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Abstract: We consider a Bayesian hierarchical version of the normal the-
ory general linear model which is practically relevant in the sense that it
is general enough to have many applications and it is not straightforward
to sample directly from the corresponding posterior distribution. Thus we
study a block Gibbs sampler that has the posterior as its invariant distri-
bution. In particular, we establish that the Gibbs sampler converges at a
geometric rate. This allows us to establish conditions for a central limit
theorem for the ergodic averages used to estimate features of the poste-
rior. Geometric ergodicity is also a key requirement for using batch means
methods to consistently estimate the variance of the asymptotic normal
distribution. Together, our results give practitioners the tools to be as con-
fident in inferences based on the observations from the Gibbs sampler as
they would be with inferences based on random samples from the posterior.
Our theoretical results are illustrated with an application to data on the
cost of health plans issued by health maintenance organizations.
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1. Introduction

The flexibility of Bayesian hierarchical models makes them widely applicable.
One of the most popular (see, e.g., Gelman et al., 2004; Spiegelhalter et al.,
2005) is a version of the usual normal theory general linear model. Let Y denote
anN×1 response vector and suppose β is a p×1 vector of regression coefficients,
u is a k× 1 vector, X is a known N × p design matrix having full column rank,
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and Z is a known N × k matrix. Then for r, s, t ∈ {1, 2, . . .}, the hierarchy is

Y |β, u, λR, λD ∼ NN

(

Xβ + Zu, λ−1
R IN

)

β|u, λR, λD ∼
r
∑

i=1

ηiNp

(

bi, B
−1
)

u|λR, λD ∼ Nk

(

0, λ−1
D Ik

)

λR ∼
s
∑

j=1

φjGamma (rj1, rj2)

λD ∼
t
∑

l=1

ψlGamma (dl1, dl2)

(1.1)

where the mixture parameters ηi, φj , and ψl are known nonnegative constants
which satisfy

r
∑

i=1

ηi =

s
∑

j=1

φj =

t
∑

l=1

ψl = 1

and we say W ∼ Gamma(a, b) if it has density proportional to wa−1e−bw for
w > 0. Further, we require β and u to be a posteriori conditionally independent
given λR, λD, and y which holds if and only if XTZ = 0. Finally, bi ∈ R and
positive definite matrix B are known and the hyperparameters rj1, rj2, dl1, and
dl2 are all assumed to be positive.

Let ξ =
(

uT , βT
)T

and λ = (λR, λD)
T
. Then the posterior has support

X = R
k+p × R

2
+ and a density characterized by

π(ξ, λ|y) ∝ f(y|ξ, λ)f(ξ|λ)f(λ)

where y is the observed data and f denotes a generic density. Posterior inference
is often based on the expectation of a function g : X → R with respect to the
posterior. For the model (1.1) we can only rarely calculate the expectation

Eπg(ξ, λ) :=

∫

X

g(ξ, λ)π(ξ, λ|y)dξdλ ,

since it is a ratio of two potentially high-dimensional intractable integrals.
Hence inference regarding the posterior may require Markov chain Monte Carlo
(MCMC) methods. We consider two-component Gibbs sampling which produces
a Harris ergodic Markov chain Φ = {(ξ0, λ0), (ξ1, λ1), . . .} with invariant density
π(ξ, λ|y).

Suppose Eπ |g| < ∞ and we obtain n observations from the Gibbs sampler.

Then a natural estimate of Eπg is ḡn = n−1
∑n−1

i=0 g(ξi, λi) since ḡn → Eπg with
probability 1 as n → ∞. In other words, the longer we run the Gibbs sampler,
the better our estimate is likely to be. However, this gives no indication of how
large n must be to ensure the Monte Carlo error ḡn − Eπg is sufficiently small.
The size of this error is usually judged by appealing to its approximate sampling
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distribution via a Markov chain central limit theorem (CLT), which in the cases
of current interest takes the form

√
n(ḡn − Eπg)

d→ N(0, σ2
g) as n→ ∞ (1.2)

where σ2
g ∈ (0,∞). Due to the serial correlation in Φ, the variance σ2

g will be
complicated and require specialized techniques (such as batch means or spectral
methods) to estimate consistently with σ̂2

n, say. Suppose σ̂
2
n → σ2

g with proba-
bility 1 as n → ∞. Then an asymptotically valid Monte Carlo standard error
(MCSE) is given by σ̂n/

√
n. In turn, this can be used to perform statistical

analysis of the Monte Carlo error and to implement rigorous sequential stop-
ping rules for determining the length of simulation required (see Flegal et al.,
2008; Jones and Hobert, 2001) so that the user will have as much confidence
in the simulation results as if the observations were a random sample from the
posterior; this is described in more detail in Section 4.

Unfortunately, for Harris ergodic Markov chains simple moment conditions
are not sufficient to ensure an asymptotic distribution for the Monte Carlo error
or that we can consistently estimate σ2

g . In addition, we need to know that the
convergence of Φ occurs rapidly. Thus, one of our goals is to establish verifiable
conditions under which the Gibbs sampler is geometrically ergodic, that is, it
converges to the posterior in total variation norm at a geometric rate.

We know of three papers that address geometric ergodicity of Gibbs samplers
in the context of the normal theory linear model with proper priors. These are
Hobert and Geyer (1998), Jones and Hobert (2004), and Papaspiliopoulos and
Roberts (2008). The linear model we consider substantively differs from those
in Papaspiliopoulos and Roberts (2008) in that we do not assume the variance
components are known. Our model is also much more general than the one-
way random effects model in Hobert and Geyer (1998) and Jones and Hobert
(2004). Gibbs sampling for the balanced one-way random effects model is also
considered in Rosenthal (1995) where coupling techniques were used to establish
upper bounds on the total variation distance to stationarity. However, these
results fall short of establishing geometric ergodicity of the associated Markov
chain.

The rest of this paper is organized as follows. Gibbs sampling for the Bayesian
hierarchical general linear model is discussed in Section 2 and geometric ergod-
icity for these Gibbs samplers is established in Section 3. Conditions for the
CLT (1.2) are given in Section 4 along with a description of the method of
batch means for estimating the variance of the asymptotic normal distribution.
Finally, our results are illustrated with a numerical example in Section 5. Many
technical details are deferred to the appendix.

2. The Gibbs samplers

The full conditional densities required for implementation of the two-component
block Gibbs sampler are as follows: Conditional on ξ and y, λ follows the dis-
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tribution corresponding to density

f(λ|ξ, y) =
s
∑

j=1

t
∑

l=1

φjψlf1j(λR|ξ, y)f2l(λD|ξ, y) (2.1)

where f1j(·|ξ, y) denotes a Gamma(rj1+N/2, rj2+v1(ξ)/2) density and f2l(·|ξ, y)
denotes a Gamma(dl1 + k/2, dl2 + v2(ξ)/2) density with

v1(ξ) := (y −Xβ − Zu)T (y −Xβ − Zu), v2(ξ) := uTu . (2.2)

Also,

ξ|λ, y ∼
r
∑

i=1

ηiNk+p(mi,Σ
−1)

where

Σ−1 =

(

(

λRZ
TZ + λDIk

)−1
0

0
(

λRX
TX +B

)−1

)

mi =

(

λR
(

λRZ
TZ + λDIk

)−1
ZT y

(

λRX
TX +B

)−1
(λRX

Ty +Bbi)

)

.

(2.3)

These follow from our assumption that XTZ = 0.
There are two possible update orders for our 2-component Gibbs sampler.

First, let Φ1 denote the Markov chain produced by the Gibbs sampler which
updates ξ followed by λ in each iteration so that a one-step transition looks like
(ξ′, λ′) → (ξ, λ′) → (ξ, λ). Then the one-step Markov transition density (Mtd)
for Φ1 is

k1(ξ, λ|ξ′, λ′) = f(ξ|λ′, y)f(λ|ξ, y) .
Similarly, let Φ2 denote the Markov chain produced by the Gibbs sampler which
updates λ followed by ξ in each iteration so that the one-step transition is
(ξ′, λ′) → (ξ′, λ) → (ξ, λ). Then the corresponding Mtd is

k2(ξ, λ|ξ′, λ′) = f(λ|ξ′, y)f(ξ|λ, y) .

Also, let Φξ = {ξ0, ξ1, . . .} and Φλ = {λ0, λ1, . . .} denote the associated marginal
chains with Mtds

kξ(ξ|ξ′) =
∫

R
2
+

f(λ|ξ′, y)f(ξ|λ, y) dλ

and

kλ(λ|λ′) =
∫

Rk+p

f(ξ|λ′, y)f(λ|ξ, y) dξ ,

respectively.
Because the Mtd’s are strictly positive on the state space it is straightforward

to show that Φ1 and Φ2 are Harris ergodic; see also Lemma 1 in Tan and Hobert
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(2009). The posterior density π(ξ, λ|y) is invariant for Φ1 and Φ2 by con-
struction. Similarly, Φξ and Φλ are Harris ergodic with invariant densities the
marginal posteriors π(ξ|y) and π(λ|y), respectively. Hence all four Markov chains
converge in total variation norm to their respective invariant distributions. In
the next section we establish conditions under which this convergence occurs at
a geometric rate.

3. Geometric ergodicity

3.1. Establishing geometric ergodicity

Our main goal in this section is to establish conditions for the geometric er-
godicity of Φ1 and Φ2. Before doing so it is useful to acquaint ourselves with
a concept introduced by Roberts and Rosenthal (2001). Let X = {Xn, n ≥ 0}
be a Markov chain on a space X and Y = {Yn, n ≥ 0} a stochastic process on
a possibly different space Y. Then Y is de-initializing for X if, for each n ≥ 1,
conditionally on Yn it follows that Xn is independent of X0. Roughly speak-
ing, Roberts and Rosenthal (2001) use this concept to show that Y controls the
convergence properties of the Markov chain X .

To establish the geometric ergodicity of Φ1 and Φ2 it suffices to work with
the marginal chains Φξ and Φλ. First, Φξ is de-initializing for Φ1 and Φλ is
de-initializing for Φ2. Results in Roberts and Rosenthal (2001) imply that if
Φξ (Φλ) is geometrically ergodic, so is Φ1 (Φ2). Further, Φ1 and Φ2 are co-
de-initializing. Hence if one is geometrically ergodic, then they both are and
Lemma 3.1 follows directly.

Lemma 3.1. If Φξ or Φλ is geometrically ergodic, then so are Φ1 and Φ2.

Accordingly, we can proceed by studying the convergence behavior of the
marginal chains. We establish geometric ergodicity for Φξ by establishing a drift
condition. That is we need to specify a function V : Rk+p → R+ and constants
0 < γ < 1 and L <∞ such that

E[V (ξ) | ξ′] ≤ γV (ξ′) + L for all ξ′ ∈ R
k+p (3.1)

where the expectation is taken with respect to the Mtd kξ. LetW (ξ) = 1+V (ξ),
b = L+1−γ and C = {ξ : W (ξ) ≤ 4b/(1−γ)}. Jones and Hobert (2004, Lemma
3.1) show that equation (3.1) implies

∆W (ξ′) := E[W (ξ) | ξ′]−W (ξ′) ≤ −1− γ

2
W (ξ′) + 2bI(ξ′ ∈ C) .

Here ∆W (ξ′) is the drift, V (or W ) is a drift function and γ a drift rate. If
ξ′ /∈ C the expected change in W is negative so Φξ will tend to “drift” to
C, that is, where the value of W is small. Moreover, it also does it in such a
way that the drift towards C is faster when γ is small. On the other hand, if
γ ≈ 1 the drift will be slow. Thus the value of γ is intimately connected to the
convergence rate of Φξ; for a thorough accessible discussion of the connection
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see Jones and Hobert (2001, Section 3.3). Hence examination of γ can give us
some intuition for the convergence behavior of Φξ. However, drift functions are
not unique so this examination generally will not lead to definitive conclusions.

One method for using the drift condition (3.1) to establish geometric er-
godicity generally requires consideration of petite sets; see Lemma 15.2.8 of
Meyn and Tweedie (1993). However, this may be avoided in the current set-
ting. A function V : R

k+p → R is unbounded off compact sets if the set
{ξ ∈ R

k+p : V (ξ) ≤ d} is compact for any d > 0. Note that the maximal
irreducibility measure for Φξ is equivalent to Lebesgue on R

k+p so that its sup-
port certainly has a non-empty interior. A straightforward application of Fatou’s
lemma shows that Φξ is Feller and hence if V is unbounded off compact sets
it is also unbounded off petite sets by Theorem 6.0.1 in Meyn and Tweedie
(1993). The following proposition now follows easily from Lemma 15.2.8 of
Meyn and Tweedie (1993) and our Lemma 3.1.

Proposition 3.1. Suppose (3.1) holds for a drift function that is unbounded
off compact sets. Then Φξ is geometrically ergodic and so are Φ1 and Φ2.

In Section 3.2 we develop conditions on our Bayesian model (1.1) which are
sufficient for the conditions of Proposition 3.1.

3.2. Drift for Φξ

For all j ∈ {1, . . . , s} and l ∈ {1, . . . , t}, define constants

δj1 =

∑N
i=1 zi

(

ZTZ
)−1

zTi
2rj1 +N − 2

; δl2 =
k

2dl1 + k − 2
;

δj3 =

∑N
i=1 xi

(

XTX
)−1

xTi
4(2rj1 +N − 2)

; and δl4 =
k +

∑N
i=1 ziz

T
i

2dl1 + k − 2
.

(3.2)

Also, let xi and zi denote the ith rows of matrices X and Z, respectively, and
let yi and ui denote the ith elements of vectors y and u, respectively. Next, for
i ∈ {1, . . . , r} define

Gi(λ) :=

N
∑

m=1

[Ei (ym − xmβ − zmu|λ, y)]2 +
k
∑

m=1

[Ei (um|λ, y)]2

where Ei denotes expectation with respect to the Nk+p(mi,Σ
−1) distribution.

Proposition 3.2. Assume there exists some K < ∞ such that Gi(λ) ≤ K for
all λ ∈ R

2
+ and i ∈ {1, . . . , r}. Let V (ξ) = v1(ξ) + v2(ξ) where v1(·) and v2(·)

are defined at (2.2).

1. If ZTZ is nonsingular, dl1 > 1 for all l ∈ {1, . . . , t}, and

rj1 > 0 ∨ 0.5

(

N
∑

i=1

zi(Z
TZ)−1zTi −N + 2

)

for all j ∈ {1, . . . , s} ,
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then (3.1) holds for drift function V (ξ) with maxj,l{δj1, δl2} ≤ γ < 1 and

L =

N
∑

i=1

xiB
−1xTi +max

j,l
{2rj2δj1 + 2dl2δl2}+K .

2. If for all j ∈ {1, . . . , s} and l ∈ {1, . . . , t}

rj1 > 0 ∨ 0.5

[

0.25
N
∑

i=1

xi(X
TX)−1xTi −N + 2

]

and

dl1 > 0.5

[

2 +

N
∑

i=1

ziz
T
i

]

then (3.1) holds for drift function V (ξ) with maxj,l{δj3, δl4} ≤ γ < 1 and

L =
1

4

N
∑

i=1

xiB
−1xTi +max

j,l
{2rj2δj3 + 2dl2δl4}+K .

Proof. See Appendix A.2.

Notice that the formulations of γ given by Proposition 3.2 depend on the
Bayesian model setting through δj1, δl2, δj3, and δl4. Therefore, the drift and
convergence rates of the Φξ marginal chain (hence the Gibbs samplers) may be
sensitive to changes in the dimension k of u, the total number of observations N ,
or the hyperparameter setting. However, it is interesting that the dimension of
β, which is p, has only an indirect impact on this result. Specifically, when ZTZ
is nonsingular the value of p has no impact, that is, the drift rate is unaffected
by changes in p. Of course, changing p does mean that X changes which may
impact δj3 which in turn can change the permissible hyperparameters rj1 and
the drift rate when ZTZ is singular.

Example 3.1. Consider the balanced random intercept model derived from (1.1)
for k subjects with m observations each. In this case, Z = Ik ⊗ 1m where ⊗
denotes the Kronecker product and 1m represents a vector of ones of length m.
Hence ZTZ = mIk is nonsingular. Define

MN,k := max
l

{

k

2rj1 +N − 2
,

k

2dl1 + k − 2

}

.

If dl1 > 1 for all l, Condition 1 of Proposition 3.2 establishes drift rate MN,k ≤
γ < 1. Notice that MN,k → 1 as k → ∞ and hence γ → 1 as well. This
supports our intuition that the Gibbs sampler should converge more slowly as its
dimension increases. On the other hand, if k is held constant but m increases
so that N = km→ ∞, then

MN,k =
k

2dl1 + k − 2
.
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Thus increasing the number of observations per subject does not have the same
negative, qualitative impact as increasing the number of subjects. Finally,MN,k →
1 (hence γ → 1) when k is held constant and dl1 → 1 for any l.

Consider the condition that Gi(λ) ≤ K for all λ ∈ R
2
+ and i ∈ {1, . . . , r}.

In our experience it is often straightforward to show that Gi is bounded and,
if desired, numerical optimization methods yield appropriate K. The following
result establishes this condition for important special cases of (1.1).

Proposition 3.3.

1. If Z = 0, then Gi(λR) is bounded for all λR ∈ R+ and i ∈ {1, . . . , r}.
2. Assume bi = 0 for all i ∈ {1, . . . , r} and ZTZ is nonsingular. Then

Gi(λ) ≤ yT y + yTZ(ZTZ)−2ZT y

for all λ ∈ R
2
+ and i ∈ {1, . . . , r}.

Proof. See Appendix A.2.

We are now in position to state conditions on (1.1) guaranteeing geometric
ergodicity of the Gibbs samplers Φ1 and Φ2. This follows easily from Propo-
sitions 3.1 and 3.2 if the drift function V (ξ) = v1(ξ) + v2(ξ) is unbounded off
compact sets on R

k+p. Define S = {ξ ∈ R
k+p : V (ξ) = v1(ξ) + v2(ξ) ≤ d}

where d > 0. Notice that V is continuous so it is sufficient to show that, on S,
|βi| is bounded for i ∈ {1, 2, . . . , p} and |uj| is bounded for j ∈ {1, 2, . . . , k}.
Clearly, S ⊂ S2 = {ξ : uTu ≤ d} and it is obvious that each |uj | is bounded
on S2 hence also on S. Moreover, note that v2 → ∞ as |uj | → ∞. Given that
the |uj| are bounded it is easy to see that v1 → ∞ as |βi| → ∞. Putting this
together we see that V is unbounded off compact sets. The main result of this
section follows.

Theorem 3.1. Assume the conditions of Proposition 3.1. Then the Markov
chain Φξ and the Gibbs samplers Φ1 and Φ2 are geometrically ergodic.

4. Interval estimation

Suppose we want to estimate an expectation Eπg :=
∫

X
g(ξ, λ)π(ξ, λ|y)dξdλ

where g is real-valued and π-integrable. It is straightforward to estimate Eπg
with ḡn := n−1

∑n−1
i=0 g(ξi, λi). A key step in the statistical analysis of ḡn is the

assessment of the Monte Carlo error ḡn−Eπg through its approximate sampling
distribution.

Theorem 4.1. Assume the conditions of Theorem 3.1. If Eπ |g|2+ǫ < ∞ for
some ǫ > 0, then there is a constant σ2

g ∈ (0,∞) such that for any initial
distribution √

n(ḡn − Eπg)
d→ N(0, σ2

g) as n→ ∞ .
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The proof of this theorem follows easily from Theorem 3.1, Theorem 2 of
Chan and Geyer (1994) and Section 1 of Flegal and Jones (2010). Roughly
speaking, results in Hobert et al. (2002), Jones et al. (2006) and Bednorz and
Latuszynski (2007) show that, under conditions comparable to those required
for Theorem 4.1, techniques such as regenerative simulation and batch means
can be used to construct an estimator of σ2

g , say σ̂2
n, such that σ̂2

n → σ2
g as

n → ∞ almost surely. See Flegal and Jones (2010) for the conditions required
to ensure consistency of overlapping batch means and spectral estimators of σ2

g .
Before giving a precise discussion of the conditions for consistency we need a

preliminary definition and result. Let X ⊆ R
d for d ≥ 1 and k : X ×X → [0,∞)

be an Mtd with respect to Lebesgue measure. Suppose there exists a function
s : X → [0, 1) and a density q such that for all x, x′ ∈ X

k(x|x′) ≥ s(x′)q(x) .

Then we say there is a minorization condition for k.

Lemma 4.1. Let C ⊆ X be compact and assume c > 0 where

c =

∫

C

k(x|x∗) dx

for some x∗ ∈ X . If for each x′, k(·|x′) is positive and continuous on C, then
there exists a minorization condition for k.

Proof. The proof follows a technique first introduced by Mykland et al. (1995).
Fix x∗ ∈ X . Then for all x ∈ C

k(x|x′) = k(x|x∗)
k(x|x∗)k(x|x

′) ≥
[

inf
x∈C

k(x|x′)
k(x|x∗)

]

k(x|x∗) .

Let xm be the point where the infimum is achieved. Then the minorization
follows by setting q(x) = c−1k(x|x∗)I(x ∈ C) and

s(x′) = c
k(xm|x′)
k(xm|x∗) .

The conditions of Lemma 4.1 are not the weakest that ensure the existence of
a minorization condition but they will suffice for our purposes. In particular, it is
straightforward to use Lemma 4.1 to see that there exists a minorization condi-
tion for both k1 and k2 the Mtd’s for Φ1 and Φ2, respectively. Also, Hobert et al.
(2006) derived an explicit closed form expression for a minorization for a Markov
chain for which Φ2 is a special case.

The consistency results for σ̂2
n in Flegal and Jones (2010), Hobert et al. (2002),

Jones et al. (2006) and Bednorz and Latuszynski (2007) all require that a mi-
norization condition hold. The efficacy of regenerative simulation is utterly de-
pendent upon the minorization while minorization is irrelevant to the imple-
mentation of batch means and spectral methods. That is, the minorization is
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purely a technical device used in the proofs of consistency for batch means and
spectral estimators.

We use the method of batch means in Section 5 to estimate σ2
g . Let n be the

simulation length, bn = ⌊na⌋ and an = ⌊n/bn⌋. Now define

Ȳj :=
1

bn

jbn−1
∑

i=(j−1)bn

g(ξi, λi) for j = 1, . . . , an .

The batch means estimate of σ2
g is

σ̂2
n =

bn
an − 1

an
∑

j=1

(Ȳj − ḡn)
2 . (4.1)

Putting together our Theorem 3.1 and Lemma 4.1 with results in Jones et al.
(2006) and Bednorz and Latuszynski (2007) we have the following consistency
result.

Theorem 4.2. Assume the conditions of Theorem 3.1. If Eπ |g|2+ǫ < ∞ for
some ǫ > 0 set ǫ = ǫ1 + ǫ2 and let (1 + ǫ1/2)

−1 < a < 1, then for any initial
distribution for either Φ1 or Φ2 we have that σ̂2

n → σ2
g with probability 1 as

n→ ∞.

Using Theorems 4.1 and 4.2 we can use (4.1) to form an asymptotically valid
confidence interval for Eπg in the usual way

ḡn ± tan−1
σ̂n√
n

(4.2)

where tan−1 is a quantile from a Student’s t distribution with an − 1 degrees
of freedom. Moreover, we can use batch means to implement the fixed-width
methods of Jones et al. (2006) to determine how long to run the simulation.
Following Flegal et al. (2008) let ε be the desired half-width of the interval in
(4.2) and n∗ be a minimum simulation size specified by the user. Then we can
terminate the simulation the first time

tan−1
σ̂n√
n
+ εI(n ≥ n∗) +

1

n
≤ ε .

The final interval estimate will be asymptotically valid in the sense that the
interval will have the desired coverage probability for sufficiently small ε; see
also Flegal et al. (2008), Flegal and Jones (2010), Glynn and Whitt (1992) and
Jones et al. (2006).

5. A numerical example

In this section we illustrate our theoretical results in the analysis of US gov-
ernment health maintenance organization (HMO) data. To study the cost-
effectiveness of transferring military retirees from a Defense Department health
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Fig 1. Individual monthly HMO premiums are plotted against the average expenses per admis-
sion in the state in which the HMO operates. Solid circles represent states in New England.

plan to health plans for government employees, information was gathered from
341 state-based health maintenance organizations (HMOs). These plans repre-
sent 42 states, the District of Columbia, Puerto Rico, and Guam. An HMO
plan’s cost is measured by its monthly premium for individual subscribers. Two
possible factors in this cost are (1) the typical hospital expenses in the state
in which the HMO operates; and (2) the region in which the HMO operates.
In Figure 1, the individual monthly premiums for the 341 HMOs are plotted
against the average expenses per admission in the state of operation (both in
US dollars).

Let yi denote the individual monthly premium of the ith HMO plan. To
analyze these data, Hodges (1998) considered a Bayesian version of the following
frequentist model:

yi = β0 + β1xi1 + β2xi2 + εi (5.1)
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Table 1

Least squares regression results for (5.1)

Parameter Estimate Standard Error

β0 164.989 1.322

β1 3.910 1.508

β2 32.799 5.961

N = 341

degrees of freedom = 338

MSE = SSE/338 =
∑

N

i=1
(yi − ŷi)

2/338 = 23.792

where the εi are iid N
(

0, λ−1
R

)

, xi1 denotes the centered and scaled average
expenses per admission in the state in which the ith HMO operates, and xi2 is
an indicator for New England. The xi1 values were centered and scaled to avoid
collinearity. Specifically, if x̃i1 is the raw average expense per admission and x1
is the overall average expense per admission, xi1 = (x̃i1 − x1)/1000. The results
of fitting (5.1) using least squares regression are summarized in Table 1.

We perform a Bayesian regression analysis based on the following hierarchical
version of (5.1):

y|β, λR ∼ NN

(

Xβ, λ−1
R IN

)

β|λR ∼ N3

(

b, B−1
)

λR ∼ Gamma(r1, r2)

(5.2)

where N = 341, y is the N×1 vector of individual premiums, β = (β0, β1, β2) is
the vector of regression parameters, and X is the N × 3 data matrix. Complete
specification of this model requires values for hyperparameters (b, B, r1, r2). We
chose the following prior mean and covariance matrix for β:

b =





0
0
0



 and B−1 =





100 0 0
0 100 0
0 0 100



 .

Next, using an approach which is empirical Bayesian in spirit, we set the prior
mean and variance for λR to

E(λR) =
r1
r2

=
1

MSE
= 0.00177; and

Var(λR) =
r1
r22

= 1

where MSE is the least squares estimate of λ−1
R given in Table 1. Solving for r1

and r2 gives r1 = 3.122 ∗ 10−6 and r2 = 0.00177.
Since (5.2) does not contain any random effects, it follows from Theorem 3.1

that the Gibbs sampler for π(β, λR|y) is geometrically ergodic since

r1 > 0 ∨ 0.5 [2−N ] = 0
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Table 2

Estimates of posterior means with corresponding standard errors

Parameter Estimate Standard Error

β0 162.6 0.008

β1 4.0 0.008

β2 26.3 0.030

and for any λR ∈ R+ the function G(λR) is bounded (recall Proposition 3.3)
where

G(λR) =

N
∑

i=1

[E(yi − xiβ|λR, y)]2 = (y −XE(β|λR, y))T (y −XE(β|λR, y)) .

Consider estimating the posterior means of β0, β1, and β2. By Lemma A.6,
the fourth posterior moments of these parameters are finite. Thus Theorems 4.1
and 4.2 in conjunction with geometric ergodicity guarantee the existence of
CLTs and consistent estimators of the asymptotic variance via batch means
with bn = ⌊n0.501⌋ which was chosen based on recommendations in Jones et al.
(2006).

To begin our analysis of the posterior means, we simulated independent real-
izations of Φ2 (i.e. we updated λR followed by β in each iteration) from a variety
of starting values. In each case, we required a minimum simulation length of
1000. At each successive iteration, we calculated the approximate half-widths of
the Bonferroni-corrected 95% intervals for the posterior means of β0, β1, and β2,

tan−1, 0.025/3
σ̂n√
n
+

1

n
.

Simulation continued until the half-widths for β0, β1, and β2, were below 0.10,
0.02, and 0.10, respectively. The results were consistent across starting values.
That is, Gibbs samplers with different starting values produced similar estimates
and required similar simulation effort to meet the above specifications. Here, we
present the results for the chain started from b, the prior mean of β, as well as
for the chain started from the vector of least squares estimates of β. Under these
settings, the interval half-width thresholds were met after 32089 iterations and
29584 iterations, respectively. Further, the estimates of the posterior means and
corresponding standard errors based on the two chains are the same up to the
specified number of significant digits. These are reported in Table 2.

Appendix A: Appendix

A.1. Proof of Proposition 3.2

We will require the following general results in our proof. A proof of Lemma
A.1 is given in Henderson and Searle (1981) and Lemma A.2 follows from the
convexity of the inverse function.
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Lemma A.1. Let A be a nonsingular n× n matrix, B be a nonsingular s× s
matrix, U be an n× s matrix, and V be an s× n matrix. Then

(A+ UBV )−1 = A−1 −A−1U(B−1 + V A−1U)−1V A−1.

When U = V this implies

xT (A+ UBV )−1x ≤ xTA−1x

for any n× 1 vector x.

Lemma A.2. Let x be an m × 1 vector. Also, let A and B be nonsingular,
m×m matrices. Then

xT (A+B)−1x ≤ 1

4
xT
(

A−1 +B−1
)

x .

We begin the proof of Proposition 3.2. Recall that

v1(ξ) := (y −Xβ − Zu)T (y −Xβ − Zu), and v2(ξ) := uTu .

We must show that for all ξ′ ∈ R
k+p

Ekξ
[V (ξ)|ξ′] = Ekξ

[v1(ξ) + v2(ξ)|ξ′] ≤ γV (ξ′) + L

where the constants γ and L are given in the statement of Proposition 3.2. Let
Ei and Vari denote expectation and variance with respect to the Nk+p

(

mi,Σ
−1
)

distribution. Similarly, let Ejl and Varjl denote expectation and variance with
respect to density

f1j(λR|ξ, y)f2l(λD|ξ, y)
defined by (2.1). Notice that

Ekξ
[V (ξ)|ξ′] = E [E(V (ξ)|λ)|ξ′] =

s
∑

j=1

t
∑

l=1

r
∑

i=1

φjψlηiEjl [Ei(V (ξ)|λ) ξ′] (A.1)

where the first equality holds by the construction of Φξ. Thus we focus on
Ejl [Ei(V (ξ)|λ) ξ′] in the next 3 lemmas.

Lemma A.3. Suppose ZTZ is nonsingular. Then for all i, j, l

Ejl [Ei(v1(ξ)|λ) ξ′] ≤ δj1v1(ξ
′) + L1

where

L1 = Ejl

[

N
∑

m=1

[Ei(ym − xmβ − zmu|λ)]2 ξ′

]

+
N
∑

m=1

xmB
−1xTm+2rj2δj1. (A.2)
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Proof. Consider the inner expectation Ei(v1(ξ)|λ). For any i we have

Ei(v1(ξ)|λ) =
N
∑

m=1

Ei

[

(ym − xmβ − zmu)
2|λ
]

=
N
∑

m=1

[Ei(ym − xmβ − zmu|λ)]2 +
N
∑

m=1

Vari(ym − xmβ − zmu|λ)

and

Vari(ym − xmβ − zmu|λ) = xm
(

λRX
TX +B

)−1
xTm

+ zm
(

λRZ
TZ + λDIk

)−1
zTm

≤ xmB
−1xTm + λ−1

R zm
(

ZTZ
)−1

zTm

by Lemma A.1. It follows that for any i, j, l we have

Ejl [Ei(v1(ξ)|λ) ξ′] ≤ Ejl

[

N
∑

m=1

[Ei(ym − xmβ − zmu|λ)]2 ξ′

]

+ Ejl

(

λ−1
R |ξ′

)

N
∑

m=1

zm
(

ZTZ
)−1

zTm +

N
∑

m=1

xmB
−1xTm .

Combining this with the fact that

Ejl

(

λ−1
R |ξ′

)

=
2rj2 + v1(ξ

′)

2rj1 +N − 2
=

δj1(2rj2 + v1(ξ
′))

∑N
m=1 zm (ZTZ)

−1
zTm

gives

Ejl [Ei(v1(ξ)|λ) ξ′] ≤ Ejl

[

N
∑

m=1

[Ei(ym − xmβ − zmu|λ)]2 ξ′

]

+ δj1(2rj2 + v1(ξ
′)) +

N
∑

m=1

xmB
−1xTm

= δj1v1(ξ
′) + L1 .

Lemma A.4. For any i, j, l

Ejl [Ei(v1(ξ)|λ) ξ′] ≤ δj3v1(ξ
′) + (δl4 − δl2)v2(ξ

′) + L2

where

L2 =Ejl

[

N
∑

m=1

[Ei(ym − xmβ − zmu|λ)]2 ξ′

]

+
1

4

N
∑

m=1

xmB
−1xTm + 2rj2δj3 + 2dl2(δl4 − δl2).

(A.3)
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Proof. Notice that for any i, j, l

Ejl [Ei(v1(ξ)|λ) ξ′] = Ejl

[

N
∑

m=1

Ei

[

(ym − xmβ − zmu)
2 |λ
]

ξ′

]

= Ejl

[

N
∑

m=1

[Ei(ym − xmβ − zmu|λ)]2 ξ′

]

+
N
∑

m=1

Ejl [Vari(ym − xmβ − zmu|λ) ξ′]

(A.4)

where from Lemmas A.1 and A.2

Vari(ym − xmβ − zmu|λ) = xm
(

λRX
TX +B

)−1
xTm

+ zm
(

λRZ
TZ + λDIk

)−1
zTm

≤ 1

4
xm

(

λ−1
R

(

XTX
)−1

+B−1
)

xTm + λ−1
D zmz

T
m .

Also, by (2.1) we have

Ejl

(

λ−1
R |ξ′

)

=
2rj2 + v1(ξ

′)

2rj1 +N − 2
and Ejl

(

λ−1
D |ξ′

)

=
2dl2 + v2(ξ

′)

2dl1 + k − 2
.

Therefore

∑N
m=1 Ejl [Vari(ym − xmβ − zmu|λ) ξ′]

≤
N
∑

m=1

[

1

4
xm

(

2rj2 + v1(ξ
′)

2rj1 +N − 2

(

XTX
)−1

+B−1

)

xTm +
2dl2 + v2(ξ

′)

2dl1 + k − 2
zmz

T
m

]

= δj3 (2rj2 + v1(ξ
′)) +

1

4

N
∑

m=1

xmB
−1xTm + (2dl2 + v2(ξ

′))

∑N
m=1 zmz

T
m

2dl1 + k − 2

= δj3 (2rj2 + v1(ξ
′)) +

1

4

N
∑

m=1

xmB
−1xTm + (2dl2 + v2(ξ

′)) (δl4 − δl2) .

(A.5)

The result holds by combining (A.4) and (A.5).

Lemma A.5. For any i, j, l

Ejl [Ei(v2(ξ)|λ) ξ′] ≤ δl2v2(ξ
′) + L3

where

L3 = Ejl

[

k
∑

m=1

[Ei (um|λ)]2 ξ′

]

+ 2dl2δl2. (A.6)
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Proof. First, for any i, j, l

Ejl [Ei(v2(ξ)|λ) ξ′] = Ejl

[

k
∑

m=1

Ei

(

u2m|λ
)

ξ′

]

= Ejl

[

k
∑

m=1

[Ei (um|λ)]2 ξ′

]

+

k
∑

m=1

Ejl [Vari(um|λ) ξ′] .

(A.7)

Let em denote the k × 1 vector with the mth element being 1 and the rest of
the elements being 0. Thus by Lemma A.1,

Vari(um|λ) = eTm
(

λRZ
TZ + λDIk

)−1
em ≤ λ−1

D eTmem = λ−1
D . (A.8)

Also,

Ejl

(

λ−1
D |ξ′

)

=
2dl2 + v2(ξ

′)

2dl1 + k − 2
=
δl2
k

(2dl2 + v2(ξ
′)) . (A.9)

Putting (A.7)–(A.9) together gives

Ejl [Ei(v2(ξ)|λ) ξ′] ≤ Ejl

[

k
∑

m=1

[Ei (um|λ)]2 ξ′

]

+

k
∑

m=1

Ejl

[

λ−1
D ξ′

]

= Ejl

[

k
∑

m=1

[Ei (um|λ)]2 ξ′

]

+ δl2 (2dl2 + v2(ξ
′))

= δl2v2(ξ
′) + L3 .

We are now ready to finish the proof of Proposition 3.2. We consider the case
with nonsingular ZTZ and the case in which no restrictions are placed on Z
separately.

1. Case 1: ZTZ nonsingular
Notice that L1 + L3 ≤ L for L1 and L3 given by (A.2) and (A.6), respec-
tively. Then by Lemmas A.3 and A.5 we have that for any i, j, l

Ejl [Ei(V (ξ)|λ) ξ′] = Ejl [Ei(v1(ξ) + v2(ξ)|λ) ξ′]

≤ δj1v1(ξ
′) + δl2v2(ξ

′) + L1 + L3

≤ γV (ξ′) + L .

(A.10)

Combining (A.1) and (A.10) establishes the drift condition.
2. Case 2: ZTZ is possibly singular

Observe that L2+L3 ≤ L for L2 and L3 given by (A.3) and (A.6), respec-
tively. Further, it follows from Lemmas A.4 and A.5 that for any i, j, l
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Ejl [Ei(V (ξ)|λ) ξ′] = Ejl [Ei(v1(ξ) + v2(ξ)|λ) ξ′]

≤ δj3v1(ξ
′) + (δl4 − δl2)v2(ξ

′) + L2 + δl2v2(ξ
′) + L3

= δj3v1(ξ
′) + δl4v2(ξ

′) + L2 + L3

≤ γV (ξ′) + L .

(A.11)

The result holds by combining (A.1) and (A.11).

A.2. Proof of Proposition 3.3

First, consider the case when Z = 0. Here

Gi(λR) =
N
∑

i=1

[Ei(yi − xiβ|λR, y)]2 = (y −XEi(β|λR, y))T (y −XEi(β|λR, y))

and Ei(β|λR, y) = (λRX
TX +B)−1(λRX

T y+Bbi). Then for all i ∈ {1, . . . , r},
Gi(λR) is continuous and finite both as λR → 0 and λR → ∞. Hence Gi(λR) is
bounded for all λR.

Next, consider the case with bi = 0 for all i and ZTZ is nonsingular. Then
ξ|λ, y ∼ Nk+p(m0,Σ

−1) where

Σ−1 =

(

(

λRZ
TZ + λDIk

)−1
0

0
(

λRX
TX +B

)−1

)

m0 =

(

λR
(

λRZ
TZ + λDIk

)−1
ZTy

λR
(

λRX
TX +B

)−1
XT y

)

.

Define Ag := λRX
TX+B andAh := λRZ

TZ+λDIk. Then E(β|λ) = λRA
−1
g XT y

and E(u|λ) = λRA
−1
h ZT y.

We must establish that there exists K for which

N
∑

m=1

[E (ym − xmβ − zmu|λ, y)]2 +
k
∑

m=1

[E (um|λ, y)]2 ≤ K .

Let

f(λ) = (y −XE(β|λ)− ZE(u|λ))T (y −XE(β|λ) − ZE(u|λ)) + E(u|λ)TE(u|λ)

and note that the claim will be proven if we can show that f(λ) ≤ K for all λ.
To this end, define functions g, and h as

g(λ) = (y −XE(β|λ))T (y −XE(β|λ))
h(λ) = E(u|λ)TZTZE(u|λ) + E(u|λ)TE(u|λ)− 2yTZE(u|λ) .

Since the conditional independence of β and u given λ implies XTZ = 0, a little
algebra shows that f(λ) = g(λ)+h(λ). Thus, it suffices to find Kg and Kh such
that for all λ, g(λ) ≤ Kg and h(λ) ≤ Kh.
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First,

g(λ) = yT y + E(β|λ)TXTXE(β|λ) − 2yTXE(β|λ)
= yT y + λ2Ry

TXA−1
g XTXA−1

g XT y − 2λRy
TXA−1

g XT y

= yT y − λRy
TXA−1

g BA−1
g XTy + λRy

TXA−1
g AgA

−1
g XT y

− 2λRy
TXA−1

g XTy

= yT y − λRy
TXA−1

g BA−1
g XTy − λRy

TXA−1
g XT y

≤ yT y

:= Kg

by the positive definiteness of B and A−1
g .

Next, we have

h(λ) = λ2Ry
TZA−1

h ZTZA−1
h ZTy + λ2Ry

TZA−2
h ZT y − 2λRy

TZA−1
h ZT y

= λRy
TZA−1

h AhA
−1
h ZT y − λRλDy

TZA−2
h ZT y + λ2Ry

TZA−2
h ZT y

− 2λRy
TZA−1

h ZT y

= (λ2R − λRλD)yTZA−2
h ZT y − λRy

TZA−1
h ZT y.

Since A−1
h and A−2

h are positive semidefinite we have

h(λ) ≤ λ2Ry
TZA−2

h ZT y

= λ2Ry
TZ
(

(

λRZ
TZ
)2

+ λD
(

2λRZ
TZ + λDIk

)

)−1

ZT y

≤ λ2Ry
TZ(λRZ

TZ)−2ZT y

= yTZ(ZTZ)−2ZT y

:= Kh

where the last inequality holds by Lemma A.1. The result now follows by setting
K = Kg +Kh.

A.3. Lemma A.6

Lemma A.6. The fourth posterior moments of β0, β1, and β2 are each finite.

Proof. We present the proof for β2. The proofs for β0 and β1 are similar. The
finiteness of E

[

β4
2 y

]

will follow from establishing that E
[

β4
2 λR, y

]

is finite
since

E
[

β4
2 y

]

= E
[

E
(

β4
2 λR, y

)

y
]

.

To this end, recall that

β|λR, y ∼ N
(

(

λRX
TX +B

)−1 (
λRX

Ty +Bb
)

,
(

λRX
TX +B

)−1
)

.
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Also, let µ2 = E(β2|λR, y) and e3 denote a vector of zeroes with a one in the
third position. Then

E
[

(β2 − µ2)
4 λR, y

]

= 3
[

(

λRX
TX +B

)−1

33

]2

= 3
[

eT3
(

λRX
TX +B

)−1
e3

]2

≤ 3
[

eT3 B
−1e3

]2

= 3B−2
33

where the inequality follows from Lemma A.1. It follows that the fourth (non-
central) moment E

[

β4
2 λR, y

]

is finite.
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