists C > 0 such that, for any f :Ω → R satisfying, for
any n ∈ N and any t ≥ 0:

E
[(

Sn(ft )
)2] ≤ c(f )n2d−δ(t + 1)γ ,

where c(f ) > 0, we have

E
[
(ft )

2] ≤ C
c(f )

tδ/2−γ
.

Moreover, the claim still holds if one replaces ft by f ◦
t .

Proof. As given by Proposition 3.2, we know that the above hypothesis implies

E
[
(ft )

2] ≤ CSn2 E (ft , ft ) + c(f )n−δ(t + 1)γ .

From this inequality (compare with Eq. (3.1)), one can follow the proof of Propositions 3.3 and 3.5, replacing N ′(ft )

by c(f )(t + 1)γ and the exponent d by δ. The fact that c(f ) is larger than ‖f ‖2
2 is clear from the hypothesis (taking

n = 0 and t = 0), and one obtains

E
[
f 2

t

] ≤ Cc(f )

(∫ t

1
s−2γ /δ ds

)−δ/2

≤ C
c(f )

tδ/2−γ
,

provided 2γ /δ < 1 and t is large enough (say t ≥ 2). The result now follows, using the bound E[f 2
t ] ≤ ‖f ‖2

2 ≤ c(f )

for smaller times. The same proof applies to f ◦
t as well. �

The interest of this generalization is twofold. On one hand, it may provide a variance decay for functionals for
which N (f ) is infinite (for instance, if the environment is assumed only to be mixing). On the other, it may strengthen
the original claim for functionals for which E[(Sn(ft ))

2] decays atypically fast. For example, let (e1, . . . , ed) be the
canonical basis of Rd . We define the local drift in the first coordinate as

d(ω) = ω0,e1 − ω0,−e1 . (7.1)

Then a simple calculation shows that in the sum Sn(d), most of the terms cancel out, except for boundary terms, so
that, provided the conductances have a second moment, we have

E
[(

Sn(d)
)2] ≤ Cnd−1.

Now recall that, as given by Proposition 4.1, the function t �→ E[(Sn(d
◦
t ))

2] is decreasing, so the above estimate still
holds for E[(Sn(d

◦
t ))

2], and Proposition 7.1 implies that

E
[(

d◦
t

)2] ≤ C

t(d+1)/2
.

This exponent can in fact be improved to d/2 + 1, as we will see in the end of the last section.
We now present a second variation around Theorem 2.3. One drawback of this theorem is that is often problematic

to evaluate N(f ), when it is not simply infinite. For a particular class of functionals, we show below that one can get
improved results with only minor changes in the method of proof.

For some s ≥ 0, we say that a function g(X,ω) depends only on the trajectory up to time s if one can write it as a
function of the sites visited up to time s, together with their neighbouring conductances, or more precisely if one can
write g(X,ω) as

g
(
(Xu)u≤s , (ωXu+e)u≤s

)
,
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where we understand that e ranges in the set of edges adjacent to 0. We say that such a function is translation invariant
if moreover, for any x ∈ Zd :

g
(
(x + Xu)u≤s , (ωXu+e)u≤s

) = g
(
(Xu)u≤s , (ωXu+e)u≤s

)
.

We write Var(f ) for the variance of the function f with respect to the measure P.

Proposition 7.2. Under Assumption (I), there exists C > 0 such that, for any bounded function g that depends only
on the trajectory up to time s and is translation invariant, if f (ω) = Eω

0 [g], then for any t > 0:

Var(ft ) ≤ C‖g‖2∞ ln+
(

s + t

s

)−2

if d = 4,

Var(ft ) ≤ C
‖g‖2∞(s + t)2

td/2
if d ≥ 5.

Proof. We begin by recalling the definition of ft , namely

ft (ω) = Eω
0

[
E

θXt ω

0

[
g
(
(Xu)u≤s , (ωXu+e)u≤s

)]]
.

Recall also that the law of X + x under Pθxω
0 is the same as the one of X under Pω

x , therefore we have, using the
translation invariance of g:

E
θXt ω

0

[
g
(
(Xu)u≤s , (ωXu+e)u≤s

)] = Eω
Xt

[
g
(
(Xu)u≤s , (ωXu+e)u≤s

)]
.

The Markov property now leads to

ft (ω) = Eω
0

[
g(t)

]
, (7.2)

where, to ease notation, we wrote g(t) for

g
(
(Xu)t≤u≤t+s, (ωXu+e)t≤u≤t+s

)
.

We define, as in Section 6, Mk(t) = E[Sn(ft )|Fk], and the martingale increments �k(t) = Mk(t) − Mk−1(t).
Writing f for f − E[f ], we obtain

Sn(f t ) = Sn(ft ) − E
[
Sn(ft )

] =
+∞∑
k=0

�k(t).

One has the following expression for �k(t):

�k(t) =
∑
x∈Bn

Eσ

[
E[ω,σ ]k

x

[
g(t)

] − E[ω,σ ]k−1
x

[
g(t)

]]
,

which was the starting point of the computations of Section 6. However, we now introduce the events

Ãt = {{Xu,0 ≤ s ≤ t + s} ∩ V (ek) = ∅
}
,

and Ã′
t the complementary event. Note the difference with (6.1)–(6.2): we consider intersections with V (ek) up to

time t + s, and not just up to time t . Then one can decompose �k(t) as Ãk(t) + Ã′
k(t), where

Ãk(t) =
∑
x∈Bn

Eσ

[
E[ω,σ ]k

x

[
g(t)1Ãt

] − E[ω,σ ]k−1
x

[
g(t)1Ãt

]]
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and

Ã′
k(t) =

∑
x∈Bn

Eσ

[
E[ω,σ ]k

x

[
g(t)1Ã′

t

] − E[ω,σ ]k−1
x

[
g(t)1Ã′

t

]]
.

The remarkable property is that one has

E[ω,σ ]k
x

[
g(t)1Ãt

] = E[ω,σ ]k−1
x

[
g(t)1Ãt

]
.

Indeed, the event Ãt itself does not depend on the value of ωek
, and on this event, the law of the walk up to time t + s

does not either, nor does g(t) by the definition of g as a function that depends only on the trajectory up to time s.
Therefore Ãk(t) simply vanishes in that case. The evaluation of Ã′

k(t) follows the same line as for Proposition 6.2,
and one finally obtains that there exists C > 0 (independent of g, s and t ) such that

N (f t ) ≤ C‖g‖2∞(s + t + 1)2.

From this estimate, and using Proposition 3.5, it comes that, for any t > 1:

E
[
(f t )

2] ≤ C‖g‖2∞
(∫ t

1
(s + u + 1)−4/d du

)−d/2

.

Elementary computations then lead to the claims of the proposition, using the fact that Var(ft ) ≤ ‖g‖2∞ to treat smaller
times. �

Proposition 7.2 is used in [19] in order to obtain the scaling limit of the random walk among random traps.

8. Central limit theorems

We begin with the proof of Theorem 2.4, which shows the equivalence between the algebraic decay of the variance of
ft and a particular behaviour of the spectral measure ef around 0.

Proof of Theorem 2.4. Note that the variance of ft can be rephrased in terms of the spectral measure ef as

E
[
(ft )

2] =
∫

e−2λt def (λ).

The variance decay given in point (1) of Theorem 2.4 is therefore equivalent to∫
e−λt def (λ) ≤ C

tα
. (8.1)

We will show that Eq. (8.1) is equivalent to point (2) of the theorem.
Assume that Eq. (8.1) holds, and let

χ(t) =
{

0 if 0 ≤ t < 1,
1 − e−t if t ≥ 1.

Multiplying inequality (8.1) by χ(δt) and integrating over t ∈ [0,+∞), it comes that∫ +∞

t=0
χ(δt)

∫
e−λt def (λ)dt ≤ C

∫ +∞

0
χ(δt)t−α dt

≤ Cδα−1
∫ +∞

1
χ(u)u−α du, (8.2)
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where the integral is finite, as α > 1 and χ is bounded. Now, χ has been chosen so that∫ +∞

t=0
e−λtχ(δt)dt = e−λ/δ

λ
− e−(λ+δ)/δ

λ + δ
≥ 1

2eλ
1[0,δ](λ),

so we get, using Fubini’s theorem:∫ +∞

t=0

∫
χ(δt)e−λt def (λ)dt ≥

∫
[0,δ]

1

2eλ
def (λ). (8.3)

Combining (8.2) and (8.3), we obtain∫
[0,δ]

1

λ
def (λ) ≤ Cδα−1. (8.4)

Reciprocally, assume that (8.4) holds. Note that

λe−λt =
∫ +∞

λ

(δt − 1)e−δt dδ.

It comes that∫
e−λt def (λ) =

∫ ∫ +∞

δ=0
(δt − 1)e−δt 1

λ
1{λ≤δ} dδ def (λ)

=
∫ +∞

0
(δt − 1)e−δt

∫
[0,δ]

1

λ
def (λ)dδ,

the use of Fubini’s theorem being justified by the fact that the integrand is bounded in absolute value by (δt +1)e−δt /λ,
which is integrable (the total mass of ef is ‖f ‖2

2, assumed to be finite). Using inequality (8.4), the former is bounded
by

C

∫ +∞

0
(δt − 1)e−δt δα−1 dδ = C

tα

∫ +∞

0
(u − 1)e−uuα−1 du,

which proves that (8.1) holds. �

We now present some results taken from [12]. Although the authors give a complete proof for the discrete time
case, they provide less details in the continuous time setting. For convenience of the reader, and also because we will
need some of these details in the sequel, we provide here part of the proof of these results. We recall that the definition
of Zt was given in (1.3).

Theorem 8.1 ([12]). If∫
1

λ
def (λ) < +∞, (8.5)

then there exist (Mt)t≥0, (ξt )t≥0 such that Zt = Mt + ξt , where (Mt) is a martingale with stationary increments under
P (and the natural filtration), and (ξt ) is such that

1

t
E

[
(ξt )

2] = 2
∫

1 − e−λt

λ2t
def (λ) −→[t→+∞] 0. (8.6)

Moreover, if P is ergodic, (εZt/ε2)t≥0 converges, as ε goes to 0, to a Brownian motion of variance

σ 2 = E
[
(M1)

2] = 2
∫

1

λ
def (λ).
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Remark. We shall only give the proof of the first part of the theorem. We refer to [12] for a proof of the invariance
principle.

Proof of Theorem 8.1. Let ε > 0, and let uε be such that

(−L + ε)uε = f. (8.7)

We define (Mε
t ), (ξε

t ), (ηε
t ) by

Mε
t = uε

(
ω(t)

) − uε

(
ω(0)

) −
∫ t

0
Luε

(
ω(s)

)
ds,

ξ ε
t = −uε

(
ω(t)

) + uε

(
ω(0)

)
,

ηε
t =

∫ t

0
εuε

(
ω(s)

)
ds.

Using the definition of uε in (8.7), one can see that Zt = Mε
t + ξε

t + ηε
t . Moreover, (Mε

t )t≥0 is a martingale with
stationary increments under P. We first show that ηε

t tends to 0 in L2(P) as ε goes to 0. We will then prove that (Mε
t ),

(ξε
t ) have limits in L2(P) as ε goes to zero, by checking that they are Cauchy sequences. Writing these two limits Mt

and ξt respectively, we will have Zt = Mt + ξt .
We begin by showing that ηε

t tends to 0 as ε goes to 0. Note that

E

[(∫ t

0
g
(
ω(s)

)
ds

)2]
= 2

∫
0≤s≤u≤t

E
[
g
(
ω(s)

)
g
(
ω(u)

)]
ds du

= 2
∫

0≤s≤u≤t

E
[
g
(
ω(0)

)
g
(
ω(u − s)

)]
ds du,

using the stationarity of (ω(s)). By a change of variables (and using the fact that E = E · Eω
0 ), the latter becomes

2
∫ t

0
(t − s)E

[
g(ω)gs(ω)

]
ds. (8.8)

Together with the fact that uε = (−L + ε)−1f , this enables us to compute

E
[(

ηε
t

)2] = 2
∫ ∫ t

0
(t − s)e−λs ds

(
ε

λ + ε

)2

def (λ)

= 2
∫

e−λt − 1 + λt

λ2

ε2

(λ + ε)2
def (λ).

As λ �→ (e−λt − 1 + λt)/λ2 remains bounded (and does not depend on ε), the dominated convergence theorem shows
that

E
[(

ηε
t

)2] −→[ε→0] 0.

We now turn to the study of (Mε
t ). We will show that

E

[(
g
(
ω(t)

) − g
(
ω(0)

) −
∫ t

0
Lg

(
ω(s)

)
ds

)2]
= −2tE

[
g(ω)Lg(ω)

]
. (8.9)

Indeed, as noted before, the process

g
(
ω(t)

) − g
(
ω(0)

) −
∫ t

0
Lg

(
ω(s)

)
ds
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is a martingale with stationary increments under P, so the expression on the left-hand side of Eq. (8.9) is equal to Ct

for some C ≥ 0. C can be determined by computing the derivative at t = 0. Note that the left-hand side of (8.9) can
be decomposed into

E
[(

g
(
ω(t)

) − g
(
ω(0)

))2] − 2E

[(
g
(
ω(t)

) − g
(
ω(0)

))∫ t

0
Lg

(
ω(s)

)
ds

]
+ E

[(∫ t

0
Lg

(
ω(s)

)
ds

)2]
.

Due to the reversibility of the process, (the cadlag modification of) (ω(t − s))0≤s≤t has the same law under P as
(ω(s))0≤s≤t . But under this time reversal, the integral remains unchanged while g(ω(t))−g(ω(0)) is changed into its
opposite. The double product is therefore equal to zero. As for the square of the integral, the computation that lead to
Eq. (8.8) shows that it is bounded by a constant times t2. In particular, its derivative at 0 is equal to zero, and there is
only the first term left. Its derivative at 0 is known to be twice the Dirichlet form E (g, g) = −E[g(ω)Lg(ω)]. It comes
that

E
[(

M
ε1
t − M

ε2
t

)2] =
∫

2tλ

(
1

λ + ε1
− 1

λ + ε2

)2

def (λ) =
∫

2tλ(ε2 − ε1)
2

(λ + ε1)2(λ + ε2)2
def (λ).

If, say, ε2 > ε1, then the integrand is bounded by

2tλ(ε2)
2

λ2(ε2)2
= 2t

λ
,

which is integrable due to assumption (8.5). So dominated convergence theorem applies, and as

2tλ(ε2 − ε1)
2

(λ + ε1)2(λ + ε2)2
≤ 2tλ(ε2)

2

λ4
−→[ε1,ε2→0] 0,

we get

E
[(

M
ε1
t − M

ε2
t

)2] −→[ε1,ε2→0] 0.

We write Mt for the L2(P) limit of (Mε
t )ε>0 as ε goes to 0.

What is left is to check the convergence of ξε
t . Similarly, it comes that

E
[(

ξ
ε1
t − ξ

ε2
t

)2] =
∫

2
(
1 − e−λt

)( 1

λ + ε1
− 1

λ + ε2

)2

def (λ)

=
∫

2(1 − e−λt )(ε2 − ε1)
2

(λ + ε1)2(λ + ε2)2
def (λ)

and we show the same way, using dominated convergence theorem, that the latter converges to 0 as ε1, ε2 go to 0. We
write ξt for the limit. We have

E
[(

ξε
t

)2] =
∫

2
(
1 − e−λt

)( 1

λ + ε

)2

def (λ).

Letting ε go to 0, the L2 convergence on one hand, and the monotone convergence theorem on the other, ensure that

1

t
E

[
(ξt )

2] = 2
∫

1 − e−λt

λ2t
def (λ).

Using the fact that for any x ≥ 0, 1 − e−x ≤ x, the integrand above is bounded by 1/λ, which is assumed to be
integrable. Dominated convergence theorem thus implies that the integral above converges to 0 as t tends to infinity. �

Under a stronger assumption, the next proposition gives an estimate of the speed of convergence to 0 in Eq. (8.6).
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Proposition 8.2. Under one of the equivalent conditions (1) and (2) of Theorem 2.4, there exists C > 0 such that

1

t
E

[
(ξt )

2] = 2
∫

1 − e−λt

λ2t
def (λ) ≤ C

ψα(t)
, (8.10)

where ψα is defined in (2.10).

Proof. The equality of the first two terms in (8.10) was given in Theorem 8.1. For the inequality, note first that for
any α, we have

ψα(t) ≤ t and ψα(t) ≤ tα−1.

Assuming that t ≥ 1, we will decompose the interval of integration R+ into [0,1/t) ∪ [1/t,1) ∪ [1,+∞). As for any
x ≥ 0, 1 − e−x ≤ x, we have∫ 1/t

0

1 − e−λt

λ2t
def (λ) ≤ C

∫ 1/t

0

1

λ
def (λ) ≤ C

tα−1
,

using condition (2) of Theorem 2.4. On the other hand,

∫ +∞

1

1 − e−λt

λ2t
def (λ) ≤

∫ +∞

1

1

t
def (λ) ≤ ‖f ‖2

2

t
.

Now for the integral between 1/t and 1, it is bounded from above by the following, on which we perform a kind of
integration by parts:∫ 1

1/t

1

λt

1

λ
def (λ) =

∫ 1

λ=1/t

∫ +∞

δ=λ

1

δ2t

1

λ
dδ def (λ) =

∫ +∞

δ=1/t

1

δ2t

∫ min(δ,1)

λ=1/t

1

λ
def (λ)dδ.

Using property (2) of Theorem 2.4 once again, it comes that the latter is bounded by

C

∫ +∞

δ=1/t

1

δ2t
min(δ,1)α−1 dδ.

This integral can be decomposed into two parts:∫ +∞

δ=1

1

δ2t
dδ = 1

t

and ∫ 1

δ=1/t

δα−3

t
dδ =

{
1

(α−2)t

(
1 − 1

tα−2

)
if α �= 2,

ln(t)
t

if α = 2,

which proves the proposition. �

Proposition 8.3. Under one of the equivalent conditions (1) and (2) of Theorem 2.4, there exists C > 0 such that

0 ≤ σ 2 − 1

t
E

[
(Zt )

2] ≤ C

ψα(t)
,

where σ is defined by (2.9).

Proof. Note that

E
[
(Mt)

2] = E
[
(Zt − ξt )

2] = E
[
(Zt )

2] − 2E[Ztξt ] + E
[
(ξt )

2].



320 J.-C. Mourrat

Stationarity of the increments of Mt implies that E[(Mt)
2] = tσ 2. Due to reversibility, (the cadlag modification of)

(ω(t − s))0≤s≤t has the same law under P as (ω(s))0≤s≤t . But under this time reversal, Zt remains unchanged while
ξt is changed into −ξt (it is enough to check that it is true on ξε

t , which is clear). Therefore, we have

E[Ztξt ] = −E[Ztξt ] = 0.

Proposition 8.2 states that

0 ≤ 1

t
E

[
(ξt )

2] ≤ C

ψα(t)
,

which proves the proposition. �

We write Xt ∈ Zd as (X1,t , . . . ,Xd,t ). Corollary 2.6 is implied by the following result.

Proposition 8.4. Let i ∈ {1, . . . , d}. Under Assumption (A) and if d ≥ 7, there exists C > 0 such that

0 ≤ 1

t
E

[
(Xi,t )

2] − σ 2 ≤ C

ψα(t)
with α = d

2
− 2.

Proof. By symmetry, it is sufficient to prove the result for i = 1. Recall from Eq. (7.1) that we defined the local drift
in the first coordinate as

d(ω) = ω0,e1 − ω0,−e1 .

Let

Zt =
∫ t

0
d
(
ω(s)

)
ds.

Then

Nt := X1,t − Zt

is a martingale with stationary increments under P. Under Assumption (A), it is clear that N(d) is finite, as it is
bounded and depends only on a finite number of coordinates. Using Theorem 2.3, we obtain that assumption (1) of
Theorem 2.4 is satisfied with α = d/2 − 2. We have α > 1 whenever d ≥ 7, and in this case, Proposition 8.3 applies:

0 ≤ σ 2 − 1

t
E

[
(Zt )

2] ≤ C

ψα(t)
, (8.11)

where σ 2 = 2
∫

λ−1 ded(λ). We obtain

E
[
(Nt )

2] = E
[
(X1,t )

2] − 2E[X1,tZt ] + E
[
(Zt )

2]. (8.12)

Stationarity of the increments of Nt implies that E[(Nt )
2] = t (σ ′)2 for some σ ′ ≥ 0. We will now show that

E[X1,tZt ] = 0.
Indeed, one can see X1,t as a functional of (ω(s))0≤s≤t (this is valid whenever ω is not periodic, which is true

almost surely). But as we saw before, the (cadlag modification of the) time reversal (ω(t − s))0≤s≤t has the same law
as (ω(s))0≤s≤t under P. It is clear that this time reversal changes X1,t into −X1,t . On the other hand, it leaves Zt

unchanged. Therefore, we obtain

E[X1,tZt ] = −E[X1,tZt ] = 0,

which, together with (8.11) and (8.12), proves the proposition (with σ 2 = (σ ′)2 − σ 2). �
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9. Addendum

A referee made us aware of the recent works [9,10], in which the authors propose a practical way to estimate the
effective diffusion matrix. As we will now see, their results have consequences in terms of the exponent of decay
to equilibrium associated with the function d defined in (7.1). They consider the case when d ≥ 2. For bounded,
independent and identically distributed conductances, our Theorems 2.2 and 2.3 give an exponent of decay equal to
max(1, d/2 − 2) (with a logarithmic correction for d = 2). On the other hand, roughly speaking, their results imply
that the exponent of decay is at least min(d/2 + 1,3) for this particular function d, which is a better result when
d ≤ 9. This observation enables to strengthen Corollary 2.6 when d ≤ 8. Our approach does not provide such good
exponents, but has the advantage of covering a large class of functions at once, and also gives some information when
the conductances are unbounded (although in this case, Theorem 2.3 does not apply to the function d, as N(d) becomes
infinite).

We describe their approach briefly, and refer the reader to [9,10] for details. The authors assume that the conduc-
tances are bounded, independent and identically distributed. In this case, we recall that the effective diffusion matrix
is σ 2 times the identity matrix. The authors ask for a practical way to compute σ 2 numerically, with a control of the
error. The constant σ 2 can be expressed in terms of the “corrector field.” We recall from (7.1) the definition of the
local drift in the first coordinate as

d(ω) = ω0,e1 − ω0,−e1 . (9.1)

The corrector is a function φ :Ω → R such that

−Lφ = d, (9.2)

whose gradient is stationary and of mean 0 (see [15], Theorem 3).
Let us define the following quantities:

A0(φ) = E[ω0,e1] − E (φ,φ),

A1(φ) = E
[
ω0,e1

(
1 + φ(θe1ω) − φ(ω)

)]
, (9.3)

A2(φ) = 1

2

∑
|z|=1

E
[
ω0,z

(
e1 · z + φ(θzω) − φ(ω)

)2]
.

These three expressions are all equal to σ 2/2 (see [7], Theorem 4.5(iii), and [15], formulas (3.17) and (3.19)).
The problem faced is that the function φ is not practically computable. An idea is to replace φ by Rμd, where Rμ

is the resolvent operator defined in (5.1), and μ > 0 is a small parameter. In the words of [27], the function Rμd is an
“almost solution” of the original Poisson Eq. (9.2). As discussed in the introduction of [9], the function Rμd can be
computed in practice.

At this point, one expects A0(Rμd), A1(Rμd) and A2(Rμd) to approach σ 2/2 as μ tends to 0. These quantities are
however no longer equal, and a computation (following [15], p. 50) shows that

A0(Rμd) = A1(Rμd) + μE
[
(Rμd)2] = A2(Rμd) + 2μE

[
(Rμd)2].

In other words, these approximations are of the form

Ak(Rμd) = A0(Rμd) − kμE
[
(Rμd)2]

for some k ∈ R. It turns out that, among the family of possible approximations (Ak(Rμd))k∈R, all approximations
are asymptotically of the same order, except for k = 2, for which the approximation is better. Gloria and Otto [9,10]
have indeed chosen A2(Rμd) as their approximation, while Yurinskiı̆ [27], Theorem 2.1, had chosen A1(Rμd) (but
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obtained a non-optimal result anyways). A spectral computation gives that

Ak(Rμd) − σ 2

2
= E (φ,φ) − E (Rμd,Rμd) − kμE

[
(Rμd)2]

=
∫ (

1

λ
− λ

(λ + μ)2
− kμ

(λ + μ)2

)
ded(λ)

=
∫

μ2 + (2 − k)λμ

λ(λ + μ)2
ded(λ).

For any f ∈ L2(P) satisfying
∫

λ−1 def (λ) < +∞, we thus define

Ik,μ(f ) =
∫

μ2 + (2 − k)λμ

λ(λ + μ)2
def (λ).

Its behaviour as μ tends to 0 can be described the following way.

Proposition 9.1. Let f ∈ L2(P) and α > 1. Under one of the equivalent conditions (1) and (2) of Theorem 2.4, there
exists C > 0 such that for any μ > 0:

0 ≤ I2,μ(f ) ≤
⎧⎨
⎩

Cμα−1 if α < 3,
Cμ2 ln

(
μ−1

)
if α = 3,

Cμ2 otherwise.

Reciprocally∫ μ

0

1

λ
def (λ) ≤ 4I2,μ(f ), (9.4)

and, if f �= 0, then there exists C > 0 such that, for any μ small enough,

Cμ2 ≤ I2,μ(f ). (9.5)

On the other hand, if k ∈ R \ {2}, f �= 0 and α > 2, then there exists C1,C2 > 0 such that, for any μ small enough,

C1μ ≤ ∣∣Ik,μ(f )
∣∣ ≤ C2μ.

Proof. The proof is similar to the proof of Theorem 2.4. We decompose I2,μ(f ) as

2
∫ +∞

λ=0

∫ +∞

δ=λ

μ2

(μ + δ)3
dδ

1

λ
def (λ).

By Fubini’s theorem, this integral can be rewritten as

2
∫ +∞

δ=0

μ2

(μ + δ)3

∫ δ

λ=0

1

λ
def (λ)dδ.

Under assumption (2) of Theorem 2.4, this integral is bounded by a constant times∫ +∞

δ=0

μ2

(μ + δ)3
min

(
δα−1,1

)
dδ.

The integral obtained when δ ranges in [1,+∞) can be computed explicitly, and is smaller than μ2. For the remaining
part, a change of variable leads to

μα−1
∫ 1/μ

0

1

(1 + u)3
uα−1 du,
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from which the first part of the proposition follows. Inequality (9.4) is clear if one observes that

μ2

(λ + μ)2
≥ 1

4
1[0,μ](λ).

For the next claim, let δ > 0 be such that∫ δ

0
def (λ) > 0. (9.6)

Then

I2,μ(f ) ≥ μ2

δ(δ + μ)2

∫ δ

0
def (λ),

which shows (9.5). For the last part, let us assume that k > 2. One can decompose Ik,μ(f ) as

(∫ μ/(k−2)

0
+

∫ +∞

μ/(k−2)

)
μ2 − (k − 2)λμ

λ(λ + μ)2
def (λ). (9.7)

In this expression, the integrand is positive on the first interval of integration, and negative on the second one. The
first integral is thus positive, and bounded by

∫ μ/(k−2)

0

μ2

λ(λ + μ)2
def (λ) ≤

∫ μ/(k−2)

0

1

λ
def (λ) ≤ Cμα−1,

which is negligible compared to μ when α > 2. The second integral obtained from (9.7) can be separated into

∫ +∞

μ/(k−2)

μ2

λ(λ + μ)2
def (λ) − (k − 2)

∫ +∞

μ/(k−2)

μ

(λ + μ)2
def (λ).

The first integral is positive, and bounded by I2,μ(f ), which is negligible compared to μ when α > 2. Let us define
δ > 0 such that (9.6) holds. Then

∫ +∞

μ/(k−2)

μ

(λ + μ)2
def (λ) ≥ μ

(δ + μ)2

∫ δ

μ/(k−2)

def (λ),

which is larger than Cμ for any small enough μ. The proof is similar for k < 2 (only simpler).
Reciprocally, we need to show that, for any α > 2, |Ik,μ(f )| ≤ Cμ. Due to the previous observations, it is in fact

sufficient to bound∫ +∞

0

μ

(λ + μ)2
def (λ) = μE

[
(Rμf )2].

We postpone the proof of this last fact to the proof of Proposition 9.4. �

The following result is obtained in [10].

Theorem 9.2 ([10]). For d defined in (9.1), and for some c > 0, one has:

I2,μ(d) ≤

⎧⎪⎪⎨
⎪⎪⎩

Cμ ln
(
μ−1

)c
if d = 2,

Cμ3/2 if d = 3,
Cμ2 ln

(
μ−1

)
if d = 4,

Cμ2 if d ≥ 5.
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They also argue that, except possibly for the logarithmic term in dimension 2, these bounds cannot be improved
([9], Appendix). This result has the following consequences.

Corollary 9.3. For any ε > 0, there exists C > 0 such that, for any t > 0:

E
[
(dt )

2] ≤

⎧⎪⎪⎨
⎪⎪⎩

Ct−2+ε if d = 2,
Ct−5/2 if d = 3,
Ct−3+ε if d = 4,
Ct−3 if d ≥ 5,

(9.8)

and, moreover,

0 ≤ t−1E
[(‖Xt‖2

)2] − dσ 2 ≤
{

Ct−1+ε if d = 2,
Ct−1 if d ≥ 3.

(9.9)

Proof. The first claim is obtained from Theorem 9.2 using inequality (9.4) and Theorem 2.4. The second one is a
consequence of the first, obtained exactly the same way as we proved Proposition 8.4. �

Remark. The result in (9.8) improves on our Theorems 2.2 and 2.3 when d ≤ 9 (the bound coincides with the one
given by Theorem 2.3 when d = 10, and is weaker for larger dimensions), while (9.9) strengthens our Corollary 2.6
when d ≤ 8 (and is equivalent otherwise).

In terms of practical computations, the expectation that one needs to compute in the formula (9.3) is still problem-
atic. In [9], the authors propose to replace this expectation by a spatial average, evaluated on a single realisation of the
environment. This new approximation has expectation A2(Rμd), but also has random fluctuations.

The main purpose of [9] is to estimate the L2 norm of these fluctuations. In order to do so, they show ([9], Propo-
sition 1), that, for d ≥ 3 and for any q > 0, there exists a constant C such that

sup
μ>0

E
[|Rμd|q] ≤ C, (9.10)

and in dimension 2, that E[|Rμd|q ] is bounded by some power of ln(μ−1). The result concerning the case q = 2 can
easily be linked with the behaviour of the spectral measure.

Proposition 9.4. Let f ∈ L2(P) and α > 1. Under one of the equivalent conditions (1) and (2) of Theorem 2.4, there
exists C > 0 such that for any μ > 0:

E
[
(Rμf )2] ≤

⎧⎨
⎩

Cμα−2 if α < 2,
C ln

(
μ−1

)
if α = 2,

C otherwise,

and reciprocally∫ μ

0

1

λ
def (λ) ≤ 8μE

[
(Rμf )2].

Proof. The spectral representation gives us that

E
[
(Rμf )2] =

∫
1

(λ + μ)2
def (λ). (9.11)

We may rewrite this integral as∫
λ

(λ + μ)2

1

λ
def (λ) =

∫ +∞

λ=0

∫ +∞

δ=λ

δ − μ

(δ + μ)3
dδ

1

λ
def (λ).
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Using Fubini’s theorem, and under condition (2) of Theorem 2.4, one obtains that this integral is bounded by a constant
times ∫ +∞

0

δ − μ

(δ + μ)3
min

(
δα−1,1

)
dδ.

The integral over the interval [1,+∞) is bounded by∫ +∞

1

δ − μ

(δ + μ)3
dδ = 1

(1 + μ)2
≤ 1.

One is thus left with the study of

∫ 1

0

δ − μ

(δ + μ)3
δα−1 dδ,

which, by a change of variable, becomes

μα−2
∫ 1/μ

0

u − 1

(u + 1)3
uα−1 du.

The first part of the proposition then follows. Reciprocally, one can see from (9.11) that∫ μ

0
def (λ) ≤ 4μ2E

[
(Rμf )2]. (9.12)

We then note that∫ μ

0

1

λ
def (λ) =

∫ μ

λ=0

∫ +∞

δ=λ

1

δ2
def (λ).

We first bound the part of this double integral for which δ ranges in [μ,+∞):∫ μ

λ=0

∫ +∞

δ=μ

1

δ2
def (λ) = 1

μ

∫ μ

λ=0
def (λ).

This term is, by (9.12), bounded by 4μE[(Rμf )2]. Using Fubini’s theorem, the remaining part of the double integral
is equal to

∫ μ

δ=0

1

δ2

∫ δ

λ=0
def (λ)dδ.

Using the inequality (9.12) once again, we obtain that this second term is also bounded by 4μE[(Rμf )2], which
finishes the proof of the proposition. �

Considering Corollary 9.3, it seems reasonable to expect the exponent of decay associated with the function d to
be equal to d/2 + 1 in any dimension. A simple argument enables to prove that if one considers the environment seen
by the simple random walk, then it is indeed the case. One may indeed write d as

d = f (θe1ω) − f (ω),

where f (ω) = ω0,−e1 − E[ω0,−e1]. For the process of the environment seen by the simple random walk, as we have
seen in the proof of Proposition 4.1, the semi-group and the space translations commute, and thus

E
[(

d◦
t

)2] = E
[(

f ◦
t (θe1ω) − f ◦

t (ω)
)2] ≤ E ◦(f ◦

t , f ◦
t

) =
∫

λe−2λt de◦
f (λ),
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where e◦
f is the spectral measure of −L◦ projected on the function f . With this representation, and knowing that the

exponent of decay to equilibrium of f is d/2 (a fact which follows from Theorem 2.1, assuming that the conductances
are square integrable), one obtains that the exponent of decay to equilibrium of d is d/2 + 1 by following the proof of
Theorem 2.4.
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