
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2011, Vol. 47, No. 2, 498–514
DOI: 10.1214/10-AIHP363
© Association des Publications de l’Institut Henri Poincaré, 2011

Hiding a constant drift

Vilmos Prokaja, Miklós Rásonyib,1 and Walter Schachermayerc,2

aDepartment of Probability Theory and Statistics, Eötvös Loránd University, 1117 Budapest, Pázmány P. s. 1/C, Hungary, Computer and
Automation Institute of the Hungarian Academy of Sciences, 1111 Budapest, Kende u. 13-17, Hungary. E-mail: Prokaj@cs.elte.hu

bSchool of Mathematics, University of Edinburgh, King’s Buildings, Mayfield Road, EH9 3JZ, UK. E-mail: Miklos.Rasonyi@ed.ac.uk
cFaculty of Mathematics, University of Vienna, Nordbergstrasse 15, 1090 Vienna, Austria. E-mail: Walter.Schachermayer@univie.ac.at

Received 27 May 2009; revised 16 January 2010

Dedicated to Marc Yor at the occasion of his 60th birthday

Abstract. The following question is due to Marc Yor: Let B be a Brownian motion and St = t + Bt . Can we define an F B -
predictable process H such that the resulting stochastic integral (H · S) is a Brownian motion (without drift) in its own filtration,
i.e. an F (H ·S)-Brownian motion?

In this paper we show that by dropping the requirement of F B -predictability of H we can give a positive answer to this question.
In other words, we are able to show that there is a weak solution to Yor’s question. The original question, i.e., existence of a strong
solution, remains open.

Résumé. La question suivante a été posée par Marc Yor: Soit B un mouvement Brownien et St = t + Bt . Peut-on définir un
processus H qui est F B -prévisible tel que l’intégrale stochastique (H · S) soit un mouvement Brownien (sans drift) pour sa propre
filtration F (H ·S)?

Dans cet article nous fournissons une réponse affirmative en relâchant la condition que H soit F B -prévisible. Autrement dit,
nous montrons qu’il existe une solution faible pour cette question de Yor. La question originale (c’est à dire, l’existence d’une
solution forte) reste ouverte.
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1. Introduction

1.1. Main result

In this paper, we investigate the following question, due to Marc Yor: let B be a Brownian motion and St = t + Bt .
Can we define an F B -predictable process H such that the resulting stochastic integral (H · S) is a Brownian motion
(without drift) in its own filtration, i.e. an F H ·S -Brownian motion? Our main result here is the following theorem.

Theorem 1. Let (Wt)t≥0 be a real-valued standard Brownian motion on (Ω, F ,P) and denote by (F W
t )t≥0 its (right

continuous, saturated) natural filtration.
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Fix μ ∈ R. Then there is an (F W
t )t≥0-Brownian motion (Bt )t≥0 as well as an (F W

t )t≥0-predictable, {−1,+1}-
valued process H such that the stochastic integral H · S is a Brownian motion in its own filtration (F H ·S

t )t≥0, where
St = Bt + μt .

Theorem 1 improves upon the result in a previous paper [9], where it was proved that for a given Brownian
motion B , a constant μ ∈ R and a threshold δ > 0 one can define (μt )t≥0 and (Ht )t≥0 both (F B

t )t≥0-predictable such
that |μ − μt | ≤ δ and βt = ∫ t

0 Hs(dBs +μs ds) is a Brownian motion in its own filtration. In other words any constant
drift can be uniformly approximated by “strongly hidable” random drifts.

Roughly speaking, Theorem 1 gives a positive answer to Yor’s question, provided one replaces the filtration gen-
erated by (Bt )t≥0 by the larger filtration (F W

t )t≥0 generated by (Wt)t≥0. However, Yor’s original question remains
open and is left for further research.

Laurent Serlet in [11] also deals with the problem of creation and deletion of drift. His approach, based on excursion
theory and the notion of contour process focused on somewhat different problems.

Remark. Following the advice of the anonymous referee, we remark that in addition to the assertions of Theorem 1,
the following fact also holds true: the filtration (F W

t )t≥0 is weakly generated by the Brownian motion (Bt )t≥0, see [5],
Definition 6.2 and Remark 6.1. In other words, every (F W

t )t≥0-martingale (Mt)t≥0 can be represented as a stochastic
integral M = c + K · B , where c ∈ R is a constant and K is a predictable process with respect to (F W

t )t≥0.
This follows from the Itô representation theorem applied to the Brownian motion (Wt )t≥0 in its natural filtration

(F W
t )t≥0. By Theorem 1 the process B is a Brownian motion in this filtration so that there is an (F W

t )t≥0-predictable
process L = (Lt )t≥0 such that B = L · W . Clearly L takes values in {−1,+1} for almost all (ω, t) ∈ Ω × R+ with
respect to the product of P and the Lebesgue measure on R+. Then, obviously W = L · B is also true.

Given an arbitrary martingale M in the filtration (F W
t )t≥0 we may again apply Itô’s representation theorem to

obtain a (F W
t )t≥0-predictable process K ′ such that M = c + K ′ · W with some c ∈ R. Then, K = K ′L gives the

representation M = c + K · B .

1.2. Generalizations

Here is the rationale of our paper: One can easily check that for Theorem 1 we have to define H such that
E(Hs |F H ·S

s ) = 0 for almost all s ≥ 0. Our construction initially uses a larger filtration than the natural filtration
of (Wt)t≥0. We start with a probability space on which, apart from the Brownian motion W , there is an independent
random variable U uniformly distributed on ]0,1[. The construction of Bt and βt = (H · S)t will be such that at each
moment t the value of Ht depends on whether U is larger or smaller than the conditional median of U , given the
sample path (βs)0≤s≤t . This idea of construction has been already used in [9]. With this “median rule” we achieve
that for all t the random variable Ht is independent of (βs)0≤s≤t . The difficulty is of course the existence of such H ,
B and β as they are strongly related.

As a byproduct of our investigations we also get the following result which is interesting in its own right.

Theorem 2. Let (βt )t≥0 be a real-valued standard Brownian motion based on a filtered probability space
(Ω, F , (Ft )t≥0,P).

Fix μ ∈ R+. Then there is an enlargement (F ′
t )t≥0 of (Ft )t≥0 such that β is an (F ′

t )t≥0-semimartingale of the form
dβt = dβ ′

t + νt dt where β ′ is an (F ′
t )t≥0-Brownian motion and |νt | = μ for all t .

The enlargement (F ′
t )t≥0 in Theorem 2 is an initial enlargement, that is we actually prove that there is a random

variable U uniformly distributed on ]0,1[, such that F ′
t = ⋂

s>t (Fs ∨σ(U)). We still point out, following a suggestion
of the referee, that it is also possible to define (F ′

t )t≥0 such that it is the filtration generated by some Brownian motion
(Wt )t≥0.

The statement of Theorem 2 can be generalized, by replacing the Brownian motion β with a continuous local
martingale M and the constant μ by a predictable process (μt )t≥0 that can be integrated with respect to M , i.e.∫ t

0 μ2
s d〈M〉s < ∞ almost surely for all t ≥ 0. We use the notation L(M) of [8] for the family of predictable processes,

that can be integrated with respect to the continuous local martingale (Mt)t≥0.
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Theorem 3. Let (Mt)t≥0 be a continuous local martingale on a filtered probability space (Ω, F , (Ft )t≥0,P). We
assume that on (Ω, F ,P) there is a random variable U , uniformly distributed on ]0,1[ and independent from F∞.

Fix an (Ft )t≥0-predictable, non-negative process (μt )t≥0 in L(M). Then there is an enlargement (F ′
t )t≥0 of the

filtration (Ft )t≥0 such that, M is an (F ′
t )t≥0-semimartingale of the form

dMt = dM ′
t + νt d〈M〉t , (1)

where M ′ is an (F ′
t )t≥0 local martingale and |νt | = μt for all t .

It turns out from the proof that if∫ ∞

0
μ2

s d〈M〉s = ∞ almost surely

then, we can do the construction in such a way that F ′
t ⊂ F∞ for all t , i.e. U is not needed in this case, showing that

Theorem 3 is indeed a generalization of Theorem 2.

1.3. Outline of the paper

The structure of the paper is as follows. First, we present the discussion of the discrete analogue of the problem. Then,
we solve the equation formally derived from the discrete case and show that as in the discrete time case this gives
a solution using the “median” strategy. It turns out that the extra randomness U used throughout our construction is
encoded in the sample paths of β . Using this observation we prove Theorem 2. Theorem 3 then follows easily. Finally,
we prove Theorem 1 completely. In the Appendix we present minor, but useful technical results.

2. The discrete case

This section only serves as motivation for the subsequent continuous time case.
Fix μ ∈ R and �t > 0 such that |μ(�t)1/2| < 1. We consider a biased random walk S = (Sti )

∞
i=0 on a fine grid

(ti)
∞
i=0, with ti = i�t . We suppose that the increments (�Sti )

∞
i=0 = (Sti+1 − Sti ) are an i.i.d. sequence with

P
(
�Sti = +(�t)1/2) = 1 + μ(�t)1/2

2
,

P
(
�Sti = −(�t)1/2) = 1 − μ(�t)1/2

2
.

The process S is a discrete analog to Bt + μt , the Brownian motion with drift μ, which will be considered below,
because

E(�Sti ) = μ�t, E
(
�S2

ti

) = �t.

In addition, let U be a uniformly distributed ]0,1[-valued random variable independent of S. The filtration (Fti )
∞
i=0 is

defined as the smallest one such that U is F0-measurable and (Sti )
∞
i=0 is adapted to (Fti )

∞
i=0.

We shall construct inductively a predictable, {−1,+1}-valued process (Hti )
∞
i=1 such that ((H · S)ti )

∞
i=0 is an unbi-

ased random walk (i.e., it is a martingale) in its own filtration.
To do so we construct a ]0,1[-valued process (Dti (U))∞i=0 adapted to (Fti )

∞
i=0 inductively by letting Dt0(U) = U

and

�Dti (U) = min
(
Dti (U),

(
1 − Dti (U)

))
μ sign

(
1

2
− Dti (U)

)
�Sti , i ≥ 0, (2)

where �Dti (U) denotes the increment Dti+1(U) − Dti (U).
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The process (Hti )
∞
i=1 is derived from (Dti (U))∞i=0 by

Hti+1 = sign

(
Dti (U) − 1

2

)
, i ≥ 0. (3)

Here is the idea behind this construction. At the first step i = 0, formula (3) yields Ht1 = sign(U − 1
2 ), i.e., we flip

a coin, independent of S, whether Ht1 equals +1 or −1. So that obviously E((H · S)t1) = E(Ht1St1) = 0. Now we
may observe the outcome (H · S)t1 = Ht1St1 which takes the value +(�t)1/2 or −(�t)1/2. Applying Bayes’ rule, this
information updates the conditional distribution of U : conditionally on the event {Ht1St1 = +(�t)1/2} we obtain for
the conditional distribution function Dt1(x),

Dt1(x) =
{(

1 − μ(�t)1/2
)
x for 0 ≤ x ≤ 1

2 ,(
1 − μ(�t)1/2

) 1
2 + (

1 + μ(�t)1/2
)(

x − 1
2

)
for 1

2 ≤ x ≤ 1,

and an analogous expression conditionally on the event {Ht1St1 = −(�t)1/2}. The random variable Dt1(U) equals the
conditional distribution function Dt1(·) at the random point U . Hence it makes sense to define

Ht2 = sign

(
Dt1(U) − 1

2

)

as the preceding argument shows that P(Ht2 = 1|Gt1) = P(Ht2 = −1|Gt1) = 1
2 , almost surely, where Gt1 denotes the

sigma-algebra generated by Ht1St1 .
Now we may continue inductively and some elementary calculations show that we thus obtain the updating rule

for the process (Dti (U))∞i=0 given by (2). We summarize these facts in the subsequent statement.

Proposition 4. Defining the process (Dti (U))∞i=0 and (Hti )
∞
i=1 as above and denoting by (Gti )

∞
i=0 the filtration gen-

erated by ((H · S)ti )
∞
i=0, where (H · S)ti = ∑i

u=1 Htu�Stu−1 , we have, for almost all ω ∈ Ω ,

Dti (U)(ω) = P(U ≤ x|Gti )(ω), (4)

where x = U(ω). In particular we have

E(Hti |Gti−1) = 0, a.s., for i ≥ 1,

so that E(Hti �Sti−1 |Gti−1) = 0, hence (H · Sti )
∞
i=0 is a martingale in its own filtration (Gti )

∞
i=0.

Remark 5. A word of warning seems to be in order: it is not clear3 how to define sign(0) in the formulas (2) and (3),
and the above arguments do not apply to the case where this occurs. However, this is not really a problem in the
present discrete time setting as this case only appears on a null set of Ω and therefore can be safely ignored by
inserting the words “almost surely.”

On the other hand, in the continuous time case, this problem will become crucial and is discussed later at the end
of Section 3.1.

3. Continuous time

We shall now try to pass to the continuous time limit of the above random walk construction. We prove the next
statement, which is nothing else but the statement of Theorem 1, written once again, for ease of the reader, but
modulo the addition of an auxiliary uniform variable U .

3The anonymous referee observed that, following the tradition of P. A. Meyer, it sometimes is advantageous to define sign(0) = −1; using this
convention, e.g., in the definition of local times, one thus obtains càdlàg versions of (La

t )a∈R,t≥0.
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Proposition 6. Let (Wt )t≥0 be a real-valued standard Brownian motion based on (Ω, F , (Ft )t≥0,P), i.e., (Wt)t≥0 is
an (Ft )t≥0 Brownian motion. Assume that there is an F0-measurable U uniformly distributed on ]0,1[.

Fix μ ∈ R. Then there is an (Ft )t≥0-Brownian motion (Bt )t≥0 as well as an (Ft )t≥0-predictable, {−1,+1}-valued
process H such that the stochastic integral β = H · S is a Brownian motion in its own filtration, where St = Bt + μt .
Moreover, the processes B , H and H · S are adapted to (F W,U

t )t≥0.

We split the proof into two parts. First, we look for a solution of the system of equations formally derived from the
discrete time case. This means that, for a given Brownian motion B and an independent random variable U , we want
to solve

dDt = −μmin
(
Dt, (1 − Dt)

)
sign

(
Dt − 1

2

)
dSt , D0 = U, (5)

where

St = Bt + μt. (6)

We will also use the notation

βt =
∫ t

0
sign

(
Du − 1

2

)
dSu. (7)

We shall see that the process (Dt )t≥0 satisfying (5) cannot be adapted to the filtration (F U,B
t )t≥0. We only can find

a weak solution. In the setting of Proposition 6 we can derive the processes D,B,β from the given data W and U

such that (5) and (7) hold true as Itô-integrals in (Ft )t≥0, see Corollary 8 below.
Secondly, we show that if the processes B , D and β are related to each other according to this system of equations,

then they provide a solution to Yor’s question in the weak sense as formulated in Proposition 6 (see Lemma 10 below).

3.1. Heuristic description

Before turning to the proof, it is worth to have a closer look at the equations. The delicate term on the right-hand side
of (5) is sign(Dt − 1

2 ), similarly as in Tanaka’s equation

dXt = sign(Xt )dBt . (8)

It is well known that there is no solution (Xt )t≥0 to (8) adapted to the filtration generated by (Bt )t≥0; rather one has
to enlarge the filtration, i.e. introduce additional sources of randomness, in order to obtain a weak solution to (8).

A similar problem appears in (5) when the process (Dt )t≥0 hits the value 1
2 . This happens for the first time at

τ = inf

{
t > 0: Dt = 1

2

}
,

which is a stopping time with respect to (Ft )t≥0. For 0 ≤ t ≤ τ the SDE (5) clearly has a strong solution with respect
to the filtration (F B,U

t )t≥0 (hence, a fortiori, with respect to (F W,U
t )t≥0), which is explicitly given by the formula

Dt = U exp

{
μSt − μ2

2
t

}
= exp

{
ln(U) + μ

(
Bt + μ

2
t

)}
, 0 ≤ t ≤ τ, (9)

for U ∈]0, 1
2 [, and by the formula

1 − Dt = (1 − U) exp

{
μSt − μ2

2
t

}
= exp

{
ln(1 − U) + μ

(
Bt + μ

2
t

)}
, 0 ≤ t ≤ τ, (10)

for U ∈] 1
2 ,1[.
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A unified way of writing (9) and (10) is

1 − |1 − 2Dt | = exp

{
ln

(
1 − |1 − 2U |) + μ

(
Bt + 1

2
μt

)}
for 0 ≤ t ≤ τ. (11)

Using this identity we can express τ with the help of B and U , as

τ = inf

{
t > 0: Bt + 1

2
μt = − 1

μ
ln

(
1 − |1 − 2U |)}, (12)

so τ is a stopping time with respect to (F B,U
t )t≥0.

We now give a heuristic and intuitive description of the present construction of a global solution to the SDE (5).
We motivate the construction by recalling the solution to Tanaka’s equation

dXt = sign(Xt )dBt , X0 = 0, (13)

where (Bt )t≥0 is a standard Brownian motion starting at B0 = 0. It is well known how to construct and interpret a
weak solution (Xt )t≥0. We summarize the construction in a heuristic way: we decompose each trajectory (Bt (ω))t≥0
into its running minimum (Mt(ω))t≥0 and its positive excursions (Et (ω))t≥0, i.e.

Mt(ω) = inf
0≤s≤t

Bs(ω), Et (ω) = Bt(ω) − Mt(ω).

We may decompose (Et (ω))t≥0 into its excursions. More precisely, there are sequences of random times (σn)
∞
n=1 and

(τn)
∞
n=1 taking values in [0,∞] such that �σn, τn� is a.s. a sequence of disjoint intervals of R+, whose union has full

Lebesgue measure and such that Eσn = Eτn = 0 while Et > 0, for t ∈ �σn, τn�. (For details we refer the reader to the
classical book of Itô and McKean [4], Section 2.9, see also [6].)

Choose an i.i.d. sequence (εn)
∞
n=1 of symmetric random signs independent of (Bt )t≥0 and define

Xt(ω) =
∞∑

n=1

εn(ω)Et (ω)χ�σn,τn �(t).

The filtration (F X
t )t≥0 generated by (Xt )t≥0 then contains the filtration (F B

t )t≥0 generated by (Bt )t≥0, and (Xt )t≥0
as well as (Bt )t≥0 are Brownian motions in the filtration (F X

t )t≥0, satisfying the stochastic differential equation (13).
Summing up informally, we obtain the trajectories (Xt )t≥0 from the trajectories (Bt )t≥0 by flipping coins and

pasting together the excursions of (Bt (ω))t≥0 multiplied with the corresponding random signs εn(ω) to obtain the
trajectories (Xt (ω))t≥0.

This may be rephrased as follows: the process Ht = ∑∞
n=0 εnχ�σn,τn �(t) is predictable in (F X

t )t≥0 and we have
B = H · X as well as X = H · B , holding true with respect to this filtration.

When comparing the situation of Tanaka’s equation (13) with the present equation (5), let us start with the trivial
observation that when changing the sign in Tanaka’s equation, i.e.

dXt = − sign(Xt )dBt , X0 = 0,

we have to replace the running minimum in the above construction by the running maximum and the positive excur-
sions by the negative ones.

Now we pass to our present situation. We start with the process St = Bt + μt where (Bt )t≥0 is a given Brownian
motion defined on ((Ω, F , (Ft )t≥0),P). We need, as additional stochastic input, a F0-measurable random variable
U , uniformly distributed on ]0,1[, as well as an F0-measurable i.i.d. sequence (εn)

∞
n=1 of random signs such that U

and (ε)∞n=1 are independent.
We now decompose the process Bt + 1

2μt into its running maximum (Mt)t≥0 and its negative excursions (Et )t≥0
from the running maximum (Mt)t≥0,

Mt = sup
0≤s≤t

(
Bs + 1

2
μs

)
, Et =

(
Bt + 1

2
μt

)
− Mt.
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Again we enumerate these excursions by random times (σn, τn)
∞
n=1 as above.

Let

Ht =
{

sign
(
U − 1

2

)
for 0 ≤ τ ,

εn for t > τ and t ∈ �σn, τn�.
(14)

Denoting by (F B,H
t )t≥0 the filtration generated by (Bt )t≥0 and (Ht )t≥0 we find that in this filtration B is a Brownian

motion and H is a predictable process, so that we may well define the process

βt =
∫ t

0
Hu d(Bu + μu). (15)

We shall show that (βt )t≥0 is a Brownian motion in its own filtration (F β
t )t≥0 which is contained in (F B,H

t )t≥0.
Before doing so we interpret intuitively the construction given by (14) and (15). Let the trajectory (Bt (ω))t≥0 as

well as the random number U(ω) be given. The trajectory (βt )t≥0 is initially given by either the trajectory (Bt +μt)t≥0

or −(Bt + μt)t≥0, depending on the sign of U − 1
2 , namely up to time τ , which is defined in (12).

Note that at time τ the process Bt + 1
2μt attains for the first time the level − 1

μ
ln(1 − |1 − 2U |), whence, in

particular, Bτ + 1
2μτ = Mτ almost surely.

After time τ we multiply the excursions (Etχ�σn,τn �(t))
∞
n=1 of the process Bt + 1

2μt with the random signs (εn)
∞
n=1

and paste them together in order to obtain the trajectory of (βt )t≥0. This result is a variant of the construction in
Tanaka’s case above: we have, for t ∈ �σn, τn�, where σn ≥ τ ,

βt − βσn = εn

(
Et + μ

2
(t − σn)

)
= εn

(
Bt − Bσn + μ(t − σn)

)
for t ∈ �σn, τn�.

In addition, the trajectories of (βt )t≥0 have to be continuous; this—in conjunction with the above equation—uniquely
determines (βt )t≥0 pathwise.

Let us try to explain why this construction of β indeed yields a martingale in its own filtration (F β
t )t≥0. We consider

the distribution function (Dt (x)) of U conditionally on (F β
t )t≥0, where 0 ≤ x ≤ 1. Fix the random element ω ∈ Ω

and suppose that U(ω) = y ∈ [0,1]. To fix ideas let us suppose that y < 1
2 . Then, for 0 ≤ t ≤ τ , the Bayesian updating

for the conditional distribution function

Dt(x) = P
(
U ≤ x|(βs)0≤s≤t

)
is such that for x = y the value of Dt(y) is given by (9). Hence it is less than 1

2 , for 0 ≤ t ≤ τ , and hits the value 1
2

for the first time at t = τ . According to our “median rule” Ht = sign(Dt − 1
2 ), this is the critical moment to change

the sign of H . The good interpretation of sign(0) in the present context is to flip a coin whether sign(0) equals +1 or
−1. If the process does “not start a negative excursion” at this moment, we have to flip a new coin at an infinitesimal
time unit later and to continue to do so until “eventually a negative excursion Etχ�σn,τn �(t) starts.” (The preceding

heuristic phrase should be interpreted by visualising the process (Bt + 1
2μt)t≥0 as a normalized random walk on a very

fine grid.) During this interval �σn, τn� the sign of Ht is determined by the coin flip εn (which, intuitively speaking,
was done at time σn, the “last moment before the excursion Etχ(�σn,τn �) started”). During this random interval the
Bayesian updating rule for the conditional distribution function Dt(·) of U evaluated at y = U(ω) yields an excursion
of Dt(y) from the value 1

2 , to the right or left, depending on the sign of εn. Precisely at time τn the value of Dt(y) is
back to 1

2 .
The preceding heuristics should motivate that we again use the idea of the “median rule” for H , similarly as in [9];

to do so we need, apart from the initial random input U , also the random variables (εn)
∞
n=1. The random sign εn is

interpreted as a coin flipping at the random times σn. These random times σn fail to be stopping times in the filtration
(F B,U

t )t≥0. This is the reason why we cannot define the strategy H in such a way that it is an (F B,U
t )t≥0-predictable

process; rather we have to pass to an enlargement of the filtration and find a weak solution for H , which eventually
leads to Theorems 1 and 2.
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3.2. Proofs

We now turn to Eq. (5). First we transform it into an equation which is more tractable. So assume that B is a Brownian
motion with respect to the filtration (Ft )t≥0 and (Dt )t≥0, (St )t≥0 are (Ft )t≥0 adapted processes satisfying (5) and (6).
Then,

dDt

1/2 − |Dt − 1/2| = −μ sign

(
Dt − 1

2

)
dSt . (16)

In order to integrate the left-hand side we consider f (Dt ) where

f (x) = − sign

(
x − 1

2

)
ln

(
1 − |2x − 1|) for x ∈ (0,1) (17)

is the quantile function of the symmetrized exponential law with parameter 1. The function f is continuously differ-
entiable and the second derivative exists except at 1

2 , where it has right and left limits:

f ′(x) =
(

1

2
−

∣∣∣∣x − 1

2

∣∣∣∣
)−1

, f ′′(x) = sign

(
x − 1

2

)(
1

2
−

∣∣∣∣x − 1

2

∣∣∣∣
)−2

.

The inverse of f , the distribution function of the symmetrized exponential law, has the same differentiability properties
as f , i.e., it is continuously differentiable and the second derivative exists except at 0, where it has right and left limits.
The discontinuities of f ′′ and (f −1)′′ are harmless for the application of Itô’s formula, which, together with

sign
(
f (x)

) = sign

(
x − 1

2

)
= f ′′(x)

(f ′(x))2
,

yields the next statement:

Proposition 7. Let (Xt )t≥0 and (Dt )t≥0 be semimartingales in the filtration (Ft )t≥0. Then, the differential equation

dDt = min(Dt ,1 − Dt)dXt, with 0 < D0 < 1,

is satisfied if and only if Zt = f (Dt ) is the solution of

dZt = dXt + 1

2
sign(Zt )d〈X〉t , Z0 = f (D0).

When we consider Eq. (5), then dXt = −μ sign(Dt − 1
2 )dSt so we have to solve

dZt = −μ sign(Zt )dSt + 1

2
μ2 sign(Zt )dt

= −μ sign(Zt )dBt − 1

2
μ2 sign(Zt )dt, Z0 = f (U). (18)

The way we solve this equation depends on the initial data. In the heuristic description, when we started with a given
B and U , we used that these two objects determine |Zt |, by the formula

|Zt | = |Z0| − μBt − 1

2
μ2t + L0

t (Z)

= |Z0| − μBt − 1

2
μ2t + max

s≤t

{(
μBs + 1

2
μ2s − |Z0|

)
∨ 0

}
.

So we have to unfold this process with the help of independent random signs to obtain Z and hence D. Such an
“unfolding” result can be found in [7].
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In Proposition 6 we would like to find B and D such that B is a Brownian motion, and (5) holds within a filtration
generated by W and U . So we follow another approach here. If we set Wt = ∫ t

0 sign(Zs)dBs , then (18) reads as
follows

dZt = −μdWt − 1

2
μ2 sign(Zt )dt, Z0 = f (U). (19)

Note, that the discontinuous function sign(·) now is in the drift term rather than in the diffusion term. Existence and
pathwise uniqueness of the solution of (19) follows from Theorem 3.5(i) [10], Chapter IX. So, we can take (Zt )t≥0 as
the solution of (19) and then, we define Bt = ∫ t

0 sign(Zs)dWs . It is clear that (Bt )t≥0 is a Brownian motion in (Ft )t≥0,

adapted to (F U,W
t )t≥0. We define S and X as before

St = Bt + μt, Xt = −μ

∫ t

0
sign(Zu)dSu.

Thus, with this notation,

dZt = dXt + 1

2
sign(Zs)d〈X〉s .

So application of Proposition 7 gives the following corollary.

Corollary 8. Under the assumptions of Proposition 6, there is an (Ft )t≥0-Brownian motion (Bt )t≥0 and an adapted
process (Dt )t≥0 such that (5) holds true as an Itô integral in (Ft )t≥0. Moreover, (Bt )t≥0 and (Dt )t≥0 are adapted to
(F W,U

t )t≥0.

Remark 9. The SDE (19) defines a Markov process, which is ergodic if μ �= 0, sometimes it is called the “bang–
bang” process. The scale function s of Z is given by the formula s(x) = sign(x)(e|x| − 1), and the speed measure on
the natural scale has a density p(x) = (s′ ◦ s−1)−2. Then, the density of the invariant distribution on the original scale
is proportional to p(s(x))s′(x) = 1/s′(x) = e−|x|, i.e. the symmetrized exponential distribution with parameter 1.

Since Z0 has symmetrized exponential law with parameter 1, the solution of (19) we used to define D is a stationary
Markov process. This means that the law of Dt is the same for all t , i.e., Dt is uniformly distributed on ]0,1[. The
byproduct of the next lemma is that this is even true for the conditional law of Dt given F β

t . In fact, item (iii) below
asserts that conditional distribution function (D̂t (x,ω))0≤x≤1 of the random variable U evaluated at x = U(ω) equals
Dt(ω), i.e., D̂t (U(ω),ω) = Dt(ω) for almost all ω. This is also crucial in the construction, because it means that we
indeed apply here the median strategy. The process Ht = sign(Dt − 1

2 ) is plus or minus one if the value of U is above
or below the conditional median, respectively.

Lemma 10. Assume that B is an (Ft )t≥0-Brownian motion, U is an F0 measurable random variable uniformly
distributed on ]0,1[, and D, S, β are (Ft )t≥0-adapted processes satisfying (5), (6) and (7). Then, β is a Brownian
motion in its own filtration.

Moreover, the process D̂t (x) = P(U ≤ x|F β
t ), depending on the two parameters x ∈ [0,1] and t ≥ 0 has a version

which:

(i) is the unique solution of the parametric family of equations

dD̂t (x) = −μmin
(
D̂t (x),1 − D̂t (x)

)
dβt , D̂0(x) = x;

(ii) is continuous in both parameters;
(iii) satisfies Dt = D̂t (U).

Hence the conditional law of Dt given F β
t is uniform on ]0,1[ for each t .

Proof. To prove that β is a Brownian motion in it own filtration (F β
t )t≥0, it is enough to show that for each T > 0,

(βt )t∈[0,T ] has the correct law.
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On FT we can define a new measure Q by the Cameron–Martin formula dQ = exp{−μBT − μ2T/2}dP. Under
Q the process (St )t∈[0,T ] is a Brownian motion and therefore (βt )t∈[0,T ] is so too, by (7). Hence it is enough to prove
that on F β

T the measures P and Q coincide, as this ensures that the law of β under P is the law of a Brownian motion.
So it is enough to show that

EQ

(
dP
dQ

∣∣∣∣F β
T

)
= 1. (20)

Here dP/dQ = exp{μBT + μ2T/2} = exp{μST − μ2T/2}.
Now let us consider the parametric SDE:

dD̄t (x) = −μmin
(
D̄t (x),1 − D̄t (x)

)
dβt , D̄0(x) = x. (21)

We use here the symbol D̄ to emphasize the—a priori—difference between the solution of the parametric SDE and
the conditional distribution function D̂t (x).

We consider this equation under Q and for the finite time horizon [0, T ]. The diffusion coefficient σ(y) =
−μmin(y,1 − y) on right-hand side of (21) is Lipschitz continuous and satisfies the linear growth condition. Hence,
this equation has a unique strong solution (adapted to the filtration (F β

t )t≥0). Moreover, (21) defines a martingale
(under Q) for each x. Combination of Doob’s moment inequality with the continuity lemma of Kolmogorov gives that
the resulting process has a version which is almost surely continuous in both variable x and t . This is a special case
of a more general statement, see [8], Chapter V, Theorem 37. We use this version in what follows.

We can treat the mapping x 
→ D̄t (x), with t,ω fixed as a stochastic flow. Theorem 46 of Chapter V [8], p. 318,
states that, on an almost sure event the mapping x 
→ D̄t (x) is a homeomorphism of R for all t .

In fact, we shall prove in Lemma 16 below the stronger result that the flow is absolutely continuous almost surely,
and its derivative satisfies the variational equation

Yt (x) = ∂xD̄t (x), dYt (x) = μ sign

(
D̄t (x) − 1

2

)
Yt (x)dβt , Y0(x) = 1. (22)

Observe, that in our case Yt (x) is the stochastic exponential of μS̄t (x), where S̄t (x) is a Brownian motion (under Q)
defined by S̄t (x) = ∫ t

0 sign(D̄s(x) − 1
2 )dβs .

Since D̄T (0) = 0 and D̄T (1) = 1, the integral of the derivative on [0,1] gives one, i.e.

1 = D̄T (1) − D̄T (0) =
∫ 1

0
eμS̄T (x)−μ2T/2 dx. (23)

Note, that (βt )0≤t≤T is a Brownian motion under Q in the filtration (Ft )0≤t≤T and U is F0 measurable. Hence U is
independent from F β

T under Q, and the mapping ω 
→ (ω,U(ω)) is measure preserving from (Ω, F ,Q) to the product

space (Ω × [0,1], F β
T × B,Q′) where dQ′ = dQ|F β

T

× dx. This implies that the continuous process D̄(U) and D are

indistinguishable as well as S̄(U) and S. Using this measure preserving transformation (23) reads as follows

1 = D̄T (1) − D̄T (0) =
∫ 1

0
eμS̄T (x)−μ2T/2 dx = EQ

(
eμST −μ2T/2

∣∣F β
T

)
.

This proves (20).
In the same way we can write

D̄T (x) = D̄T (x) − D̄T (0) =
∫ x

0
eμS̄T (y)−μ2T/2 dy = EQ

(
χ(U≤x)e

μST −μ2T/2
∣∣F β

T

) = P
(
U ≤ x|F β

T

) = D̂T (x),

where we have used (20) and the Bayes formula.
We also obtain that D̂T , the conditional distribution function of U given F β

T is continuous almost surely. To see

that DT = D̂T (U) is uniformly distributed even given F β
T , we recall the simple fact that law of F(X) is uniform

provided that F is the distribution function of X and F is continuous. The proof is complete. �
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Remark 11. Fix x ∈ (0,1). Then, D̂t (x) is a closed martingale under P in the filtration (F β
t )t≥0, i.e. D̂t (x) =

E(χ(U≤x)|F β
t ). It is well known that a closed martingale is convergent and its limit is P(U ≤ x|F β∞). In the next

lemma we show that U is F β∞ measurable, which implies that D̂t (x) → χ(U≤x) almost surely as t → ∞. This is an
interesting feature of the process, as on the other hand, D̂t (U) = Dt does not converge at all, instead it is a stationary
Markov process with non-degenerate invariant distribution. The resolution of this seemingly paradoxical result is that,
for each fixed x ∈]0,1[, D̂t (x) equals to Dt = D̂t (U) on the null set {U = x}, and on this event the limiting relation
above is not really meaningful, as P(U ≤ x|F β

t ) = P(U < x|F β
t ) and also χ(U≤x) = χ(U<x) almost surely. So we use

the part of D̂t (x) where the above almost sure convergence result tells us nothing about the behavior of its sample
path, and rather, for almost all x ∈]0,1[, the sample path of D̂t (x) on {U = x} is divergent.

Proposition 12. Assume that B is an (Ft )t≥0-Brownian motion, U is an F0 measurable random variable uniformly
distributed on ]0,1[, and D, S, β are (Ft )t≥0-adapted processes satisfying (5), (6) and (7). Then, U is F β∞ measurable.

Proof. We know from Lemma 10 that β is a Brownian motion in its own filtration, and that D̂t (x) = P(U ≤ x|F β
t )

solves Eq. (21) for x ∈]0,1[. By Proposition 7 the process Z̄t (x) = f (D̂t (x)) satisfies

dZ̄t (x) = −μdβt + 1

2
μ2 sign

(
Z̄t (x)

)
dt, Z̄0(x) = f (x).

The main difference between this equation and (19) used in Corollary 8 is that in this case we have drift which
is against stability. This implies that Z̄t (x) tends to +∞ or −∞ almost surely as t goes to infinity. Therefore
limt→∞ D̂t (x) = P(U ≤ x|F β∞) ∈ {0,1} almost surely for each x. That is P(U ≤ x|F β∞) is an indicator and it is
easy to see that it equals χ(U≤x) almost surely. Hence U is F∞ measurable by the completeness of the latter. �

Remark 13. The proof of the previous proposition shows us how to “decode” the value of U from the sample path of
the Brownian motion β . We use this observation in the proof of Theorem 2.

Before proving Theorem 2, we state a version of Girsanov’s theorem which will be useful in the proof of Theorem 3
too.

Lemma 14. Let (Mt)t≥0 be a continuous local martingale in the filtration (Ft )t≥0 and U a random variable uniformly
distributed on ]0,1[. We denote by F ′

t the σ -algebra Ft ∨ σ(U).
Assume that, for each t ≥ 0, the conditional distribution of U , given Ft , has a positive density, denoted by Yt (x),

with the following properties:

(i) (x, t,ω) 
→ Yt (x,ω) is B × P measurable, where B stands for the family of Borel subsets of [0,1] and P is the
predictable σ -algebra (with respect to the filtration F ).

(ii) Yt (x) is a continuous local martingale for each x ∈ [0,1].
Then,

M ′
t = Mt −

∫ t

0

1

Ys(x)
d
〈
Y(x),M

〉
s

∣∣∣∣
x=U

is a local martingale in (F ′
t )t≥0.

Proof. Let T > 0 be fixed. Beside P|F ′
T

we define another probability measure Q on F ′
T = FT ∨ σ(U), such that

P ∼ Q, and then we apply Girsanov’s theorem.
For t ∈ [0, T ] we define Qt on Ft ∨ σ(U) by the formula

dQt = 1

Yt (U)
dP

∣∣∣∣
Ft∨σ(U)
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and let Q = QT . For x ∈ [0,1] and A ∈ Ft , we have that

Qt

(
(U < x) ∩ A

) = EP

(
χ((U<x)∩A)

1

Yt (U)

)
= EP

(
χAEP

(
χ(U<x)

1

Yt (U)

∣∣∣∣Ft

))

= EP

(
χA

∫ x

0

1

Yt (y)
Yt (y)dy

)
= xP(A). (24)

This shows that Qt is a probability measure (x = 1,A = Ω) and that U is independent from Ft under Qt , moreover,
Qt |Ft

= P|Ft
. By the independence of U and FT under Q we can also conclude that (F ′

t )0≤t<T is right continuous,
and obviously saturated by F ′

0 ⊃ F0, i.e., it fulfills the usual conditions (it is tacitly assumed for (Ft )t≥0).
It also follows from (24), that for t < T and A ∈ Ft we have that Q((U < x) ∩ A) = Qt ((U < x) ∩ A), so

Q|Ft∨σ(U) = Qt . (25)

This proves that (Y−1
t (U))t≥0 is a martingale in (F ′

t )t≥0 under P and also that Yt (U) = EQ(dP/dQ|F ′
t ), i.e.,

(Yt (U))0≤t≤T is a martingale in (F ′
t )t∈[0,T ] under Q. Observe that Yt (U) is a continuous process.

Under Q the process (Mt)t∈[0,T ] is a continuous local martingale in (F ′
t )t∈[0,T ], by the independence of U and FT ,

so application of Girsanov theorem proves that

Mt −
∫ t

0

1

Ys(U)
d
〈
Y(U),M

〉
s
, 0 ≤ t ≤ T ,

is a local martingale in F ′ under P. Here 〈Y(U),M〉 is the compensator of (Yt (U)Mt)t∈[0,T ] under Q. It is easy to see
using the independence of U and FT under Q that 〈Y(U),M〉 = 〈Y(x),M〉|x=U and the statement follows. �

Proof of Theorem 2. By hypothesis, β is an (Ft )t≥0-Brownian motion. We define the parametric process D̄t (x) by
(21). We can assume that (x, t) 
→ D̄t (x) is almost surely continuous. Define

U = inf
{
x ∈ (0,1) ∩ Q: lim

t→∞ D̄t (x) = 1
}
.

Recall that on an almost sure event D̄t (x) is increasing in x and its limit for fixed x exists as t → ∞. The limit is
either +1 or 0. From this it is clear that the indicator of the event {U ≤ x} is the same as limt→∞ D̄t (x).

For each fixed x, the process D̄(x) is a bounded martingale, so

P(U ≤ x|Fs) = E
(

lim
t→∞ D̄t (x)

∣∣Fs

)
= D̄s(x).

By Lemma 16 of the Appendix, U has almost surely a conditional density Yt (x) satisfying

dYt (x) = μ sign

(
Dt(x) − 1

2

)
Yt (x)dβt , Y0(x) = 1.

Now we can apply Lemma 14 to M = β and we obtain that in the filtration F ′
t = Ft ∨ σ(U)

βt − μ

∫ t

0
sign

(
D̄u(U) − 1

2

)
du

is a local martingale. By Lévy’s characterization it is an F ′-Brownian motion, proving Theorem 2. �

Proof of Theorem 3. We modify the equation defining D̄ using the process (μt )t≥0, rather than the constant μ, i.e.

dD̄t (x) = −μt min
(
D̄t (x),1 − D̄t (x)

)
dMt, D̄0(x) = x. (26)

As in the case of constant μ we can see, that this SDE has a unique solution, adapted to the filtration of μ · M , which
can be chosen to be continuous in both variables and, for any fixed t , increasing in x.
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Since D̄t (1) = 1 and D̄t (0) = 0 for all t we can see, that for x ∈]0,1[ the martingale D̄(x) is bounded, therefore
convergent. For each x ∈]0,1[ the limit limt→∞ D̄t (x) exists almost surely, so we can define

D̄∞(x) = sup
{

lim
t→∞ D̄t (y): y ∈ Q, y ≤ x

}
, x ∈]0,1[.

The function x 
→ D̄∞(x) is a (random) distribution function on ]0,1[. We denote by q its quantile function, i.e.,
q(s) = inf{x: D̄∞(x) > s}.

Now we define a random variable with V = q(U). Observe that

P(V < x|F∞) = P
(
U ≤ D̄∞(x)|F∞

) = D̄∞(x).

Since D̄(x) is a martingale for each fixed x we also have that

P(V < x|Fs) = E
(
P(V < x|F∞)|Fs

) = D̄s(x).

This is clear for x ∈ Q∩]0,1[ from the definitions, and extends to all x ∈]0,1[ by the continuity of both x 
→ D̄s(x)

and x 
→ P(V < x|Fs). It follows that V is uniformly distributed on ]0,1[ as

P(V < x) = E
(
P(V < x|F0)

) = D̄0(x) = x.

Hence Theorem 3 follows from the combination of Lemmas 16 and 14 in the same way as in the proof of Theorem 2. �

3.3. Proof of Theorem 1 based on Proposition 6

The proof is based on a simple idea analogous to Tsirelson’s ingenious construction of an SDE with a weak but no
strong solution ([12], compare also [3]).

We take an increasing sequence {tk: k ∈ Z} such that limk→−∞ tk = 0 and limk→∞ tk = ∞. This determines a
partition of the half line ]0,∞[. On each interval [tk, tk+1] we form the Lévy transform of W , this yields a Brownian
motion W(k) on [tk, tk+1] and an independent random variable Uk (from the signs of the excursions, see Proposition 15
of the Appendix) which is uniformly distributed on ]0,1[. Then, we use Proposition 6 on each such subinterval with
W(k) and Uk−1 the uniform variable from the previous interval. This gives on each subinterval the piece of β , B and
H . Finally, we join these pieces to obtain the whole sample path of β , B and H . Since these pieces are independent β

will be a Brownian motion in its own filtration and by similar reasons B a Brownian motion in the filtration of W .
To give some details we use the following notations.

G(k)
t = F W

t+tk

W
(k)
t =

∫ t

0
sign(Ws+tk − Wtk )dWs+tk

for 0 ≤ t ≤ tk+1 − tk.

As described in the outline of the proof, Uk is a random variable, uniformly distributed on ]0,1[. It is formed from
the random signs appearing in excursions of (Wt+tk − Wtk )t∈[0,tk+1−tk], i.e. it is measurable to the σ -algebra F W

tk+1
.

It follows that {(Uk−1,W
(k)): k ≤ 0} form an independent sequence and Uk−1 is independent from W(k). So we

can apply Proposition 6 to (W
(k)
t )t∈[0,tk+1−tk] as W , (G(k)

t )t∈[0,tk+1−tk] as F and Uk−1 as U . This way we obtain

(B
(k)
t )t∈[0,tk+1−tk] a Brownian motion in (G(k)

t )t∈[0,tk+1−tk], a random sign process (H
(k)
t )t∈[0,tk+1−tk].

Next, we can define B and H as

Bt =
∑
k∈Z

B
(k)
((t∧tk+1)−tk)∨0, Ht =

{
1 if t = 0,
H

(k)
t−tk

if tk ≤ t < tk+1.

Observe that the series defining Bt is almost surely convergent, as the summands are independent and the partial sums
are bounded in L2. It is easy to see that it is Brownian motion in (F W

t )t≥0 as B(k) is a Brownian motion in G(k).
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Finally, put St = Bt + μt . Then with obvious notation

βt = (H · S)t =
∑
k∈Z

(
H(k) · S(k)

)
((t∧tk+1)−tk)∨0 =

∑
k∈Z

β
(k)
((t∧tk+1)−tk)∨0. (27)

To prove that β is a Brownian motion in its own filtration only the law of β has to be considered. By Proposition 6
(β

(k)
t )t∈[0,tk+1−tk] is a Brownian motion in its own filtration. It is defined from W(k),Uk−1 so again the summands in

(27) are independent. It now follows that β is a Brownian motion in its own filtration.

Appendix

We recall here a reformulation of a statement that was used in the proof of Theorem 1. It is in the spirit of the paper
[1], where Gilat’s theorem was analyzed.

Proposition 15. Let (Wt )t≥0 be a Brownian motion and (Bt )t≥0 its Lévy transform:

Bt =
∫ t

0
sign(Ws)dWs.

Fix T > 0. Then, there is an F W
T measurable random variable U uniformly distributed on [0,1] and independent from

F B∞.

Proof. Let z = {t ∈ [0, T ]: Wt = 0}. Since W is a Brownian motion the random set [0, T ] \ z is an open subset of
[0, T ] having infinitely many connected components almost surely. We can take an F |W |

T measurable enumeration of

these components, i.e., there is a sequence of F |W |
T measurable random times (σn)n≥1 and (τn)n≥1 such that σn < τn

and

[0, T ] \ z =
⋃
n≥1

]σn, τn[, almost surely.

Note, that these random times are not stopping times, but F |W |
T measurable variables. However, by a classical result,

that can be traced back to Paul Lévy, we have that the random signs εn = sign(W(σn+τn)/2) form an i.i.d. sequence

of fair coin-tossing, i.e. P(εn = ±1) = 1
2 , and independent from F |W |∞ = F B∞. For proof, see [4], Section 2.9. So the

choice

U =
∑
n≥1

εn2−n

proves the statement. �

A.1. Variational formula

During the proof of Lemma 10 we met the following situation. There is given a function f (x) = x ∧ (1 − x) and we
considered the parametric SDE

dD̄t (x) = f
(
D̄t (x)

)
dβt , D̄0(x) = x.

It is well known that the solution of this parametric equation has a version which is continuous in both variables, and
that on an almost sure event the mapping x 
→ D̄t (x) is a homeomorphism for all t . For a continuously differentiable f ,
with bounded derivative this solution is even differentiable in x and

Yt (x) = ∂xD̄t (x), dYt (x) = Yt (x)f ′(D̄t (x)
)

dβt , Y0(x) = 1.
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We extend this variational formula to our case relatively easily, since we consider a one-dimensional equation. In one
dimension we only have to prove that the flow x 
→ D̄t (x) is absolutely continuous for all t almost surely. Indeed,
assuming that D̄t (y) − D̄t (x) = ∫ y

x
Yt (u)du one can derive using the stochastic version of the Fubini theorem, see

[8], Chapter IV, Theorem 65, that∫ y

x

Yt (u)du =
∫ y

x

(
1 +

∫ t

0
f ′(D̄s(u)

)
Ys(u)dβu

)
du.

Since this is true for all x, y we obtain that for almost all u

Yt (u) = 1 +
∫ t

0
f ′(D̄s(u)

)
Ys(u)dβs,

i.e. the stochastic exponential of f ′(D̄(u)) · β is the Radon–Nikodym derivative at u of the flow x 
→ D̄t (x) for all t .
To apply the Fubini theorem we also need that

∫ t

0

∫ y

x
Y 2

s (u)duds < ∞ almost surely for each t and x, y.
So for our purposes it is enough to show the following lemma.

Lemma 16. Let g : R → R be a bounded function, f (x) = ∫ x

0 g(y)dy the integral function of g and β a Brownian
motion. Consider the solution of the parametric equation

dD̄t (x) = f
(
D̄t (x)

)
dβt , D̄0(x) = x,

which is continuous in both variables x, t . Then, on an almost sure event, the mapping x 
→ D̄t (x) is absolutely
continuous for each fixed t . Moreover, for each T > 0 and x < y

∫ T

0

∫ y

x

(
dD̄t (u)

du

)2

dudt < ∞, almost surely.

Proof. We recall the following simple fact from analysis. A continuous function ϕ : [0,1] → R is the integral of a
square integrable function if and only if there is a constant C such that

sn =
2n∑

k=1

2n
(
ϕ
(
k/2n

) − ϕ
(
(k − 1)/2n

))2 ≤ C for all n. (A.1)

In this case
∫ 1

0 (dϕ(x)/dx)2 dx ≤ C.
We shall have established the lemma if we show that (A.1) holds for ϕ(x) = D̄t (a + x) − D̄t (a) (x ∈ [0,1]) with

any fixed a ∈ R, locally uniformly in t with probability one. We simply write sn for sn(a, t). Since sn ≤ sn+1, by the
convexity of the function x2, it is enough to show that supn E(supt≤T sn) < ∞.

We can simply estimate E(supt≤T sn). To this end put Zt = D̄t (b) − D̄t (a) and write

Zt = (b − a) +
∫ t

0
Zsqs dβs = (b − a) +

∫ t

0
f

(
D̄s(b)

) − f
(
D̄s(a)

)
dβs,

where qs = (f (D̄s(b)) − f (D̄s(a)))/Zs is a uniformly bounded quotient process. The upper bound is denoted by L.
We can use Doob’s inequality to obtain that

E
(

sup
t≤T

Z2
t

)
≤ 4

(
(b − a)2 + L2

∫ T

0
E

(
Z2

s

)
ds

)
.

Let us divide by (b − a)

E
(

sup
t≤T

Z2
t

b − a

)
≤ 4(b − a) + 4L2

∫ T

0
E

(
sup
u≤s

Z2
u

b − a

)
ds.
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So by Gronwall lemma

E
(

sup
t≤T

Z2
t

b − a

)
≤ 4(b − a)e4L2T

showing that E(supt≤T sn) ≤ 4e4L2T . The proof is complete. �

By stopping, the above argument extends to continuous local martingales in place of the Brownian motion β , and
also with trivial modification to continuous semimartingales. Similar results, with different means and purposes, were
found by Bass and Burdzy, see Theorem 3.9 in [2].

An interesting corollary is the following observation.

Corollary 17. Let (Mt)t≥0 be a continuous local martingale in the filtration (Ft )t≥0. Then, there is a predictable
process (Ht )t≥0 taking values in {−1,1}, such that with M ′ = H · M the stochastic exponential of M ′ is a true
martingale.

Proof. Let D̄ be the solution of the parametric equation

dD̄t (x) = −min
(
D̄t (x),1 − D̄t (x)

)
dMt, D̄0(x) = x,

which is continuous in both variables, cf. [8], Chapter V, Theorem 37. By Lemma 16, the random function x 
→ D̄t (x)

is absolutely continuous almost surely and

D̄t (x) =
∫ x

0
Yt (y)dy, where

dYt (x) = sign

(
D̄t (x) − 1

2

)
Yt (x)dMt, Y0(x) = 1.

Let Ht(x) = sign(D̄t (x) − 1
2 ) and M ′(x) = H(x) · M . With this notation Y(x) = exp{M ′(x) − 1

2 〈M ′(x)〉} is the
stochastic exponential of M ′(x).

We show that Y(x) is a martingale for almost all x ∈]0,1[, which proves the claim. To see that Y(x) is martingale
it is enough that E(Yn(x)) = 1 for all n, since Y(x) is a stochastic exponential of a continuous local martingale. We
have that

1 = E(1) = E
(∫ 1

0
Yn(x)dx

)
=

∫ 1

0
E

(
Yn(x)

)
dx.

Since E(Yn(x)) ≤ 1, it implies that E(Yn(x)) = 1 for almost all x and the statement follows. �
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