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Abstract: In this article we introduce a multivariate structural linear
error-in-variables model which is suitable for longitudinal data. We con-
struct estimators of the regression parameters, which correspond to the
modified least squares estimators used in the univariate case. We show that
these estimators are consistent. We prove a central limit theorem, which
is completely data-based, under the assumption that the vector of latent
variables belongs to the generalized domain of attraction of the normal law.
Our results can be viewed as an extension of the results of [12] to include
the longitudinal case.
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1. Introduction

Error-in-variables (also known as measurement error) models are regression
models where the covariates cannot be measured directly or without error. Thus,
the response variable, y is assumed to depend on a variable ξ (called the latent
variable), which is measured by x. A simple linear error-in-variable model can
be written in the following form:

y = α+ βξ + ε,

x = ξ + δ.

If ξ is a random variable, the model is called a structural error-in-variable model.
We also mention here that the latent variable ξ is assumed to be independent of
the errors ε and δ. Thus, if an n dimensional sample is available, the collected
data are (xi, yi)1≤i≤n and the unknown parameters of the model are α and β.

The error-in-variables model cannot be reformulated as a classical regression
model with random design since the regressor x is correlated with the error:

y = α+ βx+ (ε− βδ).
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The reader may refer to the monograph [5], which is a compendium of up-to-
that-date theoretical methods and practical applications associated with mea-
surement error models. The recent monograph [3] contains further developments
in this area, viewed from a contemporary perspective.

It is known that the error-in-variables models are, in general, not identifiable
and therefore, it becomes impossible to consistently estimate the parameters
from the data. In the univariate case, several additional assumptions that make
the model identifiable can be found in the literature (for further details, see
[4], Section 1.2.1). Under the assumption that the variance of δ is known, the
authors of [4] have obtained the modified least squares estimators. However,
their asymptotic covariance matrix is a function of unknown parameters.

The author of [12] obtains CLTs for the univariate linear structural models
when the explanatory variables are in the domain of attraction of the normal
law (DAN), which constitutes a new approach in the study of measurement error
models. The concept of DAN has also been used in a regression context by other
researchers (for instance, see [10]). This approach has two advantages. Firstly,
the assumption about the finiteness of the variance of the latent variable can be
relaxed. Secondly, Studentized and self-normalized CLTs (that depend only on
the data) for distributions which are in DAN, are already available due to [7].

In the multivariate measurement error regression context, the author of [8]
assumes the covariance of the error δ to be known, or estimated to acquire
identifiability of the model. The estimation of parameters is suggested to be
performed in two steps: firstly, the reliability matrix (the correspondent of the
reliability ratio in the univariate case) needs to be estimated. Secondly, classical
estimation methods, such as least squares are used to obtain estimators of the
unknown parameters.

Longitudinal models are extensively used in biostatistics, sociology and psy-
chology to express the evolution in time, or the occurrence of a response variable,
in terms of a number of significant covariates. Since some of these covariates
cannot be recorded directly it is important to propose and study longitudinal
models which reflect this reality. Data for longitudinal studies are often collected
on the same individual on different occasions. The collected measurements are
considered to be independent across individuals and correlated within each in-
dividual.

The authors of [2] consider a longitudinal linear mixed model with mea-
surement error. Identifiability of their model follows from assuming a restricted
model for the covariance matrix of the latent variables. They describe exten-
sions to the case when replicate or validation data is available. For estimation
of the regression parameters, they use a regression calibration method, with a
substitution for the unknown covariates, which is corrected for estimation of the
variance parameters.

In this article, we consider the case of a longitudinal error-in-variable model
with no subject specific random effects. The true predictor, ξ is assumed to
have the same effect for each repeated measurement within the individual. We
employ the method of moments, as used in [4] to obtain consistent estimators
appropriate to the multivariate structure of the data. They correspond to the
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modified least squares estimators of a univariate structural measurement error
model. The estimators are constructed under the assumption that the diagonal
of the covariance matrix of the error δ is known. This additional assumption
ensures the identifiability of our model. We do not discuss here the case when
this information is not available. (In this situation, an estimator of the diagonal
of the covariance matrix should be provided; for additional details see Section
2 in [8]).

We use the technique developed in [12] to obtain the CLTs for the estimators
of the parameters of interest of our model. In our multivariate context, we use
the assumption that the vector formed by the latent variables belongs to the
generalized domain of attraction of the normal law (GDAN). The concept of
GDAN was defined in [9] and it does not constitute a trivial extension of DAN
to the multivariate case, as it had been previously assumed (see [11] or [13]).
By applying the results obtained in [7], this approach enables us to obtain
Studentized and self-normalized CLTs for our estimators.

Thus, our results apply to the case of multivariate data where the compo-
nents of the vectors formed by the explanatory variables are not necessarily
independent, allowing for some degree of correlation between the components
of latent vector. As in [12], this approach allows us to obtain CLTs which are
data-based and do not involve unknown parameters. Our results can be viewed
as a generalization of the results obtained in [12] to include the case of longitu-
dinal data. This generalization is not trivial, the technical difficulty arising from
the use of GDAN concept. For the sake of consistency with the literature and
to facilitate a comparison of results, we employ the notation and a structure of
proofs layed out in [12].

The article is organized as follows. In Section 2 we state our model assump-
tions and obtain the estimators of the parameters of interest. In Section 3 we
introduce the concept of GDAN and give preliminary results, which will be used
in the next sections. The main result of this section is Theorem 3.4, which states
that the inner product between a vector in GDAN and a vector whose compo-
nents have moments of order four is in DAN. In Section 4 we obtain the CLTs
for our estimators. The Appendix contains the proofs of some technical results.
We mention that, as in [12], our proofs cover two distinct cases: the case when
all the components of the covariance matrix of the latent vector are finite, and
the case when at least one of these components is infinite.

2. Model assumptions and estimators of the parameters

2.1. The model

We consider a sample of n individuals, whose responses are recorded, at fixed
moments of time (which are denoted for simplicity by 1, 2, . . . ,m). For any i ∈
{1, 2, . . . , n}, let yi = (yi1, . . . , yim)T be the collection of m responses supplied
by the i-th individual. More precisely, yij represents the response of the i-th
individual at time j. Alternatively, we can think of n as a sample of independent
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clusters of equal size m. Within each cluster i, the observations (yi1, . . . , yim)
might be correlated.

Each response yij depends on a covariate ξij , which is unobservable (or la-
tent): instead of the covariate ξij , one observes a surrogate variable xij . This hap-
pens for any individual i ∈ {1, 2, . . . , n}, and for any occasion j ∈ {1, 2, . . . ,m}.
For any i ∈ {1, 2, . . . , n}, we denote by ξi = (ξi1, . . . , ξim)T the collection of
m unobservable covariates which correspond to the i-th individual, and by
xi = (xi1, . . . , xim)T the collection of m respective surrogate variables.

Both variables yij and xij are observed with errors. More precisely, we con-
sider the following error-in-variables model: for any i ∈ {1, . . . , n} and j ∈
{1, . . . ,m}

yij = α+ βξij + εij , (2.1)

xij = ξij + δij ,

where α, β are unknown parameters (of dimension 1), and εij , δij are the random
error terms. For any i ∈ {1, . . . , n}, εi = (εi1, . . . , εim)T and δi = (δi1, . . . , δim)T

represent the error random vectors.
We assume that {ξi}1≤i≤n is a sequence of i.i.d. random vectors with mean

µ = (µ1, . . . , µm)T , i.e. µj := E(ξij), for j ∈ {1, . . . ,m} and i ∈ {1, . . . , n}. We
denote for any i ∈ {1, . . . n}, and j, k ∈ {1, . . .m}

σξ,jj := Var(ξij), and σξ,jk := Cov(ξij , ξik).

In matrix notation, we write

Σξ = (σξ,jk)1≤j,k≤m.

We assume that the errors {(εi, δi)}1≤i≤n form a sequence of i.i.d. random
vectors, and denote

σε,jk := E(εijεik), σδ,jk := E(δijδik), σεδ,jk := E(εijδik),

for any i ∈ {1, . . . , n} and j, k ∈ {1, . . . ,m}. In matrix notation,

Σε := (σε,jk)1≤j,k≤m, Σδ := (σδ,jk)1≤j,k≤m, Σεδ := (σεδ,jk)1≤j,k≤m.

2.2. Estimation

We are interested in the estimation of α and β. To obtain consistent estimators
for α and β, we assume that the diagonal elements of Σεδ and Σδ are known.
This assumption was used in the univariate case (i.e. m = 1) to construct the
modified least squares estimators of α and β (see [4]) and also in a multivariate
regression context (see [8]).
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For any i ≤ n, j ≤ m, we have:

E(xij) = E(ξij) + E(δij) = µj ,

E(yij) = α+ βE(ξij) + E(εij) = α+ βµj ,

Var(xij) = Var(ξij) + Var(δij) = σξ,jj + σδ,jj ,

Var(yij) = β2Var(ξij) + Var(εij) = β2σξ,jj + σε,jj ,

Cov(xij , yij) = βVar(ξij) + Cov(εij , δij) = βσξ,jj + σεδ,jj .

Using the method of moments (see also [4], Section 1.3.1), we obtain the
following system of equations, for any j ∈ 1, . . . ,m:

µ̂j =
1

n

n∑

i=1

xij := xj , (2.2)

α̂+ β̂µ̂j =
1

n

n∑

i=1

yij := yj , (2.3)

σ̂ξ,jj + σδ,jj =
1

n

n∑

i=1

(xij − xj)
2, (2.4)

β̂2σ̂ξ,jj + σ̂ε,jj =
1

n

n∑

i=1

(yij − yj)
2, (2.5)

β̂σ̂ξ,jj + σεδ,jj =
1

n

n∑

i=1

(xij − xj)(yij − yj). (2.6)

By taking the sum of the m equations in (2.2) and (2.3), we obtain the
following estimator of α:

α̂n = y − β̂nx, (2.7)

where

x =
1

nm

n∑

i=1

m∑

j=1

xij and y =
1

nm

n∑

i=1

m∑

j=1

yij .

For the purpose of the present article, it is useful to develop a vector notation.
Let

x =
1

n

n∑

i=1

xi and y =
1

n

n∑

i=1

yi

be the average of (x1, . . . ,xn), respectively (y1, . . . ,yn). Note that x is an m-
dimensional random vector whose components are xj , 1 ≤ j ≤ m. Similarly,
y = (y1, . . . , ym)T .

By taking the sum of the m equations in (2.4) and (2.6), we obtain that:

β̂n =

∑n
i=1[(xi − x)T (yi − y)− trace(Σεδ)]∑n

i=1[‖xi − x‖2 − trace(Σδ)]
, (2.8)
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where trace(Σεδ) =
∑m

j=1 σεδ,jj and trace(Σδ) =
∑m

j=1 σδ,jj . The estimator β̂n

is obtained under the additional assumption
∑n

i=1[‖xi − x‖2 − trace(Σδ)] > 0.
We remark that a similar assumption is used in the univariate case in order to
obtain the modified least square estimator (see [4]).

Remark 2.1. A different estimator of β can be obtained using (2.5) and (2.6),
when the diagonal elements of Σεδ and Σε (instead of Σδ) are known. Its form
is similar to (2.8) and the asymptotic results are similar to those derived in this
article.

Remark 2.2. The error-in-variables model with replications is a particular case
of model (2.1), obtained when ξi1 = ξi2 = . . . = ξim. In this case, the form of
the estimators of α and β are also given by (2.7) and (2.8), respectively.

The goal of this article is to evaluate the asymptotic properties of the es-
timators defined by (2.7) and (2.8). This purpose requires the introduction of
additional model assumptions as follows.

The distribution of ξ1 is assumed to be full, i.e. for each m-dimensional vector
of norm 1, u, the random variable uT ξ1 is not a constant, almost surely. This
is a standard assumption in the context of the generalized domain of attraction
of the normal law (GDAN) and allows us to use results obtained in [11] and [7].

Recall that ξ1 −µ has a symmetric distribution if its distribution is equal to
the distribution of −(ξ1 − µ).

Our model assumptions are the following:

(A1) ξ1 lies in GDAN,

ξ1 − µ has a symmetric distribution, whenever the matrix Σξ has at

least one element on the diagonal which is ∞
(A2) E(ε1j) = 0, E(δ1j) = 0, E(ε41j) < ∞, E(δ41j) < ∞ with 1 ≤ j ≤ m,

and Σerror :=

(
Σε Σεδ

ΣT
εδ Σδ

)
is positive definite

(A3) (ξi)1≤i≤n and {(εi, δi)}1≤i≤n are independent.

We note that assumptions (A1)–(A4) are the multidimensional versions of
the assumptions used in [12].

The main results of this article are the consistency theorem (Theorem 4.1)
and the CLT (Theorem 4.12). They are stated as follows:

1. Assume that ξ1 ∈ GDAN and (A3) holds. Then, the estimators β̂n and
α̂n are weakly consistent.
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2. Assume that (A1), (A2) and (A3) hold. Then, as n → ∞, we have:

(a)

∑n
i=1

[
‖xi − x‖2 − trace(Σδ)

]
(β̂n − β)√∑n

i=1 ũi(n)2
D−→ N(0, 1),

(b)

√
n(α̂n − α)√

1
n−1

∑n
i=1(ṽi(n)− ṽ(n))2

D−→ N(0, 1),

where ũi(n) = (xi − x)T (yi − y)− trace(Σεδ)− β̂n[‖xi − x‖2 − trace(Σδ)],

ṽi(n) =
1

m

m∑

j=1

yij − α− β̂n
1

m

m∑

j=1

xij −
nx∑n

i=1[‖xi − x‖2 − trace(Σδ)]
ũi(n)

and ṽ(n) = 1
n

∑n
i=1 ṽi(n).

3. Preliminary results for GDAN

In this section we present the concept of the generalized domain of attraction of
the normal law (GDAN), introduced in [9]. For additional properties of GDAN,
see [11] or [13]. We begin with a definition.

Definition 3.1. Let ξ be an m-dimensional random vector. We say that ξ

belongs to the generalized domain of attraction of the normal law (and we write
ξ ∈ GDAN) if there exists a sequence (Bn)n≥1 of non-stochastic m×m matrices
and a sequence (An)n≥1of non-stochastic m-dimensional vectors, such that:

Bn

(
n∑

i=1

ξi −An

)
D−→ N(0, I), (3.1)

where (ξi)1≤i≤n is a sequence of i.i.d. random vectors with the same distribution
as ξ.

Remark 3.2. (i) If m = 1, the above definition coincides with the definition of
the domain of attraction of the normal law (DAN). It is known that ξ ∈ GDAN

implies that each component ξj ∈ DAN for j ≤ m. In general, the converse of
this statement is not true. However, Remark (ii) of [11] points out that in the
case when ξ has a spherically symmetric distribution, the condition ξ ∈ GDAN

becomes equivalent with the condition that each ξj ∈ DAN for j ≤ m (or to
‖ξ‖ ∈ DAN).

(ii) If ξ = (ξ1, . . . , ξm)T ∈ GDAN , then E(‖ξ‖r) < ∞, for 0 ≤ r < 2 (in
particular, µj = E(ξj) < ∞, for all j ≤ m) and the sequence (An)n≥1 can be
taken as An = nµ, where µ = E(ξ) (see also Remark (ii), p. 193 in [11]).
Note that, if ξ ∈ GDAN , since E(‖ξ‖) < ∞, the condition Var(‖ξ‖) < ∞ is
equivalent to E(‖ξ‖2) < ∞ (or E(|ξj |2) < ∞ for all j ≤ m).

(iii) If Var(‖ξ‖) < ∞, by the classical CLT, the sequence (Bn)n≥1 of (3.1)

can be taken to be Bn =
√
n Σ

−1/2
ξ .

(iv) The matrices Bn can be taken to be nonsingular and symmetric. For a
complete discussion, see Remark (ii) in [11].
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This result is a consequence of Remarks (ii) and (iii), p. 193–194 in [11].

Lemma 3.3. If ξ ∈ GDAN and E(ξ) = µ, then ‖ξ − µ‖ ∈ DAN ,

1

bn

(
n∑

i=1

‖ξi − µ‖ − an

)
D−→ N(0, 1), and

∑n
i=1 ‖ξi − µ‖2

b2n

P−→ 1, (3.2)

where (ξi)1≤i≤n are i.i.d copies of ξ, b2n = trace(B−2
n ), and (Bn)n≥1 is a se-

quence of matrices for which (3.1) holds.

Hereafter, the notationA > 0 will be used to denote a positive definite matrix
and the notation A1/2 will be used for its square root. The eigenvalues of an m-
dimensional matrix A will be denoted by λj(A) and λmax(A) = maxj≤m λj(A).
Also, trace(A) will be used for the sum of its diagonal elements (or, equivalently,
the sum of its eigenvalues).

The following theorem is an essential tool for the development of our asymp-
totic results. The result is important in its own right since it provides sufficient
conditions for the inner product between a random vector in GDAN and a ran-
dom vector with finite fourth order moments to be in the domain of attraction
of the normal law. The case of m = 1 was fully resolved under more general
conditions in [10]. In the case of infinite variance, we assume that ξ − µ has a
symmetric full distribution, as we rely on a result in [6]. We use the method of
the proof of Lemma 4, in [12] adapted to a multivariate setting.

Theorem 3.4. Let ξ = (ξ1, . . . , ξm)T ∈ GDAN be an m-dimensional random
vector with a full distribution. If Var(‖ξ‖) = ∞ we assume, in addition, that the
distribution of ξ − µ is symmetric. Let ε be am m-dimensional random vector,
such that E(ε) = 0 and E(|εj|4) < ∞, for all j ≤ m. Assume that Σε > 0,
where Σε is the covariance matrix of ε. If ξ and ε are independent, then,

ξT ε =
m∑

j=1

ξjεj ∈ DAN.

Proof. Case 1. Assume that Var(‖ξ‖) < ∞. Then, the covariance matrix Σξ

has only finite entries and it follows that Var(ξT ε) < ∞. We will prove that
Var(ξTε) > 0 and the conclusion will follow by applying the CLT.

Since ξ is independent of ε,

Var(ξTε) = trace(ΣξΣε).

Since the distribution of ξ is full, Σξ is positive definite and hence Σ
1/2
ξ ΣεΣ

1/2
ξ

is positive definite. Therefore, trace(ΣξΣε) = trace(Σ
1/2
ξ ΣεΣ

1/2
ξ ) > 0, since

Σε > 0.
Case 2. Assume that Var(‖ξ‖) = ∞ (at least one component of ξ has infinite

variance). In this case, we assume in addition that ξ − µ has a symmetric
distribution. Let {ξi}1≤i≤n and {εi}1≤i≤n be i.i.d copies of ξ and ε, respectively.
We denote ξi = (ξi1, . . . , ξim)T and εi = (εi1, . . . , εim)T .
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(a) Assume that Σε = I. First, we consider the case when E(ξ) = 0.
Since ξ ∈ GDAN , there exist a sequence of symmetric and non-singular

nonstochastic matrices Bn such that Bn

∑n
i=1 ξi

D−→ N(0, I). Denote b2n :=

trace[(Bn)
−2] and note that b2n → ∞. To show that ξTε ∈ DAN , by [1], it

suffices to prove that

b−2
n

n∑

i=1

(ξTi εi)
2 P−→ 1 (3.3)

We have b−2
n

∑n
i=1(ξ

T
i εi)

2 = γn,1γn,2, where:

γn,1 :=

∑n
i=1(ξ

T
i εi)

2

∑n
i=1 ξ

T
i ξi

and γn,2 :=

∑n
i=1 ξ

T
i ξi

b2n
.

By Lemma 3.3, γn,2
P−→ 1.

In what follows we show that γn,1
P−→ 1. Let ǫ > 0 be fixed. Using Cheby-

chev’s inequality, we have the following:

P (|γn,1 − 1| > ǫ) ≤ ǫ−2E



(

n∑

i=1

ξTi (εiε
T
i − I)ξi∑n

i=1 ξ
T
i ξi

)2



= ǫ−2(I1 + I2), (3.4)

where:

I1 = E




n∑

i=1

(
ξTi (εiε

T
i − I)ξi∑n

i=1 ξ
T
i ξi

)2

 ,

I2 = E




n∑

i6=l

ξTi (εiε
T
i − I)ξiξ

T
l (εlε

T
l − I)ξl

(
∑n

i=1 ξ
T
i ξi)

2


 .

We treat I1 first. Let Cn :=
∑n

i=1 ξiξ
T
i which can be assumed by Lemma 2.3 of

[11] to be non-singular. We have the following evaluation:

[ξT1 (ε1ε
T
1 − I)ξ1]

2 ≤ λmax(ξ1ξ
T
1 )λmax[(ε1ε

T
1 − I)2]ξT1 ξ1

≤ trace(ξ1ξ
T
1 )λmax[(ε1ε

T
1 − I)2]ξT1 ξ1

= λmax[(ε1ε
T
1 − I)2](ξT1 ξ1)

2

≤ λmax[(ε1ε
T
1 − I)2]λ2

max(Cn)(ξ
T
1 C

−1
n ξ1)

2.

We have

λmax(Cn) = λmax

(
n∑

i=1

ξiξ
T
i

)
≤

n∑

i=1

λmax(ξiξ
T
i ) ≤

n∑

i=1

trace(ξiξ
T
i ) =

n∑

i=1

ξTi ξi.
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Using the independence between ξ and ε we obtain that

I1 = nE



(
ξT1 (ε1ε

T
1 − I)ξ1∑n

i=1 ξ
T
i ξi

)2



≤ nE(λmax[(ε1ε
T
1 − I)2])E[(ξT1 C

−1
n ξ1)

2].

Using the fact that E(ε4j) < ∞ for all j ≤ m and Σε = I, we obtain:

E{λmax[(ε1ε
T
1 − I)2]} ≤ m2

m∑

j,k=1

E[(ε1jε1k − δjk)
2] ≤ m2

m∑

j,k=1

E(ε21jε
2
1k)

≤ m2
m∑

j=1

E(ε41j) < ∞,

Here we let δjk = 1, if j = k and δjk = 0, if j 6= k.
From the proof of Theorem 3.4 of [6], since ξ ∈ GDAN , it follows that

nE[(ξT1 C
−1
n ξ1)

2]−→0. (This theorem is proved under the assumption that ξ has
a symmetric distribution.) Hence,

I1−→0, as n → ∞. (3.5)

We now treat I2. Using the fact that (ξi)i≤n and (εi)i≤n are identical dis-
tributed, the independence between (ξ1, ξ2) and (ε1, ε2) and the independence
between ε1 and ε2, we obtain:

I2 = (n2 − n)E

[
ξT1 (ε1ε

T
1 − I)ξ1ξ

T
2 (ε2ε

T
2 − I)ξ2

(
∑n

i=1 ξ
T
i ξi)

2

]

= (n2 − n)

m∑

j,k,l,p=1

E(ε1jε1k − δjk)E(ε2lε2p − δlp)E

[
ξ1jξ1kξ2lξ2p

(
∑n

i=1 ξ
T
i ξi)

2

]

= 0, (3.6)

since, E(ε1ε
T
1 ) = I. Note that by Cauchy-Schwarz inequality:

∣∣∣∣∣E
[

ξ1jξ1kξ2lξ2p

(
∑n

i=1 ξ
T
i ξi)

2

]∣∣∣∣∣ ≤
{
E

[
ξ1j

(
∑n

i=1 ‖ξi‖2)1/2
]4

E

[
ξ1k

(
∑n

i=1 ‖ξi‖2)1/2
]4

·

· E

[
ξ2l

(
∑n

i=1 ‖ξi‖2)1/2
]4

E

[
ξ2p

(
∑n

i=1 ‖ξi‖2)1/2
]4}1/4

≤ 1.

From (3.4), (3.5) and (3.6), it follows that γn,1
P−→ 1. This concludes the proof

of (3.3), when E(ξ) = 0.
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Now, consider the case when E(ξ) = µ. Since ξ ∈ GDAN , it follows that
(ξ − µ) ∈ GDAN and E(ξ − µ) = 0. Hence, by applying the first part of the
proof, we obtain (ξ − µ)Tε ∈ DAN . We write:

ξTε = (ξ − µ)T ε+ µTε,

and note that Var(µTε) < ∞. We apply Lemma 5 in [12] to obtain ξTε ∈ DAN .
(b) Assume that Σε is a positive definite covariance matrix. It follows that

ε′ := Σ
−1/2
ε ε is such that E(ε′) = 0 and E[ε′(ε′)T ] = I. If ξ ∈ GDAN , there

exist a sequence of matrices Bn such that Bn(
∑n

i=1 ξi − nµ)
D−→ N(0, I). It

follows that ξ′ := Σε
1/2ξ ∈ GDAN , with B′

n := BnΣε
−1/2 the sequence of

normalizing matrices. We apply part (a) of the proof and obtain (ξ′)T ε′ =
ξT ε ∈ DAN .

Lemma 3.5. Assume that ξ ∈ GDAN , E(ξ) = 0 and Bn

∑n
i=1 ξi

D−→ N(0, I),
where (ξ)1≤i≤n are i.i.d copies of ξ. Let Σ be a positive definite matrix and

denote ξ′ = Σ1/2ξ. Then ξ′ ∈ GDAN , and B′
n

∑n
i=1 ξ

′
i

D−→ N(0, I), where

ξ′i = Σ1/2ξi and B′
n = (Σ−1/2BT

nBnΣ
−1/2)1/2.

Proof. We denote by Cn := BnΣ
−1/2, and so Cn

∑n
i=1 ξ

′
i

D−→ N(0, I). We
apply Lemma 2.1 of [11] to conclude that:

(CT
nCn)

1/2
n∑

i=1

ξ′i
D−→ N(0, I).

The next result gives the rate of convergence for the trace of the sequence
(Bn)n≥1 of normalizing matrices. It will be used frequently in the proofs of the
main results.

Lemma 3.6. Let ξ ∈ GDAN , E(ξ) = µ and (Bn)n≥1 be a sequence for which
(3.1) holds, with An = nµ.

(a) (i) If Var(‖ξ‖) < ∞, n
trace(B−2

n )
= 1

Var(‖ξ−µ‖) , for any n ≥ 1.

(ii) If Var(‖ξ‖) = ∞, n
trace(B−2

n )
→ 0.

(b)
trace(B−2

n
)

n2 → 0, as n → ∞.

Proof. By Lemma 3.3, ‖ξ − µ‖ ∈ DAN and

1

bn

(
n∑

i=1

‖ξi − µ‖ − an

)
D−→ N(0, 1),

where (ξi)i≤n are i.i.d copies of ξ and an = nE(‖ξ1 − µ‖).
(i) If Var(‖ξ‖) < ∞, it follows that σ2 := Var(‖ξ−µ‖) < ∞. Then b2n = nσ2

and so n
b2
n

= 1
σ2 and

b2
n

n2 = σ2

n → 0.

(ii) If Var(‖ξ‖) = ∞, then Var(‖ξ−µ‖) = ∞ and b2n = nl2(n), where l(n) is

a slowly varying function at infinity. Hence n
b2
n

= 1
l2(n) → 0 and

b2
n

n2 = l2(n)
n → 0.
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4. Consistency and Central Limit Theorems

In this section we state and prove our main results: consistency and CLTs for
our estimators. The consistency property is relatively straight-forward. The CLT
requires more work and its proof will be devided into several steps. First, we
consider the case α = 0 and we prove a CLT in which the normalizing factors
depend on β (Theorem 4.4). Next, we remove the condition α = 0 (Theorem 4.7).

Finally, we substitute the unknown parameter β by its estimator, β̂n.

4.1. Consistency

The assumptions required for consistency are slightly weaker than the assump-
tions (A1)–(A3), which are required for CLTs.

Here, we introduce the following assumption:

(A1′) ξ1 ∈ GDAN.

Theorem 4.1. Assume that (A1′) and (A3) are satisfied. Then, the estimators

β̂n and α̂n, given by (2.8) and (2.7) are weakly consistent, i.e. β̂n
P−→ β and

α̂n
P−→ α.

Proof. Let b2n = trace(B−2
n ), where (Bn)n≥1 is a sequence of normalizing ma-

trices for which (3.1) holds, with An = nµ. From (2.8), the consistency of β̂n

follows once we prove that:
∑n

i=1

[
(xi − x)T (yi − y)− trace(Σεδ)

]

b2n

P−→ β, (4.1)

∑n
i=1

[
‖xi − x‖2 − trace(Σδ)

]

b2n

P−→ 1, (4.2)

We denote δ = 1
n

∑n
i=1 δi, ε = 1

n

∑n
i=1 εi, ξ = 1

n

∑n
i=1 ξi. Note that δ is an m-

dimensional random vector with components δj =
1
n

∑n
i=1 δij , where j ≤ m.

Writing xi and yi in terms of ξi, εi and δi we obtain:
∑n

i=1

[
(xi − x)T (yi − y)− trace(Σεδ)

]

b2n
= β

∑n
i=1 ‖ξi − ξ‖2

b2n

+β

∑n
i=1(δi − δ)T (ξi − ξ)

b2n
+

∑n
i=1(ξi − ξ)T (εi − ε)

b2n

+

∑n
i=1

[
(δi − δ)T (εi − ε)− trace(Σεδ)

]

b2n
:= βI1 + βI2 + I3 + I4,

and

∑n
i=1

[
‖xi − x‖2 − trace(Σδ)

]

b2n
=

∑n
i=1 ‖ξi − ξ‖2

b2n

+2

∑n
i=1(δi − δ)T (ξi − ξ)

b2n
+

∑n
i=1

[
‖δi − δ‖2 − trace(Σδ)

]

b2n
:= I1 + 2I2 + I5.



L. Dumitrescu/Estimation for a longitudinal linear model 498

Note that:

I1 =

∑n
i=1 ‖ξi − µ‖2

b2n
− n‖ξ − µ‖2

b2n
,

where the first term converges to 1 in probability, by Lemma 3.3 and the second
term converges to 0 in probability, by the weak law of large numbers (WLLN)

and Lemma 3.6. Hence, I1
P−→ 1. Since 1

n

∑n
i=1 ‖δi − δ‖2 P−→ trace(Σδ), (by

WLLN), using Lemma 3.6, it follows that I5
P−→ 0. Similarly, I4

P−→ 0.
Using the WLLN and the fact that (ξi)i≤n and (δi)i≤n are independent, we

obtain:
∑n

i=1(δi − δ)T (ξi − ξ)

n

P−→ 0.

By Lemma 3.6, it follows that I2
P−→ 0. Similarly, I3

P−→ 0. Hence, (4.1) and

(4.2) hold and therefore β̂n
P−→ β.

By WLLN, we have x
P−→ 1

m

∑m
j=1 µj and y

P−→ α+ β 1
m

∑m
j=1 µj . Since

β̂n
P−→ β, by Slutsky’s theorem, it follows that α̂n = y − β̂nx

P−→ α.

Remark 4.2. If Var(‖ξ‖) < ∞, one can apply the strong law of large numbers

(SLLN) to obtain that α̂n and β̂n are strongly consistent, i.e. β̂n
a.s.−→ β and

α̂
a.s.−→ α. (Details are omitted.)

4.2. CLTs in the case α = 0

In this case, the estimator of β has the following form:

β̂′
n =

∑n
i=1[x

T
i yi − trace(Σδε)]∑n

i=1[‖xi‖2 − trace(Σδ)]
. (4.3)

It follows that:
[

n∑

i=1

[‖xi‖2 − trace(Σδ)]

]
(β̂′

n − β) =

n∑

i=1

ui := nu, (4.4)

where

ui = xT
i yi − trace(Σδε)− β[‖xi‖2 − trace(Σδ)], 1 ≤ i ≤ n. (4.5)

In terms of ξi, εi, δi, we obtain, for 1 ≤ i ≤ n

ui = ξTi εi − βξTi δi + δT
i εi − trace(Σεδ)− β[‖δi‖2 − trace(Σδ)].

Our goal is to prove that u1 ∈ DAN . We first present the general idea of the
proof. By Theorem 3.4, the first two terms of u1 are in DAN. The remaining
terms are clearly also in DAN. The fact that u1 ∈ DAN follows by Lemma 5 of
[12]. We write, for 1 ≤ i ≤ n

ui = bT ζi, (4.6)
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where b = (1,−β, 0, 0, 1,−β) ∈ R
6 and

ζi =

(
ξTi εi, ξ

T
i δi,

1

m

m∑

j=1

εij ,
1

m

m∑

j=1

δij , δ
T
i εi − trace(Σεδ),

‖δi‖2 − trace(Σδ)

)T

. (4.7)

Note that ui are i.i.d. random variables and that E(ζi) = 0, for any i ≤ n.
Let

ζ′
i =

(
(ξi − µ)Tεi, (ξi − µ)Tδi,

1

m

m∑

j=1

εij ,
1

m

m∑

j=1

δij , δ
T
i εi − trace(Σεδ),

‖δi‖2 − trace(Σδ)

)T

. (4.8)

The following result is a generalization of Lemma 6, in [12] to the case when
ξ ∈ GDAN .

Lemma 4.3. Assume that (A1), (A2) and (A3) hold. Let b ∈ R
6 and ζi be

given by (4.7). If |b1|+ |b2| = 0, assume that Var(bTζ1) > 0. Then,

(a) bT ζ1 ∈ DAN and (b) bT ζ ′
1 ∈ DAN.

In particular, u1 ∈ DAN , where u1 is defined by (4.5).

Proof. (a). Since in this proof there is no risk of confusion, we suppress the
index i of the random vectors ζi, ξi, εi and δi.

We write bT ζ = ξT (b1ε+ b2δ) + fb(ε, δ), where

fb(ε, δ) = b3


 1

m

m∑

j=1

εj


+ b4


 1

m

m∑

j=1

δj


+ b5[δ

T ε− trace(Σεδ)]

+ b6[‖δ‖2 − trace(Σδ)].

Case 1. |b1|+ |b2| = 0. By assumption (A2), 0 < Var(bT ζ) = Var(fb(ε, δ)) <
∞, since fb(ε, δ) is a function containing powers of maximum order 2 of ε and
δ. Hence we apply the CLT and obtain bT ζ ∈ DAN.

Case 2. |b1|+ |b2| > 0.
I. Assume that Var(‖ξ‖) < ∞. Then Var(bT ζ) < ∞ and if Var(bT ζ) > 0,

we can apply the CLT to reach the conclusion.
Assume, by contradiction, that Var(bT ζ) = 0. Then bT ζ = C a.s., where C

is a constant. Since E(bT ζ) = 0, it follows that C = 0, (i.e. bT ζ = 0 a.s.).
Now 0 = E[bT ζ|ε, δ] = E[ξT (b1ε+b2δ)+fb(ε, δ)|ε, δ] a.s. Since ξ is indepen-

dent of (ε, δ) and the other terms and factors are (ε, δ)- measurable functions,
we have µT (b1ε+ b2δ) + fb(ε, δ) = 0 a.s., so (ξ − µ)T (b1ε+ b2δ) = 0 a.s.
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But Var[(ξ − µ)T (b1ε + b2δ)] = trace[ΣξVb(ε, δ)] > 0, where Vb(ε, δ) :=
Var(b1ε + b2δ) = (b1)

2Σε + b1b2Σεδ + b1b2Σ
T
εδ + (b2)

2Σδ > 0 and we used
assumptions (A1), (A2) and (A3). We reached a contradiction and therefore,
Var(bT ζ) > 0.

II. Assume that Var(‖ξ‖) = ∞. By Theorem 3.4 we have ξT (b1ε + b2δ) ∈
DAN . Since fb(ε, δ) ∈ DAN , we apply Lemma 5 in [12] to obtain bT ζ ∈ DAN ,
provided we checked two conditions:

(i) E[ξT (b1ε+ b2δ)fb(ε, δ)] < ∞ and
(ii) Var(bT ζ) > 0. Denote Vξ = E(ξξT ). We have:

Var(bT ζ) = Var[ξT (b1ε+ b2δ)] + Var[fb(ε, δ)]

+ 2Cov[ξT (b1ε+ b2δ), fb(ε, δ)]

= trace[VξVb(ε, δ)] + Var[fb(ε, δ)] + 2µTE[(b1ε+ b2δ)fb(ε, δ)]

= ∞,

since the last two terms are finite and, by Lemma A.1,

trace[VξVb(ε, δ)] ≥
trace(Vξ)

trace[V−1
b

(ε, δ)]
= ∞.

(b) Since ξ ∈ GDAN is equivalent to ξ − µ ∈ GDAN , we apply part (a) to
ξ′ = ξ − µ to obtain the conclusion.

Using Lemma 4.3 and the self-normalized and Studentized versions of the
classical CLT, we obtain the following CLTs for β̂n, when α = 0.

Theorem 4.4. Assume that (A1), (A2) and (A3) hold and α = 0. Let β̂′
n be

the estimator given by (4.3). Then, as n → ∞, we have:

(a)

1√
n

∑n
i=1[‖xi‖2 − trace(Σδ)](β̂

′
n − β)

√
1

n−1

∑n
i=1(ui − u)2

D−→ N(0, 1),

(b)

∑n
i=1

[
‖xi‖2 − trace(Σδ)

]
(β̂′

n − β)√∑n
i=1 u

2
i

D−→ N(0, 1),

where ui is given by (4.5) and u = 1
n

∑n
i=1 ui.

Proof. By (4.6) and Lemma 4.3, u1 ∈ DAN . Note that E(u1) = 0. Hence,

√
nu√

1
n−1

∑n
i=1(ui − u)2

D−→ N(0, 1),

∑n
i=1 ui√∑n
i=1 u

2
i

D−→ N(0, 1),

(see e.g. [7]). The conclusion follows by (4.4).
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The next result shows that Theorem 4.4 continues to hold true if we replace
β by β̂′

n in the definition of ui. Its proof is omitted, as it is similar to the proof
of Theorem 4.12 (below).

Theorem 4.5. Assume that (A1), (A2) and (A3) hold and α = 0. Let β̂′
n be

the estimator given by (4.3). Then, as n → ∞, we have:
∑n

i=1[‖xi‖2 − trace(Σδ)](β̂
′
n − β)√∑n

i=1 ũi(n)2
D−→ N(0, 1),

where ũi(n) = xT
i yi − trace(Σεδ)− β̂n[‖xi‖2 − trace(Σδ)].

4.3. CLTs in the case of α arbitrary

We write:
n∑

i=1

[
‖xi − x‖2 − trace(Σδ)

]
(β̂n − β) =

n∑

i=1

ui(n), (4.9)

with

ui(n) = (xi − x)T (yi − y)− trace(Σδε)− β[‖xi − x‖2 − trace(Σδ)]. (4.10)

Note that ui(n) depends on n and β.
Relation (4.10) is of crucial importance and lies at the core of our develop-

ments. The goal is to obtain CLTs for the right hand side of (4.9), which will

give a CLT for β̂n.
We express ui(n) in terms of ξi, εi and δi, for every 1 ≤ i ≤ n.

ui(n) = (ξi − ξ)T (εi − ε)− β(ξi − ξ)T (δi − δ) + (δi − δ)T (εi − ε)

− trace(Σεδ)− β[‖δi − δ‖2 − trace(Σδ)].

Note that
ui(n) = dTηi(n), (4.11)

where d = (0, 0, 1,−β)T and

ηi(n) =

(
1

m

m∑

j=1

yij − α,
1

m

m∑

j=1

xij , (xi − x)T (yi − y)− trace(Σεδ),

‖xi − x‖2 − trace(Σδ)

)T

(4.12)

=

(
β
1

m

m∑

j=1

ξij +
1

m

m∑

j=1

εij ,
1

m

m∑

j=1

ξij +
1

m

m∑

j=1

δij ,

β‖ξi − ξ‖2 + (ξi − ξ)T (εi − ε) + β(ξi − ξ)T (δi − δ)

+(δi − δ)T (εi − ε)− trace(Σεδ),

‖ξi − ξ‖2 + ‖δi − δ‖2 + 2(ξi − ξ)T (δi − δ)− trace(Σδ)

)
.
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(The first two components in the definition of ηi(n) are introduced artificially
at this point, but they will be used in the proofs of the asymptotic properties
of the estimator α̂n.)

The idea is to replace ξi−ξ by ξi−µ in the expression of ui(n), i.e. to obtain
an expression for ui(n) which contains an inner product of the form eT ζ′

i (for
some e ∈ R

6), plus a remainder term. Then, we use the fact that eT ζ′
1 ∈ DAN

(which was shown in Lemma 4.3, (b)).
For a sake of a generalization needed later in the sequel, we consider d ∈ R

4

such that βd1 + d2 = 0 and βd3 + d4 = 0. We have the following decomposition:

dTηi(n) = e1[(ξi − µ)Tεi − εTi (ξ − µ)− εT (ξi − µ) + εT (ξ − µ)]

+ e2[(ξi − µ)Tδi − δT
i (ξ − µ)− δ

T
(ξi − µ) + δ

T
(ξ − µ)]

+ e3
1

m

m∑

j=1

εij + e4
1

m

m∑

j=1

δij

+ e5[δ
T
i εi − δTi ε− δ

T
εi + δ

T
ε− trace(Σεδ)]

+ e6[‖δi‖2 − 2δTi δ + ‖δ‖2 − trace(Σδ)], (4.13)

with
e = (d3, βd3 + 2d4, d1, d2, d3, d4)

T . (4.14)

Therefore, for any d ∈ R
4 which satisfies βd1 + d2 = 0 and βd3 + d4 = 0, we

write:
dTηi(n) = eT ζ′

i +Ri(n), (4.15)

where ζ′
i is given by (4.8) and

Ri(n) := e1[−εTi (ξ − µ)− εT (ξi − µ) + εT (ξ − µ)]

+ e2[−δTi (ξ − µ)− δ
T
(ξi − µ) + δ

T
(ξ − µ)]

+ e5(−δTi ε− δ
T
εi + δ

T
ε)

+ e6(−2δTi δ + ‖δ‖2).

In particular, (4.15) holds for d = (0, 0, 1,−β)T , in which case (4.15) gives a
representation of ui(n).

The next result is a self-normalized (and Studentized) CLT for the sequence
{dT ηi(n)}i≤n, (and in particular, for {ui(n)}i≤n).

Lemma 4.6. Assume that (A1), (A2) and (A3) hold. Let d ∈ R
4 which satisfies

βd1 + d2 = 0, βd3 + d4 = 0 and e be given by (4.14). If |e1|+ |e2| = 0, assume
that Var(eTζ ′

i) > 0, where ζ′
i is given by (4.8). Then, as n → ∞:

(a)

√
n dTη(n)√

1
n−1

∑n
i=1[d

T (ηi(n)− η(n))]2

D−→ N(0, 1),

(b)
ndTη(n)√∑n
i=1(d

Tηi(n))
2

D−→ N(0, 1),
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with ηi(n) given by (4.12), dTη(n) = 1
n

∑n
i=1 d

Tηi(n) and η(n) = 1
n

∑n
i=1 ηi(n).

Proof. By (4.15), it follows that dTη(n) = eT ζ′ +R(n), where

eT ζ′ =
1

n

n∑

i=1

eT ζ ′
i, R(n) =

1

n

n∑

i=1

Ri(n),

and therefore:

√
n dTη(n)√

1
n−1

∑n
i=1[d

T (ηi(n)− η(n))]2
= I1 + I2,

where:

I1 :=

√
n eT ζ ′

√
1

n−1

∑n
i=1[d

T (ηi(n)− η(n))]2
,

I2 :=

√
n R(n)√

1
n−1

∑n
i=1[d

T (ηi(n)− η(n))]2
.

We write:

I1 =

√
n eT ζ′

√
1

n−1

∑n
i=1[e

T (ζ ′
i − ζ′)]2

·

√√√√
∑n

i=1[e
T (ζ ′

i − ζ′)]2
∑n

i=1[d
T (ηi(n)− η(n))]2

,

I2 =

√
n R(n)√

1
n−1

∑n
i=1[e

T (ζ ′
i − ζ′)]2

·

√√√√
∑n

i=1[e
T (ζ ′

i − ζ′)]2
∑n

i=1[d
T (ηi(n)− η(n))]2

,

where ζ′ = 1
n

∑n
i=1 ζ

′
i. We will prove that, as n → ∞:

√
n R(n)√

1
n−1

∑n
i=1[e

T (ζ ′
i − ζ′)]2

P−→ 0, (4.16)

∑n
i=1[d

T (ηi(n)− η(n))]2
∑n

i=1[e
T (ζ ′

i − ζ ′)]2
P−→ 1. (4.17)

By Lemma 4.3, (b) with b = e, eT ζ′
1 ∈ DAN and so:

√
n eT ζ ′

√
1

n−1

∑n
i=1[e

T (ζ ′
i − ζ′)]2

D−→ N(0, 1).

This result and (4.17) imply I1
D−→ N(0, 1), by Slutsky’s Theorem. Furthermore,

from (4.16) and (4.17), we obtain I2
P−→ 0. Therefore, the convergence in (a)
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would follow by applying Slutsky’s Theorem. The proofs of (4.16) and (4.17)
are given in Appendix C.

Part (a) can be used to prove part (b). We have:

ndTη(n)√∑n
i=1(d

Tηi(n))
2

=

√
n dTη(n)√

1
n−1

∑n
i=1[d

T (ηi(n)− η(n))]2
·
√

n

n− 1

·

√∑n
i=1[d

T (ηi(n)− η(n))]2∑n
i=1(d

Tηi(n))
2

.

By (a), the first factor converges in distribution to N(0, 1). Hence, by Slutsky’s
Theorem, to obtain the convergence in (b), it suffices to prove:

∑n
i=1(d

Tηi(n))
2

∑n
i=1[d

T (ηi(n)− η(n))]2
P−→ 1. (4.18)

Using the result in (a), we obtain:

n(dTη(n))2
∑n

i=1[d
T (ηi(n)− η(n))]2

=
1

n− 1





√
n dTη(n)√

1
n−1

∑n
i=1[d

T (ηi(n)− η(n))]2





2

=
OP (1)

n− 1
= op(1).

Relation (4.18) follows by applying Lemma A.2, with si = dTηi(n), ti =
dT [ηi(n)− η(n)].

The next theorem gives CLTs for β̂n, as a direct consequence of Lemma 4.6.
Note that the normalizing factors in the CLTs depend on the parameter β. In
Theorem 4.12 we show that the result is still valid with β replaced by β̂n, for
large values of n.

Theorem 4.7. Assume that (A1), (A2) and (A3) hold. Let β̂n be the estimator
given by (2.8). Then, as n → ∞, we have:

(a)

1√
n

∑n
i=1

[
‖xi − x‖2 − trace(Σδ)

]
(β̂n − β)

√
1

n−1

∑n
i=1[ui(n)− u(n)]2

D−→ N(0, 1),

(b)

∑n
i=1

[
‖xi − x‖2 − trace(Σδ)

]
(β̂n − β)√∑n

i=1 ui(n)2
D−→ N(0, 1),

where ui(n) is given by (4.10) and u(n) = 1
n

∑n
i=1 ui(n).

Proof. Due to (4.11) and (4.9), the results follow by applying Lemma 4.6, with
eT = (1,−β, 0, 0, 1,−β).
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To examine the asymptotic behavior of α̂n we need three auxiliary results.
We placed their proofs in Appendix to preserve the flow of the reading process.

The first result gives the convergence rate of 1
n

∑n
i=1 b

T ζi. The proof is given
in Appendix B.1.

Lemma 4.8. Under the same hypotheses as in Lemma 4.3, as n → ∞:

1

n

n∑

i=1

bT ζi =

{ 1√
n
OP (1), if Var(‖ξ‖) < ∞, or b1 = b2 = 0√
c2
n

n2OP (1), if Var(‖ξ‖) = ∞, and |b1|+ |b2| > 0,

where c2n = trace(ΣγB
−2
n ), with Σγ = E(γiγ

T
i ), γi = b1εi + b2δi, for i ≤ n and

(Bn)n≥1 is a sequence of symmetric matrices such that Bn

∑n
i=1(ξi − µ)

D−→
N(0, I). The sequence (cn)n≥1 satisfies

c2
n

n2 → 0.

The next result gives the convergence rate of dTη(n) = 1
n

∑n
i=1 d

Tηi(n). Its
proof is given in Appendix B.2 and essentially follows from Lemma 4.8, with
b = e, and (4.17).

Lemma 4.9. Under the same hypotheses as in Lemma 4.6, as n → ∞:

dTη(n) =

{ 1√
n
OP (1), if Var(‖ξ‖) < ∞ or e1 = e2 = 0√
c2
n

n2OP (1), if Var(‖ξ‖) = ∞ and |e1|+ |e2| > 0,

where c2n = trace(ΣγB
−2
n ), with Σγ = E(γiγ

T
i ), γi = e1εi + e2δi, for i ≤ n and

(Bn)n≥1 is a sequence of symmetric matrices such that Bn

∑n
i=1(ξi − µ)

D−→
N(0, I).

The next result gives the asymptotic convergence rate of the estimator β̂n to
β. Its proof is presented in Appendix B.3.

Lemma 4.10. Assume that (A1), (A2) and (A3) hold. Let β̂n be the estimator
given by (2.8). Then, as n → ∞:

(a)
b2n√
n
(β̂n − β)

D−→ N(0, λ2), if Var(‖ξ‖) < ∞,

(b)
b2n√
c2n

(β̂n − β)
D−→ N(0, 1), if Var(‖ξ‖) = ∞,

where b2n = trace(B−2
n ), (Bn)n≥1 is a sequence of m×m non-stochastic matrices

such that Bn

∑n
i=1(ξi − µ)

D−→ N(0, I), (cn)n≥1 is the sequence of constants
defined as in Lemma 4.8, with γi = εi − βδi, for 1 ≤ i ≤ n and λ > 0 is a
constant.

The next theorem gives a CLT for α̂n.
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Theorem 4.11. Assume that (A1), (A2) and (A3) hold. Let α̂n be the estimator
given by (2.7). Then, as n → ∞, we have:

√
n(α̂n − α)√

1
n−1

∑n
i=1(vi(n)− v(n))2

D−→ N(0, 1),

where vi(n) =
1
m

∑m
j=1 yij − α− β

m

∑m
j=1 xij − x ui(n)

1

n

∑
n

i=1
‖xi−x‖2−trace(Σδ)

,

ui(n) is given by (4.10) and v(n) = 1
n

∑n
i=1 vi(n).

Proof. We divide the proof into two cases and use the notation µ = 1
m

∑m
j=1 µj .

Case 1. Assume that Var(‖ξ‖) < ∞. We use (4.9) in the following decompo-
sition for α̂n − α:

α̂n − α = y − α− β̂nx

= y − α− x

∑n
i=1[ui(n) + β(‖xi − x‖2 − trace(Σδ))]∑n

i=1[‖xi − x‖2 − trace(Σδ)]

= y − α− βx − u(n)
nx∑n

i=1[‖xi − x‖2 − trace(Σδ)]
.

We introduce v′i(n) =
1
m

∑m
j=1 yij − α− β 1

m

∑m
j=1 xij − µ

trace(Σξ)
ui(n) and note

that v′(n) = 1
n

∑n
i=1 v

′
i(n) = y − α− βx− u(n) µ

trace(Σξ)
. Hence:

α̂n − α = v′(n) + u(n)

(
µ

trace(Σξ)
− nx∑n

i=1[‖xi − x‖2 − trace(Σδ)]

)
.

By (4.11) and Lemma 4.9, with d = (0, 0, 1,−β)T ,
√
nu(n) = OP (1).

By (4.2),
∑

n

i=1
[‖xi−x‖2−trace(Σδ)]

b2
n

P−→ 1, where b2n = ntrace(Σξ) and so

1

n

n∑

i=1

‖xi − x‖2 − trace(Σδ)
P−→ trace(Σξ). (4.19)

Using the WLLN, x
P−→ µ and it follows that

√
nu(n)

(
µ

trace(Σξ)
− x

1
n

∑n
i=1 ‖xi − x‖2 − trace(Σδ)

)
= oP (1).

Therefore, we have

√
n(α̂n − α) =

√
n v′(n) + oP (1). (4.20)

Note that v′i(n) = dTηi(n), where d =
(
1,−β,− µ

trace(Σξ)
, βµ
trace(Σξ)

)T
, and so

using (B.6), it follows that

1

n

n∑

i=1

[v′i(n)− v′i(n)]
2 P−→ Var(eT ζ′

1) > 0, (4.21)
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where e =
(
− µ

trace(Σξ)
, βµ
trace(Σξ)

, 1,−β,− µ
trace(Σξ)

, βµ
trace(Σξ)

)T
.

Therefore, we apply Slutsky’s Theorem, to obtain

√
n(α̂n − α)√

1
n−1

∑n
i=1[v

′
i(n)− v′(n)]2

D−→ N(0, 1). (4.22)

Slutsky’s Theorem applied again completes the proof once we proved that:

∑n
i=1[vi(n)− v(n)]2

∑n
i=1[v

′
i(n)− v′(n)]2

P−→ 1. (4.23)

This convergence is proved in Appendix D.
Case 2. Assume that Var(‖ξ‖) = ∞. In this case we use a different decom-

position of α̂n − α. We write:

α̂n − α = y − α− β̂nx = y − α− βx − (β̂n − β)x = v′′ − (β̂n − β)x,

where v′′= 1
n

∑n
i=1v

′′
i and v′′i =

1
m

∑m
j=1yij−α−β 1

m

∑m
j=1xij=

1
m

∑m
j=1(εij−βδij).

Note that v′′i = d′Tηi(n), with d′ = (1,−β, 0, 0)T .
We have:

√
n(α̂n − α)√

1
n−1

∑n
i=1[vi(n)− v(n)]2

=

√
n v′′ −√

n x(β̂n − β)√
1

n−1

∑n
i=1[v

′′
i − v′′]2

·
√ ∑n

i=1[v
′′
i − v′′]2

∑n
i=1[vi(n)− v(n)]2

. (4.24)

We use Lemma 4.10, Lemma A.1 and Lemma 3.6, (a) to obtain
√
n(β̂n − β) = oP (1). By WLLN we have: x

P−→ µ and:

1

n− 1

n∑

i=1

[v′′i − v′′]2
P−→ Var(v′′1 ) > 0, (4.25)

where the inequality follows from assumption (A2).

Hence, we obtain
√
n x(β̂n−β)√

1

n−1

∑
n

i=1
[v′′

i
−v′′]2

= oP (1), which by applying Lemma 4.6,

with d′ = (1,−β, 0, 0)T and Slutsky’s Theorem implies that the first factor in
(4.24) converges in distribution to N(0, 1). To finish the proof, it remains to
show: ∑n

i=1[vi(n)− v(n)]2∑n
i=1[v

′′
i − v′′]2

P−→ 1, (4.26)

which is done in Appendix D.

The normalizers of the CLTs in Theorem 4.7 and Theorem 4.11 depend on
β. The next result proves that, under the same assumptions, we can substitute
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the unknown parameter β by its estimator, β̂n, for large values of n. The idea
is to show that the normalizer

∑n
i=1 ui(n)

2 has the same asymptotic behavior
as
∑n

i=1 ũi(n)
2, where ũi(n) has the same expression as ui(n), with β replaced

by β̂n.

Theorem 4.12. Assume that (A1), (A2) and (A3) hold. Then, as n → ∞, we
have:

(a)

∑n
i=1[‖xi − x‖2 − trace(Σδ)](β̂n − β)√∑n

i=1 ũi(n)2
D−→ N(0, 1),

(b)

√
n(α̂n − α)√

1
n−1

∑n
i=1(ṽi(n)− ṽ(n))2

D−→ N(0, 1),

where ũi(n) = (xi − x)T (yi − y)− trace(Σεδ)− β̂n[‖xi − x‖2 − trace(Σδ)], β̂n

is given by (2.8), α̂n is given by (2.7),

ṽi(n) =
1

m

m∑

j=1

yij − α− β̂n
1

m

m∑

j=1

xij −
nx∑n

i=1[‖xi − x‖2 − trace(Σδ)]
ũi(n),

and ṽ(n) = 1
n

∑n
i=1 ṽi(n).

Proof. (a) Note that the numerator of the ratio is
∑n

i=1 ui(n), by (4.9). We
write: ∑n

i=1 ui(n)√∑n
i=1 ũi(n)2

=

∑n
i=1 ui(n)√∑n
i=1 ui(n)2

·
√∑n

i=1 ui(n)2∑n
i=1 ũi(n)2

. (4.27)

The first factor in (4.27) converges in distribution to N(0, 1), by Theorem 4.7,
(b). The proof will be complete once we show that:

∑n
i=1 ũi(n)

2

∑n
i=1 ui(n)2

P−→ 1. (4.28)

By Lemma A.2, it is enough to prove:
∑n

i=1[ũi(n)− ui(n)]
2

∑n
i=1 ui(n)2

P−→ 0. (4.29)

Using (4.9) and the definitions of ui(n) and ũi(n), we have

n∑

i=1

[ũi(n)− ui(n)]
2 =

[
n∑

i=1

ui(n)

]2 ∑n
i=1[‖xi − x‖2 − trace(Σδ)]

2

{∑n
i=1[‖xi − x‖2 − trace(Σδ)]}2

.

Since,
∑

n

i=1
ui(n)√∑

n

i=1
ui(n)2

D−→ N(0, 1), by Lemma 4.6 and (4.11), to prove (4.29), it

suffices to show:
∑n

i=1

[
‖xi − x‖2 − trace(Σδ)

]2

{
∑n

i=1 [‖xi − x‖2 − trace(Σδ)]}2
P−→ 0. (4.30)
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The convergence in (4.30) will follow from (4.2) and:

∑n
i=1

[
‖xi − x‖2 − trace(Σδ)

]2

(b2n)
2

P−→ 0, (4.31)

where b2n = trace(B−2
n ) and (Bn)n≥1 is a sequence of matrices such that

Bn

n∑

i=1

(ξi − µ)
D−→ N(0, I).

We write
∑n

i=1

[
‖xi − x‖2 − trace(Σδ)

]2

(b2n)
2

=

∑n
i=1 ‖xi − x‖4

(b2n)
2

+ n
[trace(Σδ)]

2

(b2n)
2

− 2trace(Σδ)

∑n
i=1 ‖xi − x‖2

(b2n)
2

:= J1 + J2 + J3.

We use (4.2) to obtain J3
P−→ 0 and Lemma 3.6, (a) to obtain J2 → 0. It remains

to show that J1
P−→ 0. We have:

∑n
i=1 ‖xi − x‖4

(b2n)
2

≤ 4

∑n
i=1 ‖ξi − ξ‖4

(b2n)
2

+ 4

∑n
i=1 ‖δi − δ‖4

(b2n)
2

≤ 16

(∑n
i=1 ‖ξi − µ‖4

(b2n)
2

+

∑n
i=1 ‖δi‖4
(b2n)

2

+ n
‖ξ − µ‖4
(b2n)

2
+ n

‖δ‖4
(b2n)

2

)

:= 16(T1 + T2 + T3 + T4).

We prove that Ti
P−→ 0, for all i = 1, 2, 3, 4. We first treat T1 and write:

T1 =

∑n
i=1 ‖ξi − µ‖4

(b2n)
2

=

∑n
i=1 ‖ξi − µ‖4

(
∑n

i=1 ‖ξi − µ‖2)2
·
(∑n

i=1 ‖ξi − µ‖2
b2n

)2

,

where the last factor converges to 1, in probability, by Lemma 3.3 and therefore

is bounded, in probability. Hence, T1
P−→ 0, if we prove that

∑n
i=1 ‖ξi − µ‖4

(
∑n

i=1 ‖ξi − µ‖2)2
P−→ 0.

Let ǫ > 0 be arbitrary. By Markov’s inequality and the fact that (ξi)1≤i≤n

are i.i.d. random vectors:

P

(∣∣∣∣∣

∑n
i=1 ‖ξi − µ‖4

(
∑n

i=1 ‖ξi − µ‖2)2

∣∣∣∣∣ > ǫ

)
≤ ǫ−1nE

[
‖ξ1 − µ‖4

(
∑n

i=1 ‖ξi − µ‖2)2

]

= ǫ−1nE

[(
ZT
1 Z1∑n

i=1 Z
T
i Zi

)2
]
, (4.32)
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where we have denoted Zi = ξi − µ. We have the following inequalities:

ZT
1 Z1∑n

i=1 Z
T
i Zi

≤ 1∑n
i=1 λmax(ZiZ

T
i )

ZT
1 Z1 ≤ λmin



(

n∑

i=1

ZiZ
T
i

)−1

ZT

1 Z1

≤ ZT
1

(
n∑

i=1

ZiZ
T
i

)−1

Z1. (4.33)

From the proof of Theorem 3.4 of [6], since Z1 ∈ GDAN , it follows that

nE






ZT

1

(
n∑

i=1

ZiZ
T
i

)−1

Z1



2




→ 0,

and hence by (4.33) and (4.32), we obtain
∑

n

i=1
‖ξ

i
−µ‖4

(
∑

n

i=1
‖ξ

i
−µ‖2)

2 = oP (1).

Similarly,
∑

n

i=1
‖δi‖4

(
∑

n

i=1
‖δi‖2)

2 = oP (1), since δ1 ∈ GDAN . We write:

T2 =

∑n
i=1 ‖δi‖4
(b2n)

2
= oP (1) ·

[∑n
i=1 ‖δi‖2

ntrace(Σδ)

]2
·
[
ntrace(Σδ)

b2n

]2
.

By WLLN,
∑

n

i=1
‖δi‖2

ntrace(Σδ)
→ 1, in probability. In addition, ntrace(Σδ)

b2
n

is bounded,

by Lemma 3.6, (a) and hence, T2 → 0, in probability.
Also, Ti → 0, in probability, where i = 3, 4, by WLLN and Lemma 3.6, (a).

This finishes the proof of J1
P−→ 0.

For the proof of (b), we use Theorem 4.11 and Slutsky’s Theorem. Hence, it
suffices to show: ∑n

i=1[ṽi(n)− ṽ(n)]2
∑n

i=1[vi(n)− v(n)]2
P−→ 1. (4.34)

By Lemma A.2, it suffices to prove:

∑n
i=1{ṽi(n)− vi(n)− [ṽ(n)− v(n)]}2

∑n
i=1[vi(n)− v(n)]2

P−→ 0. (4.35)

We have

n∑

i=1

{ṽi(n)− vi(n)− [ṽ(n)− v(n)]}2

=

n∑

i=1



(β − β̂n)


 1

m

m∑

j=1

xij − x


− nx∑n

i=1[‖xi − x‖2 − trace(Σδ)]

· {ũi(n)− ui(n)− [ũ(n)− u(n)]}
}2
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≤ 2(β − β̂n)
2

n∑

i=1


 1

m

m∑

j=1

xij − x




2

+ 2

(
nx∑n

i=1[‖xi − x‖2 − trace(Σδ)]

)2 n∑

i=1

{ũi(n)− ui(n)− [ũ(n)− u(n)]}2

= 2I1 + 2I2 · I3,
where we have denoted by:

I1 := (β̂n − β)2
n∑

i=1


 1

m

m∑

j=1

xij − x




2

,

I2 :=

(
nx∑n

i=1[‖xi − x‖2 − trace(Σδ)]

)2

,

I3 :=

n∑

i=1

{ũi(n)− ui(n)− [ũ(n)− u(n)]}2.

By (D.3),

I2 =
n2

(b2n)
2
OP (1). (4.36)

We have the following inequality:

I1 ≤ 2(β̂n − β)2




n∑

i=1


 1

m

m∑

j=1

ξij − ξ




2

+

n∑

i=1


 1

m

m∑

j=1

δij − δ




2

,

where ξ = 1
nm

∑n
i=1

∑m
j=1 ξij and δ = 1

nm

∑n
i=1

∑m
j=1 δij .

Since ũi(n)− ui(n) = (β − β̂n)[‖xi − x‖2 − trace(Σδ)], it follows that:

I3 ≤ 2(β̂n − β)2

{
n∑

i=1

[‖xi − x‖2 − trace(Σδ)]
2

+ n

[
1

n

n∑

i=1

‖xi − x‖2 − trace(Σδ)

]2


= 2(β̂n − β)2

{
n∑

i=1

[‖xi − x‖2 − trace(Σδ)]
2

+
1

n

[
n∑

i=1

[‖xi − x‖2 − trace(Σδ)]

]2
 ,

= (β̂n − β)2
[
(b2n)

2oP (1) +
1

n
(b2n)

2OP (1)

]

= 2(β̂n − β)2(b2n)
2oP (1), (4.37)

using (4.31) and (4.2).
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From (4.36) and (4.37) we get I2 · I3 = n2(β̂n − β)2oP (1).

Since the asymptotic behavior of β̂n−β is different in the cases Var(‖ξ‖) < ∞
and Var(‖ξ‖) = ∞, we have to consider these cases separately.

Case 1. Assume that Var(‖ξ‖) < ∞.
We apply WLLN and so:

1

n

n∑

i=1


 1

m

m∑

j=1

ξij − ξ




2

P−→ 1

m2

m∑

j,k=1

σξ,jk,

1

n

n∑

i=1


 1

m

m∑

j=1

δij − δ




2

P−→ 1

m2

m∑

j,k=1

σδ,jk.

By Lemma 4.10, (a) and Lemma 3.6, (a), we obtain 1
nI1 ≤ n

(b2
n
)2OP (1) = oP (1)

and 1
nI2 · I3 = 1

nn
2OP (1)

n
(b2

n
)2 oP (1) = op(1).

Hence, 1
n

∑n
i=1{ṽi(n)− vi(n)− [ṽ(n)− v(n)]}2 = oP (1).

By (4.23) and (4.21), the sequence
{

1
n

∑n
i=1[vi(n)− v(n)]2

}
n≥1

has a positive

finite limit, in probability. Hence, (4.35) follows in this case.
Case 2. Assume that Var(‖ξ‖) = ∞.
By Assumption (A1), ξ1 ∈ GDAN and therefore, by Theorem 1.1 in [13], we

obtain 1
m

∑m
j=1 ξ1j ∈ DAN . Let (bn)n≥1 be a sequence of constants such that

1

bn

n∑

i=1


 1

m

m∑

j=1

ξij − µ


 D−→ N(0, 1).

Hence, 1

b
2

n

∑n
i=1

(
1
m

∑m
j=1 ξij − µ

)2 P−→ 1. By applying WLLN, the following

term converges to 1, in probability

1

b
2

n

n∑

i=1


 1

m

m∑

j=1

ξij − ξ




2

=
1

b
2

n




n∑

i=1


 1

m

m∑

j=1

ξij − µ




2

− n(ξ − µ)2




and

1

b
2

n

n∑

i=1


 1

m

m∑

j=1

δij − δ




2

=
n

b
2

n

OP (1) = oP (1),

using the fact that b
2

n = nl2(n), where l(n) it is a slowly varying function at ∞.
Hence

n∑

i=1


 1

m

m∑

j=1

ξij − ξ




2

+

n∑

i=1


 1

m

m∑

j=1

δij − δ




2

= b
2

n[OP (1) + oP (1)].
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By Lemma 4.10, β̂n − β =

√
c2
n

b2
n

OP (1), with c2n = trace(ΣγB
−2
n ) and γi =

εi − βδi, for i ≤ n. Hence, (β̂n − β)2 =
c2
n

(b2
n
)2OP (1) and so

1

n− 1
I1 =

b
2

nc
2
n

(n− 1)(b2n)
2
OP (1)[OP (1) + oP (1)] = oP (1).

In addition, 1
n−1I2 · I3 =

n2c2
n

(n−1)(b2
n
)2OP (1)oP (1) = oP (1). Therefore,

1

n− 1

n∑

i=1

{ṽi(n)− vi(n)− [ṽ(n)− v(n)]}2 = oP (1).

From (4.26) and (4.25), it follows that
{

1
n−1

∑n
i=1[vi(n)− v(n)]2

}
n≥1

has a

positive finite limit, in probability.

Remark 4.13. (see also Remark 2.2)
In the case of replications, the assumption that ξ has a full distribution

does not hold. Nevertheless, the results remain valid, under slightly different
conditions:

(A1) ξ1 lies in the domain of attraction of the normal law (DAN)

(A2) E(ε1j) = 0, E(δ1j) = 0, E(ε41j) < ∞, E(δ41j) < ∞ with 1 ≤ j ≤ m,

and Σ∗
error :=

(
σ∗
ε σ∗

εδ

σ∗
εδ σ∗

δ

)
is positive definite

(A3) (ξi)1≤i≤n and {(εi, δi)}1≤i≤n are independent.

where σ∗
ε =

∑m
j,k=1 σε,jk, σ

∗
δ =

∑m
j,k=1 σδ,jk, σ

∗
εδ =

∑m
j,k=1 σεδ,jk.

In this case,

ζ1 =

(
ξ1

m∑

j=1

ε1j , ξ1

m∑

j=1

δ1j ,
1

m

m∑

j=1

ε1j ,
1

m

m∑

j=1

δ1j , δ
T
1 ε1 − trace(Σεδ),

‖δ1‖2 − trace(Σδ)

)T

.

One can follow the steps in the proof of Lemma 4.3 and use Lemma 4 in [12] in
lieu of Theorem 3.4 to obtain this result. Furthermore, one can prove Theorem
4.4, Theorem 4.7 and Theorem 4.12, using similar arguments.

Note that in this special case of repeated measurements, the converse of
Lemma 4.3 also holds true, by Theorem 1 in [10]. Hence, in this case the as-
sumption (A1∗) becomes necessary for the CLT in Theorem 4.4 and Theorem
4.7, by Lemma 7 in [12].
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Appendix A: Auxiliary results

The first lemma is essential for the development of our results and enables us
to find the relationship between the trace of ΣBn and the trace of Bn.

Lemma A.1. Assume that A and B are two m×m symmetric matrices such
that A is positive definite and B is positive semidefinite. Then:

trace(B)

trace(A−1)
≤ trace(AB) = trace(BA) ≤ trace(A)trace(B)

Proof. The second inequality follows from Theorem 6.5, of [14]. Applying the
theorem again, since A1/2BA1/2 is positive definite, we obtain:

trace(B) = trace(A1/2BA1/2A−1) ≤ trace(A1/2BA1/2)trace(A−1)

= trace(AB)trace(A−1).

Lemma A.2. If (si)i≥1 and (ti)i≥1 are sequences of random variables such

that:
∑

n

i=1
(si−ti)

2

∑
n

i=1
t2
i

P−→ 0, then
∑

n

i=1
s2
i∑

n

i=1
t2
i

P−→ 1.

Proof. We have |∑n
i=1(s

2
i − t2i )| = |∑n

i=1[(si − ti)
2 +2ti(si − ti)]| ≤

∑n
i=1(si −

ti)
2 + 2(

∑n
i=1 t

2
i )

1/2[
∑n

i=1(si − ti)
2]1/2 and therefore:

∣∣∣∣
∑n

i=1(s
2
i − t2i )∑n

i=1 t
2
i

∣∣∣∣ ≤
∑n

i=1(si − ti)
2

∑n
i=1 t

2
i

+ 2

(∑n
i=1(si − ti)

2

∑n
i=1 t

2
i

)1/2

.

The result follows since, by hypothesis, the right hand side converges to 0, in
probability.

Appendix B: Proof of Lemmas 4.8, 4.9 and 4.10

B.1. Proof of Lemma 4.8

By Lemma 4.3, bT ζ1 ∈ DAN and so:

√
n bT ζ√

1
n−1

∑n
i=1[b

T (ζi − ζ)]2

D−→ N(0, 1), (B.1)

where bT ζ = 1
n

∑n
i=1 b

T ζi and ζ = 1
n

∑n
i=1 ζi.

Case 1. Assume that Var(‖ξ‖) < ∞ or b1 = b2 = 0. Since Var(bT ζ1) < ∞,
we apply WLLN to obtain:

1

n

n∑

i=1

[bT (ζi − ζ)]2
P−→ Var(bTζ1) > 0. (B.2)
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(The fact that Var(bTζ1) > 0 follows by hypothesis, if b1 = b2 = 0, and was
shown in the proof of Lemma 4.3, if |b1| + |b2| > 0.) Using Slutsky’s Theorem,

(B.1) and (B.2) we obtain bT ζ = OP (1)√
n

.

Case 2. Assume that Var(‖ξ‖) = ∞ and |b1|+ |b2| > 0.
Let (cn)n≥1 be a sequence of positive constants. Then:

√
n(n− 1)

c2n
bT ζ =

√
nbT ζ√

1
n−1

∑n
i=1[b

T (ζi − ζ)]2

√∑n
i=1[b

T (ζi − ζ)]2

c2n
.

By (B.1), the first factor of the product converges in distribution to N(0, 1) and
we show

n∑

i=1

[bT (ζi − ζ)]2

c2n

P−→ 1. (B.3)

From the proof of Lemma 4.3, we recall that, for each i ≤ n

bT ζi = ξTi γi + fb(εi, δi), (B.4)

where γi = b1εi + b2δi and

fb(εi, δi) = b3


 1

m

m∑

j=1

εij


+ b4


 1

m

m∑

j=1

δij


+ b5[δ

T
i εi − trace(Σεδ)]

+ b6[‖δi‖2 − trace(Σδ)].

Note that Σγ = E(γ1γ
T
1 ) > 0, since Σerror > 0. We denote γ′

i = Σ
−1/2
γ γi, and

ξ′i := Σ
1/2
γ (ξi − µ) for all i ≤ n. It follows that Var(γ ′

i) = I and E(ξ′i) = 0, for
all i ≤ n.

We first prove that

1

c2n

n∑

i=1

(ξTi γi)
2 P−→ 1.

Let (Bn)n≥1 be a sequence of symmetric matrices such that Bn

∑n
i=1(ξi −

µ)
D−→ N(0, I).

By Lemma 3.5, ξ′1 ∈ GDAN , and B′
n

∑n
i=1 ξ

′
i

D−→ N(0, I), where B′
n =

(CT
nCn)

1/2, and Cn = BnΣγ
−1/2. From the proof of Theorem 3.4, Case 2, (a)

(applied to ξ′1 and γ′
1) it follows that:

1

c2n

n∑

i=1

[ξ′Ti γ′
i]
2 P−→ 1, (B.5)

where

c2n = trace[(B′
n)

−2] = trace[(CT
nCn)

−1] = trace[Σ1/2
γ B−2

n Σ1/2
γ ]

= trace[Σγ(Bn)
−2].
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Since (ξi − µ)Tγi = (ξ′i)
Tγ′

i, (B.5) becomes:

1

c2n

n∑

i=1

[(ξi − µ)Tγi]
2 P−→ 1.

We write:
∑n

i=1(ξ
T
i γi)

2

c2n
=

∑n
i=1[(ξi − µ)Tγi]

2

c2n
+

∑n
i=1(µ

Tγi)
2

c2n

+ 2

∑n
i=1[(ξi − µ)Tγi](µ

Tγi)

c2n
,

and prove that the last two terms of the sum converge to 0 in probability.

Using (A2), we have
∑

n

i=1
‖γ

i
‖2

d2
n

P−→ 1, where d2n := ntrace(Σγ) > 0. By the

Cauchy-Scwharz inequality
∑

n

i=1
(µTγ

i
)2

c2
n

≤ ‖µ‖2
∑

n

i=1
‖γ

i
‖2

d2
n

d2

n

c2
n

. We have to show

that limn→∞
d2

n

c2
n

= 0. By Lemma A.1, c2n ≥ trace[(Bn)
−2]

trace[(Σγ )−1] and hence

d2n
c2n

≤ trace(Σγ)trace[(Σγ)
−1]

n

trace[(Bn)−2]
→ 0,

where we used Lemma 3.6, (a).
By the Cauchy-Schwarz inequality, it also follows that

∣∣∣∣
∑n

i=1[(ξi − µ)Tγi](µ
Tγi)

c2n

∣∣∣∣
P−→ 0,

and so
∑

n

i=1
(ξT

i
γ

i
)2

c2
n

P−→ 1.

We now return to the study of bT ζ. Using (B.4), we obtain:

n∑

i=1

[bT (ζi − ζ)]2

c2n
=

n∑

i=1

(ξTi γi − ξTγ)2

c2n
+

n∑

i=1

[fb(εi, δi)− fb(ε, δ)]
2

c2n

+ 2

n∑

i=1

(ξTi γi − ξTγ)[fb(εi, δi)− fb(ε, δ)]

c2n

:= I1 + I2 + I3,

where ξTγ = 1
n

∑n
i=1 ξ

T
i γi and fb(ε, δ) =

1
n

∑n
i=1 fb(εi, δi).

We have I1 =
∑n

i=1
(γT

i
ξ
i
−γT ξ)2

c2
n

=
∑n

i=1
(γT

i
ξ
i
)2

c2
n

− n
c2
n

γT ξ
2 P−→ 1, since by ap-

plying the WLLN and using the fact that limn→∞
n
c2
n

= 0, the second term con-

verges to 0, in probability.
We write

I2 =

n∑

i=1

[fb(εi, δi)− fb(ε, δ)]
2

c2n

=

∑n
i=1[fb(εi, δi)− fb(ε, δ)]

2

(n− 1)Var[fb(ε1, δ1)]

(n− 1)Var[fb(ε1, δ1)]

c2n
.
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By the WLLN, the first factor converges in probability to 1 whereas the second
factor of the product converges to 0, in probability, since limn→∞

n
c2
n

= 0.

By the Cauchy-Schwarz inequality, I3 ≤
√
I1I2 and hence I3

P−→ 0. Therefore,
(B.3) holds.

It remains to prove that limn→∞
c2
n

n2 = 0. Using Lemma A.1 and Lemma 3.6,
(b) we obtain:

c2n
n2

=
trace(ΣγB

−2
n )

n2
≤ trace(Σγ)

trace(B−2
n )

n2
→ 0.2

B.2. Proof of Lemma 4.9

By Lemma 4.6, (a)

√
ndTη(n)√

1
n−1

∑n
i=1[d

T (ηi(n)− η(n))]2

D−→ N(0, 1).

Case 1. Assume that Var(‖ξ‖) < ∞ or e1 = e2 = 0. We write:

dTη(n) =

√
ndTη(n)√

1
n−1

∑n
i=1[d

T (ηi(n)− η(n))]2

·
√

1

n− 1

√√√√ 1

n

n∑

i=1

[dT (ηi(n)− η(n))]2.

From the proof of Lemma 4.8, with the particular choice of b = e and ζi replaced

by ζ′
i (see relation (B.2)) we have 1

n

∑n
i=1[e

T (ζ ′
i − ζ′)]2

P−→ Var(eT ζ′
1) > 0,

which together with (4.17) implies:

1

n

n∑

i=1

[dT (ηi(n)− η(n))]2
P−→ Var(eT ζ′

1) > 0. (B.6)

To complete the proof we apply Lemma 4.6, (a).
Case 2. Assume that Var(‖ξ‖) = ∞ and |e1|+ |e2| > 0. We write:

dTη(n) =

√
ndTη(n)√

1
n−1

∑n
i=1[d

T (ηi(n)− η(n))]2

·
√

c2n
n(n− 1)

√√√√ 1

c2n

n∑

i=1

[dT (ηi(n)− η(n))]2.

From the proof of Lemma 4.8, with b = e and ζi replaced by ζ′
i (see rela-

tion (B.3)), it follows that 1
c2
n

∑n
i=1[e

T (ζ ′
i − ζ′)]2

P−→ 1. Hence, we use (4.17) to
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obtain:
1

c2n

n∑

i=1

[dT (ηi(n)− η(n))]2
P−→ 1. (B.7)

From (B.7) and Lemma 4.6, (a), the conclusion follows. Here, the convergence
rate depends on the sequence c2n = trace(ΣγB

−2
n ), where γi = e1εi + e2δi,

1 ≤ i ≤ n and (Bn)n≥1 is a sequence of symmetric matrices such that

Bn

n∑

i=1

(ξi − µ)
D−→ N(0, I).2

B.3. Proof of Lemma 4.10

Recall that ui(n) = dTηi(n), where d = (0, 0, 1,−β)T (see (4.11)). By Lemma
4.6, (a): √

n u(n)√
1

n−1

∑n
i=1[ui(n)− u(n)]2

D−→ N(0, 1), (B.8)

where u(n) = 1
n

∑n
i=1 ui(n).

Case 1. Assume that Var(‖ξ‖) < ∞. Then, by (B.6), with dT = (0, 0, 1,−β),
it follows that:

1

n− 1

n∑

i=1

[ui(n)− u(n)]2
P−→ λ = Var(eT ζ′

1) > 0,

where e = (1,−β, 0, 0, 1,−β)T . We use (4.9) and write

b2n√
n
(β̂n − β) =

b2n√
n
· nu(n)∑n

i=1[‖xi − x‖2 − trace(Σδ)]

=

√
nu(n)√

1
n−1

∑n
i=1[ui(n)− u(n)]2

b2n

√
1

n−1

∑n
i=1[ui(n)− u(n)]2

∑n
i=1[‖xi − x‖2 − trace(Σδ)]

.

We apply Slutsky’s theorem, (B.8) and (4.2) to obtain the conclusion
Case 2. Assume that Var(‖ξ‖) = ∞. By (B.7), with d = (0, 0, 1,−β)T , it

follows that:
1

c2n

n∑

i=1

[ui(n)− u(n)]2
P−→ 1,

where c2n = trace(ΣγB
−2
n ), and γi = e1εi + e2δi = εi − βδi, since e =

(1,−β, 0, 0, 1,−β)T . Using (4.9) again, we obtain:
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b2n√
c2n

(β̂n − β) =
b2n√
c2n

· nu(n)∑n
i=1[‖xi − x‖2 − trace(Σδ)]

=

√
nu(n)√

1
n−1

∑n
i=1[ui(n)− u(n)]2

·

√√√√ 1

c2n

n∑

i=1

[ui(n)− u(n)]2

·
√

n

n− 1
· b2n∑n

i=1[‖xi − x‖2 − trace(Σδ)]
.

The conclusion follows by Slutsky’s theorem (B.8) and (4.2).2

Appendix C: Proof of (4.16) and (4.17)

Recall that δ = (δ1, . . . , δm)T , where δj =
1
n

∑n
i=1 δij . Note that:

R(n) = e1[−εT (ξ − µ)] + e2[−δ
T
(ξ − µ)]

+ e5(−δ
T
ε) + e6(−‖δ‖2). (C.1)

To prove (4.16), we consider two cases.
Case 1. Assume that Var(ξ) < ∞ or |e1|+ |e2| = 0.

In this case, we prove: √
nR(n)

P−→ 0. (C.2)

For each 1 ≤ j ≤ m, by applying the CLT, we obtain
√
nδj = OP (1) and so

√
nδ

2

j = oP (1). Hence,
√
n‖δ‖2 = oP (1). Similarly, we have

√
n‖ε‖2 = oP (1).

By Cauchy-Schwarz inequality, n|δT
ε|2 ≤ n‖ε‖2 · ‖δ‖2 and therefore, we also

have
√
n|δT

ε| = oP (1).

Similarly, we obtain
√
n|εT (ξ − µ)| = oP (1) and

√
n|δT (ξ − µ)| = oP (1), so

(C.2) follows.
To prove (4.16) in this case, we write:

√
nR(n)√

1
n−1

∑n
i=1[e

T (ζ ′
i − ζ′)]2

=

√
nR(n)√

Var(eT ζ ′)
·

√√√√ Var(eT ζ ′)
1

n−1

∑n
i=1[e

T (ζ ′
i − ζ′)]2

.

By (B.2), (with b = e and ζi replaced by ζ′
i) the second factor of the product

converges to 1, in probability. Since 0 < Var(eT ζ′) < ∞, (C.2) implies (4.16).
Case 2. Assume that Var(‖ξ‖) = ∞ and |e1|+ |e2| > 0.
Let (Bn)n≥1 be a sequence of (nonsingular, symmetric) non-stochastic ma-

trices such that Bn

∑n
i=1(ξi − µ)

D−→ N(0, I). Let b2n = trace(B−2
n ). Define

c2n = trace(ΣγB
−2
n ), where γi = e1εi + e2δi and Σγ = Var(γi). In this case, in

lieu of (C.2), we prove:
n√
c2n

R(n)
P−→ 0. (C.3)
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As in the proof of Lemma 4.8, n
c2
n

→ 0. Therefore, the last three terms in (C.1),

multiplied by n√
c2
n

converge to 0, in probability.

As for the first term, by applying Cauchy-Schwarz inequality, we have:

n√
c2n

|(ξ − µ)T ε| ≤ n√
c2n

‖ξ − µ‖ · ‖ε‖.

Recall that ‖ε‖ = OP (1)√
n

.

Since ‖Bn

∑n
i=1(ξi − µ)‖ = OP (1), we have the following relations:

‖ξ − µ‖2 =
1

n2

∥∥∥∥∥

n∑

i=1

(ξi − µ)

∥∥∥∥∥

2

=
1

n2

∥∥∥∥∥B
−1
n Bn

n∑

i=1

(ξi − µ)

∥∥∥∥∥

2

≤ 1

n2
‖B−1

n ‖2 ·
∥∥∥∥∥Bn

n∑

i=1

(ξi − µ)

∥∥∥∥∥

2

=
1

n2
b2nOP (1).

Therefore n√
c2
n

|(ξ − µ)Tε| ≤ n√
c2
n

√
b2
n

n
OP (1)√

n
= OP (1)√

n

√
b2
n

c2
n

.

From Lemma A.1 we obtain
b2
n

c2
n

≤ trace(Σ−1
γ ), so n√

c2
n

|(ξ − µ)Tε| = oP (1).

Similarly, n√
c2
n

|(ξ − µ)T δ| = oP (1) and hence the convergence in (C.3) is

proved.
Therefore, if we write:

√
nR(n)√

1
n−1

∑n
i=1[e

T (ζ ′
i − ζ′)]2

=
nR(n)√

c2n
·
√

n− 1

n
·
√

1
1
c2
n

∑n
i=1[e

T (ζ ′
i − ζ′)]2

,

the last factor converges to 1, in probability by (B.3) (with b = e and ζi replaced
by ζ′

i). This together with (C.3) concludes the proof of (4.16) in this case.
Now we prove (4.17). Using (4.13), we write:

dT (ηi(n)− η(n)) = e1[(ξi − µ)T εi − (ξ − µ)T εi − (ξi − µ)T ε− (ξ − µ)Tε

+ 2(ξ − µ)T ε]

+ e2[(ξi − µ)T δi − (ξ − µ)Tδi − (ξi − µ)Tδ − (ξ − µ)Tδ

+ 2(ξ − µ)T δ]

+ e3


 1

m

m∑

j=1

εij − ε


+ e4


 1

m

m∑

j=1

δij − δ




+ e5(δ
T
i εi − δT

i ε− δ
T
εi − δTε+ 2δ

T
ε)

+ e6(‖δi‖2 − 2δTi δ − ‖δ‖2 + 2‖δ‖2),

where ε = 1
nm

∑n
i=1

∑m
j=1 εij , δ = 1

nm

∑n
i=1

∑m
j=1 δij , (ξ − µ)T ε = 1

n

∑n
i=1(ξi − µ)T εi,

(ξ − µ)T δ = 1
n

∑n
i=1(ξi − µ)Tδi, δ

Tε = 1
n

∑n
i=1 δ

T
i εi and ‖δ‖2 = 1

n

∑n
i=1 ‖δi‖2.
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Using (4.8), we obtain

eT (ζ ′
i − ζ′) = e1[(ξi − µ)T εi − (ξ − µ)T ε]

+ e2[(ξi − µ)T δT
i − (ξ − µ)Tδ]

+ e3


 1

m

m∑

j=1

εij − ε


+ e4


 1

m

m∑

j=1

δij − δ


+ e5(δ

T
i εi − δTε)

+ e6(‖δi‖2 − ‖δ‖2),

and therefore

dT (ηi(n)− η(n))− eT (ζ′
i − ζ′) = e1[−(ξ − µ)Tεi − (ξi − µ)T ε

+ 2(ξ − µ)Tε]

+ e2[−(ξ − µ)Tδi − (ξi − µ)T δ

+ 2(ξ − µ)Tδ]

+ e5(−δTi ε− δ
T
εi + 2δ

T
ε)

+ e6(−2δTi δ + 2‖δ‖2). (C.4)

By Lemma A.2, to prove (4.17), it is enough to prove

∑n
i=1[d

T (ηi(n)− η(n))− eT (ζ ′
i − ζ ′)]2

∑n
i=1[e

T (ζ ′
i − ζ′)]2

P−→ 0.

If Var(‖ξ‖) < ∞ or |e1|+|e2| = 0, 1
n

∑n
i=1[e

T (ζ ′
i − ζ′)]2 = OP (1), by the WLLN

(see also (B.2)). Therefore, it is enough to prove:

1

n

n∑

i=1

[dT (ηi(n)− η(n))− eT (ζ ′
i − ζ ′)]2

P−→ 0. (C.5)

If Var(‖ξ‖) = ∞ and |e1|+ |e2| > 0, by (B.3), with b = e, we have

1

c2n

n∑

i=1

[eT (ζ′
i − ζ ′)]2 = OP (1).

Therefore, if we prove (C.5), the convergence (4.17) follows since limn→∞
n
c2
n

= 0.

Hence, it remains to prove (C.5). By (C.4), we have the following

1

n

n∑

i=1

[dT (ηi(n)− η(n))− eT (ζ ′
i − ζ ′)]2 ≤ 4(e1)

2T1 + 4(e2)
2T2 + 4(e5)

2T3

+ 4(e6)
2T4,
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where:

T1 :=
1

n

n∑

i=1

[−(ξ − µ)T εi − (ξi − µ)Tε+ 2(ξ − µ)Tε]2,

T2 :=
1

n

n∑

i=1

[−(ξ − µ)T δi − (ξi − µ)Tδ + 2(ξ − µ)Tδ]2,

T3 :=
1

n

n∑

i=1

(−δTi ε− δ
T
εi + 2δ

T
ε)2,

T4 :=
1

n

n∑

i=1

(−2δTi δ + 2‖δ‖2)2.

Using the Cauchy-Schwarz inequality, we have

T1 ≤ 4
1

n

n∑

i=1

[(ξ − µ)T εi]
2 + 4

1

n

n∑

i=1

[(ξi − µ)T ε]2 + 8
1

n

n∑

i=1

[(ξ − µ)Tε]2

≤ 4
1

n

n∑

i=1

[
‖ξ − µ‖2‖εi‖2 + ‖ε‖2‖ξi − µ‖2

]
+ 8‖ξ − µ‖2‖ε‖2. (C.6)

By WLLN, ‖ξ−µ‖2 P−→ 0 and 1
n

∑n
i=1 ‖εi‖2

P−→ trace(Σε). It follows that the
first term of (C.6) converges in probability to 0.

Recall that n‖ε‖2 = OP (1), and
∑

n

i=1
‖ξ

i
−µ‖2

b2
n

P−→ 1, by Lemma 3.3. Hence,

we have ‖ε‖2 1
n

∑n
i=1 ‖ξi − µ‖2 = OP (1)

b2
n

n2 = oP (1), by Lemma 3.6, (b).

Since ‖ξ − µ‖2‖ε‖2 = oP (1)
OP (1)

n = oP (1), we conclude that T1 → 0, in
probability.

By replacing ε with δ we obtain T2 → 0, in probability. Using the same
technique as above, one can prove Ti → 0, in probability, for i = 3, 4. This
concludes the proof of (C.5). 2

Appendix D: Proof of (4.23) and (4.26)

By Lemma A.2, to prove (4.23), it is enough to show

[
nx∑n

i=1[‖xi − x‖2 − trace(Σδ)]
− µ

trace(Σξ)

]2
·
∑n

i=1[ui(n)− u(n)]2
∑n

i=1[v
′
i(n)− v′(n)]2

= oP (1).

By (4.19) the first factor converges in probability to 0.
By (B.6), with d∗ = (0, 0, 1,−β)T and e∗ = (1,−β, 0, 0, 1,−β)T , we have:

1

n

n∑

i=1

[ui(n)− u(n)]2
P−→ Var(e∗T ζ′

1) > 0. (D.1)

Hence, using (4.21), we complete the proof of (4.23).
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We turn to the proof of (4.26). Using Lemma A.2, it is enough to prove:

[
nx∑n

i=1[‖xi − x‖2 − trace(Σδ)]

]2
·
∑n

i=1[ui(n)− u(n)]2∑n
i=1[v

′′
i − v′′]2

= oP (1). (D.2)

By (4.2), 1
n

∑n
i=1[‖xi − x‖2 − trace(Σδ)] =

b2
n

n OP (1), where b2n = trace(B−2
n )

and (Bn)n≥1 is a sequence of matrices such that Bn

∑n
i=1(ξi − µ)

D−→ N(0, I).
Since x → µ, in probability, by WLLN:

nx∑n
i=1[‖xi − x‖2 − trace(Σδ)]

=
n

b2n
OP (1) = oP (1), (D.3)

using Lemma 3.6, (a) for the second equality.
By (B.7),

1

c2n

n∑

i=1

[ui(n)− u(n)]2 = OP (1), (D.4)

where c2n = trace(ΣγB
−2
n ) and γi = εi − βδi, for i ≤ n.

Also, (4.25) implies
∑

n

i=1
[ui(n)−u(n)]2∑

n

i=1
[v′′

i
−v′′]2

=
c2
n

n OP (1).

Finally, using Lemma A.1:

[
nx∑n

i=1[‖xi − x‖2 − trace(Σδ)]

]2
·
∑n

i=1[ui(n)− u(n)]2∑n
i=1[v

′′
i − v′′]2

=

(
n

b2n

)2
c2n
n
OP (1) = n

c2n
(b2n)

2
OP (1) ≤

n

b2n
trace(Σγ)OP (1) = oP (1),

where we used Lemma 3.6, (a). This proves (D.2).2
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