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Abstract. We propose to test the homogeneity of a Poisson process observed on a finite interval. In this framework, we first provide
lower bounds for the uniform separation rates in L

2-norm over classical Besov bodies and weak Besov bodies. Surprisingly, the
obtained lower bounds over weak Besov bodies coincide with the minimax estimation rates over such classes. Then we construct
non-asymptotic and non-parametric testing procedures that are adaptive in the sense that they achieve, up to a possible logarithmic
factor, the optimal uniform separation rates over various Besov bodies simultaneously. These procedures are based on model
selection and thresholding methods. We finally complete our theoretical study with a Monte Carlo evaluation of the power of our
tests under various alternatives.

Résumé. Nous proposons de tester l’homogénéité d’un processus de Poisson observé sur un intervalle borné. Nous établissons
tout d’abord des bornes inférieures pour les vitesses de séparation uniformes relativement à la norme L

2 sur des Besov bodies
classiques ou faibles. De façon surprenante, nous obtenons des bornes inférieures sur les Besov bodies faibles qui coïncident avec
les vitesses minimax d’estimation sur ce type de classe. Ensuite, nous construisons des procédures de tests non asymptotiques et
non paramétriques qui sont adaptatives, au sens où elles atteignent, à un facteur logarithmique près dans certains cas, les vitesses de
séparation optimales sur plusieurs classes d’alternatives simultanément. Ces procédures sont basées sur des méthodes de sélection
de modèles et de seuillage. Enfin, nous complétons cette étude théorique par des simulations afin d’estimer par la méthode de
Monte Carlo la puissance de nos tests sous diverses alternatives.
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1. Introduction

Poisson processes have been used for many years to model a great variety of situations: machine breakdowns, phone
calls, etc. Recently Poisson processes become popular for modeling occurrences of words or motifs on the DNA
sequence (see [24]). In this context, it is particularly important to be able to detect abnormal behaviors.

With such applications in mind, we consider in this paper the question of testing the homogeneity of a Poisson
process N . Since we can only observe a finite number of points of the process, this question has a sense only on a
finite interval. For the sake of simplicity, we assume that the Poisson process N is observed on the fixed set [0,1], and
that it has an intensity s with respect to some measure μ on [0,1] with dμ(x) = Ldx.

Denoting by S0 the set of constant functions on [0,1], our aim is consequently to test the null hypothesis (H0)

“s ∈ S0,” against the alternative (H1) “s /∈ S0.”
This problem of testing the homogeneity of a Poisson process has been widely investigated both from a theoretical

and practical point of view (see [2] or [7] for a survey and [5] for a more recent work). In these papers, the alternative
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intensities are monotonous. Another related topic is the problem of testing the simple hypothesis that a point process
is a Poisson process with a given intensity. We can cite for instance the papers by Fazli and Kutoyants [12] where the
alternative is also a Poisson process with a known intensity, Fazli [11] where the alternatives are Poisson processes
with one-sided parametric intensities or Dachian and Kutoyants [10], where the alternatives are self-exciting point
processes. The paper by Ingster and Kutoyants [18] is the closest one to the present work. The alternatives considered
by Ingster and Kutoyants are Poisson processes with nonparametric intensities in a Sobolev or Besov B(δ)

2,q(R) ball
with 1 ≤ q < +∞ and known smoothness parameter δ.

However, in some practical cases like the study of occurrences of words or motifs on a DNA sequence, such
smooth alternatives cannot be considered. The intensity of the Poisson process in these cases may burst at a particular
position of special interest for the biologist (see [14] for more details). The question of testing the homogeneity of
a Poisson process then becomes “how can we distinguish a Poisson process with constant intensity from a Poisson
process whose intensity has some small localized spikes?.” This question has already been partially considered in the
seventies in a precursory work by Watson [27]: he proposed a test based on the estimation of the Fourier coefficients
of the intensity without evaluating the power of the resulting procedure.

In this paper, we focus on constructing adaptive testing procedures, i.e. which do not use any prior information
about the smoothness of the intensity s, but which however have the best possible performances (in a minimax sense).

From a theoretical point of view, we evaluate the performances of the tests in terms of uniform separation rates
with respect to some prescribed distance d over various classes of functions. Given β ∈]0,1[, a class of functions S1,
and a level α test Φα with values in {0,1} (rejecting (H0) when Φα = 1), the uniform separation rate ρ(Φα, S1, β)

of Φα over the class S1 is defined as the smallest positive number ρ such that the test has an error of second kind at
most equal to β for all alternatives s in S1 at an L

2-distance ρ from S0. More precisely, if Ps denotes the distribution
of the Poisson process N with intensity s,

ρ(Φα, S1, β) = inf
{
ρ > 0, sup

s∈S1,d(s,S0)>ρ

Ps(Φα = 0) ≤ β
}

(1.1)

= inf
{
ρ > 0, inf

s∈S1,d(s,S0)>ρ
Ps(Φα = 1) ≥ 1 − β

}
. (1.2)

In view of the practical situations of our interest, we study some classes of alternatives that can be very irregular, for
instance that can have some localized spikes. We then consider some classical Besov bodies and also some spaces
that can be viewed as weak versions of these classical Besov bodies and that are defined precisely in the following.
The interested reader may find in [23] some illustrations of functions in weak Besov spaces and how the smoothness
parameters of the functions govern the proportion and amplitude of their spikes.

As a first step, we evaluate the best possible value of the uniform separation rate over these spaces. In other words,
we give a lower bound for

ρ(S1, α,β) = inf
Φα

ρ(Φα, S1, β), (1.3)

where the infimum is taken over all level α tests Φα , and where S1 can be either a Besov body or a weak Besov
body. This quantity introduced by Baraud [3] as the (α,β)-minimax rate of testing over S1 or the minimax sepa-
ration rate over S1 is a stronger version of the (asymptotic) minimax rate of testing usually considered. The key
reference for the computation of minimax rates of testing in various statistical models is the series of papers due to
Ingster [16]. Concerning the Poisson model, Ingster and Kutoyants [18] give the minimax rate of testing for Sobolev
or Besov B(δ)

2,q(R) balls with 1 ≤ q < +∞ and smoothness parameter δ > 0. They find that this rate of testing for

the Sobolev or Besov norm or semi-norm is of order L−2δ/(4δ+1). Let us note that we find here lower bounds for the
classical Besov bodies similar to Ingster and Kutoyants’ ones. Furthermore, our lower bounds for the weak Besov
bodies are larger than the ones for classical Besov bodies. Alternatives in weak Besov bodies are in fact so irreg-
ular that it is as difficult to detect them as to estimate them. The problem of estimation in weak Besov spaces is
solved by using thresholding procedures: indeed the weak Besov spaces are closely related to the maxisets of those
procedures (see [19] in the Gaussian framework and [22] in a Poisson model). To our knowledge, no previous re-
sults of this kind exist for weak Besov bodies in testing problems, even in more classical statistical models, like the
density model. Despite the similarity of both models, our lower bounds over weak Besov bodies cannot however
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be straightly transposed to the density model since our proofs heavily rely on the Poissonian independence proper-
ties.

As a second and main step, we construct non asymptotic level α tests which achieve, up to a possible logarithmic
factor, the minimax separation rates over many Besov bodies and weak Besov bodies simultaneously, whereas using
no prior information about the smoothness of the intensity s. Our idea here is to combine some model selection
methods that are effective for alternatives in classical Besov bodies and a thresholding type approach, inspired by
the thresholding rules used for adaptive estimation in weak Besov bodies. Key tools in the proofs of our results are
exponential inequalities for U-statistics of order 2 due to Houdré and Reynaud-Bouret [15].

Of course, both model selection and thresholding approaches have already been used to construct adaptive tests
in various statistical models. One can cite among others the papers by Spokoiny [25,26] in Gaussian white noise
models or by Baraud, Huet and Laurent [4] in a Gaussian regression framework. These papers propose adaptive tests
which combine methods closely related to both model selection and thresholding ones. As for the density framework,
adaptive tests were proposed by Ingster [17] or Fromont and Laurent [13], using model selection type methods and
by Butucea and Tribouley [6] using thresholding type methods.

The present work is organized as follows. In Section 2, we provide lower bounds for the minimax separation rates
over various Besov bodies. Our testing procedures are defined in Section 3, and their uniform separation rates over
Besov bodies are established in Section 4. We carry out a simulation study in Section 5 to illustrate these theoretical
results, and the proofs are postponed to the last section.

2. Lower bounds for the minimax separation rates over Besov bodies

We consider the Poisson process N with intensity s with respect to some measure μ on [0,1], with dμ(x) = Ldx. In
the following, we assume that s belongs to L

2([0,1]), and 〈·, ·〉, ‖ · ‖ and d respectively denote the scalar product

〈f,g〉 =
∫

[0,1]
f (x)g(x)dx,

the L
2-norm

‖f ‖2 =
∫

[0,1]
f 2(x)dx,

and the associated distance.
Let us denote the Haar basis of L

2([0,1]) by {φ0, φ(j,k), j ∈ N, k ∈ {0, . . . ,2j − 1}} with

φ0(x) = 1[0,1](x)

and

φ(j,k)(x) = 2j/2ψ
(
2j x − k

)
, (2.1)

where ψ(x) = 1[0,1/2[(x) − 1[1/2,1[(x).
We set α0 = 〈s,φ0〉 and for every j ∈ N, k ∈ {0, . . . ,2j − 1}, α(j,k) = 〈s,φ(j,k)〉.
We can now introduce the Besov bodies defined for δ > 0, R > 0 by

Bδ
2,∞(R) =

{
s ≥ 0, s ∈ L

2([0,1]), s = α0φ0 +
∑
j∈N

2j −1∑
k=0

α(j,k)φ(j,k),

∀j ∈ N,

2j −1∑
k=0

α2
(j,k) ≤ R22−2jδ

}
, (2.2)
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and more generally for p ≥ 1, R > 0 and δ > max(0,1/p − 1/2), by

Bδ
p,∞(R) =

{
s ≥ 0, s ∈ L

2([0,1]), s = α0φ0 +
∑
j∈N

2j −1∑
k=0

α(j,k)φ(j,k),

∀j ∈ N,

2j −1∑
k=0

|α(j,k)|p ≤ Rp2−pj (δ+1/2−1/p)

}
. (2.3)

As in [22], we also introduce some weaker versions of the above Besov bodies given for γ > 0 and R′ > 0 by

Wγ

(
R′) =

{
s ≥ 0, s ∈ L

2([0,1]), s = α0φ0 +
∑
j∈N

2j −1∑
k=0

α(j,k)φ(j,k),

∀t > 0,
∑
j∈N

2j −1∑
k=0

α2
(j,k)1α2

(j,k)
≤t ≤ R′2t2γ /(1+2γ )

}
. (2.4)

Fixing some levels of error α and β in ]0,1[, and denoting by L
∞(R′′) the set of functions bounded by R′′, our

purpose in this section is to find sharp lower bounds for ρ(Bδ
2,∞(R) ∩ Wγ (R′) ∩ L

∞(R′′), α,β), where ρ is defined
by (1.3).

Starting from a general idea developed by Ingster [16], we obtain the following result.

Theorem 1. Assume that R > 0, R′ > 0, and R′′ ≥ 2, and fix some levels α and β in ]0,1[ such that α + β ≤ 0.59.
Let us consider the different cases that are represented in Fig. 1.

In case (i) where δ ≥ max(γ /2, γ /(1 + 2γ )), then

lim inf
L→+∞L2δ/(1+4δ)ρ

(
Bδ

2,∞(R) ∩ Wγ

(
R′)∩ L

∞(
R′′), α,β

)
> 0.

In case (ii) where δ < γ/2 and γ > 1/2, then

lim inf
L→+∞

(
L

lnL

)γ /(1+2γ )

ρ
(

Bδ
2,∞(R) ∩ Wγ

(
R′)∩ L

∞(
R′′), α,β

)
> 0.

Fig. 1. The set of possible parameters (δ, γ ): visualization of the different cases appearing in Theorem 1.
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In case (iii) where δ < γ/(1 + 2γ ) and γ ≤ 1/2, then

lim inf
L→+∞

(
L1/4 ∧ L2γ /((1+4δ)(1+2γ ))

)
ρ
(

Bδ
2,∞(R) ∩ Wγ

(
R′)∩ L

∞(
R′′), α,β

)
> 0.

Comments:

(1) For the whole set of parameters (δ, γ ) such that δ ≥ γ /(1 + 2γ ), we prove in Section 4 that these lower bounds
are actually sharp.

(2) We have in case (i) lower bounds which coincide with the minimax rates of testing obtained by Ingster and
Kutoyants [18] when testing that a periodic Poisson process has a given intensity in the Besov spaces B(δ)

2,∞(R).
We know (see [13,17], for instance) that such rates can be achieved by some multiple testing procedure based on
model selection type methods. This is the principle of our first procedure described in Section 3.1.

(3) We notice that the lower bounds obtained in case (ii) are equal to the minimax estimation rates on the maxisets
of the thresholding estimation procedure, namely Bκγ /(1+2γ )

2,∞ (R) ∩ Wγ (R′) with some constant κ < 1 (see [19,
22,23] for more details). This means that it is at least as difficult to test as to estimate over such classes of
functions, phenomenon which is quite unusual. Since the minimax estimation rates on these classes are achieved
by thresholding rules, it will be natural to construct a testing procedure based on thresholding methods: this is the
idea that originated our second procedure described in Section 3.2.

(4) As for the case (iii), our present results do not allow us to say anything about the possible optimality of the
obtained lower bound.

3. Two tests of homogeneity

Let us recall that S0 denotes the set of constant functions on [0,1] and that we assume that s belongs to L
2([0,1]).

In this section, we construct level α tests of the null hypothesis (H0) “s ∈ S0,” against the alternative (H1) “s /∈ S0,”
from the observation of the Poisson process N , or the points {Xl, l = 1, . . . ,NL} of the Poisson process.

We introduce two testing procedures that come from two different statistical approaches. The first one originates
in general model selection methods, while the second one is closer to the thresholding type methods.

In order to understand the global ideas of these procedures, let us notice that the squared L
2-distance d2(s, S0)

between s and the set of constant functions S0 can be rewritten as

d2(s, S0) =
∫

[0,1]

(
s(x) −

∫
[0,1]

s(y)dy

)2

dx

= ‖s‖2 − α2
0

=
∑

λ∈Λ∞
α2

λ,

where α0 = 〈s,φ0〉, and for all λ ∈ Λ∞ = {(j, k), j ∈ N, k ∈ {0, . . . ,2j − 1}}, αλ = 〈s,φλ〉.
For every λ ∈ Λ∞, αλ can be estimated by

α̂λ = 1

L

∫
[0,1]

φλ(x)dNx,

which is also equal to

α̂λ = 1

L

NL∑
l=1

φλ(Xl).

From this variable, we deduce an unbiased estimator of α2
λ given by

Tλ = α̂λ
2 − 1

L2

∫
[0,1]

φ2
λ(x)dNx = 1

L2

NL∑
l �=l′=1

φλ(Xl)φλ(Xl′). (3.1)
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Our first approach will consist in constructing estimators of d2(s, S0) = ∑
λ∈Λ∞ α2

λ based on a combination of the
Tλ’s, and in rejecting the null hypothesis when one of these estimators is too large. This was already the spirit of
Watson’s procedure (see [27]). Our second approach is related to the test considered in [4] to detect local alternatives.
It will consist in considering a set of Tλ’s and rejecting the null hypothesis directly when one of the Tλ’s is too large.
Let us now precisely define both procedures.

3.1. A first procedure based on model selection

Assuming that s ∈ L
2([0,1]), a natural idea is to construct a testing procedure from an estimation of the squared

L
2-distance d2(s, S0).

In order to estimate this functional of s, following the ideas of Laurent [20] and Fromont and Laurent [13], we
introduce embedded finite-dimensional linear subspaces of L

2([0,1]). We choose here to consider for J ≥ 1 the
subspaces SJ generated by the subsets {φ0, φλ,λ ∈ ΛJ } of the Haar basis defined by (2.1), with ΛJ = {(j, k), j ∈
{0, . . . , J − 1}, k ∈ {0, . . . ,2j − 1}}. Each subspace SJ is called a model. We denote by DJ = 2J the dimension of SJ ,
and by sJ the orthogonal projection of s onto the model SJ .

Focusing on one model SJ , we estimate d2(s, S0) = ‖s‖2 − α2
0 by the unbiased estimator of ‖sJ ‖2 − α2

0 =∑
λ∈ΛJ

α2
λ given by

T ′
J =

∑
λ∈ΛJ

Tλ, (3.2)

with Tλ defined by (3.1). The estimator T ′
J obviously depends on the choice of the model SJ .

Since we do not want to choose a priori such a model, we consider a collection of models {SJ , J ∈ J } where J is
a finite subset of N

∗, and the corresponding collection of estimators {T ′
J , J ∈ J }.

The procedure that we introduce here then consists in rejecting (H0) “s ∈ S0” when there exists J in J such that
the estimator T ′

J given by (3.2) is too large.
At this point there are several ways to decide when T ′

J is too large.
In all cases, we use the well-known argument that, conditionally on the event “the number of points NL falling

into [0,1] is n,” the points of the process obey the same law as an n-sample (X̃1, . . . , X̃n) with common density
s/
∫
[0,1] s(x)dx. It follows that for all n ∈ N,

Ps

(
T ′

J > q ′|NL = n
)= P

(
1

L2

∑
λ∈ΛJ

n∑
l �=l′=1

φλ(X̃l)φλ(X̃l′) > q ′
)

.

Under the null hypothesis, the intensity s is constant on [0,1], and the X̃l’s are i.i.d., with uniform distribution on
[0,1]. This distribution is free from the parameter s. As a consequence, for every u ∈]0,1[, we can introduce and
estimate by Monte Carlo experiments the (1 − u) quantile of the distribution of T ′

J |NL = n under the null hypothesis,

that we denote by q
′(n)
J (u).

We now consider the test statistics:

T (1)
α = sup

J∈J

(
T ′

J − q
′(NL)
J

(
u

′(NL)
J,α

))
, (3.3)

with u
′(NL)
J,α to be correctly chosen.

Finally, we define the corresponding test function:

Φ(1)
α = 1T (1)

α >0
. (3.4)

And our first test consists in rejecting the null hypothesis (H0) when Φ
(1)
α = 1.

Let us see how we can choose u
′(NL)
J,α so that our test has a level α.
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An obvious possibility is to set

u
′(n)
J,α = α

|J | for every J in J and n in N.

This choice corresponds to a Bonferroni procedure and Φ
(1)
α actually defines a level α test. Indeed, for s ∈ S0,

Ps

(
sup
J∈J

(
T ′

J − q
′(NL)
J

(
u

′(NL)
J,α

))
> 0

)
=
∑
n∈N

Ps

(
sup
J∈J

(
T ′

J − q
′(n)
J

(
α

|J |
))

> 0
∣∣∣NL = n

)
Ps(NL = n)

≤
∑
n∈N

∑
J∈J

α

|J |Ps(NL = n)

≤ α.

Another choice for u
′(n)
J,α , inspired by Fromont and Laurent [13], consists in setting

u
′(n)
J,α = e−WJ sup

{
u ∈]0,1[, sup

s∈S0

Ps

(
sup
J∈J

(
T ′

J − q
′(n)
J

(
ue−WJ

))
> 0

∣∣NL = n
)

≤ α
}
, (3.5)

where {WJ ,J ∈ J } is a collection of positive weights such that∑
J∈J

e−WJ ≤ 1.

Since this new definition of u
′(n)
J,α leads to a less conservative procedure, this is the one that we use in the rest of

the paper. We notice that u
′(n)
J,α ≥ αe−WJ for every n in N, and that in practice, u

′(n)
J,α can be estimated by Monte Carlo

experiments.

3.2. A second procedure based on a thresholding approach

Let us recall here that the squared L
2-distance d2(s, S0) between s and the set of constant functions S0 is equal to∑

λ∈Λ∞ α2
λ and that Tλ defined by (3.1) is an unbiased estimator of α2

λ. Based on general thresholding ideas, our
second procedure consists in fixing some J̄ ≥ 1 and rejecting the null hypothesis (H0) when there exists λ in ΛJ̄ such
that Tλ is too large.

Let us now see what we mean by “Tλ is too large.” We can still use the fact that

Ps(Tλ > q|NL = n) = P

(
1

L2

n∑
l �=l′=1

φλ(X̃l)φλ(X̃l′) > q

)
,

and that under the null hypothesis, the X̃l’s are i.i.d., with uniform distribution on [0,1]. We can therefore introduce
and estimate by Monte Carlo experiments the (1 − u) quantile of the distribution of Tλ|NL = n under the null hy-
pothesis, that we denote by q

(n)
λ (u), for every u ∈]0,1[. Notice that for λ = (j, k) ∈ ΛJ̄ , q

(n)
λ (u) does not depend

on k.
We set

T (2)
α = sup

λ∈ΛJ̄

(
Tλ − q

(NL)
λ

(
u

(NL)
λ,α

))
, (3.6)

with u
(NL)
λ,α to be correctly chosen.
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We also define

Φ(2)
α = 1T (2)

α >0
. (3.7)

Our test consists in rejecting the null hypothesis (H0) when Φ
(2)
α = 1.

Let us now see how we choose u
(n)
λ,α . An obvious choice corresponding to the Bonferroni procedure would be

u
(n)
λ,α = α

2j J̄
for every λ = (j, k) in ΛJ̄ and n in N.

To obtain a less conservative procedure, we prefer setting

u
(n)
λ,α = u

(n)
α

2j J̄
for every λ = (j, k) in ΛJ̄ and n in N, (3.8)

with

u(n)
α = sup

{
u ∈]0,1[, sup

s∈S0

Ps

(
sup

(j,k)∈ΛJ̄

(
T(j,k) − q

(n)
(j,k)

(
u

2j J̄

))
> 0

∣∣∣NL = n

)
≤ α

}
. (3.9)

When s ∈ S0,

Ps

(
sup

λ∈ΛJ̄

(
Tλ − q

(NL)
λ

(
u

(NL)
λ,α

))
> 0

)

= Ps

(
sup

(j,k)∈ΛJ̄

(
T(j,k) − q

(NL)
(j,k)

(
u

(NL)
α

2j J̄

))
> 0

)

=
∑
n∈N

Ps

(
sup

(j,k)∈ΛJ̄

(
T(j,k) − q

(n)
(j,k)

(
u

(n)
α

2j J̄

))
> 0

∣∣∣NL = n

)
P(NL = n)

≤ α,

which means that Φ
(2)
α defines a level α test.

Note that u
(n)
α satisfies u

(n)
α ≥ α and that it can be estimated in practice by Monte Carlo experiments.

Comments:

(1) Though the two testing procedures defined by (3.4) and (3.7) are very different in their spirit, they can formally
be written in a common way. For any subset Λ of Λ∞, we denote by SΛ the subspace generated by {φ0, φλ,λ ∈
Λ}, by sΛ the orthogonal projection of s onto SΛ, and we introduce the unbiased estimator T ′′

Λ = ∑
λ∈Λ Tλ of

‖sΛ‖2 − α2
0 =∑

λ∈Λ α2
λ. Then our test functions can be written as

Φα = 1Tα>0, (3.10)

where

Tα = sup
Λ∈C

(
T ′′

Λ − t ′′Λ,α
(NL))

,

and C is a finite collection of subsets of Λ∞.
Noticing that T ′

J = T ′′
ΛJ

, we can easily see that our first test amounts in taking a collection C equal to {ΛJ , J ∈
J }, and t ′′ΛJ ,α

(NL) = q
′(NL)
J (u

′(NL)
J,α ). Furthermore, our second test amounts in taking a collection C composed of

all subsets of ΛJ̄ , and for Λ ⊂ ΛJ̄ , t ′′Λ,α
(NL) = ∑

λ∈Λ q
(NL)
λ (u

(NL)
λ,α ). Indeed, there exists a subset Λ of ΛJ̄ such

that
∑

λ∈Λ Tλ >
∑

λ∈Λ q
(NL)
λ (u

(NL)
λ,α ) if and only if there exists λ in ΛJ̄ such that Tλ > q

(NL)
λ (u

(NL)
λ,α ).
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Such a common expression will be particularly useful to derive the properties of the tests.
It also allows us to see our tests as multiple testing procedures. Indeed, we can consider that for each Λ in C ,

we construct a test rejecting the null hypothesis when T ′′
Λ − t

′′(NL)
Λ,α > 0. We thus obtain a collection of tests and

we finally decide to reject the null hypothesis when it is rejected for at least one of the tests of the collection.
(2) Both procedures have a specific interest to prove the optimality of lower bounds obtained in Theorem 1. We will

actually prove in the next section that the first one achieves the lower bounds obtained in case (i) of Theorem 1 (up
to a possible logarithmic factor) whereas the second one achieves lower bounds obtained in case (ii) of Theorem 1.
However, if we want a procedure that achieves lower bounds of cases (i) and (ii) simultaneously, we will have
to consider the test which consists in mixing the two procedures. In this case, we reject the null hypothesis (H0)

when sup {Φ(1)
α/2,Φ

(2)
α/2} = 1.

4. Uniform separation rates

In this section, we evaluate the performances of our new testing procedures from a theoretical point of view. More
precisely, we prove that our procedures are optimal in the sense that their uniform separation rates over Besov bodies
are of the same order as the lower bounds for ρ obtained in Section 2. These results justify the construction of our
procedures as well as they provide the upper bounds needed for the exact evaluation of the minimax separation rates
over weak and classical Besov bodies in the Poisson framework.

In the following, the expression C(α,β,R,R′,R′′, δ, γ, . . .) or Ck(α,β,R,R′,R′′, δ, γ, . . .) is used to denote some
constant which only depends on the parameters α,β,R,R′,R′′, δ, γ, . . . , and which may vary from line to line.

4.1. Uniform separation rates of the first procedure

4.1.1. The error of second kind
The aim of the following theorem is to give a condition on the alternative so that our first level α test has a prescribed
error of second kind.

Theorem 2. Assume that s ∈ L
∞([0,1]), and that L ≥ 1. Fix some levels α and β in ]0,1[, and let Φ

(1)
α be the test

function defined by (3.4). There exist some positive constants C1(α,β, ||s||∞), C2(α,β), C3, C4(β) and C5 such that
when s satisfies

d2(s, S0) > inf
J∈J

{
||s − sJ ||2 + C1

(
α,β, ||s||∞

)√DJ

L
+ C2(α,β)

DJ

L2

+
(

C3

∫
[0,1]

s(x)dx + C4(β)

)(√
DJ WJ

L
+ WJ

L

)
+ C5

DJ W 2
J

L2

}
(4.1)

then

Ps

(
Φ(1)

α = 0
)≤ β.

Comment: Considering here a multiple testing procedure instead of a simple one allows to obtain in the right-hand
side of the inequality (4.1) an infimum over all J in J at the only price of introducing some terms with WJ . These
last terms will appear in the following uniform separation rates over classical Besov bodies as a ln ln L factor, which
is now known to be the price to pay for adaptivity in some classical statistical models. As a consequence, our multiple
testing procedure will be proved to be adaptive over classical Besov bodies in Proposition 1, which would not occur
with a simple testing procedure.

4.1.2. Uniform separation rates over Besov bodies
In this section, we evaluate the uniform separation rates ρ(Φ

(1)
α , Bδ

2,∞(R) ∩ L
∞(R′′), β) where ρ is defined by (1.1),

and Bδ
2,∞(R) is any Besov body defined by (2.2).
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Let us first notice that the functions of Bδ
2,∞(R) are well approximated by their projections onto subspaces of the

collection {SJ , J ∈ J } considered in our first procedure, in the sense that if s ∈ Bδ
2,∞(R), then

‖s − sJ ‖2 ≤ c(δ)R2D−2δ
J .

As a consequence we can use Theorem 2 to obtain upper bounds for the uniform separation rates of our test.
We denote by �x� the integer part of x.

Proposition 1. Assume that ln lnL ≥ 1. Given some levels α and β in ]0,1[, let Φ
(1)
α be the test function defined

by (3.4) with J = {1, . . . , �log2(L
2/(ln lnL)3)�} and WJ = ln |J | for every J in J .

For every δ > 0, R > 0 and R′′ > 0, there exists some positive constant C(α,β,R′′, δ) such that when s belongs to
Bδ

2,∞(R) ∩ L
∞(R′′) and satisfies

d2(s, S0) > C
(
α,β,R′′, δ

)(
R2/(4δ+1)

(√
ln lnL

L

)4δ/(4δ+1)

+ R2
(

(ln lnL)3

L2

)2δ

+ ln lnL

L

)
,

then

Ps

(
Φ(1)

α = 0
)≤ β.

In particular, there exist some positive constants L0(δ) and C(α,β,R,R′′, δ) such that if L > L0(δ), then

ρ
(
Φ(1)

α , Bδ
2,∞(R) ∩ L

∞(
R′′), β)≤ C

(
α,β,R,R′′, δ

)(√
ln lnL

L

)2δ/(4δ+1)

.

Comments:

(1) Our first testing procedure is therefore adaptive: indeed, for large L, it achieves the lower bounds for the minimax
separation rates over all the spaces Bδ

2,∞(R)∩Wγ (R′)∩L
∞(R′′) with δ ≥ max(γ /2, γ /(1+2γ )) simultaneously

up to a possible ln lnL factor (see Theorem 1).
However it does not achieve the optimal separation rates obtained in the case where δ < γ/2 and γ > 1/2. In

this range of parameters, the regularity in γ is higher than the regularity in δ, meaning that the weak Besov body
governs the separation rate. That is the reason why we introduced the thresholding type procedure.

(2) The upper bound for the uniform separation rate obtained here is exactly of the same order as the (asymptotic)
adaptive minimax rate of testing obtained by Ingster [17] in the density model, replacing the number n of obser-
vations in the density model by the parameter L of the Poisson model. In particular the ln lnn, replaced here by a
ln lnL factor, is proved to be necessary in the density model for adaptive procedures.

(3) It is easy to see that Bδ
p,∞(R) ⊂ Bδ

2,∞(R) when p > 2. So the result of Proposition 1 directly leads to upper

bounds for the uniform separation rates ρ(Φ
(1)
α , Bδ

p,∞(R) ∩ L
∞(R′′), β) when p > 2. These rates, obtained in

the Poisson framework, correspond to the ones in some Gaussian models (see [25], for instance) or in the density
model (see [17]).

(4) Note that one could also consider some tests based on the Fourier basis as well as the Haar basis, as Fromont
and Laurent [13] did in the density model. The theoretical results would remain unchanged, and the practical
performances of the procedure would be better when considering smooth alternatives (see [13] for more details
and Section 5). We have only considered here tests based on the Haar basis for the sake of simplicity.

4.2. Uniform separation rates of the second procedure

4.2.1. The error of second kind
From the common expression (3.10) of the test function for the two procedures, we obtain here a result similar to
Theorem 2 for the error of second kind of our second test.
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Theorem 3. Assume that s ∈ L
∞([0,1]), and that L ≥ 1. Fix some levels α and β in ]0,1[, and let Φ

(2)
α be the test

function defined by (3.7). Recall that for any subset Λ of Λ∞, SΛ and sΛ respectively denote the subspace generated
by {φ0, φλ,λ ∈ Λ} and the orthogonal projection of s onto SΛ. Denoting by DΛ the dimension of SΛ, there exist some
positive constants C1(α,β, ||s||∞), C2(β), C3(α), C4(α,β) and C5(α) such that when s satisfies

d2(s, S0) > inf
Λ⊂ΛJ̄

{
||s − sΛ||2 + C1

(
α,β, ||s||∞

)(√
DΛ

L
+ 2J̄ /2

L3/2

)
+ C2(β)

2J̄

L2

+
(

C3(α)

∫
[0,1]

s(x)dx + C4(α,β)

)
DΛ ln(2J̄ J̄ )

L
+ C5(α)

DΛ2J̄ ln2(2J̄ J̄ )

L2

}
(4.2)

then

Ps

(
Φ(2)

α = 0
)≤ β.

4.2.2. Uniform separation rates over Besov bodies

Proposition 2. Assume that lnL ≥ 1. Given some levels α and β in ]0,1[, let Φ
(2)
α be the test defined by (3.7) with

J̄ = �log2(L/ lnL)�.
For every δ > 0 and γ > 0, R > 0, R′ > 0 and R′′ > 0, there exists some positive constant C(α,β,R′′, δ, γ ) such

that if s belongs to Bδ
2,∞(R) ∩ Wγ (R′) ∩ L

∞(R′′) and satisfies

d2(s, S0) > C
(
α,β,R′′, δ, γ

)( lnL

L
+ R2

(
lnL

L

)2δ

+ R′2
(

lnL

L

)2γ /(1+2γ )

+ R′2+4γ

(
lnL

L

)2γ)
,

then

Ps

(
Φ(2)

α = 0
)≤ β.

In particular, when δ ≥ γ /(1 + 2γ ), there exist some positive constants L0(δ, γ ) and C(α,β,R,R′,R′′, δ, γ ) such
that if L > L0(δ, γ ), then

ρ
(
Φ(2)

α , Bδ
2,∞(R) ∩ Wγ

(
R′)∩ L

∞(
R′′), β)≤ C

(
α,β,R,R′,R′′, δ, γ

)( lnL

L

)γ /(1+2γ )

.

Comments:

(1) Our second testing procedure is still adaptive in the sense that for large L, it achieves the lower bounds for
the minimax separation rates over all the spaces Bδ

2,∞(R) ∩ Wγ (R′) ∩ L
∞(R′′) with γ /(1 + 2γ ) ≤ δ < γ/2

simultaneously (see Theorem 1). In this case, we also remark that these rates are so large that there is no further
price to pay for adaptivity in the sense that the upper bound does not involve any extra logarithmic factor. To our
knowledge, this phenomenon is completely new for nonparametric testing procedures.

(2) Our second procedure achieves the lower bounds for the minimax separation rates over all the spaces Bδ
2,∞(R) ∩

Wγ (R′) ∩ L
∞(R′′) with γ /(1 + 2γ ) ≤ δ < γ/2 simultaneously, but it does not when δ ≥ max(γ /2, γ /(1 + 2γ )).

To obtain a test that achieves the minimax separation rates in both cases, our two procedures need to be combined.

4.3. Uniform separation rates of the combined procedure

Corollary 1. Assume that ln lnL ≥ 1. Fix some levels α and β in ]0,1[. Let Φ
(1)
α/2 be the level α/2 test defined by (3.4)

with J = {1, . . . , �log2(L
2/(ln lnL)3)�} and WJ = ln |J | for every J in J . Let Φ

(2)
α/2 be the level α/2 test defined

by (3.7) with J̄ = �log2(L/ lnL)�. We consider Φ
(3)
α = sup {Φ(1)

α/2,Φ
(2)
α/2}.
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(i) For all δ > 0 and γ > 0, R > 0, R′ > 0 and R′′ > 0, there exist some positive constants L0(δ) and
C(α,β,R,R′′, δ) such that if L > L0(δ), then

ρ
(
Φ(3)

α , Bδ
2,∞(R) ∩ Wγ

(
R′)∩ L

∞(
R′′), β)≤ C

(
α,β,R,R′′, δ

)(√
ln lnL

L

)2δ/(4δ+1)

.

(ii) For all (δ, γ ) such that δ ≥ γ /(2γ +1), R > 0, R′ > 0 and R′′ > 0, there exist some positive constants L0(δ, γ )

and C(α,β,R,R′,R′′, δ, γ ) such that if L > L0(δ, γ ), then

ρ
(
Φ(3)

α , Bδ
2,∞(R) ∩ Wγ

(
R′)∩ L

∞(
R′′), β)≤ C

(
α,β,R,R′,R′′, δ, γ

)( lnL

L

)γ /(1+2γ )

.

Comments: Since

Ps

(
Φ(3)

α = 0
)≤ inf

{
Ps

(
Φ

(1)
α/2 = 0

)
,Ps

(
Φ

(2)
α/2 = 0

)}
,

the proof of this result directly comes from Propositions 1 and 2.
The upper bounds for the uniform separation rates of the above combined procedure over Bδ

2,∞(R) ∩ Wγ (R′) ∩
L

∞(R′′) obtained here actually coincide with the lower bounds of Theorem 1 for the whole set of parameters (δ, γ )

such that δ ≥ γ /(2γ + 1) (up to a ln lnL factor when δ ≥ γ /2). This proves that our combined procedure is conse-
quently adaptive over the spaces Bδ

2,∞(R) ∩ Wγ (R′) ∩ L
∞(R′′), and also that the lower bounds of Theorem 1 are

sharp for this set of parameters.
We however do not obtain such a result for the set of parameters (δ, γ ) such that δ < γ/(2γ + 1). Hence we do not

know the exact order of the uniform separation rate of our combined procedure over Bδ
2,∞(R) ∩ Wγ (R′) ∩ L

∞(R′′)
when δ < γ/(2γ + 1), and we cannot say here whether our lower bounds for these spaces are optimal or not.

5. Simulation study

We aim in this section at studying the performances of our tests from a practical point of view. We consider several
intensities s defined on [0,1] such that

∫ 1
0 s(x)dx = 1. N denotes here a Poisson process with intensity Ls on [0,1]

with respect to the Lebesgue measure, and Ps the distribution of this process. We denote by s0 the intensity which is
constant (equal to 1) on [0,1]. We choose L = 100 and a level of test α = 0.05.

Let us now recall that our first procedure may be based on the test statistics

T (1)
α = sup

J∈J

(
T ′

J − q
′(NL)
J

(
u′(NL)

α /|J |)),
where q

′(n)
J (u) denotes the (1 − u) quantile of T ′

J |NL = n under the hypothesis that s = s0, and u
′(n)
α is chosen such

that

u′(n)
α = sup

{
u ∈]0,1[,Ps0

(
sup
J∈J

(
T ′

J − q
′(n)
J

(
u/|J |))> 0

∣∣NL = n
)

≤ α
}
.

The null hypothesis (H0) “s = s0” is rejected when T (1)
α > 0.

We choose J = {1, . . . ,6}. For 40 ≤ n ≤ 160, we estimate the quantities u
′(n)
α and the quantiles q

′(n)
J (u

′(n)
α /|J |)

for all J in J . These estimations are based on the simulation of 200 000 independent samples with size n, uniformly
distributed on [0, 1]. Half of the samples is used to estimate the quantiles q

′(n)
J (u/|J |) for u varying on a grid over

[0,1], and the other samples are used to estimate the probabilities occurring in the definition of u
′(n)
α . Finally, u

′(n)
α is

estimated by the largest value on the grid such that these estimated probabilities are smaller than α.
Let us also recall that our second procedure is based on the test statistics

T (2)
α = sup

λ∈ΛJ̄

(
Tλ − q

(NL)
λ

(
u

(NL)
λ,α

))
,
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where q
(n)
λ (u) denotes the (1 − u) quantile of Tλ|NL = n under the hypothesis that s = s0. For λ = (j, k) ∈ ΛJ̄ ,

u
(n)
λ,α = u

(n)
α /(2j J̄ ) with u

(n)
α defined by (3.9). The null hypothesis (H0) “s = s0” is rejected when T (2)

α > 0.

We choose J̄ = 6. For 40 ≤ n ≤ 160, we estimate the quantities u
(n)
α and the quantiles q

(n)
λ (u

(n)
λ,α) for all λ ∈ ΛJ̄ .

These estimations are based on the simulation of 200 000 independent samples with size n, uniformly distributed on
[0, 1]. Half of the samples is used to estimate the quantiles q

(n)
(j,k)(u/(2j J̄ )) for u varying on a grid over [0,1], and the

other samples are used to estimate the probabilities that occur in (3.9). Finally, we estimate u
(n)
α in the same way as in

the first procedure.
We finally study the combined procedure which consists in mixing our first procedure based on T (1)

α/2, and our

second procedure based on T (2)
α/2, respectively defined with the same parameters as T (1)

α and T (2)
α above. The quantiles

of the two level α/2 procedures are also estimated in the same way by 200 000 Monte Carlo experiments.
The number of iterations for our Monte Carlo estimations has been chosen so that the values of the quantiles

become stable enough, in particular for small values of n.
At this stage, we can estimate the powers of the three tests under various alternatives. The chosen alternatives

are intensities that have already been studied among others by Reynaud-Bouret and Rivoirard [22], in the estimation
problem. Since we are particularly interested in detecting the homogeneity of a Poisson process when the alternatives
may be very irregular, we focus on the functions defined by

s1(x) = (1 + ε)1[0,0.125[(x) + (1 − ε)1[0.125,0.25[(x) + 1[0.25,1](x),

s2(x) =
(

1 + η
∑
j

hj

2

(
1 + sgn(x − pj )

))1[0,1](x)

C2(η)
,

s3(x) = (1 − ε)1[0,1](x) + ε

(∑
j

gj

(
1 + |x − pj |

wj

)−4)1[0,1](x)

0.284
,

where⎧⎪⎨⎪⎩
p = [0.1 0.13 0.15 0.23 0.25 0.4 0.44 0.65 0.76 0.78 0.81 ],
h = [4 −4 3 −3 5 −5 2 4 −4 2 −3 ],
g = [4 5 3 4 5 4.2 2.1 4.3 3.1 5.1 4.2 ],
w = [0.005 0.005 0.006 0.01 0.01 0.03 0.01 0.01 0.005 0.008 0.005 ],

0 < ε ≤ 1, 0 < η ≤ 2, and C2(η) is such that
∫ 1

0 s2(x)dx = 1.
These alternatives, for particular values of the parameters, are represented in Fig. 2.

Fig. 2. Functions s1, s2, s3.
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Fig. 3. Histograms of one simulated Poisson process.

In Fig. 3, we represent the histograms of one simulated sample for some of these alternatives and for a constant
intensity on [0,1]. Note that these histograms are clearly not sufficient to separate the alternatives from the null
hypothesis.

We also consider two monotonous alternatives defined by

s4(x) = (1 − ε)1[0,0.75[(x) + (1 + 3ε)1[0.75,1](x),

s5(x) = (1 − ε)1[0,1](x) + εβxβ−11[0,1](x),

where 0 < ε < 1, and β > 1.
These alternatives, for particular values of the parameters, are represented in Fig. 4.
In Fig. 5, we represent the histograms of one simulated sample for some of these alternatives.
For each alternative s, we simulate 20 000 Poisson processes with intensity Ls on [0,1], and we estimate the

powers of our three tests by

P̂1 = 1

20 000

20 000∑
k=1

1T (1),k
α >0

,

P̂2 = 1

20 000

20 000∑
k=1

1T (2),k
α >0

and

P̂3 = 1

20 000

20 000∑
k=1

1
sup {T (1),k

α/2 ,T (2),k
α/2 }>0

,
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Fig. 4. Functions s4 and s5.

Fig. 5. Histograms of one simulated Poisson process.

where T (1),k
α , T (2),k

α , T (1),k
α/2 and T (2),k

α/2 are the test statistics T (1)
α , T (2)

α , T (1)
α/2, T (2)

α/2 computed for the kth simulated
Poisson process.

We compare the obtained estimated powers with the estimated powers of the classical Kolmogorov and Smirnov’s
test applied to the Poisson process conditionally on the event “the number of points of the Poisson process is n.” The
estimated powers of Kolmogorov and Smirnov’s test denoted by P̂KS are also obtained by 20 000 simulations of a
Poisson process with intensity Ls on [0,1].

The estimated powers are furthermore compared to the estimated powers of the tests studied in practice by the
other authors. Such tests are in fact devoted to the particular case of increasing alternatives, which may be relevant
in reliability contexts involving repairable systems. Bain, Engelhardt and Wright [2] and Cohen and Sackrowitz [7]
consider in these contexts six well-known tests. They show that two of these six tests, namely the so-called Laplace
and Z tests (respectively studied first by Cox [8] and Crow [9]) are preferable to use.

The Laplace test is based on the statistics

T (La)
α =

NL∑
l=1

Xl − q
(NL)
La (α),

where (X1, . . . ,XNL
) are the points of the process, and for every n, q

(n)
La (α) is the (1 − α) quantile of the sum of n

independent random variables uniformly distributed on [0,1].
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The Z test is based on the statistics

T (Z)
α = 2

NL∑
l=1

ln(Xl) + q
(NL)
Z (α),

where for every n, q
(n)
Z (α) is the α quantile of the chi square distribution with 2n degrees of freedom.

Assuming that the intensity s is increasing, the null hypothesis (H0) “s is constant on [0,1]” is rejected when
T (La)

α > 0 or T (Z)
α > 0. The estimated powers of the Laplace and Z tests are respectively denoted by P̂La and P̂Z .

The readers need to be aware that these tests are especially constructed to detect homogeneity against increasing
trend, when reading the estimated power tables.

Let us now present the results we obtained for the different tests. The estimated powers for Poisson processes with
intensities Ls1, Ls2, Ls3, Ls4 and Ls5 with various values of the parameters are given in Tables 1–5.

Comments:

(1) It first emerges from these results that when the alternatives are not increasing, our three tests have estimated
powers significantly larger than the Laplace and Z tests that are designed for increasing alternatives, but also than

Table 1
Alternatives s1

ε = 0 0.5 0.6 0.7 0.8 0.9 1

P̂1 0.05 0.25 0.39 0.56 0.73 0.89 0.98
P̂2 0.05 0.33 0.52 0.72 0.87 0.96 1
P̂3 0.04 0.28 0.46 0.66 0.83 0.95 0.99
P̂KS 0.05 0.09 0.13 0.19 0.27 0.37 0.48
P̂La 0.05 0.03 0.03 0.03 0.03 0.02 0.02
P̂Z 0.05 0.01 0.01 0.01 0.01 0.01 0.01

Table 2
Alternatives s2

η = 0 0.5 1 1.5 2
C2(η) = 1 2.27 3.54 4.81 6.08

P̂1 0.05 0.61 0.87 0.94 0.97
P̂2 0.05 0.41 0.64 0.75 0.80
P̂3 0.04 0.53 0.81 0.90 0.94
P̂KS 0.05 0.14 0.25 0.34 0.39
P̂La 0.05 0.05 0.06 0.06 0.06
P̂Z 0.05 0.26 0.39 0.46 0.51

Table 3
Alternatives s3

ε = 0 0.2 0.3 0.4 0.5 0.6

P̂1 0.05 0.28 0.65 0.91 0.99 1
P̂2 0.05 0.20 0.43 0.71 0.90 0.98
P̂3 0.04 0.23 0.57 0.88 0.99 1
P̂KS 0.05 0.11 0.21 0.37 0.56 0.76
P̂La 0.05 0.01 0.00 0.00 0.00 0.00
P̂Z 0.05 0.03 0.03 0.02 0.02 0.01
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Table 4
Alternatives s4

ε = 0 0.1 0.2 0.3 0.4

P̂1 0.05 0.20 0.69 0.97 1
P̂2 0.05 0.16 0.62 0.95 1
P̂3 0.04 0.15 0.62 0.96 1
P̂KS 0.05 0.26 0.77 0.98 1
P̂La 0.05 0.37 0.82 0.98 1
P̂Z 0.05 0.24 0.57 0.85 0.97

Table 5
Alternatives s5

(β, ε) = (1.5,0.2) (1.5,0.6) (1.5,1) (2,0.2) (2,0.6) (2,1)

P̂1 0.20 0.49 0.79 0.24 0.62 1
P̂2 0.18 0.43 0.69 0.24 0.62 1
P̂3 0.17 0.43 0.70 0.23 0.62 1
P̂KS 0.22 0.56 0.91 0.24 0.62 1
P̂La 0.24 0.60 0.98 0.24 0.62 1
P̂Z 0.24 0.61 0.99 0.24 0.62 1

Kolmogorov and Smirnov’s test. Furthermore, we cannot give prior arguments to choose one of our two first tests
rather than the other one in these case. Indeed, we can notice that the first one is more powerful than the second
one for alternatives s2 which are rather smooth, but also for alternatives s3 which are very irregular. Thus, in the
case of nonincreasing alternatives such as s1, s2 and s3, or in the practical situations of our interest such as the
study of occurrences on DNA sequences where the intensities may have some localized spikes, this should argue
in favor of the choice of our third test which corresponds to the combined procedure. Note here that this third test
does not really suffer from the fact that its real level is slightly less than α.

(2) As for the increasing alternatives, the specific Laplace and Z tests remain as expected the most powerful ones,
except for the alternatives s4, that are not as smooth as the s5 alternatives. Kolmogorov and Smirnov’s test is
also often more powerful than our tests. However, we know that in the case of smooth alternatives, we could
probably significantly improve the estimated powers of our first test by using the Fourier basis instead of the Haar
basis. Since our first test is very similar to Fromont and Laurent’s [13] one in the density model, we refer to this
paper for more details. We could also consider a new test combining for instance our first test with the Laplace
test.

6. Proofs

6.1. Proof of Theorem 1

Since it is easier to argue in terms of errors of second kind than in terms of minimax separation rates directly, we start
by defining for all S ⊂ L

2([0,1]),
β(S) = inf

Φα

sup
s∈S

Ps(Φα = 0),

where the infimum is taken over all level α tests Φα and by stating a useful and well-known lemma.

Lemma 1. Let r be a positive number, and S , S ′ be subsets of L
2([0,1]).
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(i) If β({s ∈ S, d(s, S0) ≥ r}) ≥ β, then

ρ(S, α,β) ≥ r.

(ii) If S ′ ⊂ S , then β(S) ≥ β(S ′).

The proof of the lemma is straightforward.
Our aim here is to construct finite sets SM,D,r such that

SM,D,r ⊂ {
s ∈ Bδ

2,∞(R) ∩ Wγ

(
R′)∩ L

∞(
R′′), d(s, S0) ≥ r

}
, (6.1)

and that

β(SM,D,r ) ≥ β, (6.2)

with r as large as possible.
These finite sets are based on a family of functions {ϕM,i, i ∈ {1, . . . ,M}} such that for all x ∈ [0,1], ϕM,i(x) =

ϕ(Mx − i + 1), where ϕ is a function on [0,1] such that∫ 1

0
ϕ(x)dx = 0,

∫ 1

0
ϕ(x)2 dx = 1 and ∀x ∈ [0,1], ∣∣ϕ(x)

∣∣≤ ρ. (6.3)

For r > 0, and D ≤ M , we introduce the set

SM,D,r =
{

sξ,Δ,r = ρ1[0,1] + r

√
M

D

M∑
i=1

ΔiξiϕM,i, ξ ∈ {−1,+1}M,Δ ∈ {0,1}M,

M∑
i=1

Δi = D

}
. (6.4)

As a first step, we notice that the functions sξ,Δ,r ’s are positive as soon as r2 ≤ D/M and that for every sξ,Δ,r ∈
SM,D,r , d(sξ,Δ,r , S0)

2 = ||sξ,Δ,r − ρ1[0,1]||2 = r2 (see (6.3)).
As a second step, we want to find which positive r leads to β(SM,D,r ) ≥ β .
Let us recall a fundamental lemma which can be found in [16] or [3] for other frameworks.

Lemma 2. Let ν be a probability measure on SM,D,r and let σ ∼ ν. Let Pν be the distribution of a point process N

such that the conditional distribution of N given that σ = s is a Poisson process with intensity s. Let P0 be the
distribution of a Poisson process with constant intensity given by ρ1[0,1], and E0 denote the expectation with respect
to P0. Let Lν be the likelihood ratio Lν = dPν/dP0. Then

β(SM,D,r ) ≥ 1 − α − 1

2

(
E0

[
L2

ν(N)
]− 1

)1/2
.

Proof. The proof is obtained by rather straightforward computations. One has

β(SM,D,r ) ≥ inf
Φα

∫
Ps(Φα = 0)dν(s)

≥ 1 − sup
Φα

∫
Ps(Φα = 1)dν(s)

≥ 1 − sup
Φα

[∣∣Pν(Φα = 1) − P0(Φα = 1)
∣∣+ ∣∣P0(Φα = 1)

∣∣]
≥ 1 − α − ||Pν − P0||TV,

where || · ||TV corresponds to the total variation norm. Hence,

β(SM,D,r ) ≥ 1 − α − 1

2
E0

[∣∣∣∣dPν

dP0
− 1

∣∣∣∣]
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≥ 1 − α − 1

2
E0

[∣∣Lν(N) − 1
∣∣2]1/2

.

But E0[Lν(N)] = 1. So β(SM,D,r ) ≥ 1 − α − (E0[L2
ν(N)] − 1)1/2/2. �

Regarding Lemma 2, we still have to find a distribution ν and r such that E0[L2
ν(N)] ≤ 1 + 4(1 − α − β)2 which

implies that β(SM,D,r ) ≥ β.

Let ξ = (ξ1, . . . , ξM) be a random vector, such that the ξi ’s are i.i.d. Rademacher variables, taking the values +1
and −1 with probability 1/2. Let Δ = (Δ1, . . . ,ΔM) be a random vector, independent of ξ and defined by Δi = 1i∈I ,
where I is a set of D indices drawn at random from {1, . . . ,M} without replacement.

Then the random function sξ,Δ,r = ρ1[0,1] + r

√
M
D

∑M
i=1 ΔiξiϕM,i belongs to SM,D,r , which allows to take its

distribution as ν.
Let us denote by Eξ the expectation with respect to the variable ξ and by EI the expectation with respect to the ran-

dom set I defined above. By definition, Lν = ∫
dPs/dP0 dν(s). Hence Lν(N) = EI Eξ [exp(

∫ 1
0 ln(sξ,Δ,r (x)/ρ)dNx)].

This can be rewritten as

Lν(N) = EI Eξ

[
M∏
i=1

exp

(∫
](i−1)/M,i/M]

ln

(
1 + r

√
M

D
ξiΔi

ϕM,i(x)

ρ

)
dNx

)]
= EI

[∏
i∈I

Ai

]
,

where

Ai = 1

2

(
exp

(∫
](i−1)/M,i/M]

ln

(
1 + r

√
M

D

ϕM,i(x)

ρ

)
dNx

)

+ exp

(∫
](i−1)/M,i/M]

ln

(
1 − r

√
M

D

ϕM,i(x)

ρ

)
dNx

))
.

Let I ′ be a random set of indices with the same distribution as I and independent of I . Then,

E0
[
L2

ν(N)
] = E0EI EI ′

[∏
i∈I

Ai

∏
i∈I ′

Ai

]

= E0EI EI ′
[ ∏

i∈I\I ′
Ai

∏
i∈I ′\I

Ai

∏
i∈I∩I ′

A2
i

]
.

But under the distribution P0, the variables Ai ’s are mutually independent since they only depend on the integrals of
the Poisson process on intervals with disjoint support. Consequently,

E0
[
L2

ν(N)
]= EI EI ′

[ ∏
i∈I\I ′

E0[Ai]
∏

i∈I ′\I
E0[Ai]

∏
i∈I∩I ′

E0
[
A2

i

]]
. (6.5)

We now need to compute E0[Ai] and E0[A2
i ], and we use the following lemma.

Lemma 3. Let f be a function on [0,1]. Then with the above notations,

E0

[
exp

(∫
](i−1)/M,i/M]

f (x)dNx

)]
= exp

(∫
](i−1)/M,i/M]

(
exp

(
f (x)

)− 1
)
ρLdx

)
.

Proof. When N has the constant intensity ρ1[0,1], we know that conditionally on the event “the number of points
NM,i = N(] i−1

M
, i

M
]) falling into ] i−1

M
, i

M
] is n,” the points of the process X1, . . . ,XNM,i

in ] i−1
M

, i
M

] obey the same
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law as an n-sample with uniform distribution on ] i−1
M

, i
M

]. Then, one can easily see that

E0

[
exp

(∫
](i−1)/M,i/M]

f (x)dNx

)]
= E0

[
exp

(NM,i∑
l=1

f (Xl)

)]

= E0

[NM,i∏
l=1

E
[
exp

(
f (Xl)

)∣∣NM,i

]]

= E0

[
exp

(
NM,i ln

(∫
](i−1)/M,i/M]

exp
(
f (x)

)
M dx

))]
.

Under P0, NM,i has a Poisson distribution with parameter ρL/M , therefore,

E0

[
exp

(
NM,i ln

(∫
](i−1)/M,i/M]

exp
(
f (x)

)
M dx

))]
= exp

(
ρL

M

(∫
](i−1)/M,i/M]

exp
(
f (x)

)
M dx − 1

))
.

This concludes the proof. �

From Lemma 3 and (6.3), one has that

E0[Ai] = 1

2
exp

(∫
](i−1)/M,i/M]

(
r

√
M

D

ϕM,i(x)

ρ

)
ρLdx

)

+ 1

2
exp

(∫
](i−1)/M,i/M]

(
−r

√
M

D

ϕM,i(x)

ρ

)
ρLdx

)
= 1.

Moreover,

E0
[
A2

i

] = 1

4
E0

[
exp

(∫
](i−1)/M,i/M]

2 ln

(
1 + r

√
M

D

ϕM,i(x)

ρ

)
dNx

)]

+ 1

4
E0

[
exp

(∫
](i−1)/M,i/M]

2 ln

(
1 − r

√
M

D

ϕM,i(x)

ρ

)
dNx

)]

+ 1

2
E0

[
exp

(∫
](i−1)/M,i/M]

ln

(
1 − r2 M

D

ϕ2
M,i(x)

ρ2

)
dNx

)]
.

Using Lemma 3 and (6.3) again, we finally obtain that

E0
[
A2

i

]= cosh

(
r2L

ρD

)
.

Hence, Eq. (6.5) gives

E0
[
L2

ν(N)
]= EI EI ′

[ ∏
i∈I∩I ′

cosh

(
r2L

ρD

)]
= EI EI ′

[
exp

(∣∣I ∩ I ′∣∣ ln cosh

(
r2L

ρD

))]
.
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For fixed I , |I ∩ I ′| is a hypergeometric variable with parameters (M,D,D/M). Hence, we know from [1], p. 173,
that there exists a binomial variable B with parameter (D,D/M) such that EI ′ [B||I ∩ I ′|] = |I ∩ I ′|. By Jensen’s
inequality, we obtain that

E0
[
L2

ν(N)
]≤ EI EI ′

[
exp

(
B ln cosh

(
r2L

ρD

))]
.

Setting B = ∑D
i=1 Bi where the Bi ’s are independent random Bernoulli variables with parameter D/M , we easily

obtain that

E0
[
L2

ν(N)
]≤ exp

(
D ln

(
1 + D

M

(
cosh

(
r2L

ρD

)
− 1

)))
. (6.6)

From Eq. (6.6) and Lemma 2, we see that if

exp

(
D ln

(
1 + D

M

(
cosh

(
r2L

ρD

)
− 1

)))
≤ 1 + 4(1 − α − β)2,

then β(SM,D,r ) ≥ β .
Following Baraud’s idea [3] and setting c = 1 + 4(1 − α − β)2, since the function cosh is increasing on [0,+∞[,

we have that if

r2 ≤ ρD

L
ln

(
1 + M

D2
ln c +

√
2

M

D2
ln c +

(
M

D2
ln c

)2
)

,

then

cosh

(
r2L

ρD

)
− 1 ≤ 1

2

(
M

D2
ln c +

√
2

M

D2
ln c +

(
M

D2
ln c

)2

− 1

)

+ 1

2

(
M

D2
ln c +

√
2

M

D2
ln c +

(
M

D2
ln c

)2

+ 1

)−1

≤ M ln c

D2
.

Hence

exp

(
D ln

(
1 + D

M

(
cosh

(
r2L

ρD

)
− 1

)))
≤ exp

(
D ln

(
1 + ln c

D

))
≤ c,

and β(SM,D,r ) ≥ β . As a conclusion, we obtain the following result, where the second part of the proposition comes
from a direct computation (see [3] for further details).

Proposition 3. Let c = 1 + 4(1 − α − β)2 and SM,D,r be the finite set defined by (6.4). If

r2 ≤ D

M
and r2 ≤ ρD

L
ln

(
1 + M

D2
ln c +

√
2

M

D2
ln c +

(
M

D2
ln c

)2
)

, (6.7)

then SM,D,r ⊂ {s, s ≥ 0, d(s, S0) = r} and β(SM,D,r ) ≥ β .
If α + β ≤ 0.59 and

r2 ≤ D

M
∧
[

ρD

L
ln

(
1 + M

D2
∨
√

M

D2

)]
,
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then SM,D,r ⊂ {s, s ≥ 0, d(s, S0) = r} and β(SM,D,r ) ≥ β .

As a third step, we are now in position to find some r (as large as possible) such that SM,D,r ⊂ {s ∈ Bδ
2,∞(R) ∩

Wγ (R′) ∩ L
∞(R′′), d(s, S0) ≥ r} and that β(SM,D,r ) ≥ β .

Let us consider the set SM,D,r defined by (6.4) with ϕ = 1[0,1/2[ − 1[1/2,1[, M = 2J and ρ = 1.

Let s ∈ SM,D,r , then s can be rewritten as s = α0φ0 +∑
j∈N

∑2j −1
k=0 α(j,k)φ(j,k), with

α0 = 1, α(j,k) = 0 if j �= J, α2
(J,k) = r2

D
Δk+1 for k = 0, . . . ,2J − 1.

Since
∑2J

k=1 Δk = D, the condition r2 ≤ R22−2Jδ ensures that SM,D,r ⊂ Bδ
2,∞(R).

Let us define, for all t > 0,

H(t) =
2J∑

k=1

r2

D
Δk1(r2/D)Δk≤t .

In order to ensure that s belongs to Wγ (R′), the function H has to satisfy

∀t > 0 H(t) ≤ R′2t2γ /(1+2γ ).

Note that

H(t) = 0 for t <
r2

D
and H(t) = H

(
r2

D

)
for t ≥ r2

D
.

Hence, we only need to have that

H

(
r2

D

)
≤ R′2

(
r2

D

)2γ /(1+2γ )

,

which is equivalent to

r2 ≤ R′2(1+2γ )
D−2γ .

Moreover, if r2 ≤ D/M , then ||s||∞ ≤ 2. Hence when R′′ ≥ 2, the condition

r2 ≤ D

M
∧ R2M−2δ ∧ R′2(1+2γ )

D−2γ (6.8)

ensures that SM,D,r ⊂ Bδ
2,∞(R) ∩ Wγ (R′) ∩ L

∞(R′′). From Proposition 3, we can conclude that when R′′ ≥ 2 and
α + β ≤ 0.59, if

r2 ≤ D

M
∧
(

ρD

L
ln

(
1 + M

D2
∨
√

M

D2

))
∧ R2M−2δ ∧ R′2(1+2γ )

D−2γ , (6.9)

then (6.1) and (6.2) are both satisfied.
We now consider several cases, that are represented on Fig. 6.
In the following of this proof, C will denote a positive constant that may depend on α,β,R,R′,R′′, δ, γ , and that

may vary from one line to another one.
Case 1. If δ < γ/2, and δ ≥ γ /(1 + 2γ ), we set

D =
⌊(

L

lnL

)1/(1+2γ )⌋
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Fig. 6. The set of possible parameters (δ, γ ): visualization of the different cases appearing in the proof of Theorem 1.

and

M = 2J , with J =
⌊

log2

(
L

lnL

)(γ /δ)/(1+2γ )⌋
+ 1.

We first check that D ≤ M for L large enough since δ ≤ γ .
Then,

R′2(1+2γ )D−2γ ≥ C(L/ lnL)−2γ /(1+2γ )

and

R2M−2δ ≥ C(L/ lnL)−2γ /(1+2γ ).

Finally, since

M

D2
≥ (L/ lnL)(γ/δ−2)/(1+2γ ) −→

L→+∞+∞ when γ > 2δ,

then

D

L
ln

(
1 + M

D2
∨
√

M

D2

)
≥ C(L/ lnL)−2γ /(1+2γ ),

and

D

M
≥ C(L/ lnL)(1−γ /δ)/(1+2γ ) ≥ C(L/ lnL)−2γ /(1+2γ ) for L large enough.
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Case 2. If γ > 1/2 and δ ≤ γ /(1 + 2γ ), one chooses

D =
⌊(

L

lnL

)1/(1+2γ )⌋
and

M = 2J with J = ⌊
log2(L/ lnL)

⌋+ 1.

We first check that D ≤ M for L large enough since γ > 0. Then,

R′2(1+2γ )D−2γ ≥ C(L/ lnL)−2γ /(1+2γ )

and

R2M−2δ ≥ C(L/ lnL)−2δ ≥ C(L/ lnL)−2γ /(1+2γ ).

Since, moreover,

M

D2
≥ (L/ lnL)1−2/(1+2γ ) −→

L→+∞+∞ when γ > 1/2,

D

L
ln

(
1 + M

D2
∨
√

M

D2

)
≥ C(L/ lnL)−2γ /(1+2γ )

and

D

M
≥ C(L/ lnL)−2γ /(1+2γ ) for L large enough.

Case 3. If δ ≤ γ ≤ 2δ, and δ ≥ γ /(1 + 2γ ), one chooses

M = 2J with J = ⌊
log2

(
L2/(1+4δ)

)⌋+ 1

and

D = ⌊
Mδ/γ

⌋
.

With such a choice, one has that D ≤ M and

R′2(1+2γ )D−2γ ≥ CL−4δ/(1+4δ),

R2M−2δ ≥ CL−4δ/(1+4δ).

Furthermore,

M

D2
∼ M1−2δ/γ −→

L→+∞ 0 when δ > γ/2 and 1 when δ = γ /2.

Hence,

D

L
ln

(
1 + M

D2
∨
√

M

D2

)
∼ C

√
M

L
≥ CL−4δ/(1+4δ),

when δ ≥ γ /2 and

D

M
∼ Mδ/γ−1 ≥ L−4δ/(1+4δ),
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when δ ≥ γ /(1 + 2γ ).
Case 4. If γ ≤ δ, one chooses M = D = 2J with J = �log2(L

2/(1+4δ))� + 1.
With such a choice,

R′2(1+2γ )D−2γ ≥ R′2(1+2γ )D−2δ ≥ CL−4δ/(1+4δ)

and

R2M−2δ ≥ CL−4δ/(1+4δ).

Moreover,

M

D2
−→

L→+∞ 0,

so

D

L
ln

(
1 + M

D2
∨
√

M

D2

)
∼ C

√
M

L
≥ CL−4δ/(1+4δ)

and

D

M
= 1 ≥ L−4δ/(1+4δ)

for L large enough.
Case 5. If γ ≤ 1/2 and δ < γ/(1 + 2γ ), one can firstly take

M = 2J with J = �log2 L� + 1

and

D = ⌊
M1/(1+2γ )

⌋
.

We notice that D ≤ M . Then,

R′2(1+2γ )D−2γ ≥ CL−2γ /(1+2γ ) ≥ CL−1/2

and

R2M−2δ ≥ CL−2δ ≥ CL−1/2.

Moreover,

M

D2
∼ M(2γ−1)/(1+2γ ) −→

L→+∞ 0 when γ < 1/2 and 1 when γ = 1/2.

Hence,

D

L
ln

(
1 + M

D2
∨
√

M

D2

)
∼ C

√
M

L
≥ CL−1/2

and

D

M
≥ CL−2γ /(1+2γ ) ≥ CL−1/2 for L large enough.
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One can secondly take

M = 2J with J = ⌊
log2 L2/(1+4δ)

⌋+ 1

and

D = ⌊
M1/(1+2γ )

⌋
.

Notice that D ≤ M .
Then,

R′2(1+2γ )D−2γ ≥ R′2(1+2γ )M−2γ /(1+2γ ) ≥ CL−4γ /((1+4δ)(1+2γ ))

and

R2M−2δ ≥ CL−4δ/(1+4δ) ≥ CL−4γ /((1+4δ)(1+2γ )).

Moreover,

M

D2
∼ M(2γ−1)/(1+2γ ) −→

L→+∞ 0 when γ < 1/2, and 1 when γ = 1/2.

Hence,

D

L
ln

(
1 + M

D2
∨
√

M

D2

)
∼ C

√
M

L
≥ CL−4δ/(1+4δ) ≥ CL−4γ /((1+4δ)(1+2γ ))

and

D

M
≥ CL−4γ /((1+4δ)(1+2γ )) for L large enough.

This concludes the proof of Theorem 1.

6.2. Proofs of Theorems 2 and 3

6.2.1. Preliminary results
We consider here the general test function Φα = 1Tα>0, defined by (3.10), where

Tα = sup
Λ∈C

(
T ′′

Λ − t
′′(NL)
Λ,α

)
,

T ′′
Λ =∑

λ∈Λ Tλ, and C is a finite collection of subsets of Λ∞. The collection C and the quantile t
′′(NL)
Λ,α will be chosen

to fit our two procedures respectively.
We begin to prove the following result.

Theorem 4. Let s ∈ L
∞([0,1]), and fix α and β in ]0,1[. Assume that there exists some positive quantity AΛ,α,β such

that

Ps

(
t
′′(NL)
Λ,α ≥ AΛ,α,β

)≤ β

3
.

We recall that DΛ denotes the dimension of SΛ and we set EΛ =∑
j/(j,k)∈Λ 2j .

There exist some positive constants C1(β, ||s||∞) and C2(β) such that when s satisfies

d2(s, S0) > inf
Λ∈C

{
||s − sΛ||2 + C1

(
β, ||s||∞

)(√
DΛ

L
+

√
EΛ

L3/2

)
+ C2(β)

EΛ

L2
+ AΛ,α,β

}
(6.10)
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then

Ps(Φα = 0) ≤ β.

Proof. Let α and β in ]0,1[, and s be a fixed intensity.

Ps(Φα = 0) = Ps(Tα ≤ 0)

= Ps

(∀Λ ∈ C, T ′′
Λ ≤ t

′′(NL)
Λ,α

)
≤ inf

Λ∈C
Ps

(
T ′′

Λ ≤ t
′′(NL)
Λ,α

)
.

For every Λ in C , we can write T ′′
Λ in the following way:

T ′′
Λ = 1

L2

∑
λ∈Λ

[(∫
[0,1]

φλ(x)dNx

)2

−
∫

[0,1]
φ2

λ(x)dNx

]

= 1

L2

∑
λ∈Λ

[(∫
[0,1]

φλ(x)
(
dNx − s(x)Ldx

))2

+ 2
∫

[0,1]
φλ(x)dNx

∫
[0,1]

φλ(x)s(x)Ldx

]

− 1

L2

∑
λ∈Λ

[(∫
[0,1]

φλ(x)s(x)Ldx

)2

+
∫

[0,1]
φ2

λ(x)dNx

]
.

By setting

UΛ = 1

L2

∑
λ∈Λ

[(∫
[0,1]

φλ(x)
(
dNx − s(x)Ldx

))2

−
∫

[0,1]
φ2

λ(x)dNx

]
and

VΛ = 2

L

∫
[0,1]

(
sΛ(x) − α0φ0(x)

)(
dNx − s(x)Ldx

)
,

we obtain the following decomposition:

T ′′
Λ = UΛ + VΛ + ‖sΛ‖2 − α2

0 .

Since d2(s, S0) = ‖s − sΛ‖2 + ‖sΛ‖2 − α2
0 , it follows that

T ′′
Λ = UΛ + VΛ + d2(s, S0) − ‖s − sΛ‖2.

Hence,

Ps(Φα = 0) ≤ inf
Λ∈C

Ps

(
UΛ + VΛ + d2(s, S0) ≤ ‖s − sΛ‖2 + t

′′(NL)
Λ,α

)
. (6.11)

The aim of the following lemmas is to define positive quantities A
(1)
Λ,β and A

(2)
Λ,β , such that

Ps

(
UΛ ≤ −A

(1)
Λ,β

)≤ β

3
,

Ps

(
VΛ ≤ −A

(2)
Λ,β

)≤ β

3
.

Using (6.11) and assuming that

Ps

(
t
′′(NL)
Λ,α ≥ AΛ,α,β

)≤ β

3
,
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we then obtain that as soon as there exists Λ in C such that

d2(s, S0) > ‖s − sΛ‖2 + A
(1)
Λ,β + A

(2)
Λ,β + AΛ,α,β, (6.12)

then

Ps(Φα = 0) ≤ β.

Lemma 4. There exists some positive constant C such that for all Λ ∈ C and for all x > 0,

Ps

(
−UΛ ≥ C

(
||s||∞

√
DΛ

L

√
x + ||s||∞

√
DΛ

L
x +

√ ||s||∞EΛ

L3
x3/2 + EΛ

L2
x2
))

≤ 2.77e−x.

Proof. Let us first notice that

UΛ = 1

L2

∑
λ∈Λ

[(∫
[0,1]

φλ(x)dNx

)2

−
∫

[0,1]
φ2

λ(x)dNx

− 2

(∫
[0,1]

φλ(x)dNx

)(∫
[0,1]

φλ(x)s(x)Ldx

)
+
(∫

[0,1]
φλ(x)s(x)Ldx

)2]

= 1

L2

∑
λ∈Λ

[
NL∑

l �=l′=1

φλ(Xl)φλ(Xl′) − 2

(∫
[0,1]

φλ(x)dNx

)(∫
[0,1]

φλ(x)s(x)Ldx

)

+
(∫

[0,1]
φλ(x)s(x)Ldx

)2
]

= 2

L2

∑
λ∈Λ

[∫ 1

0

∫ y−

0
φλ(x)φλ(y)dNx dNy

−
(∫ 1

0

∫ y−

0
φλ(x)φλ(y)dNxs(y)Ldy +

∫ 1

0

∫ 1

y−
φλ(x)φλ(y)dNx s(y)Ldy

)

+
∫ 1

0

∫ y−

0
φλ(x)φλ(y)s(x)Ldx s(y)Ldy

]

= 2

L2

∑
λ∈Λ

[∫ 1

0

∫ y−

0
φλ(x)φλ(y)dNx dNy

−
(∫ 1

0

∫ y−

0
φλ(x)φλ(y)dNx s(y)Ldy +

∫ 1

0

∫ x−

0
φλ(x)φλ(y)s(y)Ldy dNx

)

+
∫ 1

0

∫ y−

0
φλ(x)φλ(y)s(x)Ldx s(y)Ldy

]

= 2

L2

∑
λ∈Λ

[∫ 1

0

∫ y−

0
φλ(x)φλ(y)

(
dNx − s(x)Ldx

)(
dNy − s(y)Ldy

)]
.

Setting

HΛ(x, y) = 2

L2

∑
λ∈Λ

φλ(x)φλ(y), (6.13)
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we deduce from Theorem 4.2 in [15] that there exists some absolute constant κ > 0 such that for all x > 0,

Ps

(−UΛ ≥ κ
(
A1

√
x + A2x + A3x

3/2 + A4x
2))≤ 2.77e−x,

where

A2
1 =

∫ 1

0

∫ y

0
H 2

Λ(x, y) s(x)Ldx s(y)Ldy,

A2 = sup
a,b,

∫
a2(x)s(x)Ldx=∫

b2(x)s(x)Ldx=1

∫ 1

0
a(x)

(∫ 1

x

b(y)HΛ(x, y)s(y)Ldy

)
s(x)Ldx,

A2
3 = sup

y∈[0,1]

∫ 1

0
H 2

Λ(x, y)s(x)Ldx,

A4 = sup
x,y∈[0,1]

∣∣HΛ(x, y)
∣∣.

Let us now evaluate A1, A2, A3 and A4 for every Λ ∈ C .
To give an upper bound for A2

1, we notice that

A2
1 ≤ ||s||2∞L2

∫ 1

0

∫ 1

0
H 2

Λ(x, y)dx dy.

Since {φλ,λ ∈ Λ} is an orthonormal basis on [0,1], one has

A2
1 ≤ 4||s||2∞

L2

∫ 1

0

∫ 1

0

∑
λ∈Λ

φλ(x)2φλ(y)2 dx dy ≤ 4||s||2∞DΛ

L2
.

For A2, we use Cauchy–Schwarz inequality to see that

A2 ≤ sup
b,
∫

b2(x)s(x)Ldx=1

[∫ 1

0

(∫ 1

x

b(y)HΛ(x, y)s(y)Ldy

)2

s(x)Ldx

]1/2

and (∫ 1

x

b(y)HΛ(x, y)s(y)Ldy

)2

≤
(∫ 1

x

b2(y)s2(y)Ldy

)(∫ 1

x

H 2
Λ(x, y)Ldy

)
.

This implies that

A2 ≤ L

[∫ 1

0
||s||∞

(∫ 1

0
H 2

Λ(x, y)dy

)
s(x)dx

]1/2

≤ L||s||∞
[∫ 1

0

∫ 1

0
H 2

Λ(x, y)dx dy

]1/2

.

Since {φλ,λ ∈ Λ} is an orthonormal basis on [0,1], one has

A2 ≤ 2

L
||s||∞

[∫ 1

0

∫ 1

0

∑
λ∈Λ

φ2
λ(x)φ2

λ(y)dx dy

]1/2

≤ 2

L
||s||∞D

1/2
Λ .

As for A3, we can prove in the same way that

A2
3 ≤ 4||s||∞

L3
sup

y∈[0,1]

∑
λ∈Λ

φ2
λ(y).
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Moreover, for any y fixed in [0,1],∑
(j,k)∈Λ

φ2
j,k(y) ≤

∑
j/(j,k)∈Λ

2j ≤ EΛ.

This implies that

A2
3 ≤ 4||s||∞EΛ

L3
.

Furthermore, for x, y in [0,1],∣∣HΛ(x, y)
∣∣ = 2

L2

∣∣∣∣ ∑
(j,k)∈Λ

φ(j,k)(x)φ(j,k)(y)

∣∣∣∣
≤ 2

L2

∑
j/(j,k)∈Λ

2j

≤ 2EΛ

L2
.

Finally, A4 ≤ 2EΛ/L2, and this concludes the proof of Lemma 4. �

By taking x = ln(8.31/β) in Lemma 4, we obtain that a possible value for A
(1)
Λ,β is

A
(1)
Λ,β = C

(
||s||∞

√
DΛ

L
2 ln(8.31/β) +

√ ||s||∞EΛ

L3

(
ln(8.31/β)

)3/2 + EΛ

L2

(
ln(8.31/β)

)2

)
,

where C is an absolute positive constant. We now use the following lemma, which derives from an analogue of
Bennett’s inequality (see Proposition 7 of [21], for instance).

Lemma 5. There exists some positive constant C such that for all x > 0,

Ps

(
−VΛ ≥ 1

2
||s − α0φ0||2 − 1

2
||s − sΛ||2 + C||s||∞

L
x

)
≤ e−x.

Proof. Recall that

VΛ = 2

L

∫
[0,1]

(
sΛ(x) − α0φ0(x)

)(
dNx − s(x)Ldx

)
.

Using Proposition 7 of [21], we easily obtain that for all x > 0,

Ps

(
−VΛ ≥ 2

√
2x

||s||∞
L

||sΛ − α0φ0||2 + 2||sΛ − α0φ0||∞
3L

x

)
≤ e−x.

First note that

||sΛ − α0φ0||∞ ≤ ||s||∞.

By using the elementary inequality 2ab ≤ a2/2 + 2b2, we obtain that

2

√
2x

||s||∞
L

||sΛ − α0φ0||2 ≤ 1

2
||sΛ − α0φ0||2 + 4x

||s||∞
L

≤ 1

2
||s − α0φ0||2 − 1

2
||s − sΛ||2 + 4x

||s||∞
L

.
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We deduce that there exists C > 0 such that for all x > 0,

Ps

(
−VΛ ≥ 1

2
||s − α0φ0||2 − 1

2
||s − sΛ||2 + C||s||∞

L
x

)
≤ e−x.

�

By taking x = ln(3/β) in Lemma 5, we obtain that a possible value for A
(2)
Λ,β is

A
(2)
Λ,β = 1

2
||s − α0φ0||2 − 1

2
||s − sΛ||2 + C||s||∞

L
ln(3/β).

Replacing A
(1)
Λ,β and A

(2)
Λ,β in (6.12) by the possible values obtained above finally leads to the result of Theorem 4. �

We now prove the following lemma that will provide an upper bound for the quantity AΛ,α,β occurring in Theo-
rem 4.

Lemma 6. Let X̃1, . . . , X̃n be i.i.d. uniformly distributed on [0,1]. For n ∈ N and Λ ⊂ Λ∞, let

T ′′
Λ,n = 1

L2

∑
λ∈Λ

n∑
l �=l′=1

φλ(X̃l)φλ(X̃l′).

Let DΛ denote the dimension of SΛ and EΛ = ∑
j/(j,k)∈Λ 2j . There exists some absolute constant C > 0 such that

for all x > 0,

P

(
T ′′

Λ,n ≥ Cn

L2

(√
DΛx + x + EΛx2

n ∨ 1

))
≤ 2.77e−x. (6.14)

Proof. If n ∈ {0,1}, T ′′
Λ,n = 0 hence (6.14) holds. Since for all λ ∈ Λ∞, φλ is orthonormal to φ0 = 1[0,1], it

follows that the variables φλ(X̃l) are centered and we can apply Theorem 3.4 in [15]. We now set HΛ(x, y) =∑
λ∈Λ φλ(x)φλ(y)/L2. We obtain that there exists some absolute constant C > 0 such that for all x > 0,

P
(
T ′′

Λ,n ≥ C
(
Ã1

√
x + Ã2x + Ã3x

3/2 + Ã4x
2))≤ 2.77e−x,

where

Ã2
1 = n2

E
[
H 2

Λ(X̃1, X̃2)
]
,

Ã2 = sup

{∣∣∣∣∣E
[

n∑
l=1

l−1∑
l′=1

HΛ(X̃1, X̃2)αl(X̃1)βl′(X̃2)

]∣∣∣∣∣,E

[
n∑

l=1

α2
l (X̃l)

]
≤ 1,E

[
n∑

l=1

β2
l (X̃l)

]
≤ 1

}
,

Ã2
3 = n sup

y∈[0,1]

∫ 1

0
H 2

Λ(x, y)dx,

Ã4 = sup
x,y∈[0,1]

∣∣HΛ(x, y)
∣∣.

To evaluate Ã1, Ã2, Ã3, Ã4, we use arguments similar to the ones used in the proof of Lemma 4.
Since {φλ,λ ∈ Λ} is an orthonormal basis on [0,1],

Ã2
1 ≤ n2

L4

∫ 1

0

∫ 1

0

∑
λ∈Λ

φλ(x)2φλ(y)2 dx dy ≤ n2DΛ

L4
.
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Let (α1, . . . , αn) and (β1, . . . , βn) such that E[∑n
l=1 α2

l (X̃l)] ≤ 1 and E[∑n
l=1 β2

l (X̃l)] ≤ 1. Then∣∣∣∣∣E
[

n∑
l=1

l−1∑
l′=1

HΛ(X̃1, X̃2)αl(X̃1)βl′(X̃2)

]∣∣∣∣∣ =
n∑

l=1

l−1∑
l′=1

∫ 1

0

∫ 1

0
HΛ(x, y)αl(x)βl′(y)dx dy

= 1

L2

n∑
l=1

l−1∑
l′=1

∑
λ∈Λ

∫ 1

0
φλ(x)αl(x)dx

∫ 1

0
φλ(y)βl′(y)dy.

By using Cauchy–Schwarz inequality, we obtain∣∣∣∣∣E
[

n∑
l=1

l−1∑
l′=1

HΛ(X̃1, X̃2)αl(X̃1)βl′(X̃2)

]∣∣∣∣∣
≤ 1

L2

n∑
l=1

l−1∑
l′=1

[∑
λ∈Λ

(∫ 1

0
φλ(x)αl(x)dx

)2
]1/2[∑

λ∈Λ

(∫ 1

0
φλ(y)βl′(y)dy

)2]1/2

.

One has for all g ∈ L
2([0,1]), ∑λ∈Λ(

∫
φλg)2 ≤ ∫

g2. As a consequence,

Ã2 ≤ 1

L2

n∑
l=1

[∫ 1

0
α2

l (x)dx

]1/2 n∑
l′=1

[∫ 1

0
β2

l′(y)dy

]1/2

≤ n

L2
.

We evaluate Ã2
3 and Ã4 in the same way as A2

3 and A4 in the proof of Lemma 4. We obtain that

Ã2
3 ≤ nEΛ

L4

and

Ã4 ≤ EΛ/L2.

Finally, we proved that there exists some absolute constant C > 0 such that

P

(
T ′′

Λ,n ≥ C
n

L2

(√
DΛx + x +

√
EΛ√
n

x3/2 + EΛ

n
x2
))

≤ 2.77e−x.

Since

2

√
EΛ√
n

x3/2 ≤ x + EΛ

n
x2,

we can simplify the above inequality: there exists some constant C > 0 such that

P

(
T ′′

Λ,n ≥ C
n

L2

(√
DΛx + x + EΛ

n
x2
))

≤ 2.77e−x

for all x > 0. This concludes the proof of Lemma 6. �

We are now in position to prove Theorems 2 and 3.
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6.2.2. Proof of Theorem 2
Recall that the test function defined by (3.4) is of the same form as the test function (3.10) of Theorem 4 with
C = {ΛJ , J ∈ J }, and t

′′(n)
ΛJ ,α = q

′(n)
J (u

′(n)
J,α), where q

′(n)
J (u) denotes the (1 − u) quantile of T ′′

ΛJ ,n. Since u
′(n)
J,α defined

by (3.5) satisfies u
′(n)
J,α ≥ αe−WJ for all n, one has that for all n,

t
′′(n)
ΛJ ,α ≤ q

′(n)
J

(
αe−WJ

)
.

In order to use Theorem 4, we then need to find some positive quantity AJ,α,β such that

Ps

(
q

′(NL)
J

(
αe−WJ

)≥ AJ,α,β

)≤ β

3
. (6.15)

Let us first give an upper bound for q
′(n)
J (αe−WJ ) for all n in N. We apply (6.14) with Λ = ΛJ (note that DΛJ

=
EΛJ

= DJ ) and with x = ln(2.77/α) + WJ . There exists some absolute constant C > 0 such that

q
′(n)
J

(
αe−WJ

)≤ C
n

L2

(√
DJ

(
ln(2.77/α) + WJ

)+ ln(2.77/α) + WJ + DJ

n ∨ 1

(
ln(2.77/α) + WJ

)2)
.

This allows us to obtain some AJ,α,β such that (6.15) holds. It actually gives that

q
′(NL)
J

(
αe−WJ

)≤ C
NL

L2

(√
DJ

(
ln(2.77/α) + WJ

)+ ln(2.77/α) + WJ

)+ C
DJ

L2

(
ln(2.77/α) + WJ

)2
.

Now, from Bernstein’s inequality, we deduce that for all u > 0,

Ps

(
NL ≥

∫
[0,1]

s(x)Ldx +
√

2
∫

[0,1]
s(x)Ldx u + 1

3
u

)
≤ e−u.

Hence a possible value for AΛJ ,α,β is

C

∫
[0,1] s(x)Ldx + ln(3/β)

L2

(√
DJ

(
ln(2.77/α) + WJ

)+ ln(2.77/α) + WJ

)+ C
DJ

L2

(
ln(2.77/α) + WJ

)2
.

Using Theorem 4 finally leads to the result of Theorem 2.

6.2.3. Proof of Theorem 3
Recall here that the test function defined by (3.7) is of the same form as the test function (3.10) of Theorem 4 with
C = {Λ, Λ ⊂ ΛJ̄ }, and t

′′(n)
Λ,α =∑

λ∈Λ q
(n)
λ (u

(n)
α /(2j J̄ )), where q

(n)
λ (u) denotes the (1−u) quantile of Tλ conditionally

on the event NL = n under the null hypothesis (H0) and u
(n)
α defined by (3.9) satisfies u

(n)
α ≥ α for all n.

Hence, we can prove Theorem 3 by using Theorem 4 and some positive quantity AΛ,α,β such that

Ps

( ∑
(j,k)∈Λ

q
(NL)
(j,k)

(
α

2j J̄

)
≥ AΛ,α,β

)
≤ β

3
.

Following the same lines of proof as in the previous section, let us first give an upper bound for q
(n)
(j,k)

(α/(2j J̄ )).

Notice that q
(n)
(j,k)(u) is the (1 −u) quantile of the variable T ′′

Γ,n with Γ = {(j, k)}. Since DΓ = 1 and EΓ = 2j , the
inequality (6.14) implies that there exists some constant C > 0 such that for all x > 0,

P

(
T ′′

Γ,n ≥ C
n

L2

(√
x + x + 2j x2

n ∨ 1

))
≤ 2.77e−x.
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Taking x = ln(2.77) + ln(2j J̄ /α) in this inequality leads to the conclusion that

q
(n)
(j,k)

(
α

2j J̄

)
≤ C

n

L2

(√(
ln(2.77) + ln(2j J̄ /α)

)+ ln(2.77) + ln
(
2j J̄ /α

))
+ C

2j

L2

(
ln(2.77) + ln

(
2j J̄ /α

))2
.

From Bernstein’s inequality, we deduce that a possible value for AΛ,α,β is

C
∑

(j,k)∈Λ

{∫
[0,1] s(x)Ldx + ln(3/β)

L2

(√(
ln(2.77) + ln(2j J̄ /α)

)+ ln(2.77) + ln
(
2j J̄ /α

))
+ 2j

L2

(
ln(2.77) + ln

(
2j J̄ /α

))2
}

for some positive constant C.
Since |Λ| = DΛ − 1 and EΛ ≤ 2J̄ , we obtain the result of Theorem 3.

6.3. Proof of Proposition 1

Let us assume that s belongs to Bδ
2,∞(R) ∩ L

∞(R′′). We need to find an upper bound for the quantity

inf
J∈J

{
||s − sJ ||2 + C1

(
α,β, ||s||∞

)√DJ

L
+ C2(α,β)

DJ

L2

+
(

C3

∫
[0,1]

s(x)dx + C4(β)

)(√
DJ WJ

L
+ WJ

L

)
+ C5

DJ W 2
J

L2

}
,

in Theorem 2.
We have already noticed that when s belongs to Bδ

2,∞(R), for all J ≥ 1,

‖s − sJ ‖2 ≤ c(δ)R2D−2δ
J .

Moreover, the constant C1(α,β,‖s‖∞) can be replaced by C1(α,β,R′′), so we only need to find an upper bound for

C
(
α,β,R′′, δ

)
inf

J∈J

{
R2D−2δ

J +
√

DJ

L
+ DJ

L2
+

√
DJ WJ

L
+ WJ

L
+ DJ W 2

J

L2

}
.

Taking WJ = ln|J | = ln�log2(L
2/(ln lnL)3)�, with ln lnL ≥ 1 leads to WJ ≤ 2.06 ln lnL, so

C
(
α,β,R′′, δ

)
inf

J∈J

{
R2D−2δ

J +
√

DJ

L
+ DJ

L2
+

√
DJ WJ

L
+ WJ

L
+ DJ W 2

J

L2

}
≤ C′(α,β,R′′, δ

)(
inf

J∈J

{
R2D−2δ

J +
√

DJ ln lnL

L
+ DJ (ln lnL)2

L2

}
+ ln lnL

L

)
.

Since for all J in J , DJ ≤ L2/(ln lnL)3,

C′(α,β,R′′, δ
)(

inf
J∈J

{
R2D−2δ

J +
√

DJ ln lnL

L
+ DJ (ln lnL)2

L2

}
+ ln lnL

L

)
≤ C′′(α,β,R′′, δ

)(
inf

J∈J

{
R2D−2δ

J +
√

DJ ln lnL

L

}
+ ln lnL

L

)
.
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We have that R2D−2δ
J <

√
DJ ln lnL/L if and only if J > log2((R

4L2/ln lnL)1/(1+4δ)). Hence, we introduce

J∗ =
⌊

log2

((
R4L2

ln lnL

)1/(1+4δ))⌋
+ 1,

and we distinguish three cases.
When 1 ≤ J∗ ≤ �log2(L

2/(ln lnL)3)�, then J∗ belongs to J and

inf
J∈J

{
R2D−2δ

J +
√

DJ ln lnL

L

}
≤ R2D−2δ

J∗ +
√

DJ∗ ln lnL

L

≤ (
1 + √

2
)
R2/(4δ+1)

(√
ln lnL

L

)4δ/(4δ+1)

.

When J∗ > �log2(L
2/(ln lnL)3)�, this means that for all J in J ,

√
DJ ln lnL/L ≤ R2D−2δ

J . By taking J ∗ =
�log2(L

2/(ln lnL)3)�, we obtain that

inf
J∈J

{
R2D−2δ

J +
√

DJ ln lnL

L

}
≤ 2R2D−2δ

J ∗ ≤ 22δ+1R2
(

(ln lnL)3

L2

)2δ

.

Finally, when J∗ < 1, then for all J in J , R2D−2δ
J ≤ √

DJ ln lnL/L, so by taking J ∗ = 1, we obtain that

inf
J∈J

{
R2D−2δ

J +
√

DJ ln lnL

L

}
≤ 2

√
2 ln lnL

L
.

This ends the proof.

6.4. Proof of Proposition 2

Let us assume that s belongs to Bδ
2,∞(R) ∩ Wγ (R′) ∩ L

∞(R′′). We now need to find an adequate upper bound for

inf
Λ⊂ΛJ̄

{
||s − sΛ||2 + C1

(
α,β, ||s||∞

)(√
DΛ

L
+ 2J̄ /2

L3/2

)
+ C2(β)

2J̄

L2

+
(

C3(α)

∫
[0,1]

s(x)dx + C4(α,β)

)
DΛ ln(2J̄ J̄ )

L
+ C5(α)

DΛ2J̄ ln2(2J̄ J̄ )

L2

}
in Theorem 3.

As in the proof of Proposition 1, the constant C1(α,β,‖s‖∞) can be replaced by C1(α,β,R′′). Moreover, with the
choice J̄ = �log2(L/ lnL)�, we have that

2J̄ /2

L3/2
≤ 1

L
√

lnL
,

2J̄

L2
≤ 1

L lnL
,

and ln(2J̄ J̄ ) ≤ lnL. So we only need to find an upper bound for

C
(
α,β,R′′)( inf

Λ∈ΛJ̄

{
||s − sΛ||2 + DΛ lnL

L

}
+ 1

L
√

lnL

)
.

Let us introduce for all integer D ≤ 2J̄ the subset Λ̃D of ΛJ̄ such that the elements of {αλ,λ ∈ Λ̃D} are the (D − 1)

largest elements in {αλ,λ ∈ ΛJ̄ }.
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We can notice that

||s − sΛ̃D
||2 = ||s − sJ̄ ||2 + ||sJ̄ − sΛ̃D

||2.

On the one hand, since s belongs to Bδ
2,∞(R),

‖s − sJ̄ ‖2 ≤ C(δ)R2
(

L

lnL

)−2δ

.

On the other hand, since s belongs to Wγ (R′), then for all t > 0,

∑
j∈N

2j −1∑
k=0

1|α(j,k)|>t/2 ≤
∑
j∈N

2j −1∑
k=0

∑
l∈N

1(t/2)2l<|α(j,k)|≤(t/2)2l+1

≤
∑
l∈N

∑
j∈N

2j −1∑
k=0

( |α(j,k)|
(t/2)2l

)2

1|α(j,k)|≤(t/2)2l+1

≤ 4
∑
l∈N

2−2l

t2

∑
j∈N

2j −1∑
k=0

α2
(j,k)1|α(j,k)|≤t2l

≤ 4
∑
l∈N

2−2l

t2
R′2(t222l

)2γ /(1+2γ )

≤ C(γ )R′2t−2/(1+2γ ).

Taking t such that C(γ )R′2t−2/(1+2γ ) = D in the above inequality proves that all the coefficients of sJ̄ − sΛ̃D
are

smaller than t/2 and

||sJ̄ − sΛ̃D
||2 ≤

J̄−1∑
j=0

2j −1∑
k=0

α2
(j,k)1|α(j,k)|≤t/2 ≤ C(γ )R′2+4γ D−2γ .

Hence,

C
(
α,β,R′′)( inf

Λ∈ΛJ̄

{
||s − sΛ||2 + DΛ lnL

L

}
+ 1

L
√

lnL

)

≤ C
(
α,β,R′′, δ, γ

)(
inf

1≤D≤2J̄

{
R′2+4γ D−2γ + D lnL

L

}
+ R2

(
L

lnL

)−2δ

+ 1

L
√

lnL

)
.

We have that R′2+4γ D−2γ < D lnL/L if and only if D > R′2(L/ lnL)1/(1+2γ ). Hence, we introduce

D∗ =
⌊
R′2

(
L

lnL

)1/(1+2γ )⌋
+ 1,

and we distinguish two cases.
When 1 ≤ D∗ ≤ 2J̄ , we clearly obtain that

inf
1≤D≤2J̄

{
R′2+4γ D−2γ + D lnL

L

}
≤ R′2+4γ D

−2γ∗ + D∗ lnL

L
.
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On the one hand, when D∗ ≥ 2, this leads to

inf
1≤D≤2J̄

{
R′2+4γ D−2γ + D lnL

L

}
≤ R′2+4γ D

−2γ∗ + 2
(D∗ − 1) lnL

L
≤ 3R′2

(
L

lnL

)−2γ /(1+2γ )

.

On the other hand, when D∗ = 1, since R′2+4γ D
−2γ∗ < D∗ lnL/L, one has

inf
1≤D≤2J̄

{
R′2+4γ D−2γ + D lnL

L

}
≤ 2

lnL

L
.

Now, let us consider the case where D∗ > 2J̄ . This means that for all D such that 1 ≤ D ≤ 2J̄ , D lnL/L ≤
R′2+4γ D−2γ . By taking D∗ = 2J̄ , we obtain that

inf
1≤D≤2J̄

{
R′2+4γ D−2γ + D lnL

L

}
≤ 2R′2+4γ D∗−2γ ≤ 2R′2+4γ

(
L

2 lnL

)−2γ

.

This concludes the proof of Proposition 2.
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