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Abstract. Recently the renormalization group predictions on the effect of disorder on pinning models have been put on math-
ematical grounds. The picture is particularly complete if the disorder is relevant or irrelevant in the Harris criterion sense: the
question addressed is whether quenched disorder leads to a critical behavior which is different from the one observed in the pure,
i.e. annealed, system. The Harris criterion prediction is based on the sign of the specific heat exponent of the pure system, but it
yields no prediction in the case of vanishing exponent. This case is called marginal, and the physical literature is divided on what
one should observe for marginal disorder, notably there is no agreement on whether a small amount of disorder leads or not to
a difference between the critical point of the quenched system and the one for the pure system. In [Comm. Pure Appl. Math. 63
(2010) 233–265] we have proven that the two critical points differ at marginality of at least exp(−c/β4), where c > 0 and β2 is the
disorder variance, for β ∈ (0,1) and Gaussian IID disorder. The purpose of this paper is to improve such a result: we establish in
particular that the exp(−c/β4) lower bound on the shift can be replaced by exp(−c(b)/βb), c(b) > 0 for b > 2 (b = 2 is the known
upper bound and it is the result claimed in [J. Stat. Phys. 66 (1992) 1189–1213]), and we deal with very general distribution of
the IID disorder variables. The proof relies on coarse graining estimates and on a fractional moment change of measure argument
based on multi-body potential modifications of the law of the disorder.

Résumé. Récemment, les prédictions issues des méthodes de groupe de renormalisation concernant l’influence du désordre pour
les modèles d’accrochage ont été rendus rigoureuses mathématiquement. La description du phénomène est particulièrement com-
plète dans le cas où le désordre est pertinent ou non-pertinent au sens du critère de Harris: on étudie si le désordre gelé engendre
un comportement critique différent de celui que l’on observe pour le système pur, i.e. moyenné. Le critère de Harris se base sur
le signe de l’exposant de la chaleur spécifique du système pur pour déterminer l’influence du désordre, mais ne prédit rien dans
le cas où cet exposant vaut zéro. Ce cas est dit marginal et il n’y a pas de consensus dans la littérature physique sur ce que l’on
devrait observer pour le système désordonné marginal; en particulier, il y a une controverse pour déterminer si un désordre de
faible amplitude engendre ou non un déplacement du point critique du système avec désordre gelé par rapport à celui du système
pur. Dans [Comm. Pure Appl. Math. 63 (2010) 233–265], nous avons démontré que, dans le cas marginal, la différence entre les
deux points critiques est au moins d’ordre exp(−c/β4), où c > 0 et β2 est la variance du désordre, pour β ∈ (0,1) dans le cas
d’un désordre gaussien IID. L’objectif de cet article est d’améliorer le résultat précédent: en particulier nous montrons que la borne
inférieure exp(−c/β4) pour le déplacement du point critique peut être remplacée par exp(−c(b)/βb), c(b) > 0 pour tout b > 2
(b = 2 est la borne supérieure connue, et le résultat prédit dans [J. Stat. Phys. 66 (1992) 1189–1213]), et nous généralisons la preuve
à des désordres IID très généraux. La démonstration s’appuie sur des estimées obtenues par coarse graining, et sur l’estimation de
moments non-entiers de la fonction de partition, en modifiant la loi du désordre en y appliquant un potentiel multicorps.
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1. Introduction

1.1. Relevant, irrelevant and marginal disorder

The renormalization group approach to disordered statistical mechanics systems introduces a very interesting view-
point on the role of disorder and on whether or not the critical behavior of a quenched system coincides with the
critical behavior of the corresponding pure system. The Harris criterion [17] is based on such an approach and it may
be summarized in the following way: if the specific heat exponent of the pure system is negative, then a small amount
of disorder does not modify the critical properties of the pure system (irrelevant disorder regime), but if the specific
heat exponent of the pure system is positive then even an arbitrarily small amount of disorder may lead to a quenched
critical behavior different from the critical behavior of the pure system.

A class of disordered models on which such ideas have been applied by several authors is the one of pinning
models (see, e.g., [8,11] and the extensive bibliography in [12,14]). The reason is in part due to the remarkable fact
that pure pinning models are exactly solvable models for which, by tuning a parameter, one can explore all possible
values of the specific heat exponent [10]. As a matter of fact, the validity of the Harris criterion for pinning models in
the physical literature finds a rather general agreement. Moreover, for the pinning models the renormalization group
approach goes beyond the critical properties and yields a prediction also on the location of the critical point.

Recently, the Harris criterion predictions for pinning models have been put on firm grounds in a series of papers
[1,3,7,19] and some of these rigorous results go even beyond the predictions. Notably in [15] it has been shown that
disorder has a smoothing effect in this class of models (a fact that is not a consequence of the Harris criterion and that
did not find unanimous agreement in the previous physical literature).

However, a substantial amount of the literature on disordered pinning and Harris criterion revolves around a specific
issue: what happens if the specific heat exponent is zero (i.e., at marginality)? This is really a controversial issue in
the physical literature, started by the disagreement in the conclusions of [11] and [8]. In a nutshell, the disagreement
lies on the fact that the authors of [11] predict that disorder is irrelevant at marginality and, notably, that quenched
and annealed critical points coincide at small disorder, while the authors of [8] claim that disorder is relevant for
arbitrarily small disorder, leading to a critical point shift of the order of exp(−cβ−2) (c > 0) for β ↘ 0 (β2 is the
disorder variance).

Recently we have been able to prove that, at marginality, there is a shift of the critical point induced by the presence
of disorder [14], at least for Gaussian disorder. We have actually proven that the shift is at least exp(−cβ−4). The
purpose of the present work is to go beyond [14] in three aspects:

(1) We want to deal with rather general disorder variables: we are going to assume only that the exponential moments
are finite.

(2) We are going to improve the bound exp(−cβ−b), b = 4, on the critical point shift, to b = 2 + ε (ε > 0 arbitrarily
small, and c = c(b)).

(3) We will prove our results for a wide class of pinning models. Pinning models are based on discrete renewal
processes, characterized by an inter-arrival distribution which has power-law decay (the exponent in the power
law parametrizes the model and varying such parameter one explores the different types of critical behaviors we
mentioned before). The general pinning model is obtained by relaxing the power law decay to regularly varying
decay, that is (in particular) we allow logarithmic correction to power-law decay. This, in a sense, allows zooming
into the marginal case and makes clearer the interplay between the underlying renewal and the disorder variables.

1.2. The framework and some basic facts

In mathematical terms, disordered pinning models are one-dimensional Gibbs measures with random one-body po-
tentials and reference measure given by the law of a renewal process. Namely, pinning models are built starting from
a (non-delayed, discrete) renewal process τ = {τn}n=0,1,..., that is a sequence of random variables such that τ0 = 0 and
{τj+1 − τj }j=0,1,... are independent and identically distributed with common law (called inter-arrival distribution)
concentrated on N := {1,2, . . .} (the law of τ is denoted by P): we will actually assume that such a distribution is
regularly varying of exponent 1 + α, i.e.

K(n) := P(τ1 = n) = L(n)

n1+α
for n = 1,2, . . . , (1.1)
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where α ≥ 0 and L(·) is a slowly varying function, that is L : (0,∞) → (0,∞) is measurable and it satisfies
limx→∞ L(cx)/L(x) = 1 for every c > 0. There is actually no loss of generality in assuming L(·) smooth and we
will do so (we refer to [4] for properties of slowly varying functions).

Remark 1.1. Examples of slowly varying functions include logarithmic slowly varying functions (this is probably not
a standard terminology, but it will come handy), that is the positive measurable functions that behave like a(log(x))b

as x → ∞, with a > 0 and b ∈ R. These functions are just a particular class of slowly varying functions, but it is
already rich enough to appreciate the results we are going to present. Moreover, we will say that L(·) is trivial if
limx→∞ L(x) = c ∈ (0,∞). The general statements about slowly varying function that we are going to use can be
verified in an elementary way for logarithmic slowly varying functions; readers who feel uneasy with the general
theory may safely focus on this restricted class.

Without loss of generality we assume that
∑

n∈N
K(n) = 1 (actually, we have implicitly done so when we have

introduced τ ). This does not look at all like an innocuous assumption at first, because it means that τ is persistent,
namely τj < ∞ for every j , while if

∑
n K(n) < 1 then τ is terminating, that is |{j : τj < ∞}| < ∞ a.s. It is however

really a harmless assumption, as explained in detail in [12], Chapter 1, and recalled in the caption of Fig. 1.
The disordered potentials are introduced by means of the IID sequence {ωn}n=1,2,... of random variables (the

charges) such that M(t) := E[exp(tω1)] < ∞ for every t . Without loss of generality we may and do assume that
E[ω1] = 0 and varP(ω1) = 1.

The model we are going to focus on is defined by the sequence of probability measures PN,ω,β,h = PN,ω , indexed
by N ∈ N, defined by

dPN,ω

dP
(τ ) := 1

ZN,ω

exp

(
N∑

n=1

(
βωn + h − log M(β)

)
δn

)
δN , (1.2)

where β ≥ 0, h ∈ R, δn is the indicator function that n = τj for some j and ZN,ω is the partition function, that is the
normalization constant. It is practical to look at τ as a random subset of {0} ∪ N, so that, for example, δn = 1n∈τ .

Fig. 1. A symmetric random walk trajectory with increments taking values in {−1,0,+1} is represented as a directed random walk. On the x-axis,
the defect line, there are quenched charges ω that are collected by the walk when it hits the charge location. The energy of a trajectory just depends
on the underlying renewal process τ . For the case in the figure, K(n) := P(τ1 = n) ∼ const n−3/2 for n → ∞ (e.g., [12], Appendix A.6). Moreover,
the walk is recurrent, so

∑
n K(n) = 1. There is however another interpretation of the model: the charges may be thought of as sticking to S, not

viewed this time as a directed walk. If the walk hits the origin at time n, the energy is incremented by (βωn + h − log M(β)). This interpretation is
particularly interesting for a three-dimensional symmetric walk in Z

3: the walk may be interpreted as a polymer in d = 3, carrying charges on each
monomer, and the monomers interact with a point in space (the origin) via a charge-dependent potential. Also in this case K(n) ∼ const n−3/2,
but the walk is transient so that

∑
n K(n) < 1 (e.g., [12], Appendix A.6). It is rather easy to see that any model based on a terminating renewal

with inter-arrival distribution K(·) can be mapped to a model based on the persistent renewal with inter-arrival distribution K(·)/∑
n K(n) at the

expense of changing h to h + log
∑

n K(n). For much more detailed accounts on the (very many!) models that can be directly mapped to pinning
models we refer to [10,12].
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Remark 1.2. We have chosen M(t) < ∞ for every t only for ease of exposition. The results we present directly
generalize to the case in which M(t0)+ M(−t0) < ∞ for a t0 > 0. In this case it suffices to look at the system only for
β ∈ [0, t0).

Three comments on (1.2) are in order:

(1) We have introduced the model in a very general set-up which is, possibly, not too intuitive, but it allows a unified
approach to a large class of models [10,12]. It may be useful at this stage to look at Fig. 1 that illustrates the
random walk pinning model.

(2) The presence of − log M(β) in the exponent is just a parametrization of the problem that comes particularly handy
and it can be absorbed by redefining h.

(3) The presence of δN in the right-hand side means that we are looking only at trajectories that are pinned at the
endpoint of the system. This is just a boundary condition and we may as well remove δN for the purpose of
the results that we are going to state, since it is well known, for example, that the free energy of this system is
independent of the boundary condition (e.g., [12], Chapter 4). Nonetheless, at a technical level it is more practical
to work with the system pinned at the endpoint.

The (Laplace) asymptotic behavior of ZN,ω shows a phase transition. In fact, if we define the free energy as

F(β,h) := lim
N→∞

1

N
E logZN,ω, (1.3)

where the limit exists since the sequence {E logZN,ω}N is super-additive (see, e.g., [12], Chapter 4, where it is also
proven that F(β,h) coincides with the P(dω)-almost sure limit of (1/N) logZN,ω , so that F(β,h) is effectively the
quenched free energy), then it is easy to see that F(β,h) ≥ 0: in fact,

F(β,h) ≥ lim sup
N→∞

1

N
E log E

[
exp

(
N∑

n=1

(
βωn + h − log M(β)

)
δn

)
1τ1=N

]

= lim
N→∞

1

N

((
h − log M(β)

) + log P(τ1 = N)
) = 0. (1.4)

The transition we are after is captured by setting

hc(β) := sup
{
h: F(β,h) = 0

} = inf
{
h: F(β,h) > 0

}
, (1.5)

where the equality is a direct consequence of the fact that F(β, ·) is non-decreasing (let us point out also that the free
energy is a continuous function of both arguments, as it follows from standard convexity arguments). We have the
bounds (see point (2) just below for the proof)

F
(
0, h − log M(β)

) ≤ F(β,h) ≤ F(0, h), (1.6)

which directly imply

hc(0) ≤ hc(β) ≤ hc(0) + log M(β). (1.7)

Two important observations are:

(1) The bounds in (1.6) are given in terms of F(0, ·), that is the free energy of the non-disordered system, which
can be solved analytically (e.g., [10,12]). In particular hc(0) = 0 for every α and every choice of L(·) (in fact
hc(0) = − log

∑
n K(n) and we are assuming that τ is persistent). We will keep in our formulae hc(0) both

because we think that it makes them more readable and because they happen to be true also if τ were a terminating
renewal.

(2) The upper bound in (1.6), that entails the lower bound in (1.7), follows directly from the standard annealed
bound, that is E logZN,ω ≤ log EZN,ω , and by observing that the annealed partition function EZN,ω coincides
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with the partition function of the quenched model with β = 0, that is simply the non-disordered case (of course,
the presence of the term −log M(β) in (1.2) finds here its motivation). The lower bound in (1.6), entailing the
upper bound in (1.7), follows by a convexity argument too (see [12], Chapter 5).

Remark 1.3. It is rather easy (just take the derivative of the free energy with respect to h) to realize that the phase
transition we have outlined in this model is a localization transition: when h < hc(β), for N large, the random set τ

is almost empty, while when h > hc(β) it is of size const N (in fact const = ∂hF(β,h)). Very sharp results have been
obtained on this issue: we refer to [12], Chapters 7 and 8, and references therein.

1.3. The Harris criterion

We can now make precise the Harris criterion predictions mentioned in Section 1.1. As we have seen, in our case
the pure (or annealed) model is just the non-disordered model, and the latter is exactly solvable, so that the critical
behavior is fully understood, notably [12], Chapter 2,

lim
a↘0

log F(0, hc(0) + a)

loga
= max

(
1,

1

α

)
=: νpure. (1.8)

The specific heat exponent of the pure model (that is the critical exponent associated to 1/∂2
h F(0, h)) is computed

analogously and it is equal to 2 − νpure. Therefore the Harris criterion predicts disorder relevance for α > 1/2 (2 −
νpure > 0) and disorder irrelevance for α < 1/2 (2 − νpure < 0) at least for β below a threshold, with α = 1/2 as
marginal case. So, what one expects is that νpure = νquenched (with obvious definition of the latter) if α < 1/2 for β not
too large and νpure 
= νquenched if α > 1/2 (for every β > 0).

While a priori the Harris criterion attacks the issue of critical behavior, it turns out that a Harris-like approach in
the pinning context [8,11] yields information also on hc(β), namely that hc(β) = hc(0) if α < 1/2 and β again not too
large, while hc(β) > hc(0) as soon as β > 0. For the sequel it is important to recall some aspects of the approaches
in [8,11].

The main focus of [8,11] is on the case α = 1/2 and trivial L(·). In fact they focus on the interface wetting problem
in two dimensions, that boils down to directed random walk pinning in (1 + 1)-dimensions. In this framework the
conclusions of the two papers differ: [11] stands for hc(β) = hc(0) for β small, while in [8] one finds an argument in
favor of

hc(β) − hc(0) ≈ exp
(−cβ−2), (1.9)

as β ↘ 0 (with c > 0 an explicit constant).
We will not go into the details of these arguments, but we wish to point out why, in these arguments, α = 1/2 plays

such a singular role:

(1) In the approach of [11] an expansion of the free energy to all orders in the variance of exp(βω1 − log M(β)), that

is (M(2β)/M2(β)) − 1
β↘0∼ β2, is performed. In particular (in the Gaussian case)

F
(
β,hc(0) + a

) = F
(
0, hc(0) + a

) − 1

2

(
exp

(
β2) − 1

)(
∂aF

(
0, hc(0) + a

))2 + · · · (1.10)

and, when L(·) is trivial, ∂aF(0, hc(0)+ a) behaves like (a constant times) a(1−α)/α for α ∈ (0,1) (this is detailed,
for example, in [13]) and like a constant for α > 1. This suggests that the expansion (1.10) cannot work for
α > 1/2, because the second-order term, for a ↘ 0, becomes larger than the first order term (amax(1/α,1)). The
borderline case is α = 1/2, and trust in such an expansion for α = 1/2 may follow from the fact that β can be
chosen small. In conclusion, an argument along the lines of [11] predicts disorder relevance if and only if α > 1/2
(if L(·) is trivial).

(2) The approach of [8] instead is based on the analysis of varP(ZN,ω) at the pure critical point hc(0). This directly
leads to studying the random set τ̃ := τ ∩ τ ′ (it appears in the computation in a very natural way, we call it
intersection renewal), with τ ′ an independent copy of τ (note that τ̃ is still a renewal process): in physical terms,
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one is looking at the two-replica system. It turns out that, even if we have assumed τ persistent, τ̃ may not be: in
fact, if L(·) is trivial, then τ̃ is persistent if and only if α ≥ 1/2 (see just below for a proof of this fact). And [8]
predicts disorder relevance if and only if α ≥ 1/2.

Some aspects of these two approaches were made rigorous mathematically: The expansion of the free energy (1.10)
was proved to hold for α < 1/2 in [16], and the second moment analysis of [8] was used to prove disorder irrelevance
in [1,19], making it difficult to choose between the predictions.

We can actually find in the physical literature a number of authors standing for one or the other of the two pre-
dictions in the marginal case α = 1/2 (the reader can find a detailed review of the literature in [14]). But we would
like to go a step farther and we point out that, by generalizing naively the approach in [8], one is tempted to conjec-
ture disorder relevance (at arbitrarily small β) if and only if the intersection renewal is recurrent. Let us make this
condition explicit: while one does not have direct access to the inter-arrival distribution of τ̃ , it is straightforward, by
independence, to write the renewal function of τ̃ :

P(n ∈ τ̃ ) = P(n ∈ τ)2. (1.11)

It is then sufficient to use the basic (and general) renewal process formula
∑

n P(n ∈ τ̃ ) = (1 − ∑
n P(̃τ1 = n))−1 to

realize that τ̃ is persistent if and only if
∑

n P(n ∈ τ̃ ) = ∞. Since under our assumptions for α ∈ (0,1) [9], Theorem B,

P(n ∈ τ)
n→∞∼ α sin(πα)

π

1

n1−αL(n)
, (1.12)

we easily see that the intersection renewal τ̃ is persistent for α > 1/2 and terminating if α < 1/2 (the case α = 0 can
be treated too [4], and τ̃ is terminating). In the α = 1/2 case the argument we have just outlined yields

τ ∩ τ ′ is persistent ⇐⇒
∑
n

1

nL(n)2
= ∞. (1.13)

Roughly, this is telling us that the intersection renewal τ̃ is persistent up to a slowly varying function L(x) diverging
slightly less than (logx)1/2. In particular, as we have already pointed out, if L(·) is trivial, τ̃ is persistent.

Let us remark that the expansion (1.10) has been actually made rigorous in [16], but only under the assumption
that the intersection renewal τ̃ is terminating (that is, b> 1/2 for logarithmic slowly varying functions).

Remark 1.4. In view of the argument we have just outlined, we introduce the increasing function L̃ : (0,∞) → (0,∞)

defined as

L̃(x) :=
∫ x

0

1

(1 + y)L(y)2
dy, (1.14)

that is going to play a central role from now on. Let us point out that, by [4], Theorem 1.5.9a, L̃(·) is a slowly varying
function which has the property

lim
x→∞ L̃(x)L(x)2 = +∞, (1.15)

which is a non-trivial statement when L(·) does not diverge at infinity. Of course we are most interested in the fact
that, when α = 1/2, L̃(x) diverges as x → ∞ if and only if the intersection renewal τ̃ is recurrent (cf. (1.13)). For
completeness we point out that L̃(·) is a special type of slowly varying function (a den Haan function [4], Chapter 3),
but we will not exploit the further regularity properties stemming out of this observation.

1.4. Review of the rigorous results

Much mathematical work has been done on disordered pinning models recently. Let us start with a quick review of
the α 
= 1/2 case:
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• If α > 1/2 disorder relevance is established. The positivity of hc(β) − hc(0) (with precise asymptotic estimates
as β ↘ 0) is proven [2,7]. It has been also shown that disorder has a smoothing effect on the transition and the
quenched free energy critical exponent differs from the annealed one [15].

• If α < 1/2 disorder irrelevance is established, along with a number of sharp results saying in particular that, if β

is not too large, hc(β) = hc(0) and that the free energy critical behavior coincides in the quenched and annealed
framework [1,3,16,19].

In the case α = 1/2 results are less complete. Particularly relevant for the sequel are the next two results that we
state as theorems. The first one is taken from [1] (see also [19]) and uses the auxiliary function a0(·) defined by

a0(β) := C1L
(
L̃−1(C2/β

2))/(
L̃−1(C2/β

2))1/2 with C1 > 0 and C2 > 0, (1.16)

if limx→∞ L̃(x) = ∞, and a0(·) ≡ 0, otherwise.

Theorem 1.5. Fix ω1 ∼ N (0,1), α = 1/2 and choose a slowly varying function L(·). Then there exists β0 > 0 and
a1 > 0 such that for every ε > 0 there exist C1 and C2 > 0 such that

1 − ε ≤ F(β, a)

F(0, a)
≤ 1 for a > a0(β), a ≤ a1 and β ≤ β0. (1.17)

This implies for β ≤ β0

hc(β) − hc(0) ≤ a0(β). (1.18)

It is worth pointing out that Theorem 1.5 yields an upper bound matching (1.9) when L(·) is trivial.
The next result addresses instead the lower bound on hc(β) − hc(0) and it is taken from [14].

Theorem 1.6. Fix ω1 ∼ N (0,1) and α = 1/2. If L(·) is trivial, then hc(β) − hc(0) > 0 for every β > 0 and there
exists C > 0 such that

hc(β) − hc(0) ≥ exp
(−C/β4) (1.19)

for β ≤ 1.

It should be pointed out that [14] has been worked out for trivial L(·), addressing thus precisely the controversial
issue in the physical literature. The case of limx→∞ L(x) = 0 has been treated [2] (see [7] for a weaker result)
where hc(β) − hc(0) > 0 has been established with an explicit but not optimal bound. We point out also that a result
analogous to Theorem 1.6 has been proven for a hierarchical version of the pinning model [18] (see [14] for the case
of the hierarchical model proposed in [8]).

The understanding of the marginal case is therefore still partial and the following problems are clearly open:

(1) What is really the behavior of hc(β) − hc(0) in the marginal case? In particular, for L(·) trivial, is (1.9) correct?
(2) Going beyond the case of L(·) trivial: is the two-replica condition (1.13) equivalent to disorder relevance for

small β?
(3) What about non-Gaussian disorder? It should be pointed out that a part of the literature focuses on Gaussian

disorder, notably Theorem 1.5, but this choice appears to have been made in order to have more concise proofs
(for example, the results in [7] are given for very general disorder distribution). Theorem 1.6 instead exploits a
technique that is more inherently Gaussian and generalizing the approach in [14] to non-Gaussian disorder is not
straightforward.

As we explain in the next subsection, in this paper we will give almost complete answers to questions (1)–(3). In
addition we will prove a monotonicity result for the phase diagram of pinning model which holds in great generality.
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1.5. The main result

Our main result requires the existence of ε ∈ (0,1/2] such that

L(x) = o
((

log(x)
)(1/2)−ε) as x → ∞, (1.20)

that is limx→∞ L(x)(log(x))−(1/2)+ε = 0. Of course, if L(·) vanishes at infinity, (1.20) holds with ε = 1/2. Going
back to the slowly varying function L̃(·), cf. Remark 1.4, we note that, under assumption (1.20), we have

L̃(x)
x→∞�

∫ x

2

1

y(logy)1−2ε
dy = 1

2ε
(logx)2ε − 1

2ε
(log 2)2ε. (1.21)

Therefore, under assumption (1.20), we have that if q > (2ε)−1 then

lim
x→∞

L̃(x)

L(x)2/(q−1)
= ∞, (1.22)

which guarantees that given q > (2ε)−1 (actually, in the sequel q ∈ N) and A > 0,


(β;q,A) := (
inf

{
n ∈ N: L̃(n)/L(n)2/(q−1) ≥ Aβ−2q/(q−1)

})−1
(1.23)

is greater than 0 for every β > 0.
Our main result is the following theorem.

Theorem 1.7. Let us assume that α = 1/2 and that (1.20) holds for some ε ∈ (0,1/2]. For every β0 and every integer
q > (2ε)−1 there exists A > 0 such that

hc(β) − hc(0) ≥ 
(β;q,A) > 0 (1.24)

for every β ≤ β0.

The result may be more directly appreciated in the particular case of L(·) of logarithmic type, cf. Remark 1.1,
with b< 1/2, so that (1.20) holds with ε < min((1/2) − b,1/2). By explicit integration we see that L̃(x) ∼ (a2(1 −
2b))−1(log(x))1−2b so that

L̃(x)

L(x)2/(q−1)
∼ a−2q/(q−1)

(1 − 2b)

(
log(x)

)1−2bq(q−1)−1
(1.25)

and in this case


(β;q,A)
β↘0∼ exp

(−c(b,A,q)β−b
)
, (1.26)

where c(b,A,q) := ((1 − 2b)a2q/(q−1)A)1/C and b := 2q/((q − 1)C) with C := 1 − 2bq(q − 1)−1. In short, by
choosing q large the exponent b > 2/(1 − 2b) becomes arbitrarily close to 2/(1 − 2b), at the expense of course of a
large constant c(b,A,q), since A will have to be chosen sufficiently large.

We sum up these steps into the following simplified version of Theorem 1.7.

Corollary 1.8. If α = 1/2 and L(·) is of logarithmic type with b ∈ (−∞,1/2) (cf. Remark 1.1) then hc(β) > hc(0)

for every β > 0 and for every b > 2/(1 − 2b) there exists c > 0 such that, for β sufficiently small

hc(β) − hc(0) ≥ exp
(−cβ−b

)
. (1.27)
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This result of course has to be compared with the upper bound in Theorem 1.5 that for L(·) of logarithmic type
yields for b< 1/2

hc(β) − hc(0) ≤ C̃1β
−2b/(1−2b) exp

(−C̃2β
−2/(1−2b)

)
, (1.28)

where C̃1 and C̃2 are positive constants that depend (explicitly) on a, b and on the two constants C1 and C2 of
Theorem 1.5 (we stress that C̃1 > 0 and C̃2 > 0 for every a> 0 and b< 1/2).

The main body of the proof of Theorem 1.7 is given in the next section. In the subsequent sections a number of
technical results are proven. In the last section (Section 6) we prove a general result (Proposition 6.1) for the models we
are considering: the monotonicity of the free energy with respect to β . This result, already known for other disordered
models, appears not to have been pointed out up to now for the pinning model. We stress that Proposition 6.1 is not
used in the rest of the paper, but, as discussed in Section 6, one can find a link of some interest with our main results.

2. Coarse graining, fractional moment and measure change arguments

The purpose of this section is to reduce the proof to a number of technical statements, that are going to be proven in
the next sections. In doing so, we are going to introduce the quantities and notations used in the technical statements
and, at the same time, we will stress the main ideas and the novelties with respect to earlier approaches (notably, with
respect to [14]).

We anticipate that the main ingredients of the proof are (like in [14]) a coarse graining procedure and a fractional
moment estimate on the partition function combined with a change of measure. However:

(1) In [14] we have exploited the Gaussian character of the disorder to introduce weak, long-range correlations while
keeping the Gaussian character of the random variables. In fact, the change of measure is given by a density that
is just the exponential of a quadratic functional of ω, that is a measure change via a 2-body potential. In order
to lower the exponent 4 in the right-hand side of (1.19) we will use q-body potentials q = 3,4, . . . (this is the q

appearing in Theorem 1.7). Such potentials carry with themselves a number of difficulties: for example, when
the law of the disorder is Gaussian, the modified measure is not. As a matter of fact, there are even problems
in defining the modified disorder variables if one modifies in a straightforward way the procedure in [14] to
use q-body potentials, due to integrability issues: such problems may look absent if one deals with bounded ω

variables, but they actually reappear when taking limits. The change-of-measure procedure is therefore performed
by introducing q-body potentials and suitable cut-offs. Estimating the effect of such q-body potential with cut-off
change of measure is at the heart of our technical estimates.

(2) The coarse-graining procedure is different from the one used in [14,20], since we have to adapt it to the new
change of measure procedure. However, unlike point (1), the difference between the previous coarse graining
procedure and the one we are employing now is more technical than conceptual.

2.1. The coarse graining length

Recall the definition (1.14) of L̃(·). We are assuming (1.20), therefore limx→∞ L̃(x) = +∞. Chosen a value of
q ∈ {2,3, . . .} (q is kept fixed throughout the proof) and a positive constant A (that is going to be chosen large) we
define

k = k(β;q,A) := inf
{
n ∈ N: L̃(n)/L(n)2/(q−1) ≥ Aβ−2q/(q−1)

}
. (2.1)

Since we are interested also in cases in which L(·) diverges (and possibly faster than L̃(·)) it is in general false that
k < ∞. However, the assumption (1.20) guarantees that, for q > (2ε)−1, L(x)/L(x)2/(q−1) → ∞ for x → ∞ and
therefore k < ∞.

Moreover, if L(·) is of logarithmic type (Remark 1.1) with b < 1/2, then for q > 1/(1 − 2b) the function
L̃(·)/L(·)2/(q−1) is (eventually) increasing.

Of course k(β;q,A) is just 1/
(β;q,A), cf. (1.23), and the reason for such a link is explained in Remark 2.5.
Note by now that k is monotonic in both β and A. Since β is chosen smaller than an arbitrary fixed quantity β0, in
order to guarantee that k is large we will rather play on choosing A large.
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Remark 2.1. For the proof certain monotonicity properties will be important. Notably, we know [4], Section 1.5.2,
that 1/(

√
xL(x)) is asymptotic to a monotonic (decreasing) function and this directly implies that we can find a slowly

varying function L(·) and a constant cL ∈ (0,1] such that

x �→ 1√
xL(x)

is decreasing and cLL(x) ≤ L(x) ≤ L(x) for every x ∈ (0,∞). (2.2)

Given the asymptotic behavior of the renewal function of τ (a special case of (1.12))

P(n ∈ τ)
n→∞∼ 1

2π
√

nL(n)
, (2.3)

and the fact that P(n ∈ τ) > 0 for every n ∈ N, we can choose L(·) and cL such that we have also

1√
n + 1L(n + 1)

≤ P(n ∈ τ) ≤ c−1
L√

n + 1L(n + 1)
, n = 0,1,2, . . . . (2.4)

It is natural to choose L(·) such that limx→∞ L(x)/L(x) ∈ [1,1/cL) exists, and we will do so. For later convenience
we set

R1/2(x) := 1√
x + 1L(x + 1)

. (2.5)

2.2. The coarse graining procedure and the fractional moment bound

Let us start by introducing for 0 ≤ M < N the notation

ZM,N = ZM,N,ω := E
[
e
∑N

n=M+1(βωn+h−log M(β))δnδN |δM = 1
]
, (2.6)

and ZM,M := 1 (of course ZN,ω = Z0,N ). We consider without loss of generality a system of size proportional to k,
that is N = km with m ∈ N. For I ⊂ {1, . . . ,m} we define

ẐI
ω := E

[
e
∑N

n=1(βωn+h−log M(β))δnδN1EI (τ )
]
, (2.7)

where EI := {τ ∩ (
⋃

i∈I Bi) = τ \ {0}}, and

Bi := {
(i − 1)k + 1, . . . , ik

}
, (2.8)

that is EI is the event that the renewal τ intersects the blocks (Bi)i∈I and only these blocks over {1, . . . ,N}. It follows
from this definition that

ZN,ω =
∑

I⊂{1,...,m}
ẐI

ω . (2.9)

Note that ẐI
ω = 0 if m /∈ I . Therefore in the following we will always assume m ∈ I . For I = {i1, . . . , il}, (i1 < · · · <

il , il = m), one can express ẐI
ω in the following way:

ẐI
ω =

∑
d1,f1∈Bi1

d1≤f1

∑
d2,f2∈Bi2

d2≤f2

· · ·
∑

dl∈Bil

K(d1)zd1Zd1,f1K(d2 − f1)zd2Zd2,f2 · · ·K(dl − fl−1)zdl
Zdl,N , (2.10)

with zn := exp(βωn + h − log M(β)). Let us fix a value of γ ∈ (0,1) (we actually choose γ = 6/7, but we will keep
writing it as γ ). Using the inequality (

∑
ai)

γ ≤ ∑
a

γ

i (which is valid for ai ≥ 0 and an arbitrary collection of indexes)
we get

E
[
Z

γ

N,ω

] ≤
∑

I⊂{1,...,m}
E

[(
ẐI

ω

)γ ]
. (2.11)
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An elementary, but crucial, observation is that

F(β,h) = lim
N→∞

1

γN
E logZ

γ

N,ω ≤ lim inf
N→∞

1

γN
logEZ

γ

N,ω, (2.12)

so that if we can prove that lim supN EZ
γ

N,ω < ∞ for h = hc(0) + 
(β;q,A) we are done.

2.3. The change of measure

We introduce

Xj :=
∑
i∈B

q
j

Vk(i)ωi, (2.13)

where B
q
j is the Cartesian product of Bj with itself q times and ωi = ∏q

a=1 ωia . The potential Vk(·) plays a crucial
role for the sequel: we define it and discuss some of its properties in the next remark.

Remark 2.2. The potential V is best introduced if we define the sorting operator s(·): if i ∈ R
q (q = 2,3, . . .),

s(i) ∈ R
q is the non-decreasing rearrangement of the entries of i. We introduce then

U(i) :=
q∏

a=2

R1/2
(
s(i)a − s(i)a−1

)
, (2.14)

The potential V is defined by renormalizing U and by setting to zero the diagonal terms:

Vk(i) := 1

(q!)1/2k1/2L̃(k)(q−1)/2
U(i)1{ia 
=ib for every a,b}, (2.15)

where L̃(·) is defined as in (1.14), with L(·) replaced by L(·). By exploiting the fact that for every c > 0 we have∑
i≤cN R1/2(i)

2 N→∞∼ L̃(N) one sees that

∑
i∈B

q
1

Vk(i)
2 = 1

k(L̃(k))q−1

∑
0<i1<···<iq≤k

q∏
a=2

(
R1/2(ia − ia−1)

)2 k→∞∼ 1. (2.16)

Therefore,∑
i∈B

q
1

Vk(i)
2 ≤ 2 (2.17)

for k sufficiently large.

Let us introduce, for K > 0, also

fK(x) := −K1{x≥exp(K2)},

gI (ω) := exp

(∑
j∈I

fK(Xj )

)
, (2.18)

ḡ(ω) := exp
(
fK(X1)

)
.

We are now going to replace, for fixed I , the measure P(dω) with gI (ω)P(dω). The latter is not a probability measure:
we could normalize it, but this is inessential because we are directly exploiting Hölder inequality to get

E
[(

ẐI
ω

)γ ] ≤ (
E

[
gI (ω)−γ /(1−γ )

])1−γ (
E

[
gI (ω)ẐI

ω

])γ
. (2.19)
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The first factor in the right-hand side is easily controlled, in fact

E
[
gI (ω)−γ /(1−γ )

] = E
[
ḡ(ω)−γ /(1−γ )

]|I| =
[(

exp

(
Kγ

1 − γ

)
− 1

)
P
(
X1 ≥ exp

(
K2)) + 1

]|I|
, (2.20)

and since X1 is centered and its variance coincides with the left-hand side of (2.17), by Chebyshev inequality the term
exp(Kγ /(1 − γ ))P(X1 ≥ exp(K2)) can be made arbitrarily small by choosing K large. Therefore for K sufficiently
large (depending only on γ (= 6/7))

E
[(

ẐI
ω

)γ ] ≤ 2γ |I|(
E

[
gI (ω)ẐI

ω

])γ
. (2.21)

Estimating the remaining factor is a more involved matter. We will actually use the following two statements, that
we prove in the next section. Set PI := P(EI ; δN = 1).

Proposition 2.3. Assume that α = 1/2 and that (1.20) holds for some ε ∈ (0,1/2]. For every η > 0 and every q >

(2ε)−1 we can choose A > 0 such that if β ≤ β0 and h ≤ 
(β;q,A), for every I ⊂ {1, . . . ,m} with m ∈ I we have

E
[
gI (ω)ẐI

ω

] ≤ η|I|PI . (2.22)

The following technical estimate controls PI (recall that I = {i1, . . . , i|I|}).

Lemma 2.4. Assume α = 1/2. There exist C1 = C1(L(·), k), C2 = C2(L(·)) and k0 = k0(L(·)) such that (with i0 := 0)

PI ≤ C1C
|I|
2

|I|∏
j=1

1

(ij − ij−1)7/5
(2.23)

for k ≥ k0.

Note that in this statement k is just a natural number, but we will apply it with k as in (2.1) so that k ≥ k0 is just
a requirement on A. Note also that the choice of 7/5 is arbitrary (any number in (1,3/2) would do: the constants C1

and C2 depend on such a number).
Let us now go back to (2.21) and let us plug it into (2.11) and use Proposition 2.3 and Lemma 2.4 to get:

E
[
Z

γ

N,ω

] ≤ C
γ

1

∑
I⊂{1,...,m}

m∈I

|I|∏
j=1

(
(2C2η)γ

(ij − ij−1)7γ /5

)
. (2.24)

But 7γ /5 = 6/5 > 1, so we can choose

η := 1

3C2(
∑∞

i=1 i−6/5)7/6
, (2.25)

and this implies that n �→ (2C2η)γ n−7γ /5 is a sub-probability, which directly entails that

E
[
Z

γ

N,ω

] ≤ C
γ

1 (γ = 6/7) (2.26)

for every N , which implies, via (2.12), that F(β,h) = 0 and we are done.
It is important to stress that C1 may depend on k (we need (2.26) uniform in N , not in k), but C2 does not (C2 is

just a function of L(·), that is a function of the chosen renewal), so that η may actually be chosen a priori as in (2.25):
it is a small but fixed constant that depends only on the underlying renewal τ .
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Fig. 2. The figure above explains our coarse graining procedure. Here N = 8k, I = {2,5,6,8}. The drawn trajectory is a typical trajectory con-
tributing to ẐI

N,ω
; di and fi , 1 ≤ i ≤ 4, correspond to the indexes of (2.10). The shadowed regions represent the sites on which the change of

measure procedure (presented in Section 2.3) acts.

Remark 2.5. In this section we have actually hidden the role of 
(β;q,A) in the hypotheses of Proposition 2.3,
which are the hypotheses of Theorem 1.7. Let us therefore explain informally why we can prove a critical point shift
of 
 = 1/k.

The coarse graining procedure reduces proving delocalization to Proposition 2.3. As it is quite intuitive from (2.9)–
(2.21) and Fig. 2, one has to estimate the expectation, with respect to the ḡ(ω)-modified measure, of the partition
function Zdj ,fj

(or, equivalently, Zdj ,fj
/P(fj − dj ∈ τ)) in each visited block (let us assume that fj − dj is of the

order of k, because if it is much smaller than k one can bound this contribution in a much more elementary way). The

Boltzmann factor in Zdj ,fj
is exp(

∑fj

n=dj +1(βωn − log M(β) + h)δn) which can be bounded (in an apparently very

rough way) by exp(
∑fj

n=dj +1(βωn − log M(β))δn) exp(hk), since fj − dj ≤ k. Therefore, if h ≤ 
(β;q,A) ∼ 1/k

we can drop the dependence on h at the expense of the multiplicative factor e that is innocuous because we can show
that the expectation (with respect to the ḡ(ω)-modified measure) of Zdj ,fj

/P(fj − dj ∈ τ) when h = 0 can be made
arbitrarily small by choosing A sufficiently large.

Remark 2.6. How does one guess the change of measure in (2.18)? An argument that suggests how to choose the den-
sity gI (ω) goes as follows. The reason why E[ZN,ω] does not capture the correct typical behavior of ZN,ω for N large
lies in the atypically large values of ZN,ω that dominate the expectation. In order to get closer to the typical behavior
one can introduce a penalization in terms of a density like exp(fK(ZN,ω)). However this change of measure is very
difficult to handle, because it essentially requires being able to compute quantities involving ZN,ω , that is precisely
the object that we are investigating. So what we do is to attempt the substitution of ZN,ω with a much simpler quantity
that is expected to capture some crucial features of it. A naive, but in the end fruitful, way of proceeding is to expand
the Boltzmann factor exp(H) = 1 + H + H 2/2 + · · · . If one considers the term of order q one has to take the qth
power of

∑N
n=1(βωn + h − log M(β))δn thus obtaining in particular βq

∑
i1<i2<···<iq

ωi1ωi2 · · ·ωiq δi1δi2 · · · δiq . By
replacing βqδi1δi2 · · · δiq by its expectation one gets essentially Vk(i1, . . . , iq) (cf. (2.15)) for N = k: this can be seen
by using the asymptotic behavior of E[δi], that is (2.3), and the definition of k that tells us that L(k)/L̃(k)(q−1)/2 is
about βq (in this rough approximation procedure we have replaced i1 with k: this is because in most of the terms of
the sum i1 is actually of this order of magnitude).

Remark 2.7. A last observation on the proof is about β0. It can be chosen arbitrarily, but for the sake of simplifying
the constants appearing in the proofs we choose β0 ∈ (0,∞) such that

1

2
≤ d2

dβ2
log M(β) ≤ 2 (2.27)

for β ∈ [0, β0]. Choosing β0 arbitrarily just boils down to changing the constants in the right-most and left-most terms
in (2.27).

3. Coarse graining estimates

We start by proving Lemma 2.4, namely (2.23). The proof is however more clear if instead of working with the
exponent 7/5 we work with 3/2 − ξ (ξ ∈ (0,1/2), in the end, plug in ξ = 1/10).
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Proof of Lemma 2.4. First of all, in the product on the right-hand side of (2.23) one can clearly ignore the terms such
that ij − ij−1 = 1. We then express I in a more practical way by observing that we can define, in a unique way, an
integer p ≤ l := |I| and increasing sequences of integers {aj }j=1,...,p , {bj }j=1,...,p with bp = m, aj ≥ bj−1 + 2 (for
j > 1) and bj ≥ aj such that

I =
p⋃

j=1

[aj , bj ] ∩ N. (3.1)

For instance, if I = {1,2,4,5,6,9} we write I = {1,2} ∪ {4,5,6} ∪ {9} and a1 = 1, b1 = 2, a2 = 4, b2 = 6, a3 = b3 =
9, so that p = 3.

With this definition, it is sufficient to show

PI ≤ C1C
l
2

1

a
3/2−ξ

1

p−1∏
j=1

1

(aj+1 − bj )3/2−ξ
. (3.2)

We start then by writing

PI ≤
∑

d1∈Ba1
f1∈Bb1

. . .
∑

dp−1∈Bap−1

fp∈Bbp−1

∑
dp∈Bap

K(d1)P(f1 − d1 ∈ τ) · · ·K(dp − fp−1)P(N − dp ∈ τ), (3.3)

where the inequality comes from neglecting the constraint that τ has to intersect Baj +1, . . . ,Bbj −1. Note that the
meaning of the d and f indexes is somewhat different with respect to (2.10) and that in the above sum we always have

d1 ∈ Ba1 ,

(aj − bj−1 − 1)k ≤ dj − fj−1 ≤ (aj − bj−1 + 1)k, (3.4)

(bj − aj − 1)k ∨ 0 ≤ fj − dj ≤ (bj − aj + 1)k.

In particular, fj ≥ dj is guaranteed by the fact that P(fj − dj ∈ τ) = 0, otherwise.
Observe now that for k sufficiently large

∑
x∈Ba1

K(x) ≤
{1 if a1 = 1,

3 L((a1−1)k)

k1/2(a1−1)3/2 if a1 = 2,3, . . .
≤ c1(k)

L(a1k)

k1/2a
3/2
1

, (3.5)

where c1(k) := max(10, k1/2/L(k)). Moreover, there exists a constant c2 depending on L(·) such that for j > 1

(aj −bj−1+1)k∑
x=(aj −bj−1−1)k

K(x) ≤ c2
L(k(aj − bj−1))

k1/2(aj − bj−1)3/2
,

(3.6)
(bj −aj +1)k∑

x=(bj −aj −1)k∨0

P(x ∈ τ) ≤ c2
k1/2

(bj − aj + 1)1/2L(k(bj − aj + 1))
.

The first inequality is obtained by making use of aj ≥ bj−1 + 2. Neglecting P(N − dp ∈ τ) which is smaller than one,
we can bound the right-hand side of (3.3) and get

PI ≤ c1(k)c
2p

2
L(a1k)

k1/2a
3/2
1

p−1∏
j=1

(
L(k(aj+1 − bj ))

(aj+1 − bj )3/2

)(
1

(bj − aj + 1)1/2L(k(bj − aj + 1))

)
. (3.7)
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Notice now that since L(·) grows slower than any power, supa1
L(a1k)/(k1/2a

ξ
1 ) is o(1) for k large. To control the

other terms we use the Potter bound [4], Theorem 1.5.6: given a slowly varying function L(·) which is locally bounded
away from zero and infinity (which we may assume in our set up without loss of generality), for every a > 0 there
exists ca > 0 such that for every x, y > 0

L(x)

L(y)
≤ ca max

(
x

y
,
y

x

)a

. (3.8)

This bound implies that for large enough k

sup
x≥1

L(k)√
xL(kx)

≤ 2 and sup
x≥1

L(kx)

L(k)xξ
≤ 2. (3.9)

In fact consider the second bound (the argument for the first one is identical): by choosing a = ξ/2 we have
L(kx)/(L(k)xξ ) ≤ cξ/2x

−ξ/2 ≤ 2 and the second inequality holds for x larger than a suitable constant Cξ . For x(≥ 1)

smaller than Cξ instead it suffices to choose k sufficiently large so that L(kx)/L(k) ≤ 2 for every x ∈ [1,Cξ ]. Using
the two bounds (3.9) in (3.7) we complete the proof. �

The proof of Proposition 2.3 depends on the following lemma that will be proven in the next section.

Lemma 3.1. Set h = 0, fix q ∈ N, q > (2ε)−1 as in Theorem 1.7, and recall the definition of k = k(β;q,A) (2.1). For
every ε and δ > 0 there exists A0 > 0 such that for A ≥ A0

E
[
ḡ(ω)zdZd,f

] ≤ δP(f − d ∈ τ) (3.10)

for every d and f such that 0 ≤ d ≤ d + εk ≤ f ≤ k and β ≤ β0.

Proof of Proposition 2.3. Recalling (2.10) and the notations for the set I in there, we have

E
[
gI (ω)ẐI

ω

]
=

∑
d1,f1∈Bi1

d1≤f1

∑
d2,f2∈Bi2

d2≤f2

. . .
∑

dl∈Bil

K(d1)E
[
ḡ(ω)zd1−k(i1−1)Zd1−k(i1−1),f1−k(i1−1)

]
K(d2 − f1) · · ·

× K(dl − fl−1)E
[
ḡ(ω)zdl−k(m−1)Zdl−k(m−1),k

]
≤ el

∑
d1,f1∈Bi1

d1≤f1

∑
d2,f2∈Bi2

d2≤f2

. . .
∑

dl∈Bil

K(d1)(δ + 1{f1−d1≤εk})P(f1 − d1 ∈ τ)K(d2 − f1) · · ·

× K(dl − fl−1)(δ + 1{N−dl≤εk})P(N − dl ∈ τ), (3.11)

where the factor el in the last expression comes from bounding the contribution due to h (recall that hk ≤ 1). We now
consider Bij as the union of two sub-blocks

B
(1)
ij

:= {
(ij − 1)k + 1, . . . , (ij − 1)k + �k/2�},

(3.12)
B

(2)
ij

:= {
(ij − 1)k + �k/2�, . . . , ij k

}
.

If dj ∈ B
(1)
ij

then if ε is sufficiently small (ε ≤ 1/10 suffices) we have that for k sufficiently large (i.e., k ≥ k0(L(·), ε))
dj +εk∑
f =dj

P(f − dj ∈ τ)K(dj+1 − f ) ≤ 4

( kε∑
x=1

P(x ∈ τ)

)
K

(
k(ij+1 − ij )

)
. (3.13)
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This can be compared to

kij∑
f =dj

P(f − dj ∈ τ)K(dj+1 − f ) ≥ 1

3

(�k/4�∑
x=1

P(x ∈ τ)

)
K

(
k(ij+1 − ij )

)
, (3.14)

that holds once again for k large. By using that
∑n

x=1 P(x ∈ τ) behaves for n large like
√

n times a slowly varying

function (cf. (2.3)) we therefore see that given δ > 0 we can find ε such that for any dj ∈ B
(1)
ij

we have

dj +εk∑
f =dj

P(f − dj ∈ τ)K(dj+1 − f ) ≤ δ

kij∑
f =dj

P(f − dj ∈ τ)K(dj+1 − f ). (3.15)

Using the same argument in the opposite way one finds that if fj ∈ B
(2)
ij

fj∑
d=fj −εk

K(d − fj−1)P(fj − d ∈ τ) ≤ δ

fj∑
d=k(ij −1)

K(d − fj−1)P(fj − d ∈ τ). (3.16)

Since either dj ∈ B
(1)
ij

or fj ∈ B
(2)
ij

, we conclude that∑
dj ,fj ∈Bij

dj ≤fj

1{fj −dj ≤kε}K(dj − fj−1)P(fj − dj ∈ τ)K(dj+1 − fj )

≤ δ
∑

dj ,fj ∈Bik

dj ≤fj

K(dj − fj−1)P(fj − dj ∈ τ)K(dj+1 − fj ). (3.17)

The analog estimate can be obtained for the sum over dl in (3.11) (rather, it is easier). Using this inequality for
j = 1, . . . , l we get our result for η = 2eδ. �

4. The q-body potential estimates

In what follows X = X1 and we fix δ ∈ (0,1). The positive (small) number ε is fixed too, as well as q > (2ε)−1,
where ε is the same which appears in the statement of Theorem 1.7.

Proof of Lemma 3.1. We start by observing that, since h = 0,

E
[
ḡ(ω)zdZd,f

] = Ed,f

[
E

[
ḡ(ω) exp

(
f∑

n=d

(
βωn − log M(β)

)
δn

)]]
P(f − d ∈ τ), (4.1)

where Pd,f is the law of τ ∩ [d,f ], conditioned to f,d ∈ τ . Given the random set (or renewal trajectory) τ we
introduce the probability measure

P̂τ (dω) := exp

(
f∑

n=d

(
βωn − log M(β)

)
δn

)
P(dω). (4.2)

Note that ω, under P̂τ , is still a sequence of independent random variables, but they are no longer identically distrib-
uted. We will use that, for d ≤ n ≤ f ,

Êτωn = mβδn
β↘0∼ βδn (so that β/2 ≤ mβ ≤ 2β) and var̂

Pτ
(ωn) ≤ 2, (4.3)
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where the inequalities hold for β ≤ β0 (recall (2.27)) and all relations hold uniformly in the renewal trajectory τ . On
the other hand, for n /∈ {d, . . . , f } the ωn’s are IID exactly as under P. We have

E[ḡ(ω)zdZd,f ]
P(f − d ∈ τ)

= Ed,f Êτ

[
ḡ(ω)

]
= exp(−K)Ed,f P̂τ

[
X ≥ exp

(
K2)] + Ed,f P̂τ

[
X < exp

(
K2)]

≤ exp(−K) + Ed,f P̂τ

[
X < exp

(
K2)] ≤ δ

3
+ Ed,f P̂τ

[
X < exp

(
K2)], (4.4)

where in the last step we have chosen K such that exp(−K) ≤ δ/3. We are now going to use the following lemma.

Lemma 4.1. If d and f are chosen such that f − d ≥ εk and X(= X1) is defined as in (2.13), that is X =∑
i∈B

q
1
Vk(i)ωi , we have that for every ζ > 0 we can find a > 0 and A0 such that

Pd,f

(
ÊτX > aA(q−1)/2) ≥ 1 − ζ (4.5)

for β ≤ β0 and A ≥ A0.

We apply this lemma by setting ζ = δ/3 (so a is fixed once δ is chosen) so that, if we choose K such that
2 exp(K2) = aA(q−1)/2 (note that, by choosing A large we make K large and we automatically satisfy the previ-
ous requirements on K), we have Pd,f (ÊτX < 2 exp(K2)) ≤ δ/3, so that, in view of (4.4), we obtain

E[ḡ(ω)zdZd,f ]
P(f − d ∈ τ)

≤ 2δ

3
+ Ed,f P̂τ

[
X − ÊτX ≤ − exp

(
K2)]

≤ 2δ

3
+ 4

a2Aq−1
Ed,f Êτ

[
(X − ÊτX)2]. (4.6)

The claim of Lemma 3.1 now follows as soon as we can show that the second moment appearing in the last term
of (4.6) is o(Aq−1) for A large. But this is precisely what is granted by the next lemma. �

Lemma 4.2. There exists A0 > 0 such that

Ed,f Êτ

[
(X − ÊτX)2] ≤ A(q−1)2/q (4.7)

for every β ≤ β0 and every A ≥ A0.

Proof. We start by introducing the notation ω̂n := ωn − mβδn1{d≤n≤f } and by observing that

Êτ

[
(X − ÊτX)2] = Êτ

[(∑
i∈B

q
1

Vk(i)

q∏
a=1

(ω̂ia + mβδia1{d≤ia≤f }) − mq
β

∑
i∈{d,...,f }q

Vk(i)δi

)2]

≤ C(q)Êτ

[(
q−1∑
�=0

m�
β

∑
i∈B

q−�
1

∑
j∈{d,...,f }�

Vk(ij)ω̂iδj

)2]

≤ C(q)

q−1∑
�=0

m2�
β

∑
i∈B

q−�
1

∑
j,m∈{d,...,f }�

Vk(ij)Vk(im)δj δm, (4.8)

where ij ∈ B
q

1 is the concatenation of i and j and in the last step we have first used the Cauchy–Schwarz inequality,
then the fact that the ω̂ variables are independent and centered and (4.3).
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Remark 4.3. Here and in the following, we adopt the convention that C(a, b, . . .) is a positive constant (which depends
on the parameters a, b, . . .), whose numerical value may change from line to line.

Therefore,

Ed,f Êτ

[
(X − ÊτX)2] ≤ C(q)

q−1∑
�=0

m2�
β

∑
i∈B

q−�
1

∑
j,m∈{d,...,f }�

Vk(ij)Vk(im)Ed,f [δj δm]. (4.9)

Let us point out immediately that we know how to deal with the � = 0 case: it is simply C(q)
∑

i∈B
q
1
Vk(i)

2 and it is
therefore bounded by 2C(q) (cf. (2.17)). By using the notation and the bounds in Remarks 2.1 and 2.2, together with
the renewal property, we readily see that

Ed,f [δj δm] ≤ c−(2�+1)
L

P(f − d ∈ τ)

2�+1∏
a=1

R1/2(ra − ra−1) ≤ c−(2�+1)
L

R1/2(f − d)

2�+1∏
a=1

R1/2(ra − ra−1) (4.10)

for j,m ∈ {d, . . . , f }�, r = s(jm), r0 := d and r2�+1 := f . A notational simplification may be therefore achieved by
exploiting further Remark 2.2, namely by using (2.14), so that (4.10) becomes

Ed,f [δj δm] ≤ c−(2�+1)
L R1/2(f − d)−1R1/2

(
min(jm) − d

)
U(jm)R1/2

(
f − max(jm)

)
= c−(2�+1)

L R1/2(f − d)−1U(djmf ). (4.11)

By inserting (4.11) and (2.15) into (4.9) we get to

Ed,f Êτ

[
(X − ÊτX)2]

≤ C

(
1 + 1

kL̃(k)q−1R1/2(f − d)

q−1∑
�=1

m2�
β

∑
i∈B

q−�
1

∑
j,m∈{d,...,f }�

U(ij)U(im)U(djmf )

)

≤ C

(
1 + 1

kL̃(k)q−1R1/2(f − d)

q−1∑
�=1

m2�
β

∑
i∈s(B

q−�
1 )

∑
j,m∈s({d,...,f }�)

U(ij)U(im)U(djmf )

)
, (4.12)

where of course s({1, . . . , a}n) = {i ∈ {1, . . . , a}n: i1 ≤ i2 ≤ · · · ≤ in} and C = C(q,L(·)), with the convention of
Remark 4.3.

The rest of the proof is devoted to bounding

Tq,� :=
∑

i∈s(B
q−�
1 )

∑
j,m∈s({d,...,f }�)

U(ij)U(im)U(djmf ). (4.13)

This is relatively heavy, because, while i, j and m are ordered, ij , im and jm are not. We have therefore to estimate
the contributions given by every mutual arrangement of i, j and m. This will be done in a systematic way with the
help of a diagram representation (the diagrams will correspond to groups of configurations i, j and m that have the
same mutual order).

Fix q and � and choose i ∈ s({1, . . . , k}q−�) and j,m ∈ s(∈ {d, . . . , f }�). The construction of the diagram of i, j

and m is done in steps:

(1) Mark with �’s on the horizontal axis (the dotted line in Figs 3 and 4) the positions i1 ≤ i2 ≤ · · · ≤ iq−�. Do the
same for j (using ◦) and m (using •). As explained in Remark 4.4 below, we may and do assume that symbols do
not sit on the same position (this amounts to assuming strict inequality between all indexes).

(2) Consider the set of �’s and ◦’s, and connect all nearest neighbors with a line (the line may be straight or curved
for the sake of visual clarity).
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Fig. 3. A diagram arising for q = 7 and � = 2 and the successive trimming procedure explained in the text. In this case twin edges occur between
two �’s which have neither ◦’s nor •’s between them.

Fig. 4. Another diagram, this time for q = 6 and � = 2 and the successive trimming procedure explained in the text. In this case a twin edge occurs
between two •’s with nothing in between. Note that at the third step the right-most (internal) vertex, a ◦, does not have two edges toward the left,
so we continue the trimming procedure from the left.

(3) Do the same for the set of �’s and •’s.
(4) Do the same for the set of ◦’s and •’s.
(5) Consider the set of ◦’s and •’s and connect the element that is closest to d with d . Do the analogous action with

the element which is closest to f . The point d is always to the left of ◦’s and •’s and the point f is always to the
right.
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We have now a graph with vertex set {d,f, i, j ,m}. Vertices have a type (�, ◦ and •): d and f have their own type
too, graphically this type is |. We actually consider the richer graph with vertex set given by the points and the type
of the point. The edges are the ones built with the above procedure; note that there may be double edges: we keep
them and call them twin edges (see also the caption of Figs 3 and 4). Two indexes configurations are equivalent if they
can be transformed into each other by translating the indexes without allowing them cross (and, of course, keeping
their type; the vertices d and f are fixed). This leads to equivalence classes and a class is denoted by G : we split the
sum in (4.13) according to these classes, that is Tq,� = ∑

G Tq,�,G . The bound we are going to find is rather rough: we
are going in fact to bound maxG Tq,�,G . This is sufficient, since the number of equivalence classes depends only on q

and �.

Remark 4.4. We have built equivalent classes of non-superposing points only. However in estimating Tq,�,G we will
allow the index summations to include coinciding indexes so in the end we include (and over-estimate) the contribu-
tions of all the configurations of indexes.

In order to estimate Tq,�,G we proceed to a graph trimming procedure that will be then matched to successive
estimates on Tq,�,G .

The trimming procedure is the following:

(1) If there are � vertices that are left of leftmost element of the set of ◦ and • vertices (we may call these � vertices
external vertices), we erase them and we trim the edges linking them. Note that if we do this procedure left to
right, we erase one vertex and two edges at a time: at each step we trim a couple of twin edges, except at the last
step in which the edges are not twin. We do the same with the � vertices that are right of the rightmost element of
the set of ◦ and • vertices (if any, of course). The trimming procedure goes this time right to left. We call internal
the vertices that are left.

(2) Now we start (say) right and we erase the rightmost internal vertex (in this first step is necessarily a ◦ or a •, later
it may be a �; we do not touch d and f ) if it has two edges linking to vertices on the left (and it has one edge
linking it to f ). We trim these three edges and we add an edge linking the rightmost vertex (it can have any type
among �, ◦ and •) that is still present to f with an edge.

(3) We repeat step (2) till it is possible. If it is no longer possible there are two possibilities: either one is left with only
four vertices (among them, only one can be a �) and three edges, see Trim step 4 in Fig. 3 (this is a fully trimmed
configuration and the procedure stops), or we switch to the left and there is a vertex with two edges connecting
it to vertexes on the right (and one connecting it to d on the left). In the second case we perform step (2) in a
specular fashion, that is we trim the tree edges and we add an edge linking the leftmost vertex with d (this is the
case of Trim step 4 in Fig. 4). We then repeat step (2) from the left till a fully trimmed configuration (four vertexes
and three edges).

Let us now explain the link between the trimming procedure and quantitative estimates on Tq,�,G . Also this is done
by steps corresponding precisely to the three steps of the trimming procedure:

(1) Consider the external � vertices connected to the rest of the graph by twin edges, if any. We start by the leftmost
(if there is at least one on the left: the procedure from the right is absolutely analogous) and notice that we can
sum over the index, that is i1, and use that, thanks to (2.2) (recall (1.14) and (2.5)), there exists CL such that for
0 < n ≤ k

n∑
i=0

(
R1/2(n − i)

)2 ≤ CLL̃(k). (4.14)

We are of course over-estimating the real sums that are, in most cases, restricted to small portions of B1. This
estimate allows trimming Tq,�,G in the sense that it gives the bound Tq,�,G ≤ Cr

LL̃(k)rTq−r,�,G′ , where r is the
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number of twin edges and G′ is the graph, with q − r + � vertices that is left after this procedure. This step can be
repeated also for the last external �’s (there are at most two, one on the left and one on the right). In these cases
we simply use that R1/2(·) is decreasing so that if 0 ≤ n ≤ n′

n∑
i=0

R1/2(n − i)R1/2
(
n′ − i

) ≤
n∑

i=0

(
R1/2(n − i)

)2
, (4.15)

and then (4.14) applies. So this extra trimming yields again CLL̃(k) to the power of half the number of edges
trimmed, that is, to the power of the number of the external vertices.

(2) We are left with the internal vertices and we start erasing the vertex (it is necessarily ◦ or • at this stage) which
is most on the right. So we sum over its index and use the bound: there exists a constant CL such that for
(0 ≤)d ≤ n′ ≤ n ≤ f (≤ k) we have

f∑
j=n

R1/2(j − n)R1/2
(
j − n′)R1/2(f − j) ≤

f −n∑
j=0

R1/2(j)2R1/2
(
(f − n) − j

)
≤ CLL̃(f − n)R1/2(f − n) ≤ CLL̃(k)R1/2(f − n), (4.16)

where in the first inequality we have used the monotonicity of R1/2(·), in the second we have explicitly esti-
mated the sum by using standard results on regularly varying function and (1.15). The last inequality is just the
monotonicity of L̃(·). This means that this trimming step brings once again a multiplicative factor CLL̃(k): of
course this time we have trimmed three edges, but we have also the extra factor R1/2(f − n) which is precisely
the contribution of a longer edge that we rebuild (see Fig. 5).

(3) Keep repeating the previous step (the type of the vertices is not really important), trimming each time three edges,
but rebuilding one too (so, in total, minus two edges), till the graph with four vertices and three edges. Of course
the estimate (4.16) is absolutely analogous when summing over j between d and n.

In order to evaluate the contribution of all the trimming procedure we just need to count the number of vertices that
we have erased: q + � − 2. We are now left with the contribution given by the last diagram (four points, three edges:
see, for example, trim step 4 in Figs 3 and 4), times of course (CLL̃(k))q+�−2: we bound the last diagram using

f∑
i=d

f∑
j=i

R1/2(i − d)R1/2(j − i)R1/2(f − j) ≤ CL

√
f − d

L(f − d)3
≤ CL,ε

kR1/2(f − d)

L(k)2
, (4.17)

Fig. 5. The second step of the trimming procedure corresponding to the estimate (4.16) when n′ < n. The symbol � may represent �, ◦ and •:
the choice is not fully arbitrary, in the sense that, for example, before starting the trimming procedure there is no edge between f (or d) and a �.
However the estimate is independent of the type of symbols.
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where CL is once again a constant that depends only on L(·), while in the last step we have used k ≥ f − d ≥ εk

and (2.4). Going back to (4.12) we see that there exists C = C(ε, q,L(·)) such that (with the convention of Remark 4.3)

Ed,f Êτ

[
(X − ÊτX)2] ≤ C

(
1 + max

�=1,2,...,q−1

1

kL̃(k)q−1R1/2(f − d)

L̃(k)q+�−2kR1/2(f − d)

L(k)2
m2�

β

)

= C

(
1 + max

�=1,2,...,q−1

L̃(k)�−1

L(k)2
m2�

β

)
≤ C

(
1 + max

�=1,2,...,q−1

L̃(k)�−1

L(k)2
β2�

)
, (4.18)

where in the last line we have used mβ ≤ 2β , for β ≤ β0 (cf. (4.3)). We now recall (2.1) that guarantees that

L̃(k − 1)

L(k − 1)2/(q−1)
β2q/(q−1) < A so that

L̃(k)

L(k)2/(q−1)
β2q/(q−1) ≤ 2A, (4.19)

where the second inequality is a consequence of the slowly varying character of L(·) and L̃(·) and it holds for k

sufficiently large. But this implies

L̃(k)�−1

L(k)2
β2� ≤ (2A)(q−1)�/q

(
L̃(k)L(k)2)−1+(�/q)

, (4.20)

so that, by (1.15), by choosing A large we can make the quantity in (4.20) arbitrarily small (recall that � = 1, . . . , q −
1), so that going back to (4.18), we see that

Ed,f Êτ

[
(X − ÊτX)2] ≤ C

(
ε, q,L(·))(1 + A(q−1)2/q max

�=1,...,q−1

(
L̃(k)L(k)2)−1+(�/q)

)
≤ A(q−1)2/q, (4.21)

where in the last step we have used that, by (1.15), the maximum in the intermediate term can be made arbitrarily
small, by choosing k large (that is, A larger than a constant depending on ε, q and L(·)). This completes the proof of
Lemma 4.2. �

5. Some probability estimates

Proof of Lemma 4.1. The proof is done in four steps.
Step 1: Reduction to an asymptotic estimate on a constrained renewal. In this step we show that it is sufficient to

establish that for every ζ > 0 there exists � > 0 and Nζ ∈ N such that

P
(

L(N)

L̃(N)(q−1)/2

∑
i∈{0,...,N}q

VN(i)δi ≥ �
∣∣ N ∈ τ

)
≥ 1 − ζ (5.1)

for N ≥ Nζ .
Notice in fact that ÊτX = mq

β

∑
i Vk(i)δi , where i ∈ {d, . . . , f }q . Since Vk(i) is invariant under the transformation

i = (i1, . . . , iq) �→ (i1 + n, . . . , iq + n) (any n ∈ Z), we may very well work on {0, . . . , f − d}, that is on an interval
{0, . . . ,N} (εk ≤ N ≤ k) and τ is a renewal with τ0 = 0 and conditioned to N ∈ τ . With this change of variables, (4.5)
reads

P
(
mq

β

∑
i∈{0,...,N}q

Vk(i)δi ≥ aA(q−1)/2
∣∣ N ∈ τ

)
≥ 1 − ζ. (5.2)

Now two observations are in order:

• Vk(i)/VN(i) = (N/k)1/2[L̃(N)/L̃(k)](q−1)/2 so that for k sufficiently large (that is for A larger than a constant
depending on ε and L(·)) we have

Vk(i)

VN(i)
≥ ε1/2

2
. (5.3)
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• By (4.3), (2.1) and (2.2) we see that

mq
β ≥ 2−qA(q−1)/2 L(k − 1)

L̃(k − 1)(q−1)/2
≥ 2−qcLA(q−1)/2 L(N)

L̃(N)(q−1)/2
. (5.4)

These two observations show that for A sufficiently large (5.2) is implied by

P
(

L(N)

L̃(N)(q−1)/2

∑
i∈{0,...,N}q

VN(i)δi ≥ 2q

cLε1/2
a

∣∣∣ N ∈ τ

)
≥ 1 − ζ. (5.5)

Therefore, at least if A is larger than a suitable constant depending on ε and L(·), it is sufficient to prove (5.1).
Step 2: Removing the constraint. In this step we claim that there exists a positive constant c, that depends only

on L(·), such that if

P
(

L(N)

L̃(N)(q−1)/2

∑
i∈{1,...,�N/2�}q

VN(i)δi ≥ �

)
≥ 1 − cζ, (5.6)

then (5.1) holds. Note first of all that the random variable that we are estimating is smaller (since VN(·) ≥ 0) than
the random variable in (5.1), for every given τ -trajectory. It is therefore sufficient to bound the Radon–Nykodym
derivative of the law of τ ∩ [0, �N/2�] without constraint N ∈ τ with respect to the law of the same random set with
the constraint. Such an estimate can be found, for example, in [14], Lemma A.2.

Step 3: Reduction to a convergence in law statement. For ρ := 1/(2(q − 1)) we define the subset Sρ(N) of
s({0,1, . . . ,N}q) (recall that the latter is the set of increasingly rearranged i vectors) such that ij ≤ N((j − 1)ρ +
(1/2)) for j = 1,2, . . . , q .

The claim of this step is that (5.6) follows if

ηN := L(N)

L̃(N)(q−1)/2

∑
i∈Sρ(N)

VN(i)δi
N→∞=�⇒ η∞ with η∞ > 0 a.s., (5.7)

where �⇒ denotes convergence in law.
In order to see why (5.7) implies (5.6) it suffices to observe that replacing N with �N/2� in (5.6) (except when

it already appears as �N/2�) introduces an error that can be bounded by a multiplicative constant (say, 2) for N

sufficiently large, so that it suffices to show that P(ηN ≥ 2�) ≥ 1 − cζ . But (5.7) yields limN P(ηN ≥ 2�) ≥ P(η∞ ≥
3�). At this point if we choose � := �(ζ ) such that P(η∞ ≥ 3�) = 1 − (cζ/2), we are assured that for N sufficiently
large (how large depends on ζ ) P(ηN ≥ 2�) ≥ 1 − cζ and we are reduced to proving (5.7).

Step 4: Proof of the convergence in law statement (5.7). This step depends on the following lemma, that we prove
just below.

Lemma 5.1. For every θ0 ∈ (0,1) we have

lim
N→∞ sup

θ∈[θ0,1]
E

[(
1

L̃(N)

�θN�∑
j=1

R1/2(j)δj − c

2π

)2]
= 0, (5.8)

with c := limx→∞ L(x)/L(x)(∈ [1,c−1
L ]).

For p = 1,2, . . . , q we introduce the random variables

ηN,p :=
(

2π

c

)p−q L(N)

N1/2L̃(N)p−1

[N/2]∑
i1=0

[(ρ+(1/2))N ]∑
i2=i1+1

. . .

[((p−1)ρ+(1/2))N ]∑
ip=ip−1+1

δi1

p∏
r=2

R1/2(ir − ir−1)δir , (5.9)

where the product in the right-hand side has to be read as 1 if p = 1 and, in this case, there is only the sum over i1.
First of all remark that ηN,q = √

q!ηN (recall (2.15)) and that ηN,p−1 is obtained from ηN,p by removing the last term
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in the product, the corresponding sum and by multiplying by 2πL̃(N)/c. We now claim that Lemma 5.1 implies that
for p = 2,3, . . . , q ,

lim
N→∞ E

[|ηN,p − ηN,p−1|
] = 0, (5.10)

which clearly reduces the problem of proving ηN �⇒ η∞ to proving ηN,1 �⇒ η∞, and η∞ has to be a positive
random variable. But in fact we have

(2π/c)q−1 L(N)

L(N)
ηN,1 = L(N)√

N

�N/2�∑
i=0

δi
N→∞=�⇒ 1

2
√

π
|Z| (

Z ∼ N (0,1)
)
. (5.11)

The convergence in (5.11) is a standard result that we outline briefly. First of all for every choice of n,m ∈ N we have{
n∑

i=1

δi < m

}
= {τm > n}, (5.12)

so that the asymptotic law of the normalized local time of τ up to n, i.e. L(n)n−1/2 ∑n
i=1 δi , is directly linked to the

domain of attraction of the random variable τ1. Explicitly, one directly verifies that for λ > 0

E
[(

1 − exp(−λτ1)
)] λ↘0∼ 2

√
πL(1/λ)

√
λ, (5.13)

so that, if a(·) is the asymptotic inverse of the regularly varying function r(·), defined by r(x) := √
x/L(x) for x > 0,

that is a(r(x)) ∼ r(a(x)) ∼ x for x → ∞, we have

lim
N→∞ E

[
exp

(−λτN/a(N)
)] = exp

(−2
√

πλ
) = E

[
exp(−λY)

]
, (5.14)

where Y is a positive random variable with density fY (y) equal to y−3/2 exp(−π/y) (for y > 0). On the other hand,
for t > 0 by (5.12) we have

P

(
L(n)√

n

n∑
j=1

δj < t

)
n→∞∼ P(τ�t√n/L(n)� > n). (5.15)

Therefore if we observe that a(t
√

n/L(n)) ∼ t2a(
√

n/L(n)) ∼ t2n, for n → ∞, we directly obtain that

lim
n→∞ P

(
L(n)√

n

n∑
j=1

δj < t

)
n→∞∼ P

(
Y >

1

t2

)
. (5.16)

By using the (explicit) density of Y , one directly verifies that P(Y > 1/t2) coincides with P(|Z|/√2π < t) for every
t > 0, that is (5.11) is established (recall that in (5.11) the summation is up to N/2).

We are therefore left with proving (5.10). This follows by observing that for p = 3,4, . . . , q ,

E
[|ηN,p − ηN,p−1|

] ≤
(

2π

c

)p−q L(N)

N1/2L̃(N)p−2

×
�N/2�∑
i1=0

�(ρ+(1/2))N�∑
i2=i1+1

. . .

�((p−2)ρ+(1/2))N�∑
ip−1=ip−2+1

E

[
δi1

p−1∏
r=2

R1/2(ir − ir−1)δir

]

× E

[∣∣∣∣∣ 1

L̃(N)

�((p−1)ρ+(1/2))N�∑
ip=ip−1+1

R1/2(ip − ip−1)δip − c

2π

∣∣∣∣∣∣∣∣δip−1 = 1

]
, (5.17)
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and the same expression holds if p = 2 but in this case the external summation is only over i1 and
∏p−1

r=2 R1/2(ir −
ir−1)δir is replaced by 1. The bound (5.17) follows from the triangular inequality and from the renewal property of τ .
Next, note that

E

[∣∣∣∣∣ 1

L̃(N)

�((p−1)ρ+(1/2))N�∑
ip=ip−1+1

R1/2(ip − ip−1)δip − c

2π

∣∣∣∣∣∣∣∣δip−1 = 1

]

= E

[∣∣∣∣∣ 1

L̃(N)

�((p−1)ρ+(1/2))N�−ip−1∑
i=1

R1/2(i)δi − c

2π

∣∣∣∣∣
]

N→∞−→ 0, (5.18)

uniformly in the choice of ip−1 ∈ {ip−2 + 1, . . . , �((p − 1)ρ + (1/2)N�}. This is because the summation in (5.18)
contains at least [ρN] terms (and no more than N ) so that we can apply Lemma 5.1. The fact that E[|ηN,p −ηN,p−1|] =
o(1) as N → ∞ is therefore a consequence of the following explicit estimate:

L(N)

N1/2L̃(N)p−2

�N/2�∑
i1=0

�(ρ+(1/2))N�∑
i2=i1+1

. . .

�((p−2)ρ+(1/2))N�∑
ip−1=ip−2+1

E

[
δi1

p−1∏
r=2

R1/2(ir − ir−1)δir

]

≤ L(N)c−(p−1)
L

N1/2L̃(N)p−2

�N/2�∑
i1=0

�(ρ+(1/2))N�∑
i2=i1+1

. . .

�((p−2)ρ+(1/2))N�∑
ip−1=ip−2+1

R1/2(i1)

p−1∏
r=2

(
R1/2(ir − ir−1)

)2

N→∞∼ √
2c−(p−1)

L , (5.19)

where we have used the definition (1.14) of the slowly varying function L̃(·) and the fact that
∫ x

0 (y1/2L(y))−1 dy
x→∞∼

2x1/2/L(x). This completes the proof of Lemma 4.1. �

Proof of Lemma 5.1. This is very similar to the proof of Lemma 5.4 in [14] (that, in turn generalizes a result of
Chung and Erdös [5]). We give it in detail in order to clarify the role of the slowly varying function.

First of all let us remark that

1

L̃(N)

[θN ]∑
j=1

R1/2(j)E[δj ] N→∞∼ cL̃(θN)

2πL̃(N)

N→∞∼ c

2π
, (5.20)

where the last asymptotic relation holds uniformly in θ , when θ lies in a compact subinterval of (0,∞). The statement
is therefore reduced to showing that the variance of

Yn :=
n∑

j=1

R1/2(j)δj (5.21)

is o(L̃(n)2).
Let us compute and start by observing that

varP(Yn) =
n∑

i,j=1

R1/2(i)R1/2(j)
[
E[δiδj ] − E[δi]E[δj ]

]

= 2
n−1∑
i=1

n∑
j=i+1

R1/2(i)R1/2(j)
[
E[δiδj ] − E[δi]E[δj ]

] + O
(
L̃(n)

)
=: 2Tn + O

(
L̃(n)

)
, (5.22)



Disorder relevance at marginality 173

and

Tn =
n−1∑
i=1

R1/2(i)E[δi]
[

n−i∑
j=1

R1/2(i + j)E[δj ] −
n∑

j=i+1

R1/2(j)E[δj ]
]

≤
n−1∑
i=1

R1/2(i)E[δi]
[

n−i∑
j=1

R1/2(i + j)E[δj ] −
n∑

j=i+1

R1/2(i + j)E[δj ]
]

≤
n−1∑
i=1

R1/2(i)E[δi]
i∑

j=1

R1/2(i + j)E[δj ] ≤
n−1∑
i=1

(
R1/2(i)

)2E[δi]
i∑

j=1

E[δj ]

≤ c−2
L

n−1∑
i=1

(
R1/2(i)

)3
i∑

j=1

R1/2(j)
n→∞∼ 2c−2

L

∫ n

0

1

(1 + x)(L(x))4
dx, (5.23)

where the first three inequalities follow since R1/2(·) is non-increasing and the fourth follows from (2.4). The conclu-
sion of the proof follows now from Remark 5.2. �

Remark 5.2. For x → ∞∫ x

0

1

(1 + y)(L(y))4
dy � (

L̃(x)
)2

, (5.24)

with L̃(x) defined as in (1.14) with L(·) replaced by L(·). This is a consequence of (1.15) (which of course holds also
for L(·)):∫ x

0

1

(1 + y)(L(y))4
dy �

∫ x

0

1

(1 + y)(L(y))2
L̃(y)dy ≤ L̃(x)

∫ x

0

1

(1 + y)(L(y))2
dy, (5.25)

and the right-most term is (L̃(x))2.

6. A general monotonicity result

We present now a very general result: we give it in our context but a look at the proof suffices to see that it holds also
under substantially milder assumptions on the process τ .

Proposition 6.1. The free energy F(β,h) is a non-increasing function of β on [0,∞). Therefore:

(i) β �→ hc(β) is a non-decreasing function of β .
(ii) There exists a critical value βc ∈ [0,∞] such that hc(0) = hc(β) if and only if β ≤ βc.

This result is of particular relevance when
∑

n 1/(nL(n)2) < ∞, that is when for small β we have hc(β) = hc(0)

(cf. Section 1.4): in this case βc is the transition point from the irrelevant disorder regime to the relevant one. But also
in our set-up, in which

∑
n 1/(nL(n)2) = ∞, it is of some use since it implies that it is sufficient to prove Theorem 1.7

for one value of β0 > 0 and the statement holds also for any other value of β0 (by accepting, of course, a worse estimate
on the shift of the critical point if one follows the estimates quantitatively, see Remark 2.7).

Proof of Proposition 6.1. We just need to prove that β �→ F(β,h) is a non-increasing function on [0,∞) as the other
points are a trivial consequence of this result. To do so, we prove that β �→ E[logZN,ω] is a non-increasing function
of β , and pass to the limit. The proof is the adaptation of an argument used in [6] for directed polymers with bulk
disorder to prove a similar result.
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What we will show is

∂

∂β
E[logZN,ω] = E

[
∂

∂β
logZN,ω

]
≤ 0. (6.1)

The proof of the equality in (6.1) is standard and can be easily adapted from [6], Lemma 3.3. Recall now that mβ :=
M′(β)/M(β). We have

E

[
∂

∂β
logZN,ω

]
= E

[
E

[
1

ZN,ω

N∑
n=1

(ωn − mβ)δn exp

(
N∑

n=1

[
βωn + h − log M(β)

]
δn

)
δN

]]

= E

[
exp

(
N∑

n=1

hδn

)
δN Êτ

[
Z−1

N,ω

N∑
n=1

(ωn − mβ)δn

]]
. (6.2)

For a fixed trajectory of the renewal, the probability measure P̂τ (recall definition (4.2)), is a product measure, so that,
since Z−1

N,ω is a decreasing function of ω and
∑N

n=1(ωn −mβ)δn is a non-decreasing function of ω, by the Harris–FKG
inequality we have

Êτ

[
Z−1

N,ω

N∑
n=1

(ωn − mβ)δn

]
≤ Êτ

[
Z−1

N,ω

]
Êτ

[
N∑

n=1

(ωn − mβ)δn

]
= 0. (6.3)

�
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