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1. Introduction

By far the most popular model for documents is the n-gram model. In the case of
n = 1 it corresponds to the multinomial model where each word is drawn inde-
pendently of the remaining words. In the case n > 1 it corresponds to a n-order
Markov chain where the word transition probabilities p(wt|wt−n+1, . . . , wt−1)
are estimated using empirical frequencies of string sequences. Naturally, the
value of n reflects the bias-variance tradeoff. Increasing it enriches the model
family but also increase the number of parameters and the difficulty in estimat-
ing them due to sparse counts. Since the dictionary size (the number of possible
words in the language) is on the order of 104 or 105, values of n beyond 3 quickly
become intractable. In practice, the case of n = 1 (unigram) is the most common
with the cases of n = 2 (bigram) or n = 3 (trigram) trailing somewhat behind.
Often, several n-gram models of different orders are combined as a mixture. For
example, an interpolated trigram model is p(x) = α1p1(x) + α2p2(x) + α3p3(x)
where p1, p2, p3 correspond to n-gram models for n = 1, 2, 3 respectively. Such
mixtures provide outstanding modeling performance while remaining computa-
tionally tractable.

Despite their simplicity, n-grams enjoy widespread popularity as their com-
putation scales up to the massive scale of data found on the internet and
other large text archives. This popularity persists even as more complex mod-
els that require iterative estimation are investigated. Examples for specific ap-
plications in which n-gram models are used are web search [1], speech recog-
nition [2], machine translation [7], and document classification [8]. We refer
the interested reader to the references above or to standard textbooks such
as [5] or [3] for more information on how n-grams are used in these applica-
tions.

Traditionally, the n-gram parameters are estimated from a document or a
corpus of documents. The estimated model is used to predict probabilities asso-
ciated with new arbitrary documents. This approach is inadequate for temporal
document sequences where the n-gram parameters are assumed to change with
the time documents are authored. For example, n-gram parameters correspond-
ing to a news feed represent probabilities of obtaining a specific word conditioned
on its context. These parameters change with time as world events are captured
by the news, analyzed, and eventually forgotten. Another example is query logs
in web-search where the n-gram parameters change with time as search users
submit queries that reflect the time of day (day vs. night), day of week (weekend
vs. weekday) and transient topics of interest.

We experiment in this paper using two temporal text datasets: the Reuters
RCV1 dataset [4] and the AOL dataset [6]. The Reuters RCV1 dataset con-
tains news stories authored during a period of 365 consecutive days by Reuters
journalists. The AOL dataset contains queries issued by AOL users during a
period of three months. More details regarding these datasets are provided in
the appendix.

The upper part of Figure 1 displays the temporal change in the relative fre-
quency of three words (number of word appearance in a document divided by
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Fig 1. Estimated relative frequency (number of appearances in a document divided by
document length) of words from the most popular category in RCV1 and AOL as a
function of time. The upper three panels correspond to the words million, common, and
Handelsgesellschaft (trade unions in German) in RCV1 dataset. The lower three panels
correspond to the words free, lottery, and evansville.net in AOL dataset.

document length) in RCV1 dataset: million, common, and Handelsgesellschaft
(trade unions in German) for documents in the most popular RCV1 category
titled CCAT. It is obvious from these plots that the relative frequency of these
words vary substantially in time. For example, the word Handelsgesellschaft

appear in 8 distinct time regions, representing time points in which German
trade unions were featured in the Reuters news archive. The lower part of Fig-
ure 1 displays the temporal change in the relative frequency of three words: free,
lottery, and evansville.net in AOL dataset. Similar to RCV1 dataset, the
relative frequency of these words vary substantially with time. However, due to
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the short length of web queries, even the most frequent words in the AOL data
such as free are still sparse compared to RCV1 data.

The daily relative frequencies plotted in Figure 1 correspond to the mle as-
suming independent draws from a multinomial distribution or n-gram with
n = 1. We focus on this simple model as it is both very popular due to its
simplicity and scalability and the fact that n-grams with n > 1 are straight-
forward generalization of the n = 1 case. We thus see from Figure 1 that the
multinomial parameters differ substantially from day to day in both the RCV1
and AOL datasets. Attempting to use a multinomial to model the entire dataset
regardless of the time documents are authored is inadequate. Similarly, attempt-
ing to estimate a single multinomial for each day using only documents from
that day is suboptimal as accurate estimation is possible only for the dates in
which many documents were authored. In particular, documents authored at
time t are ignored when estimating the multinomial corresponding to time t+1.
This motivates the kernel smoothing approach of the local multinomial model,
which we investigate in this paper.

2. The local multinomial model

Based on the variability in Figure 1 we assume that documents authored at time
t were generated by a multinomial with parameter θt. The main problem we are
interested in is estimating the collection of multinomial parameters {θt : t ∈
[a, b]} where [a, b] is the range of time values under consideration. It is natural
to assume that the multinomial parameter generating the documents at time t
is related to the multinomial parameter corresponding to time t + ǫ for small
ǫ > 0. In other words, we assume that the mapping t 7→ θt draws a smooth
curve in the simplex of multinomial parameters

PS
def
=







q ∈ R
|S| : ∀i qi ≥ 0,

|S|
∑

i=1

qi = 1







. (1)

Above, S is the dictionary or the set of all possible words and qi is the probability
of drawing the i-word in the vocabulary.

More formally, we assume the model

t ∼ g(t) (2)

l ∼ Pois(λ) (3)

(w1, . . . , wl) ∼ Mult(l, θt). (4)

where g(t) is the distribution of times in which documents are authored, Pois(λ)
is the distribution of the number of words in documents and {θt, t ∈ [a, b]} is a
smooth curve in the simplex (1).

We display in Figure 2 the total number of words per day (left) and the total
number of documents per day (right) for the RCV1 (top) and AOL (bottom)
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Fig 2. The total number of words per day (left) and the total number of documents per day
(right) for the most popular RCV1 class (top) and AOL (bottom) datasets. As is evident from
the two right panels, g(t) is a highly non-uniform density corresponding to varying amount
of news content and queries in different dates. Dividing the number of words per day (left)
by the number of documents per day (right) we obtain surprisingly little variation among the
number of words per document. We thus conclude that documents tend to have similar lengths
but the number of documents per day vary substantially.

datasets. As is evident from the two right panels, g(t) is a highly non-uniform
density corresponding to varying amount of news content and queries in different
dates. This high variability in g(t) can be explained by the fact that some days
have more news stories than other days. As we see later this variability in g(t)
has a direct impact on the asymptotic mse of the estimator-high variability
increases the difficulty of the estimation task and consequentially increases the
asymptotic mse.

Dividing the number of words per day (left) by the number of documents per
day (right) we obtain surprisingly little variation among the number of words per
document. We thus conclude that while the g(t) vary considerably across t, the
distribution of document lengths f is independent of t justifying the assumption
in (3) that the document length distribution is not a function of t.

In practice, due to the discretization of time we may have multiple time
points t1, . . . , tr ∈ [a, b] with Nti documents authored at time ti. We denote the
documents themselves as x(ti,1), . . . , x(ti,Nti

) and use c(x(ti,j), w) to represent
the number of times word w appeared in document x(ti,j).
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Fig 3. Tricube, triangular, and uniform kernels with scale h = 1 (left) and h = 2 (right).

3. Estimation and analysis

We estimate the multinomial parameter at time t by maximizing the local log-
likelihood

θ̂t = argmax
θ∈Θ

ℓt(θ|D)

ℓt(θ|D)
def
=
∑

τ

Kh(t− τ)

Nτ
∑

j=1

log p(x(τ,j) ; θ). (5)

The function Kh : R → R is a smoothing kernel that is parameterized by a scale
or bandwidth parameter h > 0 satisfying

Kh(r) = h−1K1(r/h)

where we denote K = K1 and refer to it as the kernel base form. We also
assume that it is a normalized distribution, that K has bounded support, and
that

∫

urK(u) du < ∞ for r ≤ 2.
Three popular kernel choices are the tricube, triangular and uniform kernels,

defined as Kh(r) = h−1K(r/h) where the K(·) functions are respectively

K(r) = (1 − |r|3)3 · 1{|r|<1} (6)

K(r) = (1 − |r|) · 1{|r|<1} (7)

K(r) = 2−1 · 1{|r|<1}. (8)

Figure 3 displays these kernels for h = 1 (left) and h = 2 (right). The uniform
kernel is the simplest choice and leads to a local likelihood (5) equivalent to

filtering the data by a sliding window i.e. θ̂t is computed based on data from
adjacent time points with uniform weights. However, it is suboptimal in terms
of its statistical efficiency or rate of convergence to the underlying distribution.
In our experiments we used the triangular and tricube kernels.
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The local likelihood model has a single global maximum whose closed form ex-
pression may be found by setting to 0 the gradient of the Lagrangian. Below, we

denote the length of a document x(t,j) by |x(t,j)|
def
=
∑

v∈V c(x(t,j), v), and the to-

tal number of words in day t by |x(t)|
def
=
∑Nt

j=1 |x
(t,j)| =

∑

v∈V

∑Nt

j=1 c(v, x
(t,j))

(recall that the number of words of type w ∈ S in x(t,j) is denoted by c(w, x(t,j)),).
Using these notations the local likelihood for the multinomial becomes

ℓt(θ|D) =
∑

τ

Kh(t− τ)

Nτ
∑

j=1

∑

w∈V

c(w, x(τ,j)) log θw, θ ∈ PS . (9)

Setting the gradient of the Lagrangian to 0

0 =
1

[θ̂t]w

∑

τ

Kh(t− τ)

Nτ
∑

j=1

c(w, x(τ,j)) + λw

we obtain the local likelihood maximizer

[θ̂t]w =

∑

τ Kh(t− τ)
∑Nτ

j=1 c(w, x
(τ,j))

∑

τ Kh(t− τ)|x(τ)|
. (10)

The estimator θ̂t is a normalized linear combination of word counts where the
combination coefficients are determined by the kernel function and normalized
by the number of words in different days. We note that θ̂t in (10) is different from
a weighted averaging of the relative frequencies c(w, x(τ,j))/

∑

w′ c(w′, x(τ,j)).
We distinguish between two fundamental estimation scenarios.

Offline scenario: The goal is to estimate {θt : t ∈ [a, b]} given the entire
dataset. In this case we will consider symmetric kernels K(r) = K(−r)

which will achieve an increased convergence rate of θ̂t → θt as indicated
by Proposition 2.

Online scenario: The goal is estimate a model for θt where t represent the
present using training data from the past i.e. a dataset whose time stamps
are strictly smaller than t. This corresponds to situations where the data
arrives sequentially as a temporal stream and at each time point a model
for the present is estimated using the available stream at that time. We
realize this restriction by constraining K to satisfy K(r) = 0, r ≤ 0. As
a result the local likelihood at time t incorporates documents written at
times less than or equal to t.

3.1. Bias-variance analysis of θ̂t

As with other statistical estimators, the accuracy of θ̂t may be measured in
terms of its bias and variance.
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Proposition 1. The bias vector bias (θ̂t)
def
= E θ̂t − θt and variance matrix of θ̂t

in (10) are

bias (θ̂t) =

∑

τ Kh(t− τ)|x(τ)| (θτ − θt)
∑

τ Kh(t− τ)|x(τ)|
(11)

Var (θ̂t) =

∑

τ K
2
h(t− τ)|x(τ)| (diag(θτ )− θτθ

⊤
τ )

(
∑

τ Kh(t− τ)|x(τ)|
)2 (12)

where diag(z) is the diagonal matrix [diag(z)]ij = δijzi.

Proof. The random variable (RV) c(w, x(τ,j)) is distributed as a sum of multi-
variate Bernoulli RVs, or single draws from multinomial distribution. The ex-
pectation and variance of the estimator are that of a linear combination of
iid multinomial RVs. To conclude the proof we note that for Y ∼ Mult(1, θ),
EY = θ, Var (θ) = diag(θ)− θθ⊤.

Examining Equations (11)–(12) reveals the expected dependency of the bias
on h and θt. The contribution to the bias of the terms (θτ − θt), for large |τ − t|,
will decrease as h decreases since the kernel becomes more localized and will
reduce to 0 as h → 0. Similarly, for more more slowly changing parameter curve
{θt : t ∈ [a, b]}, ‖θτ − θt‖, t ≈ τ will decrease and reduce the bias.

Despite the relative simplicity of Equations (11)–(12), it is difficult to quan-
titatively capture the relationship between the bias and variance, the sample
size, h, λ, and the smoothness of θt, g. Towards this goal we derive the following
asymptotic expansions.

Proposition 2. Assuming (i) θ, g are smooth in t, (ii) h → 0, hn → ∞, (iii)
g > 0 in a neighborhood of t, and (iv) document lengths do not depend on t and
have expectation λ, the bias vector and variance matrix are in the offline case

bias (θ̂t) = h2µ21(K)

(

θ̇t
g′(t)

g(t)
+

1

2
θ̈t

)

+ oP (h
2) (13)

Var (θ̂t) =
µ02(K)

(nh)g(t)λ
(diag(θt)− θtθ

⊤
t ) + oP ((nh)

−1)

and in the online case

bias (θ̂t) = hµ11(K)θ̇t + oP (h) (14)

Var (θ̂t) =

(

µ02(K)

nhg(t)λ
+

µ12(K)g′(t)

ng2(t)λ

)

(diag(θt)− θtθ
⊤
t ) (15)

+
µ12(K)

nλg(t)
(diag(θ̇t)− θ̇tθ

⊤
t − θtθ̇

⊤) + oP ((nh)
−1)

where θ̇t is the vector [θ̇t]i =
d
dt [θt]i and

µkl(K)
def
=

∫

tkK l(t) dt < ∞ 0 ≤ k, l ≤ 2.
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Proof. The proof follows standard expansions similar to the ones used in study-
ing local polynomial regression but modified to our setting. We start by expand-
ing the numerator and denominator of the bias and variance in the offline case.
Our main tools are the law of large numbers, changing the integration vari-
able, and Taylor series expansion. For notational simplicity we assume below
that t = 0. The arguments below may be modified at some notational expense
for t 6= 0 to produce Equations (13)–(14). In the proof below we use slightly
different notation with xτi representing the i-document authored at time τi.

We expand the denominator and numerator of the bias (11) multiplied by 1/n:

1

n

n
∑

i=1

Kh(τi)|xτi |
p
→ λ

∫

g(t)Kh(t) dt=λh−1

∫

g(t)K(t/h) dt=λ

∫

g(uh)K(u) du

= λ

∫

K(u)(g(0) + o(1)) du = λg(0) + o(1).

1

n

n
∑

i=1

Kh(τi)|xτi |(θτi − θ0)
p
→ λh−1

∫

g(t)(θt − θ0)K(t/h) dt

= λ

∫

g(uh)(θuh − θ0)K(u) du

= λ

∫

(g(0) + g′(0)uh+ g′′(0)u2h2/2 + o(u2h2))

× (θ̇0uh+ θ̈0u
2h2/2 + o(u2h2))K(u)du

= λh2µ21(K)

(

g′(0)θ̇0 +
1

2
g(0)θ̈0

)

+ o(h2).

Above, we used the offline assumption by exploiting the symmetry of the kernel
to deduce

∫

K(u)u du = 0. Dividing the two expansions and replacing o(h2)
with oP (h

2) due to the law of large numbers approximation establishes (13).
Similarly we expand the denominator and numerator of the variance matrix

times 1/n2 and 1/n respectively

(

1

n

n
∑

i=1

Kh(τi)|xτi |

)2

p
→

(

λ

∫

K(u)(g(u) + o(1)) du

)2

= λ2g2(0) + o(1))2

1

n

n
∑

i=1

K2
h(τi)|xτi |Var (θτj )

p
→ λh−2

∫

K2(t/h)g(t)Var (θt) dt

= λh−1

∫

K2(u)g(uh)Var (θuh) du

= λh−1

∫

K2(u)(g(0) + g′(0)uh+ o(uh))

× (Var (θ0) + ˙Var (θ0)uh+ o(uh)) du

= λh−1g(0)Var (θ0)µ02(K) + o(h)
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where again we used the kernel symmetry to deduce
∫

K2(u)u du = 0. Since
Var (θt) = (diag(θt) − θtθ

⊤
t ), dividing the second expansion by the first and

dividing by n−1 provides the desired result.
In the online setting, the kernel is no longer symmetric and

∫

K(u)u du 6= 0
which lowers the rate of convergence. The expansions of the numerator of the
bias and variance are

1

n

n
∑

i=1

Kh(τi)|xτi |(θτi − θ0)
p
→ λ

∫

(g(0)+ g′(0)uh+ o(uh))(θ̇0uh+ o(uh))K(u)du

= λhµ11(K)θ̇0g(0) + o(h).

1

n

n
∑

i=1

K2
h(τi)|xτi |Var (θτj )

p
→

λ

h

∫

K2(u)(g(0) + g′(0)uh+ o(uh))

× (Var (θ0) + ˙Var (θ0)uh+ o(uh)) du

=
λ

h
g(0)Var (θ0)µ02(K) + λµ12(K)

× (g(0) ˙Var (θ0) + g′(0)Var (θ0)) + o(h).

Noticing that ˙Var (θt) = diag(θ̇t)− θ̇tθ
⊤
t − θtθ̇

⊤ concludes the proof.

3.2. MSE, MISE and their dependence on the drift parameters

We have the following direct corollary of Proposition 2.

Corollary 1. Under the assumptions in Proposition 2, the component-wise
mean squared error mse ([θ̂t]i) = E ([θ̂t]i − [θt]i)

2, i = 1, . . . , |S| are for the
offline case

mse ([θ̂t]i) = h4µ2
21(K)

(

[θ̇t]i
g′(t)

g(t)
+

1

2
[θ̈t]i

)2

+
µ02(K)

nhg(t)λ
[θt]i(1− [θt]i) + oP (h

4 + (nh)−1).

and for the online case

mse ([θ̂t]i) = h2µ2
11(K)[θ̇t]

2
i +

(

µ02(K)

nhg(t)λ
+

µ12(K)g′(t)

ng2(t)λ

)

[θt]i(1 − [θt]i)

+
µ12(K)

nλg(t)
[θ̇t]i(1 − 2[θt]i) + oP (h

2 + (nh)−1).

Corollary 2. Under the assumptions in Proposition 2, and in particular h →
0, nh → ∞, the estimator θ̂t is consistent i.e. θ̂t

p
→ θt in both the offline and

online settings.
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Proof. The proof follows from the fact that under these conditions we have
convergence in the second moment of the components of θ̂t − θt to 0.

Proposition 2 is important as it specifies the conditions for consistency as
well as the rate of convergence. We make the following comments on it.

1. The conditions specified in Proposition 2 for consistency of the estimator
(in particular h → 0, nh → ∞) are standard conditions in non-parametric
kernel smoothing and are similar to those of other related estimators such
as the kernel density estimator and the Nadaraya-Watson local regression
estimator.

2. The rates of convergence indicated by the argument of oP (·) in Proposi-
tion 2 are important as they quantify the rates at which the estimators
converges to the underlying drift. In particular, it is interesting to note
the fact that the bias of online kernels converges at a linear rather than
the quadratic rate of the offline kernels. This is a quantification of the fact
that looking at the past and future helps predict the present more than
looking only at the past.

3. Using corollary 1 and (13)–(14) we can analyze the dependency of the bias,
variance, and MSE on {θt : t ∈ [a, b]}, the parameter curve speed indicated
by θ̇i, the rate of change of the log sampling density d log g(t) = g′(t)/g(t),
the number of documents n, and the expected length of the documents
λ. Intuitively, the estimation task is easier if the drift is slower (θ̇t is
smaller), the time sampling variation (d log g(t)/dt) is smaller, and there
are more and longer documents. Using expressions (13)–(14) we confirm
these intuitive observations and quantity them: the bias is reduced as
the drift speed and time sampling variation are lower while the variance
is reduced as we have more (denoted by n) and longer (denoted by λ)
documents.

4. Corollary 1 and expressions (13)–(14) also reveal somewhat less intuitive
insights. First, the variance grows linearly with [θt]i(1 − [θt]i) (in the of-
fline case; the online variance is slightly more complicated). In the case of
documents, the word probabilities θi are typically very small and thus the
larger they are the higher the [θt]i(1 − [θt]i) factor is in the asymptotic
variance (see Figure 4, left). Note also that as the inverse Fisher infor-
mation of the binomial [θt]i(1− [θt]i) bounds the variance of the optimal
estimator.

5. Another interesting observation is that in the case of slowly varying g(t)
the factor g′(t)/g(t) tends to be very small (see Figure 4 (right)) making
the first offline bias term negligible and exposing a linear trend of the bias
in θ̈t independently of θ̇t. This indicates zero (or nearly zero) offline bias
for linear drift as its second derivative is zero. On the other hand, when
g(t) is rapidly varying the bias term (as well as the variance) exhibit more
complex behavior.

The above proposition and corollary are expressed in terms of the mean
squared error at a particular time point t. This is suitable in cases where we are
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Fig 4. Left: The variance increases linearly with [θt]i(1−[θt])i which is monotonically increas-
ing in [θt]i for small values such as word probabilities. Right: The g′(t)/g(t) factor associated
with the first bias term is likely to be negligible for slow changing g(t) compared to the sec-
ond term making the bias increase linearly with θ̈t and independent of θ̇t (indicating zero
bias for linear drift). The figure plots g′(t)/g(t) for t ∈ [1, 365] and g(t) = N(100, σ) with
σ = 50, 100, 200.

interested in estimation accuracy at a specific time point such as the present
time. In other cases, more insightful criteria are the integrated squared error
(ise) and the mean integrated square error (mise) which average the estimation
error over t

ise([θ̂]i) =

∫

([θ̂t]i − [θt]i)
2dt (16)

mise([θ̂]i) = E

∫

([θ̂t]i − [θt]i)
2dt =

∫

mse (θ̂t)dt. (17)

Corollary 3. Under the assumptions in Proposition 2, we have in the offline
case

mise([θ̂t]i) = h4µ2
21(K)µ02

(

[θ̇t]i
g′(t)

g(t)
+

1

2
[θ̈t]i

)

+
µ02(K)

nhλ
µ01

(

[θt]i(1− [θt]i)

g(t)

)

+ oP (h
4 + (nh)−1).

A similar expansion for the online case is straightforward. Under these assump-
tions and in particular h → 0, nh → ∞ the total mise

∑

w mise([θ̂t]w) converges
to 0 in both the online and offline scenarios.

3.3. Bandwidth selection

A central issue in local likelihood modeling and non-parametric estimation in
general is selecting the appropriate bandwidth h. Such a selection is critical to
effective modeling and is the subject of substantial research. Figure 5 displays
the RCV1 test set loglikelihood for the online and offline scenarios as a function
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Fig 5. Log-likelihood of held out test set as a function of the triangular kernel’s bandwidth for
the two largest RCV1 categories (CCAT (left) and GCAT (right)) and the most frequent 500
words. Training set size was 100 documents per day and test set performance was averaged
over repeated sampling to remove noise. In all four cases, the optimal bandwidth seems to be
approximately 25 which indicates a support of 25 days for the online kernels and 50 days for
the offline kernels.
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Fig 6. Log-likelihood of held out test set as a function of the triangular kernel’s bandwidth for
the AOL dataset with 20000 documents per day (left) and 80000 docs per day (right)). Due to
the short document length of queries, 20000 documents per day are not sufficient to motivate
a non-global estimator. In the case of 80000 documents per day, the optimal bandwidth in
both cases is around 7 which indicates a support of 7 days for the online kernel and 14 days
for the offline kernel.

of the (triangular) kernel’s bandwidth. As expected, offline kernels performs
better than online kernels with both achieving the best performance for a band-
width approximately 25 which corresponds to a support of 25 days in the online
scenario and 50 days in the offline scenario. Similar results are displayed in Fig-
ure 6 for the AOL dataset where the optimal bandwidth is 7 indicating offline
support of 14 days. Note that in addition to obtaining higher accuracy than the
global model corresponding to h → ∞, the local model enjoys computational
efficiency as it ignores a large portion of the training data.

Perhaps the most obvious technique for selecting h is maximum likelihood
cross validation (MLCV). In this technique, the dataset D is randomly parti-
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tioned to two subsets D = DA∪DB - oneDA used to construct a local likelihood
estimator θ̂

(DA)
t and one used to evaluate the loglikelihood of the estimator

ℓ(DA)(DB) =
∑

i∈DB

log p
θ̂
(DA)
ti

(xi).

Ten-fold cross validation averages this process ten times where each time 90% of
the data is kept for constructing θ̂∗ and 10% of the data is used to evaluate the
log-likelihood of θ̂∗. The MLCV estimator then proceeds to select the bandwidth
h that maximizes the ten-fold cross validation function

hMLCV = argmax
h>0

10
∑

j=1

ℓ(DAj
)(DBj

).

On RCV1 data, the performance of such cross validation schemes is extremely
good and the estimated bandwidth possesses test set loglikelihood that is almost
identical to the optimal bandwidth (see Figure 7, top). Allowing the kernel scale
to vary over time results in a higher modeling accuracy than using fixed band-
width for all dates (see Figure 7, bottom). A time-dependent cross validation
procedure may be used to approximate the time-dependent optimal bandwidth
which performs slightly better than the time independent cross validation es-
timator. Note that the accuracy with which the cross validation estimator ap-
proximates the optimal bandwidth is lower for the time-dependent bandwidth
due the fact that much less data is available in each of the daily cross validation
problems.

An alternative to MLCV is least squares cross validation (LSCV) which is
based on the following decomposition of the mise (17)

mise([θ̂]i) = E

∫

[θ̂t]
2
i dt− 2E

∫

[θ̂t]i[θt]i dt+

∫

[θt]
2
i dt (18)

and noting that the third term does not depend on h. We can thus construct
an unbiased estimator for mise([θ̂]i)−

∫

[θt]
2
i dt as follows

LSCV(h, i) =

∫

[θ̂t]
2
i dt− 2n−1

n
∑

j=1

[θ̂
(−j)
t ]i (19)

where
∑n

j=1[θ̂
(−j)
t ]i is the local likelihood estimator using the dataset D but

omitting the i-observation. Assuming we are interesting in minimizing the mise
over all the parameters of θ̂ we obtain

ĥLSCV = argmin
h>0

V
∑

i=1

LSCV(h, i) (20)

which is an unbiased estimator of the minimizer of the total mise that is
argminh>0

∑V
i=1 mise([θ̂]i).



G. Lebanon et al./Modeling temporal text streams 580

20 30 40 50 60 70 80 90 100
−6.415

−6.41

−6.405

−6.4

−6.395

daily train set size

 

 

infinite bandwidth
optimal badwidth
CV bandwidth

2030405060708090100
−6.415

−6.41

−6.405

−6.4

−6.395

daily train set size

 

 

CV daily bandwidth
optimal daily bandwidth

Fig 7. Per-word log-likelihood over held-out test set for various bandwidths as a function of
the daily training set size. Top: The extreme global model corresponding to h → ∞ performs
worst. Selecting the bandwidth by cross validation results in an accurate estimate and test-set
loglikelihood almost identical to that of the optimal slope. Bottom: Allowing the kernel scale
to vary over time results in a higher modeling accuracy than using fixed bandwidth for all
dates.

From a theoretical perspective, we can get additional insights by analytically
minimizing the leading terms of the mse or mise as a function of h. The resulting
minimizer expresses in closed form the dependency of the optimal bandwidth on
the problem parameters n, λ, θ̇, θ̈, g(t), θt. For example minimizing the leading

term of
∑V

j=1 mse ([θ̂t]i) we obtain

ĥ5
t =

µ02(K)tr(diag(θt)− θtθ
⊤
t )

4nλµ2
21(K)

∑

j

(

[θ̇t]j g′(t)/
√

g(t) +
√

g(t)[θ̈t]j /2
)2 . (21)

Proposition 3. Under the assumptions in Proposition 2 in the offline case we
have
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Fig 8. Estimated gradient norm for the most popular category in RCV1 (left) and AOL (right)
as a function of t. The derivatives were estimated using local smoothing. To avoid running
into boundary effects we ignore the first and last 50 days in RCV1 and 15 days in AOL.

inf
h>0

mse ([θ̂t]i) =

n−4/5

{

µ2
21(K)

(

[θ̇t]i
g′(t)

g(t)
+

1

2
[θ̈t]i

)2

+
µ02(K)

g(t)λ
[θt]i(1− [θt]i) + oP (1)

}

. (22)

Proof. Equation (22) follows from minimizing the mse as a function of h and
substituting the resulting minimizer back in the mse.

As expected, the optimal bandwidth decreases as n, λ, ‖θ̇t‖, ‖θ̈‖ increases.
Intuitively this makes sense since in these cases the variance decreases and bias
either increases or stays constant. In practice, θ̇t, θ̈t may vary significantly with
time which leads to the conclusion that a single bandwidth selection for all t
may not perform adequately. These changes are illustrated in Figure 8 which
demonstrates the temporal change in the gradient norm.

A more surprising result is the non-monotonic dependency of the optimal
bandwidth on the time sampling distribution g(t). The dependency, expressed
by

ĥt ∝





V
∑

j=1

(c1j/
√

g(t) + c2j
√

g(t))2





−1/5

is illustrated in Figure 9 (left) where we assume for simplicity that c1j , c2j do
not change with j resulting in

(ĥt)
−1 ∝ (c1/g(t) + c2g(t) + c3)

1/5
.

The key to understanding this relationship is the increased asymptotic bias due
to the presence of the term g′(t)/g(t) in Equation (13). Indeed, plotting the
inverse of the optimal bandwidth (we actually average that quantity over the
word-specific optimal bandwidths for different words) for the RCV1 data as
a function of the daily word count (which is proportional to g(t)) in Figure 9
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Fig 9. Left: Inverse of the optimal bandwidth derived from Equation (21) as a function of

g(t): (ĥt)−1
∝ (c1/

√

g(t) + c2
√

g(t))2/5 (we take c1 = c2 = 1). The graph show the non-

monotonic dependency between ĥopt and g(t). Right: Inverse of the optimal bandwidth (ĥt)−1

(averaged over the optimal bandwidths for the top 3000 words) as a function of the daily
word count (which is proportional to g(t)). The two graphs show an interesting correspondence
between theory and practice and illustrate the non-monotonic dependency between the optimal
bandwidth and g(t).

(right) reveals a trend similar to the theoretical dependency displayed in Figure 9
(left). The mismatch in absolute numbers is due to the proportionality constant
that is hard to determine in practice.

Appendix A: Description of datasets

In this paper we conducted experiments on the Reuters RCV1 dataset and the
AOL query-log dataset. A description of these datasets is found below. For more
information see [4] and [6].
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A.1. RCV1 dataset

Reuters Corpus Volume I (RCV1) contains over 800,000 news stories which are
provided by Reuters, Ltd. for research purposes. The dataset consists of all
English language stories produced by Reuters journalists during the period of
365 days between August 20, 1996, and August 19, 1997. The stories have been
formatted in xml and vary from a few hundred to several thousand words in
length. The dataset is categorized across three dimensions: topics, industries,
and regions. Special topic codes were assigned to describe the major subjects of
a story.

In our experiments, the RCV1 dataset is pre-processed as follows. First the
xml/html tags are removed and non-alphabetic characters (including numbers)
are removed. Then all words are lowercased and stemmed while stop-words such
as the or of are discarded. Lastly single character words are removed as are
words appearing less than k (k = 5 in the experiments) times in the corpus.

A.2. AOL dataset

The AOL search query log dataset, which was provided by AOL for non-com-
mercial research use, contains about 20 million web queries from 650,000 users.
It contains all English language web queries from users during the 3 months
between March 1 and May 31, 2006. Each query record contains an anonymous
user ID number, the query issued by the user, and the time at which the query
was submitted for search. If the user clicked on a search result, the rank of the
item on which they clicked and the domain portion of the URL in the clicked
result are also recorded. The dataset contains about 21 million queries averaging
3.5 words in length.

We pre-processed the AOL dataset in a similar manner to the RCV1 dataset.
The web queries contain a huge mount of web addresses such as apple.com

which were parsed as one word apple.com rather than two words apple and
com.

Acknowledgements

The research in this paper was funded in part by NSF grant IIS-0746853.

References

[1] Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern Information Re-
trieval. Addison Wesley.

[2] Jelinek, F. (1999). Statistical methods for speech recognition. MIT press.
[3] Jurafsky, D., Martin, J. H. and Kehler, A. (2000). Speech and lan-

guage processing: An introduction to natural language processing, computa-
tional linguistics, and speech recognition. MIT Press.



G. Lebanon et al./Modeling temporal text streams 584

[4] Lewis, D., Yang, Y., Rose, T. and Li, F. (2004). RCV1: A new bench-
mark collection for text categorization research. Journal of Machine Learn-
ing Research 5 361–397.

[5] Manning, C. D. and Schutze, H. (1999). Foundations of Statistical Nat-
ural Language Processing. MIT Press. MR1722790

[6] Pass, G., Chowdhury, A. and Torgeson, C. (2006). A picture of search.
In The First International Conference on Scalable Information Systems.

[7] Trujillo, A. (1999). Translation engines: techniques for machine transla-
tion. Springer Verlag.

[8] Yang, Y. (1999). An evaluation of statistical approaches to text categoriza-
tion. Information Retrieval 1 69–90.

http://www.ams.org/mathscinet-getitem?mr=1722790

	Introduction
	The local multinomial model
	Estimation and analysis
	Bias-variance analysis of t
	MSE, MISE and their dependence on the drift parameters
	Bandwidth selection

	Description of datasets
	RCV1 dataset
	AOL dataset

	Acknowledgements
	References

