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Abstract: We study the posterior distribution of the Bayesian multiple
change-point regression problem when the number and the locations of the
change-points are unknown. While it is relatively easy to apply the gen-
eral theory to obtain the O(1/

√

n) rate up to some logarithmic factor,
showing the parametric rate of convergence of the posterior distribution re-
quires additional work and assumptions. Additionally, we demonstrate the
asymptotic normality of the segment levels under these assumptions. For
inferences on the number of change-points, we show that the Bayesian ap-
proach can produce a consistent posterior estimate. Finally, we show that
consistent posterior for model selection necessarily implies that the para-
metric rate for posterior estimation stated previously cannot be uniform
over the class of models we consider. This is the Bayesian version of the
same phenomenon that has been noted and studied by other authors.
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1. Introduction

We consider the regression problem of estimating a piece-wise constant function
when the number of segments as well as the locations of its change-points is
unknown. This is an old problem that has attracted much attention recently
[14, 2, 6]. Applications of multiple change-point models surged after efficient
computations using reversible jump MCMC was discovered [15]. [15] applied
piece-wise constant function in the study of the coal mining disaster data in
the context of Poisson process. A more recent trend of analysis that dispenses
with the usage of MCMC for the change-point problem starts with the paper
[23] where a dynamic programming approach is utilized to marginalize over
segment levels and change-point locations. Their original motivation comes from
the problem of partitioning DNA sequences into homogeneous segments. This
dynamic programming approach is later extended by [5] and [21].
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Unlike the above studies, in this paper we are only concerned with the
asymptotic properties of Bayesian multiple change-point problems and inves-
tigate from the frequentist view the posterior contraction characteristics of a
simplified model. Although a piece-wise constant function involves only a finite
number of parameters, as we will only consider the case where an upper bound
on the number of change-points is available a priori, it is nevertheless best stud-
ied from a infinite-dimensional viewpoint and put the estimation problem in the
context of function spaces. Until recently, little is known about the behavior of
the posterior distribution of infinite-dimensional models. For consistency issues,
[27] shows that the posterior is consistent when certain tests can be established
for the true distribution versus the complement of its neighborhood. [1] fur-
ther developed the theory by sieve construction and bracketing entropy bounds.
Similar results using only metric entropy are given in [7]. Convergence rates are
studied in two independent and to some extent overlapping but complementary
works [10, 29]. In particular, [10] extends the idea of constructing suitable tests
in order to bound the convergence rates for both nonparametric and paramet-
ric problems, and [13] further extends the approach to non-i.i.d. observations.
Berstein-von Mises theorems have also been obtained in some cases [18, 3, 26].
The existence of tests for many specific problems can be found in the existing
literature although sometimes new tests need to be carefully designed.

In nonparametric Bayesian analysis, we have an i.i.d. sample Z1, . . . , Zn from
the distribution P0 with density p0 with respect to some measure on the sample
space (Z,B). The model space is denoted by P which is known to contain the
true distribution P0. Given some prior distribution Π on P , the posterior is a
random measure given by

Πn(A|Z1, . . . , Zn) =

∫

A

∏n
i=1 p(Zi)dΠ(P )

∫
∏n

i=1 p(Zi)dΠ(P )
.

For ease of notation, we will omit the explicit conditioning and write Πn(A) for
the posterior distribution. We say that the posterior is consistent if

Πn(P ∈ P : d(P, P0) > ǫ) → 0 in Pn
0 probability

for any ǫ > 0, where d is some suitable distance function between probability
measures.

To study rates of convergence, let ǫn be a sequence decreasing to zero, we say
the rate is at least ǫn if for any Mn → ∞,

Πn(P : d(P, P0) > Mnǫn) → 0 in Pn
0 probability.

In our regression problem, we observe an i.i.d. sample Z = (Z1, . . . , Zn) with
the distribution of Zi = (Xi, Yi) defined structurally by

Yi = θ0(Xi) + ǫi

for i.i.d Gaussian noise ǫi ∼ N(0, 1). and θ0 is a piece-wise constant func-
tion on [0, 1) with unknown locations of change-points. We can write θ0(t) =



H. Lian/Bayesian change-point problem 241

∑k0

j=1 a
0
jI(t

0
j−1 ≤ t < t0j), t

0
0 = 0 < t01 < t02 < · · · < t0k0

= 1 using the indica-

tor function and thus θ0 is parameterized by (a0, t0), a0 = (a01, . . . , a
0
k0
), t0 =

(t00, . . . , t
0
k0
). For simplicity, we assume the marginal distributions for {Xi} are

i.i.d uniform on [0, 1), and note that it is straightforward to extend all the fol-
lowing results to any distribution of X with density bounded away from zero
and infinity. Note P0 is fully determined by θ0 under these assumptions, and
thus we also use the space of piece-wise constant functions as our model space
which is equivalent to using P . The measure induced by θ is denoted by Pθ, and
thus Pθ0 is the same as P0, the true distribution.

Consistency of the above model was investigated in [19] with the exception
that there Xi’s are deterministically chosen on a grid. In that paper, consistency
is proved for the case that the true regression function is in the Lipschitz class as
well. Another related work is [28] where the Bayesian density estimation problem
is studied with density approximated by piece-wise constant functions. Besides
the fact that they are interested in density estimation instead of regression,
the focus of that paper is very different from the current one. They are mostly
concerned with the case of approximating a smooth density using step functions
and aim to achieve the optimal rates up to a logarithmic factor. For density
functions that are piece-wise constant, they prove parametric rate of convergence
also with an extra logarithmic factor. A diverging number of grid points is used
and thus this approach cannot be used to estimate the number of segments when
the density is truly piece-wise constant.

In finite-dimensional problems, there exists a relatively complete answer to
the question of consistency and convergence of posterior based on the set up
of [16], for both regular and non-regular problems where the densities have
discontinuities or singularities at certain points. A series of papers [12, 8, 9] give
asymptotic approximations to the posterior distributions, with special emphasis
on non-regular models including change-point problems. Other related works
include [24] and [25]. All these works demonstrated qualitatively similar 1/n
rates for change-point locations, but do not apply to our present problem where
the number and locations of discontinuities are unknown.

In this paper, we focus on the case that θ0 is piece-wise constant and aim to
achieve the parametricO(1/

√
n) rate of convergence and also study the posterior

consistency in the estimation of the number of change-points, which we refer
to as the model selection problem. The proofs for the estimation rates involve
direct application of general theorems in [10] but the calculation of the covering
number is nontrivial in this case. In order to achieve the parametric rate, an
additional assumption needs to be made to exclude functions with segments
that are too short.

One simplification of our model compared with those works mentioned at
the beginning of this section that focus on the computational issues is that the
variance of the noise σ2 is assumed to be known here (and actually 1 without
loss of generality). This simplification is assumed in the next section for clarity
of presentation. Consistency of a general regression problem with unknown noise
level is addressed in [4]. In Section 3 we treat the case where the noise level is
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unknown but known to lie between two positive numbers and show that all the
results proved for known noise variance still hold.

2. Main results

Consider the case where we have a priori bounds for the number of change-
points as well as for the segment levels {aj}. The model space, which contains
the true θ0, is defined as

Θ = {θ : θ(t) =

k
∑

j=1

ajI(tj−1 ≤ t ≤ tj), t0 = 0 < t1 < · · · < tk = 1,

k ≤ kmax, |aj | ≤ K}.

For identifiability, we also impose the constraint that aj−1 6= aj , j = 1, . . . , k, so
that θ has a unique representation. By convention, we say θ with tk = 1 has k
change-points, which is the same as the number of segments.

Another equivalent representation of Θ is Θ = {(a, t) ∈ [−K,K]k × Tk : 1 ≤
k ≤ kmax}, where Tk is the set of (k + 1)-tuples (t0, . . . , tk) with tj < tj+1. We
will not distinguish between these two different representations and θ can denote
either a function or the tuple (a, t). This ambiguity can always be resolved by
the context.

For rates of convergence, the distance d we use is the L2 norm of the function

||θ|| =
(∫ 1

0 θ2(x)dx
)1/2

. Since we only consider uniformly bounded functions,
the L2 norm is equivalent to the Hellinger distance (e.g. [13], section 7.7).

We now specify a prior on Θ using a hierarchical approach. Let Θk be the
subspace of Θ that consists of functions with k change-points, and the prior Π
is specified as a mixture

Π =

kmax
∑

k=1

p(k)Πk, p(k) > 0,
∑

k

p(k) = 1

with Πk the prior measure on Θk. We assume that Πk has a density πk(θ) which
can be further decomposed as

πk(a, t) = πa
k(a|t)πt

k(t) .

The assumption we make on the prior is that
(A) The density πa

k(a|t) and πt
k(t) are bounded away from zero and infinity

on [−K,K]k and Tk respectively.
This assumption is satisfied, for example, when t1, t2, . . . , tk−1 are distributed

as the order statistic of k− 1 points uniform distributed on [0, 1) while segment
levels are independent and uniformly distributed on [−K,K].

The first simple result shows that the posterior rate of convergence is n−1/2

up to a logarithmic factor.
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Theorem 1. Under assumption (A), the posterior rate of convergence is at
least ǫn =

√

logn/n. That is, Πn(θ : ||θ − θ0|| > Mǫn) → 0 in Pn
0 probability

for a sufficiently large M .

Throughout this paper, we assume that the model space contains the true θ0
so that the model is correctly specified. Theorem 1 considers the convergence
rates of the estimation problem. A different problem is the convergence of the
posterior for the number of change-points. Under no additional assumptions, we
can show that the posterior probability will concentrate on the true number of
change-points with probability converging to 1.

Theorem 2. Under the same assumption (A), we have Πn(k = k0) → 1 in Pn
0

probability, where k0 is the number of change-points for the true function θ0.

Remark 1. From the proof of the theorem in the appendix, it is clear that
the under-estimation error Πn(k < k0) converges to zero exponentially fast
since k < k0 implies the estimation error ||θ − θ0|| is bound away from zero
and exponential convergence is well-known in this case [1]. However the over-
estimation error Πn(k > k0) only converges to zero at polynomial rate, as is
clear from the proof and Theorem 1 of [29]. This difference in rates for under-
estimation and over-estimation errors in Bayesian models is also present in other
contexts. For example, it was shown in [17] for model selection in Markov random
fields that the over-estimation error only converges at polynomial rate while the
under-estimation error has an exponential decay.

Nonparametric Bayesian model selection has been investigated in [11]. The
focus of that paper is on conditions under which the adaptive rates are achieved
when simultaneously considering models with different rates of contraction.
Thus it seems the results presented there cannot be applied to our problem.

To get rid of the extra logarithmic factor in Theorem 1, we consider the
smaller model space

Θδ = {θ ∈ Θ : min |tj − tj−1| ≥ δ} .

We can define Θδ
k in a similar way and assumption (A) can be modified accord-

ingly. Theorem 1 and Theorem 2 are still true on Θδ with few modifications
required on the proofs. In practice, specification of a prior on Θδ poses some
difficulties or inconvenience at least. Conceptually, we can just restrict πt

k(t) to
be supported on Θδ and renormalize the density. Reversible jump algorithms
can be easily modified to take into account the constraint by rejecting samples
violating the constraint. Dynamic programming can also incorporate the pre-
specified shortest possible segment length [20, 22]. However, determination of δ
in practice is problematic. This is a reflection of existing gap between Bayesian
theory and practice and is similar to the fact that people will use unboundedly
supported density for regression function while the parametric rate is achieved
when one considers bounded functions in our present problem.

The practical advantage of avoiding short steps was also noticed by [15]. They
proposed using even-numbered order statistics from 2k−1 uniformly distributed
points so that short segment lengths are better penalized.
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As shown in the appendix, putting some lower bound on the segment lengths
makes the local covering number bounded by a constant. This requires a very
detailed argument to construct the covering. Using this more refined bound
on the covering number, we can achieve the parametric rate without the extra
logarithmic term.

Proposition 1. For any δ > 0, under assumption (A), the posterior rate of
convergence on Θδ is ǫn = 1/

√
n. That is, for every Mn → ∞, we have that

Πn(θ ∈ Θδ : ||θ − θ0|| > Mnǫn) → 0 in Pn
0 probability.

Combination of Theorem 2 and Proposition 1 immediately gives us the rates
of convergence for the change-point locations:

Theorem 3. Under the same assumptions as above, the posterior convergence
rate for the change-point locations is at least ǫ2n = O(1/n). That is, for any
sequence Mn → ∞, Πn(max1≤j≤k0 |tj − t0j | > Mnǫ

2
n) → 0 in Pn

0 probability.
This rate of convergence agrees with many frequentist estimators, say using the
cumulative sum approach.

It is well-known that the posterior distribution in regular parametric mod-
els conditionally converges to a Gaussian distribution under weak conditions.
Since our previous results show that the number and locations of the change-
points can be consistently estimated, one would naturally conjecture that the
posterior distribution for segment levels will converge to a multivariate Gaussian
distribution. This is indeed the case as stated in the following theorem:

Theorem 4. Suppose the true segment lengths are lj = t0j − t0j−1, j = 1, . . . , k0.
Denote the posterior distribution of a = (a1, . . . , ak) restricted on the event
{k = k0} (which has a posterior probability converging to 1) by Πn

a|Z and set the

covariance matrix I0 = diag(1/(lj · n)). Then we have

EZ|θ0 ||Πn
a|Z −N(â(t0), I0)||TV → 0 ,

where ||P − Q||TV is the total variation distance between probability measures
P and Q, â(t0) is the maximum likelihood estimator for a, assuming the true
locations of the change-points are known.

The above theorems show that the Bayesian procedure possesses very good
properties. On the one hand, the parametric rate is achieved for the estimation
problem in the function space. On the other hand, the number of change-points
can be consistently estimated. However, Theorem 2 and Proposition 1 only apply
to a fixed true piece-wise constant function and thus the convergence as stated
is point-wise in nature in this sense. It is not difficult to see from the proof
of Proposition 1 that the 1/

√
n rate is not actually uniform over the model

space Θδ. The reason is that in order to obtain the bound for the local covering
number (Lemma 4.4 in the appendix), the constant involved does depend on
θ0. In particular, the derivation of the lemma requires a lower bound on the
size of the jumps of the neighboring segments and thus the convergence is not
uniform over Θδ. Intuitively, small jumps makes the estimation more difficult
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and heavier penalization by the prior must be incorporated (possibly by using
a prior that depends on the sample size) to achieve model selection consistency
at the cost of losing estimation accuracy. As seen in the proof of Theorem 5, the
difficulty occurs when the size of the jump is of order O(1/

√
n), in which case

there appears a conflict between change-point detection and efficient estimation.
Nevertheless, as discussed above, the convergence is uniform if we further

restrict our attention to the sub-class:

Θδ1,δ2 = {θ ∈ Θδ1 ,min |aj − aj−1| ≥ δ2}.

We state the uniform convergence as a proposition without proof:

Proposition 2. For any fixed δ1, δ2 > 0, the rate of convergence is uniformly
at least ǫn = O(1/

√
n). That is, for any Mn → ∞, supθ̄∈Θδ1,δ2 EZ|θ̄Π

n(θ ∈
Θδ1,δ2 : ||θ − θ̄|| > Mnǫn) → 0. The property of model selection consistency is
still satisfied in this case.

On the other hand, the following result confirms that we cannot expect the
posterior to converge uniformly over the class Θδ if the method can adapt to
the number of change-points. Note that the theorem applies for any Bayesian
posterior distribution for the change-point problem, not just the specific prior
we constructed.

Theorem 5. Suppose the posterior distribution satisfies the model consistency
condition: Πn(k = k0) → 1 in Pn

0 probability, then the maximal L2 convergence
of θ is necessarily slower than the parametric rate ǫn = O(1/

√
n). That is, for

some Mn → ∞,

sup
θ̄∈Θδ

EZ|θ̄Π
n(θ ∈ Θδ : ||θ − θ̄|| > Mnǫn) → 1 .

The above theorem demonstrated the trade-off between function estimation
and model selection for our Bayesian multiple change-point problems.

3. Unknown noise variance

Here we briefly discuss the case where the variance of the noise in the regression
problem is unknown. Thus we will extend our previous notation and use Pθ,σ to
denote the measure induced by θ and σ, with pθ,σ denoting the corresponding
density. We only deal with the case where σ is known to be bounded by two pos-
itive values, that is σ ∈ [b1, b2], b2 > b1 > 0, and we impose a prior distribution
on σ with density bounded away from zero and infinity, independent of the prior
on θ. We will consider the convergence rate in terms of max{||θ− θ0||, |σ− σ0|}
where σ0 is the true unknown noise standard deviation. In this simple situa-
tion, we can show that the Hellinger distance h(Pθ1,σ1 , Pθ2,σ2) between Pθ1,σ1

and Pθ2,σ2 is equivalent to max{||θ1−θ2||2, |σ1−σ2|2} and the Kullback-Leibler
divergence of Pθ0,σ0 and Pθ,σ as well as the second moment of log pθ,σ/pθ0,σ0 is
bounded by a multiple of max{||θ−θ0||2, |σ−σ0|2}. These facts are stated in the
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following proposition. Its proof involves relatively simple although somewhat
cumbersome calculations and is presented at the author’s website (https://
edventure.ntu.edu.sg/bbcswebdav/users/henglian/onlineprop.pdf).

Proposition 3. Denote d2((θ1, σ1), (θ2, σ2)) = max{||θ1 − θ2||2, |σ1 − σ2|2}.
Then

Pθ0,σ0 log
pθ0,σ0

pθ,σ
. d2((θ, σ), (θ0, σ0)),

Pθ0,σ0

(

log
pθ0,σ0

pθ,σ

)2

. d2((θ, σ), (θ0, σ0)),

d((θ1, σ1), (θ2, σ2)) . h(Pθ1,σ1 , Pθ2,σ2) . d((θ1, σ1), (θ2, σ2)),

where a . b means a ≤ Cb for some constant C > 0.

Using the proposition, it is easy to see that all the results in the previous
section still hold for the case of unknown noise variance. In particular, the
covering number calculations in Lemmas 4.3 and 4.4 are still valid although the
constants involved become larger. For prior concentration results in Lemmas 4.1
and 4.2, the only change is an additional factor of ǫ in the bounds, coming from
the constraint |σ − σ0| < ǫ. Theorem 2 on model selection consistency can be
shown along the same lines with only minor modifications. Theorems 4 and 5
only depend on the root-n convergence rate of θ and on Theorem 2 respectively
and are thus still valid.

4. Discussion

In this paper, we investigated in detail some asymptotic properties of Bayesian
multiple change-point problems when the noise level is assumed known. We
proved estimation rate of convergence as well as model selection consistency of
the posterior distribution. For simplicity, we only treated the case with random
covariateX , but the results also applies to the case with deterministic covariates
using the corresponding theory in [13].

The main contribution of the paper is to show that the parametric rate is
achieved for a restricted class of piece-wise constant functions, that the posterior
distributions of segment levels are asymptotically normal, and that the optimal
rate cannot be achieved uniformly over the class.

Our theory still leaves some gaps in between. For example, it is still unknown
whether it is absolutely necessary to restrict the functions to have not too short
segment lengths in order to achieve the optimal rate. This additional restriction
makes the local covering number bounded in order to apply Theorem 2.4 in
[10]. Besides, as pointed out by the associate editor during the review process,
it is natural to expect that one can relax the condition in Proposition 2 to
δ1 ≫ n−1 and δ2 ≫ n−1/2. However, the calculation of covering number seems
to be technically challenging and our current method used in Lemma 4.4 cannot
produce the desired covering number bound.

https://edventure.ntu.edu.sg/bbcswebdav/users/henglian/onlineprop.pdf
https://edventure.ntu.edu.sg/bbcswebdav/users/henglian/onlineprop.pdf
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Appendix

Some Lemmas

In preparation for the proofs of the main results, we first collect some lem-
mas here. The constant C is used to denote a generic constant which might
not be the same at different places. Note that since we are only considering
uniformly bounded class of functions, the Hellinger distance, the Kullback-
Leibler divergence, as well as the second moment of the likelihood ratio are
all equivalent to the L2 norm of the regression function. In the following, we
set δ0 = min{minj |t0j − t0j−1|,minj |a0j − a0j−1|} > 0, which bounds the segment
lengths as well as the jump size from below.

Lemma 4.1. Under condition (A), we have the lower bound for the prior con-
centration when ǫn → 0,

Π(θ : ||θ − θ0|| ≤ ǫn) ≥ Cp(k0)ǫ
3k0−2
n ,

where C is a constant depending on the lower bound of the prior density in a
neighborhood of θ0.

Proof. When θ =
∑k0

j=1 ajI(tj−1 ≤ t < tj) ∈ Θk0 with |aj − a0j | < ǫn/2, 1 ≤ j ≤
k0 and |tj−t0j | <

ǫ2n
8K2kmax

, 1 ≤ j ≤ k0−1, it is easy to show that ||θ−θ0||2 < ǫ2n.
Since the prior density for (a, t) is bounded away from zero, we get

Π(θ : ||θ − θ0|| ≤ ǫn) ≥ p(k0)Πk0(θ : ||θ − θ0|| ≤ ǫn) ≥ Cp(k0)ǫ
3k0−2
n .

Lemma 4.2. Let δ′ =
√

δ30
4kmax

(δ0 is defined immediately before Lemma 4.1).

When ǫ < δ′, we have that Πk(θ ∈ Θk : ||θ − θ0|| ≤ ǫ) ≤ Cǫ3k0−2, k =
1, . . . , kmax, where C is a constant that depends on K, kmax and δ0. For k > k0,
the bound can be refined to Cǫ3k0−1.

Proof. First we consider the case k < k0 and θ ∈ Θk. By the definition of δ0, the
k0 − 1 intervals (t0j − δ0/2, t

0
j + δ0/2), j = 1, . . . k0 − 1 are nonoverlapping. Thus

there is at least one segment of θ that contains one of these k0 − 1 intervals.
Thus the distance between θ and θ0 is at least

√

δ0(δ0/2)2 ≥ δ′, and thus
Πk(θ ∈ Θk : ||θ − θ0|| ≤ ǫ) = 0.
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When k ≥ k0, θ ∈ Θk and ||θ− θ0|| < ǫ, for any j, let s(j) be the index of the
interval [ts(j)−1, ts(j)) which has the largest overlap with [t0j−1, t

0
j). Obviously the

length of the overlap is at least δ0/kmax. This implies |as(j)−a0j | ≤ ǫ
√

kmax

δ0
(oth-

erwise the squared L2 distance between θ and θ0 is at least (as(j) − a0j)
2 δ0
kmax

>

ǫ2). Similarly, let t(j) be the index of the change-point of θ that is closest to

t0j , we have |tt(j) − t0j | ≤ 4ǫ2

δ20
(otherwise the squared distance will be bigger

than 4ǫ2

δ20
( δ02 )

2 = ǫ2). The above considerations give us k0 constraints on the

segments levels of θ as well as k0 − 1 constraints on the change-point locations.
Thus under assumption (A), the prior probability Πk(θ ∈ Θk : ||θ − θ0|| ≤ ǫ)
is bounded by Cǫ3k0−2. For the refined bound when k > k0, we only consider
k = k0+1 for simplicity. In this case, ||θ− θ0|| ≤ ǫ implies an additional restric-
tion (a0k0

− ak0+1)
2(1 − tk0) ≤ ǫ2. This gives us an additional factor of ǫ in the

bound.

Lemma 4.3. logD(ǫ,Θ) ≤ b log(1/ǫ) + c, for some constants b, c > 0 that
depends on K and kmax, where D(ǫ,Θ) is the ǫ−covering number of Θ, defined
as the minimal number of balls of radius ǫ needed to cover Θ and the metric
used is the L2 distance.

Proof. Choose a grid on the domain [0, 1) and another grid on [−K,K]

∆t =

{

ǫ2

8K2kmax
· i, i ∈ N

}

∩ [0, 1], ∆y = {ǫ · i, i ∈ Z} ∩ [−K,K] .

Let Θ̃ = {θ ∈ Θ, θ jumps only at points in ∆t and takes segment levels in ∆y}.
It is then easy to show that Θ̃ is an ǫ−covering of Θ with covering number
bounded by

(⌊ 8K2kmax

ǫ2 ⌋+ 1

kmax

)(

2K

ǫ
+ 1

)kmax

.

Lemma 4.4. For 2ǫ < δ′ =
√

δ30
4kmax

,

logD(ǫ/2, {θ ∈ Θδ, ǫ ≤ ||θ − θ0|| ≤ 2ǫ}) ≤ C

for some constant C that depends on δ, δ0,K and kmax but does not depend on ǫ.

Proof. Suppose that ||θ−θ0|| ≤ 2ǫ. From the proof of Lemma 4.2, we know that
each change-point of θ0 has a corresponding change-point of θ that satisfies
|tt(j) − t0j | ≤ 16ǫ2/δ20. For any segment level a0j of θ0, denote the corresponding
index of the segment of θ that has an overlap of at least δ/2 by r(j), by a similar
argument as in Lemma 4.2, |aj − a0r(j)| ≤ 2

√
2ǫ/

√
δ.

To construct a covering, we partition [0, 1) into nonoverlapping intervals. In
the following, M,B,N are sufficiently large integers to be chosen later. First,
each interval [t0j − 16ǫ2/δ20, t

0
j +16ǫ2/δ20] is partitioned into M subintervals with

equal lengths. For the rest of [0, 1) we partition it into segments of lengths
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between δ/2B and δ/B. Obviously the total number of subintervals does not
depend on ǫ. These subintervals falls into two types: (i) the subinterval that
contains some change-point of θ0; (ii) the subinterval that is entirely contained in
some segment of θ0. The function class F that forms a covering is defined as the
set of functions which is piece-wise constant with respect to the partition, takes

a value of 0 on type (i) subintervals and takes values of the form a0j +
2
√
2ǫ

N
√
δ
i, i =

−N,−(N − 1), . . . , N, on type (ii) subintervals if the subinterval is contained in
segment j of θ0. The size of F is a constant independent of ǫ and we show next
that it is indeed a ǫ/2-covering.

On subintervals of type (i), the squared L2 distance between F and θ re-

stricted on these intervals are at most 16ǫ2

Mδ2 kmaxK
2. Type (ii) subintervals can

be further divided into three types: (iii) it contains a change-point of θ which
is closest to some change-point of θ0; (iv) it contains a change-point of θ other
than those closest to some change-point of θ0; (v) it is entirely contained in
some segment of θ. On subintervals of type (iii) the squared distance is at

most 16ǫ2

Mδ2 kmaxK
2. On subintervals of type (iv) the squared distance is at most

δ
Bkmax(

2
√
2ǫ√
δ
)2. On subintervals of type (v) the squared distance is at most

(2
√
2ǫ

N
√
δ
)2. Thus when M,B,N is large enough, we have a ǫ/2-covering.

Proofs of the main results

Proof of Theorem 1. We apply Theorem 2.1 in [10] with ǫn = C
√

logn/n. Con-
dition (2.2) for that theorem is verified in Lemma 4.3, condition (2.3) is trivially
satisfied and condition (2.4) is verified in Lemma 4.1.

Proof of Theorem 2. Theorem 1 immediately implies that the under-estimation
probablity Πn(k < k0) → 0 in Pn

0 probability. For over-estimation, it is sufficient

to show that Pn
0 (

∫

Θk0

pn
θ (Z)

pn
0 (Z)dπk0 (θ) < Cn−(3k0−2+2ξ)/2) → 0 for some 0 < ξ <

1/2, and Pn
0 (

∫

Θk

pn
θ (Z)

pn
0 (Z)dπk(θ) > (logn)−1n−(3k0−2+2ξ)/2) → 0, when k > k0,

since these two statements together imply that the posterior mass on k > k0 is
asymptotically ignorable compared to k = k0.

step 1. Let Un = {t ∈ Tk0 : t = t0 + u, u ∈ Rk0+1, u0 = uk0 = 0, |ui| < c/n}
with Πt

k0
(Un) ≥ c′n−k0+1, where Πt

k0
is the prior measure on the locations

of change-points. For any fixed t ∈ Un, with probability converging to 1, by
considering a small neighborhood of the maximum likelihood estimator â(t) for
the given t as in Laplace approximation, we have

∫

pnθ (Z)

pn0 (Z)
dπk0(a|t) ≥

C

nk0/2

pn(â(t),t)(Z)

pn0 (Z)
≥ C

nk0/2

pn(a0,t)
(Z)

pn0 (Z)
.

For any t ∈ Un, and conditional on {Xi}, log
pn
(a0,t)(Z)

pn
0 (Z) is normally distributed

with mean − 1
2f(t)

2 and variance f(t)2, where f(t)2 =
∑k0−1

j=1 (a0j+1 − a0j)
2 · nj ,

and nj is the number of Xi that falls into the subinterval [t0j , tj) or [tj , t
0
j) (de-

pending on the sign of uj). Since nj is Binomial distributed with mean less than
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c, f(t)2 = Op(ξ logn) and thus log
pn
(a0,t)(Z)

p0(Z) ≥ −ξ log n with probability converg-

ing to 1. Thus, with probability converging to 1, we have
∫

Θk0

pn
θ (Z)

pn
0 (Z)dπk0 (θ) ≥

Πt
k0
(Un)

C
nk0/2n

−ξ = Cn−(3k0−2+2ξ)/2.

step 2. Letting δn = 1
2 lognn(3k0−2(1−ξ))/2 , and ǫn = C logn/

√
n, we have that

Pn
0

(
∫

Θk

pnθ (Z)

pn0 (Z)
dπk(θ) > (logn)−1n−(3k0−2+2ξ)/2

)

≤ Pn
0

(
∫

{||θ−θ0||≤ǫn}∩Θk

pnθ (Z)

pn0 (Z)
dπk(θ) > δn

)

+ Pn
0

(
∫

{||θ−θ0||>ǫn}∩Θk

pnθ (Z)

pn0 (Z)
dπk(θ) > δn

)

.

By the Markov inequality and Fubini’s theorem, the first term above is bounded
by 1

δn
πk(||θ−θ0|| ≤ ǫn) ≤ 1

δn
ǫ3k0−1
n → 0, where we have made use of Lemma 4.2.

For the second term, we apply Theorem 1 of [29] with ǫ in that theorem
replaced by ǫn defined above. Using

∫

√
2ǫ

ǫ2/28

√

b log(1/ǫ) + c ≤
√

b log
28

ǫ2
+ c ·

√
2ǫ ,

the entropy condition in that theorem can be verified for ǫ = ǫn. Thus when C
is large enough, the second term also converges to 0.

Proof of Proposition 1. We apply Theorem 2.4 in [10] using ǫn = A/
√
n with

A sufficiently large. Condition (2.7) for that theorem is verified in Lemma 4.4,
and (2.8) is trivially satisfied. Now we verify (2.9), for which we need to bound
Π(jǫn≤||θ−θ0||≤2jǫn)

Π(||θ−θ0||≤ǫn)
. When j < δ′

√
n/2A, 2jǫn < δ′ and Lemma 4.2 can be di-

rectly applied to obtain that Πk(θ ∈ Θδ
k : ||θ − θ0|| ≤ 2jǫn) ≤ C(jǫn)

3k0−2, and

we get Π(jǫn≤||θ−θ0||≤2jǫn)
Π(||θ−θ0||≤ǫn)

≤ Cj3k0−2 ≤ Cexp(A2j2/2). For j ≥ δ′
√
n/2A,

we bound the numerator by 1, and Π(jǫn≤||θ−θ0||≤2jǫn)
Π(||θ−θ0||≤ǫn)

≤ C(1/ǫn)
3k0−2 ≤

Cexp(A2j2/2) for this range of j.

Proof of Theorem 3. By Theorem 2, we can assume the number of change-points
of θ is also k0. Then max1≤i≤k0 |ti − t0i | > Mnǫ

2
n implies that ||θ − θ0||2 >

(δ0/2)
2Mnǫ

2
n. Thus Πn(max1≤i≤k0 |ti − t0i | > Mnǫ

2
n) ≤ Πn(θ ∈ Θδ : ||θ − θ0|| >

(δ0/2)
√
Mnǫn) → 0.

Proof of Theorem 4. Fixing one t ∈ TC
k0

= {t ∈ Tk0 : maxj |tj − t0j | ≤ C/n},
denote the maximum likelihood estimator for a by â(t). Let Πn

a|t,Z and Πn
t|Z be

the posterior measure for a conditioning on t and the posterior measure for t re-
spectively. The classical Bernstein-von Mises Theorem implies that E0||Πn

a|t,Z −
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N(â(t), I0)||TV → 0 ([30], Theorem 10.1). We have that

E0||Πn
a|Z −N(â(t0), I0)||TV

≤ ||
∫

TC
k0

Πn
a|t,ZdΠ

n
t|Z −N(â(t0), I0)||TV

+ ||
∫

(TC
k0

)c
Πn

a|t,ZdΠ
n
t|Z −N(â(t0), I0)||TV

= (I) + (II).

(I) can be bounded by

E0||
∫

TC
k0

Πn
a|t,ZdΠ

n
t|Z −N(â(t0), I0)||TV

≤ E0

[

∫

TC
k0

||Πn
a|t,Z −N(â(t), I0)||TV dΠ

n
t|Z

]

+ E0

[

∫

TC
k0

||N(â(t), I0)−N(â(t0), I0)||TV dΠ
n
t|Z

]

.

The first term converges to zero by the boundedness of the TV norm and the
Fubini’s theorem. The second term converges to zero since ||â(t) − â(t0)|| =
op(1/

√
n). Letting n goes to infinity for a fixed C first, we see that lim supn E0 ×

||Πn
a|Z − N(â(t0), I0)||TV is upper bounded by expression (II), which can be

made arbitrarily small when C is big enough by Theorem 3 as well as the fact
that TV-norm is bounded. Thus letting n goes to infinity an then C goes infinity,
we see that E0||Πn

a|Z −N(â(t0), I0)||TV → 0.

Proof of Theorem 5. Fix any number M > 0 and γ > 2M . Define θ0 = 0
and θn = γ√

n
I(12 ≤ t < 1), a function with a single change-point and jump

size γ√
n
. We trivially have ||θ − θn|| ≥ γ

2
√
n

> M√
n

for all θ ∈ Θ1 (i.e. θ is a

constant function). Under θ0, the posterior probability on Θ1 converges to 1 by
Theorem 2. This gives us

EZ|θ0Π
n(θ : ||θ − θn|| > M/

√
n) ≥ EZ|θ0Π

n(θ : ||θ − θn|| > M/
√
n, θ ∈ Θ1)

≥ EZ|θ0Π
n(Θ1) → 1.

Since the measure Pn
0 induced by θ0 and the measure Pn

θn
induced by θn are

mutually contiguous (this is a straightforward extension of Theorem 7.2 in [30]),
we have

sup
θ̄∈Θδ

EZ|θ̄Π
n(θ ∈ Θδ : ||θ−θ̄|| > Mǫn) ≥ EZ|θnΠ

n(θ ∈ Θδ : ||θ−θn|| > Mǫn) → 1.

Since this is true for any M , it is also true for some slowly diverging sequence
Mn as in the statement of the theorem.
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