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GEODESICS AND FLOWS IN A POISSONIAN CITY

BY WILFRID S. KENDALL

University of Warwick

The stationary isotropic Poisson line process was used to derive upper
bounds on mean excess network geodesic length in Aldous and Kendall [Adv.
in Appl. Probab. 40 (2008) 1–21]. The current paper presents a study of the
geometry and fluctuations of near-geodesics in the network generated by the
line process. The notion of a “Poissonian city” is introduced, in which con-
nections between pairs of nodes are made using simple “no-overshoot” paths
based on the Poisson line process. Asymptotics for geometric features and
random variation in length are computed for such near-geodesic paths; it is
shown that they traverse the network with an order of efficiency comparable
to that of true network geodesics. Mean characteristics and limiting behavior
at the center are computed for a natural network flow. Comparisons are drawn
with similar network flows in a city based on a comparable rectilinear grid.
A concluding section discusses several open problems.

1. Introduction. The “Poissonian city” is a random network of connections
based on a Poisson line process. Aldous and Kendall (2008) used such a network to
address a problem in frustrated optimization: construct planar networks connecting
a large number of nodes such that:

1. the total connection length is not much larger than the minimum possible con-
nection length, but also such that

2. the average connection distance between two randomly chosen nodes is not
greatly in excess of the Euclidean distance.

It transpires that networks satisfying criterion 1 may be augmented by sparse Pois-
son line processes so as to satisfy criterion 2 as well. More precisely, suppose that
n nodes are distributed in an arbitrary fashion (deterministically or randomly) over
a square of total area n. Recall that the minimum total length for a connecting
network is achieved by a Steiner minimum tree [Prömel and Steger (2002) sur-
vey Steiner trees in general; for probabilistic aspects, see Steele (1997), Yukich
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(1998)]. It is shown by Aldous and Kendall [(2008), Theorem 1(b)] that augmen-
tation by a sparse Poisson line process can convert a Steiner minimum tree into a
network whose total connection length is only slightly increased but which now
delivers a mean connection distance that is no more than O(logn) in excess of the
Euclidean distance. (Here, the mean involves averaging the choice of nodes rather
than the randomness of the line process.) Under a suitable weak uniformity condi-
tion on the empirical spatial distribution of the nodes, Aldous and Kendall [(2008),
Theorem 2] also establish a lower bound on the mean excess: it must be of order
at least �(

√
logn).

The primary motivation of the previously mentioned work was to gain a better
understanding of the behavior of network statistics (such as the mean excess net-
work length) for entirely general networks. However, the appearance of Poisson
line processes in the upper bound result motivates the following, more detailed,
study of the “Poissonian city” generated by a unit intensity stationary isotropic
Poisson line process. What can be said about the “near-geodesics” used to estab-
lish the upper bound? How close are they to true network geodesics? How does
random fluctuation affect excess length? And what about traffic flow on such a
network? These questions are addressed below; their answers require the use of
Lévy subordinators, self-similar Markov processes (something of a novelty in sto-
chastic geometry) and a curious improper anisotropic Poisson line process.

Previous relevant work includes: the note by Davidson (1974), who gives a
qualitative argument showing that the Poisson line process provides good con-
nections; Rényi and Sulanke [(1968), Satz 5], who derive a result similar to the
mean-excess result, but concerning numbers of edges rather than length, and based
on a fixed number of random lines; and recent higher-dimensional generalizations
of the Rényi–Sulanke work by Böröczky and Schneider (2010), Theorem 1.3.
We also mention work by Voss, Gloaguen and Schmidt (2009) on limit distrib-
utions of shortest paths from subsidiary to major nodes in hierarchical networks
based on random tessellations. Finally, we note the interesting work of Baccelli,
Tchoumatchenko and Zuyev (2000) related to the concept of spanners from graph
theory [a geometric spanner is a planar graph connecting a set of nodes for which
the graph distance between any two points is less than some fixed multiple of
Euclidean distance; see, e.g., the exposition Narasimhan and Smid (2007)]. The
networks constructed in Aldous and Kendall (2008) are averaged rather than uni-
form versions of geometric spanner networks, for which the fixed multiple of
Euclidean distance is replaced by a logarithmic additive excess and a specific con-
straint is imposed on the total network length (rather than, say, small vertex degree
or total number of edges).

In the remainder of this introductory section we introduce basic notation and
concepts, and enumerate the questions to be addressed concerning the behavior of
near-geodesics and traffic flow in the Poissonian city.
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1.1. Notation and basic concepts. We begin by presenting a brief summary of
stationary isotropic Poisson line processes so as to fix notation and collect some
facts about line processes which will be used below. Further information can be
found in, for example, Stoyan, Kendall and Mecke (1995). The ensemble of undi-
rected lines � in the plane may be viewed as a Möbius strip of infinite width or as a
once-punctured projective plane (since such lines can be produced as intersections
of planes through the origin in 3-space with the plane z = 1, in which case the
plane through the origin and parallel to z = 1 does not produce an intersection).
It is often convenient to parametrize this ensemble of lines � by representing lines
using points (r, θ), where r is the perpendicular signed distance from the line �

to a reference point, and θ ∈ [0, π) is the angle that � makes with a reference line
running through the reference point. A unit intensity stationary isotropic Poisson
line process (“Poisson line process” for short) is determined as a Poisson point
process on the representing projective plane using the intensity measure 1

2 dr dθ .
The factor 1

2 ensures that the mean number of Poisson lines hitting a line segment
is equal to the length of the segment.

Slivynak’s theorem on the Palm distribution of a Poisson process applies here:
if we condition on a specific line � belonging to the Poisson line process, then the
residual line process is still unit intensity stationary isotropic Poisson.

An alternative parametrization (x, θ), sometimes of use, employs the line angle
θ as above, with x being the signed distance along the reference line from the
reference point to the intersection of � with the reference line. This representation
breaks down when θ = 0 (not a major issue in the case of a Poisson line process,
for which the set of lines at θ = 0 has zero probability). In these coordinates the
unit intensity measure is 1

2 sin θ dx dθ ; the sine-weighting corresponds to a length-
biasing phenomenon when sampling Poisson lines according to their intersections
with a test line. In particular, if two lines are conditioned to pass through a given
point, then they form an exchangeable pair: one having uniform direction, and the
angle α ∈ [0, π) between them having density 1

2 sinα, independent of the direction
of the first.

Viewed as a random measure, the Poisson line process generates a measure via
the mean total length of lines intersected with a given set. Testing against a unit
disc, we can compute the resulting length intensity as π

2 . It follows from the above
and from Slivynak’s theorem that the point process of intersections of lines from
the Poisson line process has intensity π

2 [Miles (1964), Theorem 2].
The following caricature supplies a good intuition as to where the logarithmic

excess might be located on a typical route on a network based on a Poisson line
process. Consider a network formed between just two nodes, p− (the source) and
p+ (the destination), with lines provided by a unit rate stationary isotropic Poisson
line process �. Let the two nodes be separated by distance n. We condition the
line process to contain two lines �± running through source and destination nodes,
which are both perpendicular to the segment connecting p− to p+ (Figure 1).
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FIG. 1. A caricature of the procedure of finding a route using a Poisson line process; consider only
those routes involving the two vertical lines �± and one of the other lines. Here a possible route is
indicated by arrows.

We consider only those routes which involve the conditioned lines �− (resp., �+)
running through p− (resp., p+), along with just one other line of the Poisson line
process.

Consider the set of lines � which intersect both �− at distance at most c
√

n from
p− and �+ at distance at most c

√
n from p+. Classic stochastic geometry argu-

ments [based on inclusion–exclusion and a special case of the “Buffon–Sylvester
problem”; see, e.g., Ambartzumian (1990)] then show that the invariant measure
of this line set is given by half the difference between the summed length of the
two diagonal lines minus the summed length of the two vertical lines in Figure 2.

Hence, the probability of no unconditioned Poisson lines falling in this set is

exp
(−1

2

(
2
√

4c2n + n2 − 2n
)) ≥ exp(−2c2),

and, as a consequence, the resulting mean excess is bounded below by

√
n

∫ ∞
0

e−2c2
dc = 1

2

√
πn

2
,

attributable to the parts of the route which lie on the conditioned lines �−, �+.
(Excess along the unconditioned line � itself is bounded above by

√
4c2n + n2 −

n ≤ 2c2 and is hence negligible in the case of large n.)
This rather trivial example makes it clear that being permitted to use more than

one line (in addition to the two conditioned lines) will reduce the excess principally

FIG. 2. Illustration of a classic stochastic geometry construction for calculating the invariant mea-
sure of the set of lines hitting both of the two vertical line segments �± marked out by the two hori-
zontal lines.
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by rounding off the corners at the start and finish of the journey. Thus, it is clear [as
is indeed apparent from details of the computations in Aldous and Kendall (2008),
Theorem 3] that the logarithmic excess in the full construction is a cost which
arises entirely from the business of getting on and off an efficient route between
source and destination.

1.2. Making connections. Any two specified points p− and p+ in the plane
will almost surely not be hit by any of the lines of a given isotropic stationary
Poisson line process � and will therefore fail to be connected by �. Accordingly,
we establish the convention that movement from p− to p+ occurs as follows:
first, use the Poisson tessellation to construct the cell C(p−,p+) containing p−
and p+ which arises by deleting all Poisson lines which separate p− from p+.
Now, proceed from the source p− in exactly the opposite direction to that of p+
until one first encounters a Poisson line [which will be part of the cell boundary
∂C(p−,p+)]. Then, continue along the line in one or the other direction, clockwise
or counterclockwise, proceeding along the boundary of the cell C(p−,p+). Con-
tinue until one reaches the ray extending from p− and through p+. Then, proceed
down this ray to the destination p+ (Figure 3). Thus, we consider near-geodesics;
routes based on semiperimeters of the cell C(p−,p+). These are to be considered
in contrast to network geodesics, which always use the shortest network path and
can therefore be found only by solving a difficult optimization problem.

Evidently, this is a conservative option for plumbing nodes into the Poisson
network produced by �, suitable if we wish to produce upper bounds on con-
nection lengths and adopted without further comment in what follows. We sup-
pose the choice of whether to travel clockwise or counterclockwise around the cell
C(p−,p+) (or, equivalently, which semiperimeter to choose) is made at random
and equiprobably, independently for each pair of nodes p−, p+. (As mentioned in
Section 5, interesting and hard problems arise if the choice of route for a specific
pair is influenced by the flow in the entire network.)

In contrast to true network geodesic connections, these routes can be viewed as
outputs from an unsophisticated but direct semiperimeter algorithm: if one is on a

FIG. 3. The path marked by arrows illustrates one of the two possible journeys around the cell
C(p−,p+) which start at source p− and end at destination p+.



806 W. S. KENDALL

Poisson line and encounters another Poisson line, then one chooses (from the three
onward paths) that path which leads closest to the eventual destination without
separating source from destination. This focuses attention on the Poissonian city,
a region connected by routes based on a fixed stationary isotropic Poisson line
process and following the above convention so as to ensure that the line process
actually connects nodes. Questions addressed in Section 2 of this paper, filling in
and extending the results announced in Kendall (2008), include the following:

1. What can one say about the basic geometry of these routes? Computations from
Aldous and Kendall [(2008), Theorem 3] yield 4

3 log dist(p−,p+) as asymp-
totic mean excess length as dist(p−,p+) tends to infinity. This can be viewed
as a quantitative development of the announcement by Davidson [(1974), The-
orem 5(ii)], but by how much does the traveled path deviate laterally from the
Euclidean connection, and at what point is that lateral deviation greatest? (See
Theorem 1.)

2. What is the order of random variation of the route lengths? (See Theorem 3.)
3. What might be said about how actual network geodesics differ from these

routes? (This is discussed in Section 2.3.)
4. Finally, might actual network geodesics produce substantially smaller mean ex-

cess lengths? (Theorem 4 shows that the mean excess of true network geodesics
is comparable to the mean excess of semiperimeter paths.)

1.3. Traffic flow. Given a Poissonian city, it is natural to consider traffic flow.
Suppose, for example, that the city is represented by ball(o, n), a disc centered at
o and of radius n, connected by roads provided by a stationary isotropic Poisson
line process �. Suppose that each pair of points p− and p+ in the disc generates
a constant infinitesimal amount of traffic dp− dp+, divided equally between each
of the two connecting routes generated according to the semiperimeter algorithm
described above. Suppose further that we condition on the event of a Poisson line
passing through the center o of the disc. Let

Dn = {(p−,p+) ∈ ball(o, n)2 :p−
1 < p+

1 ,o ∈ ∂C(p−,p+)}(1)

denote the region in 4-space corresponding to p−, p+ in ball(o, n) for which p−
lies to the left of p+ (imposed by the inequality p−

1 < p+
1 , where p−

1 , p+
1 are the

x-coordinates of source and destination nodes) and one of the two possible routes
passes through o.

Questions addressed in Section 3 include:

1. What is the dependence on n of the mean E[Tn] of

Tn = 1

2

∫ ∫
I[(p−,p+)∈Dn] dp− dp+

= 1

2

∫ ∫
ball(o,n)2

I[p−
1 <p+

1 ,o∈∂C(p−,p+)] dp
− dp+,
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the total amount of traffic passing through the center o? This quantity scales
as n3, following from scaling arguments using basic stochastic geometry. How-
ever, one can in fact compute the constant of asymptotic proportionality (The-
orem 5).

2. Indeed, Aldous has asked whether the scaled flows Tn/n3 have a nondegener-
ate limiting distribution. (The answer is that they do: see Theorem 7 and Corol-
lary 9.)

3. Does uniform integrability hold for the sequence of Tn/n3 as n → ∞? If not,
then there might exist a well behaved limiting distribution, but the mean of
Tn/n3 might converge to a higher value than that of the limit. Were this the
case, it could be viewed as a kind of stochastic congestion result. (The results
of Theorem 5 and Lemma 8 indicate why uniform integrability does hold; it is
possible to push this further, as indicated in Section 3.4.)

Section 4 provides a comparison by giving an overview of analogous results for
flows in cities built on grids (Manhattan cities). The concluding Section 5 adds
some further remarks and mentions possible future research directions.

1.4. Directory of results. Finally, we present a directory of the main results so
as to assist the reader in navigating around this paper.

In Section 1.2, Theorem 1 establishes statistical asymptotics for the maximum
lateral deviation of a near-geodesic from the corresponding Euclidean path; as-
ymptotically, the maximum will be located uniformly along the path, with ex-
tent given by the radial part of a four-dimensional Gaussian vector with variance
which is quadratic in the location of the maximum and which vanishes at the two
endpoints. A preliminary Lemma 2 then leads to Theorem 3, which produces an
asymptotic bound 20

27 logn for the variance of the excess of near-geodesic length
over Euclidean path length, for a near-geodesic started at a point and going off to a
line at distance n from the point. Theorem 4 generates an asymptotic lower bound
2(log 4 − 5

4) logn on the mean excess for any path between two fixed points sep-
arated by distance n. The numerical value 0.27258872 . . . of the constant of pro-
portionality here should be compared with the corresponding constant 4

3 = 1.33 . . .

for near-geodesics [Aldous and Kendall (2008)].
In Section 3 the focus changes to flows in networks built from Poisson line

processes. After introducing the notion of a “Poissonian city” (based on a disc
of radius n), Theorem 5 shows that the traffic flow Tn through the center has as-
ymptotic mean 2n3. Corollary 6 reports a refinement of the detailed asymptotics;
Theorem 7 (supported by Lemma 8) establishes the existence of a limiting distrib-
ution for Tn/n3—although the result only gives a geometric characterization—and
Corollary 9 confirms that this limit distribution is nondegenerate.

2. Making connections in the Poissonian city. Asymptotic arguments ap-
plied to formulas from stochastic geometry indicate both the geometry of the routes
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provided by the unsophisticated semiperimeter algorithm described above (includ-
ing the extent of random variation in length) and also ways in which they differ
from true network geodesics between source and destination nodes. We begin by
discussing the asymptotic distribution of the location and extent of the maximum
lateral displacement of a semiperimeter route from the corresponding Euclidean
geodesic.

2.1. Maximum lateral displacement. Consider the height and location of the
maximum lateral displacement of one of the ∂C(p−,p+) semiperimeter routes
from a source p− to a destination p+. Figure 4 illustrates 1000 realizations of
such routes, with maxima marked by discs, when source and destination are sep-
arated by distance n = 1000. Such simulations suggest the existence of a limiting
distribution under scaling for the extent and location of the maximum lateral dis-
placement, and stochastic geometry arguments show that this is indeed the case.

THEOREM 1. Consider two points p− = o = (0,0) and p+ = (n,0) located
along the x-axis and also a path between these points based on ∂C(p−,p+) ∩
{(x, y) :y ≥ 0}. Locate the maximum lateral displacement of ∂C(p−,p+) ∩
{(x, y) :y ≥ 0} from the x-axis (and thus from the Euclidean geodesic between p−
and p+) at (nUn,

√
nVn). The joint distribution of (Un,Vn) then has the following

weak limit (U,V ) as n → ∞:

(a) the scaled location U is uniformly distributed over [0,1];

FIG. 4. A plot of 1000 semiperimeters of cells ∂C(p−,p+) based on a distance n = dist(p−,
p+) = 1000. The dots indicate the maximum lateral displacements from the horizontal axis between
source and destination. The figure has been subjected to vertical exaggeration by a factor of

√
n/4.
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(b) conditional on U = u ∈ (0,1), the scaled displacement V is distributed as the
length of a four-dimensional Gaussian vector with variance 2u(1 − u).

PROOF. Let p−, p+ be located at o and (n,0) on the x-axis and let the maxi-
mum displacement be located at (nUn,

√
nVn), as in the statement of the theorem,

so that
√

nVn = max{y : (x, y) ∈ ∂C(p−,p+)},(
nUn,

√
nVn

) ∈ ∂C(p−,p+).

(Almost sure uniqueness of Un is a consequence of the fact that a stationary
isotropic Poisson line process almost surely contains no horizontal lines.)

The proof is a variation on ideas in the proof of Theorem 3 in Aldous and
Kendall (2008). Consider the point process formed by intersections of lines �−,
�+ from �, subject to the following, additional, requirements:

1. no further lines from � separate the intersection �− ∩ �+ from the segment of
length n formed between the pair of points p− = o, p+ = (n,0);

2. one of the intersecting lines �− has positive slope, the other �+ has negative
slope and neither line intersects the segment formed between the pair of points
p−, p+.

Topological arguments show that there must be just two points in this point
process, one above and one below the x-axis, and the point above the x-axis must
be located at (nUn,

√
nVn). The intensity of the point process in the upper half-

plane is given by

ρ(x, y) = 1
4

(
sinα + sinβ − sin(α + β)

)
(2)

× exp
(−1

2

(√
x2 + y2 +

√
(n − x)2 + y2 − n

))
,

where α, β ∈ (0, π) are the interior angles at o and (n,0) of the triangle formed
by (x, y) and these two points. Here, the exponential factor is contributed by re-
quirement 1 above, since Slivynak’s theorem can be used to show that the unit
intensity stationary isotropic Poisson property is preserved by conditioning on two
lines from � intersecting at (x, y) and then removing those two lines. Employing
the fact that the intensity of the point process formed by intersections of lines from
the unit intensity line process � is π

2 , requirement 2 can be shown to lead to the
factor

π

2
× 1

π

∫ α

0

∫ β

0

1

2
sin(θ + ψ)dψ dθ

= 1

4

(
sinα + sinβ − sin(α + β)

)
.
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It follows that (Un,Vn) has joint density on the upper half-plane given asymp-
totically for large n when 0 < u < 1 and v > 0 by

n3/2ρ
(
nu,

√
nv

) = n3/2

4

(
sinα + sinβ − sin(α + β)

)
× exp

(
−n

2

(√
u2 + v2

n
+

√
(1 − u)2 + v2

n
− 1

))

∼ n3/2

4
exp

(
−1

4

v2

u(1 − u)

)
× (

sin(α)
(
1 − cos(β)

) + sin(β)
(
1 − cos(α)

))
.

Converting the sines and cosines to expressions in u and v, as n → ∞
n3/2

4
ρ

(
nu,

√
nv

)
∼ n3/2

4
exp

(
−1

4

v2

u(1 − u)

)

×
(

v/
√

n√
u2 + v2/n

(
1 − 1 − u√

(1 − u)2 + v2/n

)

+ v/
√

n√
(1 − u)2 + v2/n

(
1 − u√

u2 + v2/n

))

→ 1

8

v3

u2(1 − u)2 exp
(
−1

4

v2

u(1 − u)

)
.

This can be identified as the joint density corresponding to the limiting distribution
of Un and Vn given in the theorem; weak convergence follows from Fatou’s lemma.

�

Simulation studies (from which Figure 4 was derived) confirm these asymptot-
ics.

2.2. Random variation via growth processes. The direct stochastic geometry
method is highly effective for computing detailed asymptotics of mean-value quan-
tities but leads to burdensome calculations for second order quantities such as
variances. We therefore turn to an alternate approach based on random growth
processes. The maximum analyzed in Section 2.1 occurs at the point of intersec-
tion of the trajectories of two independent growth processes, together representing
the lateral deviation of the path from the Euclidean geodesic between source and
destination nodes. One growth process is viewed as starting from the source node



POISSONIAN CITY 811

FIG. 5. Illustration of H+ construction. The growth process H+
s tracks height as a function of arc

length s. The angle of slope �+
s is an auxiliary process governed by a Poisson stochastic differential

equation, jumping when the path is intercepted by a line from � which also intersects the negative
x-axis.

p− and one from the destination node p+, tracing out the relevant semiperime-
ter of C(p−,p+) by describing the height as a function of arc length along the
semiperimeter. The two processes {H±

s : s ≥ 0} are given by heights H±
s above

the y-axis at arc length distance s along the respective path from the originating
node (p− for H+, p+ for H−). Let �±

s be the angle made by the path with the
x-axis, where the angle measurement is oriented depending on the label “±” so
that �±

0 = π (since the path commences by setting out in the opposite direction
to that of its goal). Then, d

ds
H±

s = sin�±
s [except for isolated points at which the

slope of ∂C(p−,p+) changes]. Changes in �± occur when the path is intercepted
by a line from � which also intersects that part of the x-axis with p∓ deleted
which does not contain p±. Indeed, starting at arc length s along the path from
p∓, the angle �± remains constant for an Exponentially distributed length of rate
1
2(1 − cos�±

s ), after which the angle jumps to a lower value �±
s− + 
�±

s < �±
s−.

The hitting properties of Poisson line processes can be used to show

P[−
�±
s ≤ φ|�±

s− = θ ] = 1 − cosφ

1 − cos θ
where 0 ≤ φ ≤ θ.(3)

(Jump processes such as � are taken to be càdlàg so that lims↘t �s = �t , and
we write �− for the process of left limits.) We suppose the growth processes H±
evolve for all time according to the dynamics described above. Let X±

s be the
distance from p∓ when resolved along the axis from source p∓ to destination p±,
so d

ds
X±

s = sec�±
s (except for isolated points of discontinuity of �). Figure 5

illustrates the H+ construction.

Analysis of growth process using Lévy processes. For the sake of clarity of
exposition, we now drop the superscripted ±.

It is convenient to apply a random time change t = s − Xs using the excess
of arc length over distance traveled toward the goal; in the new time scale, the
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angle � changes according to a Poisson process of incidents of rate 1
2 while

dH
dt

= sin�/(1 − cos�), dX
dt

= cos�/(1 − cos�). This gives a stochastic differ-
ential equation for H and X, driven indirectly by a half-unit rate Poisson counting
process N via the auxiliary process �:

dH = sin�

1 − cos�
dt;

dX = cos�

1 − cos�
dt;(4)

d� = 
�dN.

The distribution of the jump 
� is given by (3), and the jump 
� at a jump of N

is conditionally independent of the past given �− at that time. Note that (4) can be
viewed as driven by a marked Poisson process, obtained by marking the incidents
of N by the jumps of �, with mark distribution (conditional on the left limit �−)
given by (3). Using this terminology and approach, we will now show that the
excess σ(n) = inf{t :Xt ≥ n} = inf{t :

∫ t
0

cos�u

1−cos�u
du ≥ n} at given distance X = n

has standard deviation asymptotically proportional to
√

logn for large n.
To establish this result it is simplest to consider the growth process begun with

X0 = 0 and �0 lying in the range (0, π/2]. We must therefore control the amount
of excess required to achieve this over the initial segment of the path. Since X = 0
at both ends of this segment, this excess can be bounded above by the length of
the initial segment of the path indicated in Figure 6. This path uses the following
directions until it first hits the y-axis: it first runs along the negative x-axis until it
encounters a line of angle between π

3 and π
2 ; it then moves upward along this line

until it encounters a line of angle between 0 and π
3 , then along that line. The first

segment is of length T1, Exponentially distributed of rate 1
4 . The second segment is

of length stochastically bounded above by T2, Exponentially distributed of rate 1
4 .

FIG. 6. Illustration of initial segment of a path used to provide an upper bound on the excess
acquired before X = 0. This initial segment is made up of three line segments, of lengths T1, T2, and
finally a length bounded above by T1 secU . Here, T1, T2, U are independent with distributions as
given in the text.
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The final segment is of length stochastically bounded above by T1 secU , where U

has density 2√
3

cosu for 0 < u < π
3 (this uses a stochastic monotonicity argument

applied to the conditional distribution of the angle of the third line segment given
the angle of the second line segment). We may take T1, T2, U to be independent.

The quantity T1 + T2 + T1 secU is an upper bound on the path length of the
initial segment and has finite mean given by 8(1 + π

3
√

3
) and finite second moment

given by 32(3 + 2√
3
(π + log(2 + √

3))). It follows that the contribution of the
actual initial segment to the mean and variance of the excess is bounded and may
be ignored if we can establish logarithmic increase in variance of the remainder.
Accordingly, we may suppose our growth process begins with X0 = 0 and with �0
lying between 0 and π

2 , distributed according to the density cos θ for 0 < θ < π
2 .

[This is because the growth process will intersect the positive y-axis in the first
intercept which makes an angle with the horizontal in the range (0, π

2 ).]
We now address the question of the variance of σ(n) (based on X0 = 0) in three

stages. First, we use trigonometry and probabilistic coupling to relate the negative
log angle − log� to a Lev́y subordinator ξ . We then state and prove a lemma on
analogous mean and variance asymptotics for τ(n) = inf{t :

∫ t
0 exp(2ξu) du ≥ n}.

Finally, we state and prove a theorem which uses approximations and coupling to
establish the required mean and variance asymptotics for σ(n).

For the first stage, note that if 0 ≤ � ≤ π
2 , then, by trigonometry and calculus,

we can convert the first two partial sums of the Laurent series for cos�
1−cos�

into
upper and lower bounds over [0, π

2 ]:
2

�2 − 5

6
≤ cos�

1 − cos�
≤ 2

�2 .(5)

The application of the distributional information in (3) to a jump 
� = � − �−
produces a unit Exponential random variable:

J = − log
(

1 − cos(−
�)

1 − cos�−

)
.(6)

We can thus mark independently each jump of the Poisson process N using the unit
Exponential mark distribution of J . The mark J can be used, together with �−,
to reconstruct the actual jump of �, using (6). Bearing in mind that 
� < 0, we
may write

J = f (log�−) − f (log(−
�)),

where f (x) = log(1 − cos ex). Calculus shows that f ′ > 0 and f ′′ < 0 over the
range (−∞, log π

2 ). Hence, if x ≤ log�− ≤ log π
2 , then

π

2
≤ f ′(log�−) ≤ f ′(x) = ex sin ex

1 − cos ex
< 2 = lim

x→−∞
ex sin ex

1 − cos ex
.
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However, 0 < −
� < �− and J = ∫ log�−
log(−
�) f

′(x) dx; therefore,

f ′(log�−)
(
log�− − log(−
�)

) ≤ J ≤ 2
(
log�− − log(−
�)

)
.

Hence, for 0 < −
� < �− ≤ π
2 ,

− log
(

1 − exp
(
− 2

π
J

))
≤ − log

(
1 − exp

(
− J

f ′(log�−)

))

≤ − log
(

�− + 
�

�−

)
= −
 log�(7)

≤ − log
(

1 − exp
(
−1

2
J

))
.

For future reference, note that − log(1−exp(−1
2 J )) is distributed as the maximum

T ′ ∨ T ′′ of two independent unit-mean Exponential random variables T ′ and T ′′,
and, in particular, it has mean 3

2 and variance 5
4 . On the other hand − log(1 −

exp(− 2
π

J )) has probability density π
2 (1−e−x)π/2−1e−x for x > 0, and the square

of its negative exponential (1 − exp(− 2
π

J ))2 (which will play a role later on) has
probability density

π

4

(
1 − √

x
)π/2−1 1√

x
for 0 < x < 1.(8)

Thus, a coupling construction indicated by the inequalities of (7) permits ap-
proximation of the negative logarithm of the angle process by η ≤ − log(�/�0) ≤
ξ . Here, η, ξ are nondecreasing pure-jump Lévy processes (hence subordinators)
which have jumps at the same times as those of − log� (namely, at incidents
of the Poisson counting process N of intensity 1

2 ), but with jump distributions
given by the distributions of − log(1 − exp(− 2

π
J )) and − log(1 − exp(−J /2)),

respectively. For future reference, note also that the Laplace exponent �(q) =
−1

t
log E[e−qξt ] of ξ can be computed as �(q) = q(3+q)

2(1+q)(2+q)
for q > −1, while

Ms = ξs − 3
4s defines a martingale, as does M2

s − 5
8s. In particular, M is an L2-

martingale.
The discrepancy between coupled jumps of ξ and − log� can be controlled by

0 ≤ 
ξ −
(
− log

�− + 
�

�−

)
≤ log

(
1 − exp(−J /f ′(log�−))

1 − exp(−J /2)

)
.(9)

Now, if 0 ≤ a ≤ π
2 , then we can use the inequalities sin a

2 ≤ a
2 , cos2 a

2 ≥ 1
2 and the

convexity of tan2 a
2 over this range to establish the simple bound

1

f ′(loga)
= 1 − cosa

a sina
≤ 1 − cosa

sin2 a
= 1

2
+ tan2(a/2)

2
≤ 1

2
+ a2

4
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and so (using � ≤ π
2 to apply the above inequality)

log
(

1 − exp(−J /f ′(log�−))

1 − exp(−J /2)

)
≤ log

(
1 + 1 − exp(−(�2−/2)(J /2))

exp(J /2) − 1

)

≤ log
(

1 + J /2

exp(J /2) − 1

�2−
2

)

≤ J /2

exp(J /2) − 1

�2−
2

≤ �2−
2

≤ 1

2
exp(−2η−).

Applying this upper bound on the jumps, it follows that we can control the total
discrepancy between ξ and − log� by

0 ≤ ξt − (− log(�t/�0)
) ≤ 1

2

∑
w≤t :


Nw>0

exp(−2ηw−).(10)

However, the right-hand side is increasing in t and has a limit which can be ex-
pressed in terms of a simple perpetuity. Indeed,

∑
w : 
Nw>0

exp(−2ηw−) = Ut ≤ U∞ =
(

1 +
∞∑

k=1

k∏
m=1

exp(−2
mη)

)
,

where 
mη is the mth jump of η. A classical calculation gives the first and second
moments of the perpetuity final value U∞ in terms of first and second moments of
exp(−2
mη) [see, e.g., Vervaat (1979), Theorem 5.1]. However, we will require
control of exponential moments E[exp(zU∞)] for positive z. Alsmeyer, Iksanov
and Rœsler (2009) and Kellerer (1992) give results for the general case, but in
our particular case the perpetuity multiplier exp(−2
mη) is positive and bounded
above by 1; moreover, its probability density (8) is bounded above near 1, and it
thus follows from monotonicity and the methods of Goldie and Grübel [(1996),
Theorem 3.1] that E[exp(zU∞)] < ∞ for all positive z. [In fact, the upper bound
requirement on the probability density can be replaced by comparability with a
Beta density; see Hitczenko and Wesołowski (2009), Section 4.]

We can now improve (5) to provide bounds in terms of Lévy subordinators:

2

�2
0

exp(2ξ − U∞) − 5

6
≤ 2

�2 − 5

6
≤ cos�

1 − cos�
(11)

≤ 2

�2 ≤ 2

�2
0

exp(2ξ).

Accordingly, we first establish the following lemma, which delivers the desired
results for

∫
exp(2ξs) ds rather than X.
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LEMMA 2. Define τ(n) in terms of
∫

exp(2ξs) ds by

n =
∫ τ(n)

0
exp(2ξs) ds.

Then,

τ(n) = 2

3

(
logn − 2Mτ(n) + log

(
exp

(
2ξτ(n)

n

)))
(12)

with the following asymptotics for mean and variance as n → ∞:

E[τ(n)] = 2
3 logn + O(1);(13)

Var[τ(n)] = 20
27 logn + O

(√
logn

)
.(14)

PROOF. First note the following trivial bound for τ(n) which establishes the
finiteness of E[τ(n)]:

n =
∫ τ(n)

0
exp(2ξs) ds ≥ τ(n).

The representation (12) was motivated by heuristic time-reversal arguments and
is essentially tautologous: write

exp
(

2Mτ(n) + 3

2
τ(n)

)
= exp

(
2ξτ(n)

) = n × exp(2ξτ(n))

n
,

take logs and reexpress in terms of τ(n). Taking expectations, we then obtain

E[τ(n)] = 2

3

(
logn + E

[
log

(
exp(2ξτ(n))

n

)])
;(15)

the expectation E[Mτ(n)] vanishes because τ(n) has finite expectation and so the
stopped martingale Ms∧τ(n) is L2-bounded by E[M2

τ(n)] ≤ 5
8E[τ(n)].

Consider the variance of τ(n) − 2
3 log(

exp(2ξτ(n))

n
). Using L2-martingale theory

we find that

Var
[
τ(n) − 2

3
log

(
exp(2ξτ(n))

n

)]
= 4

(
2

3

)2

Var
[
Mτ(n)

] = 16

9
× 5

8
E[τ(n)].(16)

A uniform bound on the second moment of log(
exp(2ξτ(n))

n
) will therefore permit us

to deduce (13) and (14) from (15) and (16), and so complete the proof.
To this end, note that Zn = exp(2ξτ(n)) constitutes a Lamperti transforma-

tion [Lamperti (1972)] of the subordinator 2ξ and therefore defines a self-similar
Markov process Z. Using the scaling property for Z and maximizing z(log z)2 for
0 < z < 1, we obtain

E

[(
log

exp(2ξτ(n))

n

)2

; exp(2ξτ(n))

n
< 1

]
= E

[
(logZ1)

2;Z1 < 1
∣∣∣Z0 = 1

n

]
(17)

≤ 4e−2
E

[
Z−1

1

∣∣∣Z0 = 1

n

]
.
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Bertoin and Yor [(2005), formula (20), drawing on Bertoin and Yor (2001)] can
now be applied, together with the calculation of the Laplace exponent �(q) of ξ ,
to show that for p > 0,

E

[
Z

−p
1

∣∣∣Z0 = 1

n

]
= 2p

2p + 1

(
npe−np/2 +

(
np

2

)1−p ∫ np/2

0
vp−1e−v dv

)
.(18)

In particular, note that each positive integral moment of Z−1
1 is bounded, and,

especially,

E

[
Z−1

1

∣∣∣Z0 = 1

n

]
= 2

3

(
1 + (n − 1)e−n/2) ≤ 2

3
(1 + 2e−3/2).

Thus, (17) is bounded above.
To bound E[(log exp(2ξτ(n))

n
)2; exp(2ξτ(n))

n
≥ 1] for n > 0, note that τ(n) ≤ τ ′

n + 1,
where τ ′

n = inf{t : 2ξt ≥ logn}. Hence,

E

[(
log

exp(2ξτ(n))

n

)2

; exp(2ξτ(n))

n
≥ 1

]
≤ E

[
(2ξτ ′

n+1 − logn)2; exp(2ξτ(n))

n
≥ 1

]
≤ E[(2ξτ ′

n+1 − logn)2].
Now, 2ξτ ′

n+1 − logn is the independent sum of a summand of distribution 2ξ1
and a summand which is the overshoot 2ξτ ′

n
− logn. Since the jump distribution

of 2ξ is 2(T ′ ∨ T ′′) (for two independent unit Exponential random variables T ′
and T ′′), it follows by the memoryless property of the Exponential distribution that
the overshoot is some mixture of the distributions of 2T ′ and 2(T ′ ∨ T ′′), hence
stochastically dominated by 2(T ′ ∨T ′′). Consequently, it follows that E[(2ξτ ′

n+1 −
logn)2] ≤ 111

4 .

Thus, E[(log exp(2ξτ(n))

n
)2] ≤ 2

3(1 + 2e−3/2) + 111
4 , and hence the lemma is

proved. �

Note that upper bounds for E[(log exp(2ξτ(n))

n
)2] can also be obtained using the

techniques of Bertoin and Yor (2002), but these bounds diverge to infinity with n.
We are now able to deal with the asymptotic behaviors of the mean and variance

of σ(n) as follows.

THEOREM 3. With σ(n) defined as above so that n = Xσ(n) for n > 0, for
large n,

E[σ(n)] = 2
3 logn + O(1),(19)

Var[σ(n)] = 20
27 logn + O

(√
logn

)
.(20)
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PROOF. Lemma 2 provides partial control on the asymptotic mean and vari-

ance of σ(n) via (11) since Xt ≤ 2
�2

0

∫ t
0 exp(2ξs) ds, and so τ(

�2
0

2 n) ≤ σ(n). By the

representation (12) and integration [since �0 has density cos θ over (0, π
2 )], we

find that

E

[
τ

(
�2

0

2
n

)]
= 2

3
logn + 2

3
E

[
log

(
�2

0

2

)]
+ O(1) = 2

3
logn + O(1),

(21)

Var
[
τ

(
�2

0

2
n

)
− 2

3
log

(exp(2ξτ(�2
0n))

�2
0n

)]
= 20

27
logn + O(1).

The second moment of log(
exp(2ξ

τ(�2
0n)

)

�2
0n

) being bounded, it follows that

Var
[
τ

(
�2

0

2
n

)]
= 20

27
logn + O

(√
logn

)
.

We now consider the lower bounds from (11), delivering an upper bound for
σ(n) via ∫ t

0

(
2

�2
0

exp(2ξs − Us) − 5

6

)
ds ≤

∫ t

0

(
2

�2
s

− 5

6

)
ds ≤ Xt.

First, observe what happens after the stopping time given by

κ =
(

1 + 5

12
�2

0

)
× inf

{
t :

2

�2
t

≥ 2

�2
0

+ 5

6

}
.

We find that

2

�2
s+κ

− 5

6
≥ 2

�2
0

�2
κ

�2
s+κ

+ 5

6

�2
κ

�2
s+κ

− 5

6

≥ 2

�2
0

�2
κ

�2
s+κ

and, moreover,∫ κ

0

(
2

�2
s

− 5

6

)
ds ≥ −5

6
× κ

1 + (5/12)�2
0

+ (5/12)�2
0

1 + (5/12)�2
0

× 2κ

�2
0

= 0.

This will allow us to disregard the effects of the −5
6 term, so long as we can bound

the second moment of κ . To this end, introduce ζ , a Lévy subordinator jumping at
the incidents of the underlying Poisson process N , with jumps coupled to those of
the other processes so that ζ ≤ η ≤ − log(�/�0), and with


ζ = I[− log(1−exp(−(2/π)J ))>1].
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Since these jumps are all of sizes 0 or 1, we can view ζ as a Poisson counting
process run at rate ν < 1

2 . Moreover, since 0 < �0 ≤ π
2 , we have

κ ≤
(

1 + 5

12
�2

0

)
inf

{
t :

2

�2
0

exp(2ζt ) ≥ 2

�2
0

+ 5

6

}

≤
(

1 + 5π2

48

)
inf

{
t : ζt ≥ 1

2
log

(
1 + 5π2

48

)}
,

and the boundedness of the second moment of the right-hand side of these inequal-
ities follows directly by comparison with a Gamma random variable, derived from
basic Poisson process properties. Hence, E[κ2] < ∞.

So, consider ξ̃s = ξκ+s − ξκ and τ̃ (n) = inf{t :
∫ t

0 exp(2ξ̃s) ds = n}. We will

bound σ(n) above by a stopping time κ + τ̃ (
�2

0
2 n) + ρ, where ρ is chosen to

compensate for the undershoot of n at time t = κ + τ̃ (
�2

0
2 n) caused by the U con-

tribution in ∫ t

0

(
2

�2
0

exp(2ξs − Us) − 5

6

)
ds ≤ Xt.

We find ∫ κ+τ̃ ((�2
0/2)n)+ρ

0

(
2

�2 − 5

6

)
ds

≥
∫ τ̃ ((�2

0/2)n)+ρ

0

2

�2
0

exp(2ξ̃s − Uκ+s) ds

≥ exp
(−Uκ+τ̃ ((�2

0/2)n)

)(
n + 2

�2
0

ρ exp
(
2ξ̃τ̃ ((�2

0/2)n)

))
.

Thus, we can choose ρ to compensate for the undershoot so that

exp
(−Uκ+τ̃ ((�2

0/2)n)

)(
n + 2

�2
0

ρ exp
(
2ξ̃τ̃ ((�2

0/2)n)

)) = n;

this is fulfilled by the choice

ρ = (
exp

(
Uκ+τ̃ ((�2

0/2)n)

) − 1
) ×

(exp(2ξ̃τ̃ ((�2
0/2)n))

(�2
0/2)n

)−1

.

Now, the first factor is bounded above by exp(U∞), and we have already noted
that E[exp(zU∞)] < ∞ for all z > 0 as a consequence of perpetuity theory. The
second factor is distributionally a randomization over m of (exp(2ξτ(m))/m)−1,
and we have already noted that equation (18), the Lamperti transformation and the
results of Bertoin and Yor allow us to bound E[(exp(2ξτ(m))/m)−p] uniformly in
m for any fixed p ≥ 1. We may thus deduce E[ρ2] < ∞ as a consequence of the
Cauchy–Schwarz inequality.
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Accordingly, we find that

σ(n) ≤ κ + τ̃

(
�2

0

2
n

)
+ ρ

bounds σ(n) above by a stopping time with expectation 2
3 logn+O(1); moreover,

we may apply the representation (12) to deduce that, up to terms whose second
moments are O(1),

τ̃

(
�2

0

2
n

)
− τ

(
�2

0

2
n

)
≈ 2Mκ+τ̃ ((�2

0/2)n) − 2Mτ((�2
0/2)n),

which itself must be of uniformly bounded second moment:

E
[(

2Mκ+τ̃ ((�2
0/2)n) − 2Mτ((�2

0/2)n)

)2]
≤ 5

2
E

[
κ + τ̃

(
�2

0

2
n

)
− τ

(
�2

0

2
n

)]
= 5

3

(
(E[κ] + logn) − (logn)

) + O(1)

= O(1).

Since

τ

(
�2

0

2
n

)
≤ σ(n) ≤ κ + τ̃

(
�2

0

2
n

)
+ ρ,

and τ̃ (
�2

0
2 n) and τ(

�2
0

2 n) differ only by a quantity which has O(1) second moment,

E[σ(n)] = E

[
τ

(
�2

0

2
n

)]
+ O(1),

Var[σ(n)] = Var
[
τ

(
�2

0

2
n

)]
+ O

(√
Var

[
τ

(
�2

0

2
n

)])
+ O(1).

Consequently, the theorem is proved as a consequence of the upper bound asymp-
totics (21) established at the beginning of this proof. �

A Brownian digression. Because we can compute Var[Mt ] = 5
8 t , we can use

martingale central limit theorem ideas [Rebolledo (1980), Whitt (2007)] to show
that

τ ≈ 2

3

(
logXτ + √

7Bτ + 2C − log 2 − log
∫ ∞

0
exp

(
−3

2
u +

√
5

2
B̃τ

u

)
du

)
,
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in the sense of weak convergence, for B̃ a standard Brownian motion not indepen-
dent of B , and στ a stopping time for B with expectation E[στ ] = τ . The distribu-
tion of the Dufresne integral

∫ ∞
0

exp

(
−3

2
u +

√
5

2
B̃τ

u

)
du

is known explicitly [Dufresne (1990), Yor (1992)]; however, its contribution to the
above is dominated by other terms.

Recovery of logarithmic excess result. Inspection of the growth process analy-
sis shows that the logarithmic excess occurs before (say) time n/ logn, whereas our
discussion of the maximum lateral deviation of ∂C(p−,p+) [with dist(p−,p+) =
n] shows that the intersection of the two growth processes occurs at an x-
coordinate uniformly distributed over the range from p− to p+.

This indicates that the asymptotic excess of the upper or the lower semiperime-
ter route for ∂C(p−,p+) should have leading term 4

3 logn, which agrees with the
rigorous arguments for the asymptotic behavior of the mean excess obtained in
Aldous and Kendall [(2008), Theorem 3] and similar higher-dimensional results
obtained by Böröczky and Schneider [(2010), Theorem 1.3] [compare the planar
arguments of Rényi and Sulanke (1968), Satz 5].

Note that the methods of the proof of Theorem 3 bear a family resemblance to
the Markov chain methods which Groeneboom (1988) and Cabo and Groeneboom
(1994) applied to problems concerning convex hulls of Poisson point patterns.

2.3. True network geodesics. We can now deduce that the two semiperimeter
routes provided by ∂C(p−,p+) will often not be network geodesics. The boundary
∂C(p−,p+) is composed of the initial parts of four independent growth processes,
contributing four independent initial excesses, each of mean 2

3 logn and variance
proportional to logn; the remainder of the excess will be of order less than

√
logn.

Accordingly, there is an even chance that the least excess is achieved by crossing
over from top side to bottom side so as to use the smallest possible 2

3 logn ±
const. × √

logn contribution. Calculations of the caricature of Section 1.1 make it
plain that such a crossover can be achieved at the very modest price of adding just
a bounded term to the excess, and therefore there is a substantial positive chance
that one of the crossover routes is shorter than either of the semiperimeter routes.

In fact, we conjecture that the two semiperimeter routes provided by ∂C(p−,
p+) are never network geodesics; in particular, it should be possible to achieve
modest reductions in the excess by using crossovers very close to source and des-
tination nodes p− and p+.
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Lower bound for the Poissonian city. Nevertheless, the semiperimeter routes
supplied by ∂C(p−,p+) are good approximations to true network geodesics; we
show this by establishing that their mean excess can be compared with a lower
bound on possible path lengths. Indeed, because we are working in the specific
situation of a Poisson line process, we can derive a stronger and simpler version of
the �(

√
logn) lower bound argument of Aldous and Kendall (2008), Theorem 2.

THEOREM 4. In the Poissonian city network, consider any path from p− to
p+ (in the sense described in Section 1.2). If dist(p−,p+) = n, then the path must
have mean excess exceeding

2
(
log 4 − 5

4

)
logn + o(logn) = 0.27258872 . . . logn + o(logn).

PROOF. Let C(o,+) be the cell containing the positive x-axis of the tessella-
tion formed from the Poisson line process � by deleting all lines intercepting the
positive x-axis. Consider the vertical line �x through (x,0) and let −L−

x , L+
x be

the distances along this line to ∂C(o,+) running down and up, respectively. Any
network geodesic γ from o to any other point p on the positive x-axis, constructed
according to the recipe in Section 1.2, must lie between locations −L− and L+
on �x . This is a consequence of the convexity of C(0,+). Consider such a network
geodesic, or indeed a general regular path γ lying within these bounds, and let
θx ∈ (−π

2 , π
2 ) be the angle made with the horizontal by γ when encountering �x

for the first time. If dist(o,p) = n, then the mean excess of γ must exceed

E

[∫ n

1
(sec θx − 1) dx

]
≥ 1

2

∫ n

1
E[θ2

x ]dx =
∫ n

1

∫ π/2

0
P[|θx | > u]ududx.

Consider the probability of there being no lines of � which both (a) hit �x in
the range between −L− and L+ signed distances from the x-axis and (b) form
an angle to the horizontal which is less than u in absolute value. The density of
the angle to the horizontal is 1

2 cos θ for −π
2 < θ < π

2 , while the patterns of lines
hitting �x above and below the x-axis are independent. Consequently,

P[|θx | > u] ≥ E
[
exp

(−(L−
x + L+

x ) sinu
)] ≥ (E[exp(−uL+

x )])2.

Considerations from stochastic geometry determine the distribution of L+
x and thus

show that

E[exp(−uL+
x )] =

∫ 1

0
P[exp(−uL+

x ) > z]dz

=
∫ ∞

0
P[exp(−uL+

x ) > e−s]e−s ds

= 1 −
∫ ∞

0
e−s

P

[
L+

x ≥ s

u

]
ds

= 1 −
∫ ∞

0
exp

(
−s − 1

2

(√
x2 + s2

u2 − x

))
ds.
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Consequently,

E

[∫ n

1
(sec θx − 1) dx

]

≥
∫ n

1

∫ π/2

0
P[|θx | > u]ududx

≥
∫ n

1

∫ π/2

0

(
1 −

∫ ∞
0

exp

(
−s − 1

2

(√
x2 + s2

u2 − x

))
ds

)2

ududx.

Suppose that in the above we could control the error arising from replacing√
x2 + s2

u2 − x by its upper bound 1
2s2/(xu2). We would then need to estimate∫ n

1

∫ π/2

0

(
1 −

∫ ∞
0

exp
(
−s − s2

4u2x

)
ds

)2

ududx.

However, we can in fact estimate∫ ∞
0

exp
(
−s − s2

2p2

)
ds = p exp

(
p2

2

)∫ ∞
p

exp
(
−s2

2

)
ds

using classical results on Mill’s ratio, namely the excellent upper bound of
Sampford (1953) [see also Baricz (2008) for a treatment based on a monotone
form of l’Hôpital’s rule]:

exp
(

p2

2

)∫ ∞
p

exp
(
−s2

2

)
ds ≤ 4√

p2 + 8 + 3p
for p > −1.(22)

Accordingly, setting v = √
xu and letting n tend to ∞, we obtain∫ n

1

∫ π/2

0

(
1 −

∫ ∞
0

exp
(
−s − s2

4u2x

)
ds

)2

ududx

=
∫ n

1

∫ √
xπ/2

0

(
1 −

∫ ∞
0

exp
(
−s − s2

4v2

)
ds

)2

v dv
dx

x

≥
∫ n

1

∫ √
xπ/2

0

( √
v2 + 4 − v√
v2 + 4 + 3v

)2

v dv
dx

x

∼
∫ n

1

∫ ∞
0

( √
v2 + 4 − v√
v2 + 4 + 3v

)2

v dv
dx

x

=
(

log 4 − 5

4

)
logn.

Here, the v-integral is evaluated by making the substitutions v = sinh t and then
y = 2 − e−2t .
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The proof is completed by bounding the error arising from the approximation

of
√

x2 + s2/u2 − x by 1
2s2/(xu2):

∫ n

1

∫ π/2

0

(
1 −

∫ ∞
0

exp

(
−s − 1

2

(√
x2 + s2

u2 − x

))
ds

)2

ududx

=
∫ n

1

∫ π/2

0

(
1 −

∫ ∞
0

e−s

(
exp

(
−1

2

(√
x2 + s2

u2 − x

))

− exp
(
− s2

4u2x

))
ds

−
∫ ∞

0
exp

(
−s − s2

4u2x

)
ds

)2

ududx

≥
∫ n

1

∫ π/2

0

(
1 −

∫ ∞
0

exp
(
−s − s2

4u2x

)
ds

)2

ududx

− 2
∫ n

1

∫ π/2

0

(
1 −

∫ ∞
0

exp
(
−s − s2

4u2x

)
ds

)

×
∫ ∞

0
e−s

(
exp

(
−1

2

(√
x2 + s2

u2 − x

))

− exp
(
− s2

4u2x

))
ds ududx.

We need to bound the second term, and we do this by invoking Birnbaum’s (1942)
very good lower bound on Mill’s ratio. After some manipulation this yields

1 −
∫ ∞

0
exp

(
−s − s2

4u2x

)
ds ≤

√
u2x + 2 − u

√
x√

u2x + 2 + u
√

x
.

It thus suffices to bound

2
∫ n

1

∫ π/2

0

√
u2x + 2 − u

√
x√

u2x + 2 + u
√

x

×
∫ ∞

0
e−s(e−(1/2)(

√
x2+s2/u2−x) − e−s2/(4u2x))ds ududx

≤
∫ n

1

∫ π/2

0

2√
u2x + 2 + u

√
x

×
∫ ∞

0
e−s(e−(1/2)(

√
x2+s2/u2−x) − e−s2/(4u2x))ds du

dx√
x
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≤ √
2

∫ ∞
1

∫ π/2

0

∫ ∞
0

e−s min

{
1,

s2

4u2x
− 1

2

(√
x2 + s2

u2 − x

)}
ds du

dx√
x

≤ √
2

∫ ∞
0

∫ π/2

0

∫ ∞
0

e−s min
{

1,
1

16

s4

u4x3

}
ds du

dx√
x

,

where we use the fact that over the range 0 ≤ p < ∞, the function p �→ e−p

is nonnegative, decreasing and Lipschitz with Lipschitz constant 1, and also that
1 + 1

2p − √
1 + p ≤ 1

8p2 if 0 ≤ p < ∞ (use finite Taylor series expansion).
We split the x-integral at x3 = s4/(16u4); the first part is bounded by

√
2

∫ ∞
0

∫ π/2

0

∫ (s4/(16u4))1/3

0
e−s min

{
1,

1

16

s4

u4x3

}
dx√

x
duds

= √
2

∫ ∞
0

∫ π/2

0

∫ (s4/(16u4))1/3

0
e−s dx√

x
duds

= 3
√

2π1/3�

(
5

3

)
,

while the second part is bounded by

√
2

∫ ∞
0

∫ π/2

0

∫ ∞
(s4/(16u4))1/3

e−s min
{

1,
1

16

s4

u4x3

}
dx√

x
duds

= √
2

∫ ∞
0

∫ π/2

0

∫ ∞
(s4/(16u4))1/3

e−s 1

16

s4

u4x3

dx√
x

duds

= 3

5

√
2π1/3�

(
5

3

)
.

This establishes the desired result since we may apply the lower bound on mean
excess path length to (a) the half of the geodesic running from p− to midway and
(b) the other half running from midway to p+. �

The results of this section justify the focus in the remainder of this paper on
the semiperimeter routes provided by ∂C(p−,p+): while semiperimeter routes do
differ from network geodesics, their use nevertheless does not incur a great penalty;
they are produced by a geometric algorithm which is certainly unsophisticated, but,
on the other hand, is explicit, and they are amenable to exact calculations.

3. Traffic flow in the Poissonian city. We now consider traffic flow in the
network produced by this Poisson line process. To do this, we first compute the
mean flow through a line at the center of the disc. More precisely, we condition
on there being a (horizontal) line of the line process running through the origin o
and consider the flow through o which results if every pair of x and y in ball(o, n)
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FIG. 7. Illustration of the flow generated between two points in a “Poissonian city.”

generates an infinitesimal flow of amount dx dy divided equally between the two
possible routes given by the semiperimeter algorithm (see Figure 7).

3.1. First order calculations at the center. Recall (1) from the Introduction:
the flow through the center is measured by the 4-volume of Dn, where

Dn = {(p−,p+) ∈ ball(o, n)2 :p−
1 < p+

1 ,o ∈ ∂C(p−,p+)},
and we seek to understand the large-n statistical behavior of this 4-volume. Indeed
(bearing in mind that we have conditioned on there being a line through o), the
distribution of the total traffic through the origin o is given by the distribution of

Tn = 1

2

∫ ∫
I[(p−,p+)∈Dn] dp− dp+

(23)

= 1

2

∫ ∫
ball(o,n)2

I[p−
1 <p+

1 ,o∈∂C(p−,p+)] dp
− dp+.

The mean can be obtained asymptotically using direct arguments.
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FIG. 8. Illustration of the geometry represented by the multiple integral in (24) using r , s, θ . The
segment p−p+ is not separated from the origin o exactly when no lines of the line process pass
through both of op− and op+.

THEOREM 5. The mean flow through a line at the center is given by

E[Tn] =
∫ π

0

∫ n

0

∫ n

0
exp

(
−1

2
(r + s − ρ)

)
r dr s ds θ dθ,(24)

where ρ = √
r2 + s2 + 2rs cos θ . Asymptotically, as n → ∞,

E[Tn] ∼ 2n3.(25)

PROOF. Equation (24) follows from simple stochastic geometry of Poisson
line processes (illustrated in Figure 8), taking care not to double-count flow be-
tween the unordered points p+ and p−. Note that when p+ and p− are on oppos-
ing sides of the line conditioned to hit the origin, none of the flows between these
two points will run through the origin. Indeed, mean flows between points p+, p−
in the upper half-plane will account for exactly half the total mean flow through
the origin.

The asymptotics follow by application of scaling by n, the symmetry between s

and r , and the inequality
√

1 − 2z ≤ 1 − z for z ≥ 1
2 . Indeed,

E[Tn] = 2n4
∫ π

0

∫ 1

0

∫ s

0
exp

(
−n

2
(r + s − ρ)

)
r dr s ds θ dθ

= 2n4
∫ π

0

∫ 1

0

∫ 1

0
exp

(
−ns

2

(
r + 1 −

√
r2 + 1 + 2r cos θ

))
r dr s3 ds θ dθ.
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The region of the integral corresponding to
∫ π/2
θn

∫ 1
0

∫ 1
0 (for θn > 0) is bounded

above by

2n4
∫ π

θn

∫ 1

0

∫ 1

0
exp

(
−ns

2

(
r + 1 −

√
r2 + 1 + 2r cos θ

))
r dr s3 dsθ dθ

≤ 2n4
∫ π

θn

∫ 1

0

∫ 1

0
exp

(
− nsr

2(r + 1)
(1 − cos θ)

)
r dr s3 ds θ dθ

≤ (π − θn)
2n4

∫ 1

0

∫ 1

0
exp

(
− nsr

2(r + 1)
(1 − cos θn)

)
r dr s3 ds

≤ (π − θn)
2n4

∫ 1

0

∫ ∞
0

exp
(
−nsr

4
(1 − cos θn)

)
r dr s3 ds

= (π − θn)
2
(

4

1 − cos θn

)2

n2
∫ 1

0
s ds = 8

(
π − θn

1 − cos θn

)2

n2.

Consider the region
∫ θn

0

∫ 1
0

∫ 1
0 . Using a Taylor series expansion of 1 − √

1 − 2z

and the approximation θ/ sin θ ↘ 1 as θ ↘ 0 (so long as 0 < θ < π/2), we deduce
that

E[Tn] ∼ 2n4
∫ 1

0

∫ 1

0

∫ ∞
0

exp
(
− nsr

2(1 + r)
u

)
du s3 ds r dr

= 2n4
∫ 1

0

∫ 1

0

2(1 + r)

nsr
s3 ds r dr = 2n3. �

Taking some extra care over the analysis, it is possible to bound the order of the
error in (25). We state this without proof.

COROLLARY 6. The asymptotic in Theorem 5 can be sharpened to

E[Tn] ∼ 2n3 + O
(
n2√n

)
as n → ∞.

3.2. Mean flow averaged over entire disc. Regional variation of expected flow
over the disc is to be expected: flow at the boundaries should be lower than at the
center. Indeed, one can calculate the mean flow per unit length in the network as
follows.

The mean total length of the intersection of the Poisson line pattern with the
disc is given by (mean number of lines hitting disk) × average intersection length:

(2πn) ×
(

1

2n

∫ n

−n
2
√

n2 − x2 dx

)
= π2n2

2
,

and this is therefore the mean total network length in the disc.
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On the other hand, the mean Euclidean distance between two independent uni-
formly random points in the disc is given by

1

πn2

∫ 2π

0

∫ n

0

1

πn2

∫ 2π

0

∫ n

0

√
u2 + v2 − 2uv cos(α − β)v dv dβ ududα

= 8n

5π

∫ π

0

∫ 1

0

√
u2 + 1 − 2u cos θududθ

= 8n

5π

∫ π/2

0

∫ 2 cosφ

0
s2 ds dφ = 128

45π
n,

where the first step uses various symmetries and rescaling, and the second step
changes to polar coordinates based at u = 1 and θ = 0 in an implicit use of
Crofton’s method. [This calculation is a special case of a classic calculation in
geometric probability, surveyed in Santaló (1976), Chapter 12.7 Note (6).] By the
previous results on lengths of network geodesics, the mean network distance dif-
fers only by an extra logarithmic contribution.

Hence, the mean flow per unit length, if each pair of points exchanges just one
infinitesimal unit of traffic and this is averaged over the network, is asymptotic to

1

2

(πn2)2 × (128/(45π))n

π2n2/2
= 128

45π
n3 = 1.9052 . . . n3.

This analysis does not take account of routes which move outside the perimeter of
the disc; however, the effect of these routes can be shown to be negligible. [The
key observation is based on Theorem 1: if both source and destination nodes p±
are at least 2

√
(1 + ε)n logn from the perimeter of a disc of radius n, and n is large

enough, then points outside the disc have probability at most O(n−(1+ε)) of lying
within C(p−,p+). Thus, mean total length outside the disc is a boundary rather
than an area effect.] In conclusion, and unsurprisingly, mean flow over a typical
line is slightly smaller than mean flow over a line at the center of the disc.

3.3. An improper anisotropic limiting line process. We can represent the scal-
ing limit of the distribution of traffic flow through the center of the Poissonian city
by using an improper stationary anisotropic Poisson line process.

We use the alternate coordinatization of a unit rate stationary isotropic Poisson
line process, as in Figure 9, using coordinate x for the intersection along the x-axis
and θ for line direction. The x-axis intersections then form a stationary Poisson
point process, while the angle density is 1

2 sin θ for 0 < θ < π .
Rescale to shrink the x-axis by a factor of 1/n, so x̃ = x/n. Guided by previous

results, shrink the y-axis by a different amount, 1/
√

n, so ỹ = y/
√

n. Thus, θ is
transformed into a new angle φ (see Figure 10), where

tanφ = √
n tan θ.
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FIG. 9. The Poisson line process can be represented in terms of a Poisson process of points scat-
tered along the x-axis, through each of which there runs a line making an angle θ ∈ (0,π) with the
x-axis, with density 1

2 sin θ . Here, we show this against a backdrop of the disc ball(o, n).

In the new coordinates of x̃ and φ, the line process can be parametrized as a non-
stationary Poisson point process on x̃ :φ space with intensity

1

2

tanφ sec2 φ

(1 + (1/n) tan2 φ)3/2 dx̃ dφ ↗ 1

2
tanφ sec2 φ dx̃ dφ.

FIG. 10. This illustrates the result of scaling by 1/n in the x-direction and 1/
√

n in the y-direction.
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FIG. 11. This illustrates the parametrization of lines from the improper limiting line process as
intercepts on two parallel y-axes.

We can represent this as a coupling construction: based on an improper stationary
anisotropic Poisson line process with intensity 1

2 tanφ sec2 φ dx̃ dφ in x̃ :φ coordi-
nates, we can achieve a proper stationary isotropic Poisson line process at scale n

by randomly thinning the lines with retention probability depending monotonically
on the line slope.

Moreover, this limiting object may be cleanly represented using a further set of
coordinates. Represent each line of the line process by its intercepts y+ and y− on
the vertical axes x = 1 and x = −1 (see Figure 11). The intensity then becomes

1
4 dy+ dy−.

In particular, while the new improper Poisson line process is anisotropic, it never-
theless does possess special affine shear symmetries, namely the symmetries pro-
duced by those area-preserving linear transformations which leave all vertical axes
invariant.

This construction enables us to identify the limiting behavior for Tn, as follows.

THEOREM 7. The scaled quantity Tn/n3 has a limiting distribution given by
the analogous flow at the center for the limiting improper stationary anisotropic
Poisson line process given above.

Indeed, we can relate scaled finite-n instances to the limiting case by a coupling
argument involving the addition of further lines; however, the resulting almost
sure limit is not monotonically decreasing since it will involve a double integral
[as in (23)] taken over ever-increasing regions of the vertical strip in Figure 11.

Before proving this theorem, we show that the mean flow at the center for this
limit is in agreement with the asymptotics given in Theorem 5.
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FIG. 12. Computing the mean flow through the center for the flow based on the improper
anisotropic line process limit.

LEMMA 8. The flow at the center for the limiting improper stationary
anisotropic Poisson line process given above has mean value 2.

PROOF. Consider first the probability that the line segment from (−a, t) to
(u, t) is not separated from the origin by the improper line process. The mean
measure of lines implementing such a separation (measured using the intensity
measure of the improper process) is A + B + C, where the contribution A arises
from separating lines hitting the upper-left shaded triangle in Figure 12, the con-
tribution C arises from those hitting the upper-right shaded triangle in Figure 12
and B is derived from the contribution of the remaining separating lines.

Then,

A = 1

4

∫ t/a

t

((
s − 2

s − t

1 − a

)
+ s

)
ds = t2

4

(
1

a
− 1

)
and, similarly, C = t2

4 ( 1
u

− 1). Finally,

B = 1

4

∫ t

−t
(t + s) ds = 2

t2

4
.

Consequently,

A + B + C = t2

4

(
1

a
+ 1

u

)
.

Since we are dealing with a Poisson process, the required probability of the line
segment from (−a, t) to (u, t) not being separated from the origin is

exp
(
− t2

4

(
1

a
+ 1

u

))
.(26)
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Consider the special affine shear symmetries which leave the x = 0 axis fixed.
Because of this symmetry group, it follows that the probability of the line segment
from (−a, b) to (u, v) not being separated from the origin agrees with (26) when
the line segment from (−a, b) to (u, v) passes through (0, t). This occurs when
t = bu+av

a+u
; moreover, if we set s = b − v, then dt ds = db dv. Accordingly, the

mean 4-volume of the region representing the flow through the center is given by∫ 1

0

∫ 1

0

∫ ∞
0

∫ ((a+u)/u)t

−((a+u)/a)t
exp

(
− t2

4

(
1

a
+ 1

u

))
ds dt da du

=
∫ 1

0

∫ 1

0

∫ ∞
0

(a + u)

(
1

a
+ 1

u

)
exp

(
− t2

4

(
1

a
+ 1

u

))
t dt da du

= 2
∫ 1

0

∫ 1

0
(a + u)da du = 2. �

PROOF OF THEOREM 7. Consider the affine shear transformation Tn : [−1,
1] × (0,∞) → [−1,1] × (0,∞) given by Tn(u, v) = (nu,

√
nv). Define coupled

random functions

In :
([−1,0] × (0,∞)

) × ([0,1] × (0,∞)
) → {0,1},

In(p, q) = I[Tnp∈ball(o,n)]I[Tnq∈ball(o,n)]I[o∈C(Tnp,Tnq)].

So, In depends implicitly on the underlying Poisson line process: the previously
described coupling construction shows that we can couple different Poisson line
processes for each n so as to arrange that In(p, q) → I (p, q) almost surely for
Lebesgue almost all p, q , where I (p, q) is given by an analogous construction
based on the limiting improper anisotropic Poisson line process, and not using Tn.
Moreover, we can realize Tn using

Tn/n3 = 1

2

∫ ∫
In(p, q) dp dq.

From Theorem 5 and Lemma 8, it follows that

E

[
1

2

∫ ∫
In(p, q) dp dq

]
→ E

[
1

2

∫ ∫
I (p, q) dp dq

]
= 2.

On the other hand, if we restrict consideration to the finite measure space � ×
([−1,0] × (0,K)) × ([0,1] × (0,K)) for any fixed K , then we may deduce L1-
convergence of In to I via the dominated convergence theorem since the indicator
functions In are bounded. [Here, (�,F,P) is the underlying probability space.]

It then follows from nonnegativity of the In, I that we can apply Fatou’s lemma
to deliver L1-convergence on all of �× ([−1,0]× (0,∞))× ([0,1]× (0,∞)) and
so can deduce convergence in distribution as required:

Tn/n3 = 1

2

∫ ∫
In(p, q) dp dq →

D

1

2

∫ ∫
I (p, q) dp dq,
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viewed as random variables (functions of ω ∈ �). �

Note that this proof also establishes uniform integrability of the sequence of
random variables {Tn/n3 :n ≥ 1}.

It is apparent from this construction that the limiting distribution is largely in-
sensitive to modest variations in the geometry of the city [ball(o, n), or square of
side 2n, or. . .]; however, we will not explore this here.

In principle it is possible that the limiting distribution of Tn/n3 might be degen-
erate. That this is not the case follows rapidly from representation of the limit in
terms of the improper anisotropic Poisson line process.

COROLLARY 9. The limiting distribution of Tn/n3 is nondegenerate.

PROOF. Let Ek be the event

Ek =
[
there is a line connecting {−1} ×

[
0,

1

k

]
to {+1} ×

[
0,

1

k

]]
.

Then, Ek has positive probability for the improper anisotropic Poisson line
process; moreover, E1, E2, . . . form a monotonically decreasing sequence of
events whose intersection is a null set. It follows from elementary measure the-
ory that

E

[
1

2

∫ ∫
I (p, q) dp dq;Ek

]
→ 0.

However, simple constructions show positivity of the conditional expectation

E

[∫ ∫
I (p, q) dp dq

∣∣∣Ek

]
> 0

for each k. Because each event Ek is of positive probability, it follows that for each
ε > 0, we can find k such that

0 < E

[
1

2

∫ ∫
I (p, q) dp dq;Ek

]
< ε.

It follows that the random variable

1

2

∫ ∫
I (p, q) dp dq

cannot be deterministic, and this establishes nondegeneracy of the limiting distri-
bution of Tn/n3. �
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FIG. 13. Illustration of the event E(r, s, θ,α,u, v,φ,β), which happens if neither of the segments
u → v, r → s is separated from the origin by the line process.

3.4. Higher order moments. We have established that one can produce a cou-
pling construction to show that Tn/n converges almost surely, and indeed in mean
value, to the corresponding quantity for the improper stationary anisotropic line
process. In fact, it is possible to establish convergence of moments of order 2 − ε

for ε ∈ (0,2); computations show that the second moment E[T 2
n ] is bounded by

const. × n6, hence a uniform integrability argument may be applied. The tire-
somely complicated computations are omitted; we simply indicate the general ap-
proach. The second moment can be expressed using an eight-fold integral:∫ n

0

∫ n

0

∫ π

0

∫ θ

0

∫ n

0

∫ n

0

∫ π

0

∫ φ

0
P[E(r, s, θ, α,

u, v,φ,β)]dβ dφ uduv dv dα dθ r dr s ds,

where E(r, s, θ, α,u, v,φ,β) is the event that neither of two line segments [(r, α)-
(s, α + π − θ) and (u,β, )-(v,β + π − φ) when written in polar coordinates] is
separated from the origin by the line process (see Figure 13).

Analysis of this eight-fold integral is complicated because the probability

P[E(r, s, θ, α,u, v,φ,β)]
takes on around eight different analytical forms, according to the relative geometry
of the line segments. Case-by-case mathematical analysis shows that the multiple
integral is bounded by const. × n6.

4. Comparison with a Manhattan city. It is natural to ask how the Pois-
sonian city might compare with an alternate Manhattan city based on a more con-
ventional Cartesian grid structure of roads (a “grid city”). Consider the case of a
disc of radius n furnished with roads arranged in a fixed unit-length grid structure.
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Suppose we wish to connect from the point at −(u, v) to the point at (x, y) (using
Cartesian coordinates). If u, v, x and y are all nonnegative, then there is a wide va-
riety of possible network geodesic connections. Working with the most direct anal-
ogy to the results described in Section 3, suppose that traffic from −(u, v) to (x, y)

divides equally between the two extreme network geodesics running from −(u, v)

to (x, y). Working to O(n3) (allowing us to ignore some double-counting), the to-
tal traffic through o is made up of four contributions, arising from (i) u = 0, v > 0,
(ii) u > 0, v = 0, (iii) x = 0, y > 0, (iv) x > 0, y = 0. Each case individually con-
tributes a term of the form

2
∑∑
(x,y)>0

x2+y2≤n2

1

2
n = π

4
n3 + O(n2),

where we omit the negligible contributions arising when there is just one network
geodesic between source and destination. We can sum these contributions since
the effect of double-counting is again negligible. Thus, the total flow through o
is πn3 + O(n2). If we fix our attention on total flow through one of the bonds
attached to o (so as to establish comparability with the results of Section 3.1 for
the Poissonian city), then we obtain π

2 n3 + O(n2), compared with mean flow for
the Poissonian city of 2n3.

However, account needs to be taken of the greater total length of the grid
network. Mean total network length produced by the unit intensity Poisson line
process is π2n2

2 , compared with 2 ×πn2 for the unit grid structure. Thus, a compa-
rable grid structure has to be based on segments of length 4

π
rather than 1. The flow

produced through a bond attached to o by such a grid using the above protocol will
be of order

(πn2)2

(π((π/4)n)2)2 × π

2

(
π

4
n

)3

= 2n3,

where the second term computes the flow through a center bond when rescaling
from n to π

4 n, and the first factor is a correction to ensure that total traffic is (πn2)2,
not (π(π

4 n)2)2. Thus, the Poissonian city is comparable to this grid structure in
terms of mean flow at the center. However, the grid structure with this protocol can
be shown to have the undesirable feature that, asymptotically, a definite proportion
of the total traffic (around 2%) occurs outside the disc.

In fact, we can also carry out calculations for a somewhat more demanding
situation in which, asymptotically, the traffic stays within the disc, as in the case of
the Poissonian city; instead of supposing the traffic to be divided equally between
the two extreme network geodesics, we suppose that it is divided equally among
all possible network geodesic connections. In effect, the actual network geodesic
is chosen uniformly at random, and in that case the probability that the resulting
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network geodesic passes through the origin (0,0) is

P[Bin(u + v,p) = u]P[Bin(x + y,p) = x]
P[Bin(u + v + x + y,p) = u + x] =

(u+v
u

)(x+y
x

)(u+v+x+y
u+x

) .(27)

Here, p = 1
2 , but the same result is in fact obtained for any 0 < p < 1. Choosing

p = u+x
u+v+x+y

, so as to control the denominator, and applying Stirling’s formula,
we can use a Taylor expansion to approximate this by

1√
2π

(u + v + x + y)3/2
√

(u + v)(x + y)(u + x)(v + y)
(28)

× exp
(
− (u + v + x + y)(uy − xv)2

2(u + v)(x + y)(u + x)(v + y)

)
.

Using polar coordinates based on an axis at 45◦ to the Cartesian axes and a
Gaussian approximation based on sin2(θ − φ) ≈ (θ − φ)2, we obtain a heuris-
tic approximation for large n for the flow between two opposing quadrants of the
disc: ∑∑

u,v≥0
u2+v2≤n2

∑∑
x,y≥0

x2+y2≤n2

(u+v
u

)(x+y
x

)(u+v+x+y
u+x

) ≈ 2n3.(29)

Conversion of this approach into a rigorous asymptotic argument would require
close attention to detailed asymptotics of the Binomial distribution [Littlewood
(1969), McKay (1989)]. However, there is an alternate argument which is more
easily made rigorous: the expression (29) can be reexpressed in terms of a sym-
metric random walk X as∑∑

u,v≥0
u2+v2≤n2

∑∑
x,y≥0

x2+y2≤n2

P[Xu+v = v − u|Xu+v+x+y = v − u + y − x].

Under the Z-action u → u − 1, v → v + 1, x → x + 1, y → y + 1, a statistical
pivot argument applied to the summand generates a probability distribution on
even integers or odd integers according to the parity of u + v, x + y. An argument
using the Hoeffding inequality quantifies how this probability distribution concen-
trates around its mode; the denominator is controlled by choosing the probability
P[Xn+1 = Xn − 1] = p = u+x

u+v+x+y
. It can thus be shown that the asymptotic be-

havior of the quadruple sum is given by the number of Z-orbits containing modal
representatives close to the line between −(u, v) and (x, y). This number can be
expressed as a sum susceptible to elementary asymptotic analysis, finally yielding
a rigorous argument for the asymptotic given in (29).

Consider now the total flow through a unit-length bond � connected to the ori-
gin. This will equal half the total flow through the origin, which itself can be
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viewed asymptotically as the sum of two equal components from two different
pairs of opposing quadrants. Thus, this total flow is again asymptotic to 2n3.

Again, a grid structure comparable to the Poissonian city must be based on
segments of length 4

π
rather than 1, and a scaling argument then shows that such a

grid structure produces mean flow at the center which is asymptotic to 4
π

× 2n3 =
2.54648 . . . n3. Thus, traffic through the center under this protocol is about 25%
higher in a comparable Manhattan city.

Geodesics in the Manhattan city are on average longer than those in the Poisson
line process; we can in fact argue in a manner analogous to that of Section 3.2
to show that mean network distance between two independent uniformly random
points in the disc will be asymptotic to

128

45π
n × 1

2π

∫ 2π

0
(|sin θ | + |cos θ |) dθ = 128

45π
n × 4

π
,

so the mean network flow over the whole disc for the grid will again be about 25%
greater than mean network flow for the Poisson line process.

Of course, the second order behaviors of the flows are rather different: flow at
the center of the Poissonian city inherits asymptotically nondegenerate random-
ness from the random configuration of the Poisson line process, while a central
limit argument shows that the flows at the centers of the two kinds of flow in Man-
hattan cities are asymptotically deterministic.

5. Complements and conclusion. In conclusion, we present some notes con-
cerning complements and issues for further research, illustrating the potentially
rich theory concerning the Poissonian city.

Empirical comparisons. Clearly, the Poissonian city does not accurately rep-
resent real cities; there will be variation both of geometry and of traffic flow. It
would be interesting to make empirical comparisons with actual street map and
traffic flow data, both in terms of network distance statistics compared with the
results of Section 1.2 and (much more demanding from a data collection point of
view) in terms of flow statistics compared with the results of Section 3. One would
expect qualitative agreement at best, rather than quantitative, in view of the strong
stochastic assumptions implicit in the Poissonian city. Note, however, that the re-
sults on the asymptotic statistics of flow at the center (Theorem 7) reflect variation
across a sample of different cities, rather than within a particular city.

Lower bounds on path length. Compare the lower bound of Section 2.3, The-
orem 4, with the more general lower bound of Aldous and Kendall [(2008), The-
orem 2], which holds for all connecting networks using total network length pro-
portional to n based on patterns of nodes in a square [0,

√
n]2 satisfying a certain

quantitative equidistribution condition (related to an intuitive coupling construc-
tion). The Aldous and Kendall (2008) result provides an �(

√
logn) bound on
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excess, whereas Theorem 4 uses detailed properties of Poisson line process net-
works to establish a const. × logn lower bound. A natural question is whether
there are any network constructions which provide sub-logarithmic mean excess
for appropriately equidistributed patterns of nodes, or whether, on the other hand,
the general lower bound can be improved.

Analytical characterization of limit. The stochastic geometric construction of
the limit distribution for flow in the center of a Poissonian city using an improper
stationary anisotropic Poisson line process (Section 3.3) is explicit and lends itself
to simulation; however, it would be helpful also to have an analytic expression,
or at least characterization, of the limiting distribution. This seems difficult. Note
that we can produce a stochastic representation of the moment generating func-
tion M(p) of the limit distribution in terms of the following probability: consider
a Poisson process of intensity α of pairs of points on [−1,1] × (0,∞). Then,
M(−α) is the probability that no pairs produced by this process are separated from
the origin by lines of the improper stationary anisotropic Poisson line process.
Similar representations are of use in perfect simulation of area-interaction point
process models [Kendall (1997)] and exact simulation of diffusions [Beskos and
Roberts (2005)]. However, in the current case it is not yet clear whether this offers
any progress toward simulation methods or delivering a useful analytical represen-
tation.

A slightly easier question is whether the convergence of Tn/n3 to the limit dis-
tribution holds for all moments. Again, at present no progress on this can be offered
beyond the work noted in Section 3.4.

Aggregation issues. What can we say about similar situations where the dis-
tribution of nodes generating the flow is nonuniform? Or even when the nodes
generating the flows lie along the Poisson line process itself (thus precluding the
need for the “cross country” plumbing otherwise required to get onto the network)?
Considerations of this kind are latent in the early work of Davidson (1974), and
it would be interesting to see them applied in the more quantitative setting of the
present work. It is possible that the coupling construction in Aldous and Kendall
(2008) would be of use here.

Three dimensions and higher. In higher dimensions, one needs to consider
what kind of network is being deployed. One might, for example, consider the edge
process of a Poisson hyperplane tessellation or, alternatively, one might consider
network geodesics constrained to lie on the union of all faces of the tessellation.
In the second case, one can derive upper bounds on excess by considering the
derivative planar problem obtained by taking a 2-plane slice through the source and
destination nodes; it is then a question of how much the excess may be reduced
by varying the orientation of the slice, and it is a further question as to whether
the excess can be further substantially reduced by using paths which do not lie
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wholly on the slicing plane. It may be possible to make progress in the first case
by adopting the growth process approach of Section 2.2.

Note that Böröczky and Schneider (2010) describe higher-dimensional results
for similar problems; however, their results concern standard stereological quanti-
ties, while we would need results involving infima of lengths of regular curves on
the boundaries of Poisson cells.

Moving beyond line processes. Certainly, one can conceive of results for sit-
uations based on processes which approximate Poisson line processes; Boolean
models based on long line segments or fiber processes for which there is strong
control of total fiber curvature. It would be particularly interesting to determine
the extent to which Poissonian cities and Manhattan cities represent two extremes
of a suitable class of models.

User equilibrium. The notion of UE [user equilibrium, Wardrop (1952), con-
temporary with the related notion of Nash equilibrium] supposes that each user
has a utility structure for choosing which route they might take based on travel
time, which is affected not only by available route lengths but also by flow along
the routes. Interest is then focused on systems of choices by users which result in
user equilibrium; no one user can obtain a shorter route by varying their own route.
Explorations have already been made in the context of queueing theory; see, for ex-
ample, Calvert, Solomon and Ziedins (1997), who consider the effect of augment-
ing a simple queueing network and Afimeimounga, Solomon and Ziedins (2005),
who consider a system of interactions between a ·/M/1 queue and a ·/N(N)/∞
batch queue. There are interesting possibilities in the context of the Poissonian city,
for example, considering that traffic from p− to p+ chooses each of the two possi-
ble routes prescribed by the semiperimeter algorithm according to considerations
both of length and of integrated total flow along the routes.

Such problems are naturally formulated in terms of phase transitions in statis-
tical mechanics, perhaps using the improper stationary anisotropic Poisson line
process of Section 3.3.
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