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1. Introduction

Quasi-maximum likelihood estimator (QMLE) is commonly used in practice to
estimate the parameters of ARCH-type models. Literature on statistical infer-
ence for the GARCH(p, ¢) models is considerable. Recent studies on the prop-
erties of the QMLE can be found in Berkes et al. [3], Berkes and Horvath [2],
Straumann [15], and Robinson and Zaffaroni [13], among others. These papers
establish the strong consistency and asymptotic normality of the QMLE by as-
suming that within a parameter space ©, the GARCH(p, ¢) equation admits a
strictly stationary solution for all # € ©. In the contrary, Jensen and Rahbek
([7], [8]) relax the stationarity conditions and establish the asymptotic behav-
ior of non-stationary GARCH(1, 1) and ARCH(1) models. That is, the QMLEs
of both stationary and non-stationary GARCH(1, 1) model are asymptotically
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normal and consistent in certain senses. The purpose of this paper is to extend
Jensen and Rahbek’s result to general non-stationary GARCH(p, ¢) situations.
Consider the GARCH(p, ¢) model defined by

X = oiq,
P q
of = wtY Biogi+) o;XP,
i=1 j=1
where w, a = (a1,...,04), and § = (01,...,0,) are strictly positive real

constants while {¢;};cz are independent and identically-distributed random
variables of zero mean and unit variance. We assume that the polynomials
a(z) =221 a;z7 and 1 - B(2) = 1 — 32F_, ;27 are co-prime.

The GARCH model can be expressed in vector-matrix form Y; = A;Y; 1 +0,

for j € Z, where Y; = (07,1,...,07 pi0, X7, X2 10)T, b= (w,0,...,0)"
and
()[16?4-61 62 6;071 6;0 Qo Q3 cee Qg
1 0o ... 0 0 0 O ... 0
0 1 ... 0 0 0 O 0
A;=1 0 0 1 0 0 O 0
€2 0 0 0 o0 0
0 0 0 0 1 O 0
0 0o ... 0 0o o0 ... 1 0

It is shown in Bougerol and Picard [4] that a GARCH(p, q¢) model admits a
strict stationary solution if and only if the top Lyapunov exponent

1
p= eléljf\} 1 {Elog||AgA_1 - A_[|}
is strictly negative.

In this paper, we are interested in the case of p > 0. Under this situation,
the GARCH model does not admit any strictly stationary solution. However,
a stochastic process {X:}o<i<n can nevertheless be defined by specifying the
initial probability distribution of the vector Y_; .

Throughout this paper, we assume that the observed data {X;}o<i<, are

generated by the GARCH(p, q) model with parameters w”, a® = (af,...,a9)",
and 3° = (67,...,05)" . The initial values of the variances {03,0% |,...,02 ,,;}
and the returns {X?,, X2, ..., X? .} are assumed to be fixed.

In what follows, a QMLE is constructed for estimating 0% = (a2, 3°) from the
observed data {X;}_(q—1)<¢t<n . Let the parameter space of § = (c, ) be © C
RPT4. The QMLE is constructed as if the innovation terms {e; };c 7 are standard
normal random variables. The unobservable values w” and {0§,02,,...,0% .1}

are replaced by a given positive real number w and a given sequence Hg =
P y a g p g q 0
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(ho,h—1,...,h_py1) respectively. For all t = 1,2,... and 6 € O, define the
stochastic process

P q
he(0) = wo + Zﬂihtﬂ'(o) + Zant{j :
i=1 J=1

It should be noted that if w = «°, Hy = (03,02 ,,...,0%,,;) and 6 = 6°, then,
hi(0°) = 2. The quasi log-likelihood function is defined as

m@—%?ﬂﬁ%+@@@ﬂ-

Following the approach of Jensen and Rahbek [7], weak consistency and
asymptotic normality of the QMLE are established. This paper is organized
as follows. The main theorem is presented in Section 2. The proof of the main
theorem is outlined in Section 3. Concepts and results related to the Lyapunov
exponents and the products of random matrices used in Section 3 are introduced
in Sections 4 and 5 respectively. A Detail proof of the main theorem is given in
the appendix.

2. Main results

Before stating the assumptions, an alternative vector-matrix representations of
the GARCH model is introduced. Let Y/ = (Y;,1)7 and

p (A b
At_(o 1).

The GARCH model can be rewritten as Y/ = A}Y/ ;.
We assume the following conditions throughout this paper.

Al: Ee} < oo, and Ele;| 2% < oo for some § > 0.

A2: The top Lyapunov exponent of A for the data generating process is strictly
positive.

A3: The top Lyapunov exponent of A’ for the data generating process is strictly
positive and simple (cf. Theorem 4.1 for the definition of simplicity).

Remark 2.1. Details about the concepts of the Lyapunov exponents related
to the discussion in this paper are given in Appendix A.l. According to Os-
eledec’s multiplicative ergodic theorem, p + ¢ — 1 real numbers (—oo is al-
lowed), called Lyapunov exponents, can be associated to a sequence of random
matrices Aj, As, ..., to characterize the asymptotic behavior of the product
ApA,_1... A1 . These Lyapunov exponents may have multiplicities greater than
one. A Lyapunov exponent is called simple if its multiplicity is one. The greatest
Lyapunov exponent is the top Lyapunov exponent defined in Section 1.
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Remark 2.2. Assumptions A2 and A3 hold simultaneously can be illustrated
via the following example. Consider the case that p = ¢ =2, o = (0.15,0.1),
and 3 = (0.55,0.35) . The Lyapunov exponents are (0.08, —0.92, —36.97) for A
and (0.08,0.00,—0.92, —36.97) for A’. In this case, the top Lyapunov exponents
of A and A" are simple and positive.

When the top Lyapunov exponent of A is strictly positive, we have the volatil-
ities diverging to infinity, exhibiting the explosive behavior.

Lemma 2.1. Let p be the top Lyapunov exponent of A and suppose that p > 0.
Then, we have lim;_, af = +00 a.s.

The main results on consistency and asymptotic normality of the QMLE are
given as follows.

Theorem 2.1. Assume conditions A1-A3. Let Hy = (ho,h—1,...,h_py1) and
w be arbitrarily chosen fized values. Here, all the elements in Hy are non-negative
but not all elements equal to zero. Then, there exist a positive-definite matriz )
and a fized open neighborhood M(6°) of 0° | independent of n, such that

(1) with probability tending to one as n — oo, the likelihood function L, (0) is
uniquely minimized in M (6),

(1) for 0, = argminysgoy L (0) we have
6,, —P 69

and

Vn(, —0°) =4 N(0,E(1 — 2)2Q71).

Remark 2.3. Theorem 2.1 guarantees the existence of a consistent local QMLE
in an open neighborhood M (6°) of §°. As #° is unknown, in practice, we search
for the stationary points of L, (#) within

RFYI ={x>0: xeRr}

instead. Denote the set of such stationary points by 7". Then, 6, constructed
in Theorem 2.1 belongs to T'. That means, if n is sufficiently large, T' contains
a vector that is close enough to the true parameter 6°. If T is a singleton,
then the only element in 7" must equal to 6, = argminy;(goy L, (¢). Although
the uniqueness of the stationary point is not guaranteed, based on simulations,
Gauss-Newton type methods usually give a solution close to the true value §°
in most practical situations.

3. Proofs

This section provides proof of Lemma 2.1 and Theorem 2.1. Lemma 2.1 is shown
in subsection 3.1. An outline of the proof of Theorem 2.1 will be given in sub-
section 3.2 while the technical details are given in the subsequent sections and
the appendix. The following conventions are used throughout the paper.



N.H. Chan and C.T. Ng/Non-stationary GARCH 960

Convention 3.1. For k integers 1 < iq,142,...,1p < p+ q— 1, define

9% hy (0)

0" () = Zo— o

and

ik hy(0)
he()
Convention 3.2. The notation e; refers to a unit vector with the i-th component

equaling one and other components equaling zero. When there is no confusion,
the dimension of e; is not specified.

By () =

Convention 3.3. Let x and y be two vectors with the same dimension. x >y
means that x >y componentwise.

Convention 3.4. For any matriz M , M refers to its transpose and M;; refers
to the elements of the i-th row and j-th column.

Convention 3.5. Two matriz norms are used throughout this section. They
are || - |1, the largest row sum of the matriz and the operator norm || - ||, i.e.,
[ M]| = supj,)=; [Mz].

Convention 3.6. Let ) be the sample space. It can be chosen as the set that
contains all sample paths of {€;}rez . Let L be a shift operator on ).

3.1. Proof of Lemma 2.1

Applying the recursive relationship Y; = A,;Y;_1 + b repeatedly, we have

t t—1 /j—1
[TA- | voi+0+> (HA“) b
Jj=1 Jj=1 \12

i1

N
=~

t
Z 6,{ H Atfj Y,1 .
j=1

By Proposition 4.1, for all Y_; > 0, Y_; # 0 and 0 < 6 < p, we have
el (H;:o At,j)Y,l > e"(P=9) for sufficiently large t. Consequently, o7 diverges
almost surely.

3.2. Outline of the Proofs of Theorem 2.1

Note that the process
2

00) = - + 1og (0

is not stationary and therefore, the ergodic theorem and central limit theorem
are not directly applicable to establish the asymptotics of L,,(6) . In the case of
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GARCH(1, 1), Jensen and Rahbek [7] suggest that the asymptotic properties of
0, can be obtained without using the convergence and asymptotic normality of
L, (0) if the derivatives of £,(f) up to order three can be approximated by some
stationary processes. To generalize the results of GARCH(1, 1) to GARCH(p, q),
the most difficult part of the proof is to show that the quantity hy—;(6%)/h.(6°),
which appears in the derivatives of ¢;(#), has the following two properties:

(1) For any fixed positive integer j, hi—;(6°)/h:(6°) has limiting distribution
when ¢ — oo

(2) For any # € O, the moments of h;—;(0)/h:(0) decays exponentially as
J — 0.

Provided that (1) and (2) hold, the remaining of the proof is analogous to
that in Jensen and Rahbek [7]. The proof of (1) and (2) are less trivial than
that of the GARCH(1, 1) case. For property (1), take j = 1 as an example. In
the GARCH(1, 1) case, hy—1(6°)/h(6°) can be approximated by

hi—1(6°) he—1(6°) N 1

h(00)  wH (B +aredhy B Fared’

Here, the right-hand side is stationary. In the GARCH(p, ¢) case, the quantity
(81 + a1€?)h_1 has to be replaced by

T 2 2 T
€1 At(h/tfla ) htfpa Xt725 ) thpfl) )

which involves not only h;—1, but also hy_2,...,hi—p, X7 5,..., X7, . This
complicates the matter. To establish the convergence of hy_;(6°)/h:(6°), tech-
niques for product of random matrices are indispensable. Property (1) is estab-
lished in the following lemma, which is a consequence of Proposition 4.1 and
Lemma 4.1 given in Section 4.

Lemma 3.1. There exists a stationary, ergodic, and adapted stochastic vector-
valued process {n;} such that

AQAQA B 'Aé)Yil
eTALA - AY,

—n, — 0 almost surely,

where, n;, = (N, 0) . Equivalently,
(Yi,1)/hes1 —m; — 0 almost surely.
To establish property (2), we bound h;—;(0)/h.(6) by the matrix

J
QY (0) = H (B + alef,ielelT) )

=1

where

B B .. . B
1
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To see this, let F' > 0 be a (p+ ¢ — 1)-dimensional vector. Since all elements in
A;_; are non-negative,

2 T
Ay jF > ( OB+O‘16H6161 8 >F

Applying the above step repeatedly,

J 2 T
e{AFl AGE > e{ {H ( OB+ Q€616 8 )}F

=1

If the first component of F is one, then
6,{{1415,1 .. .At,j}F > (Qt’j)ll .

This inequality is applicable when F' = Y;_;_1/h;—;. We have the following
lemma. The proof of the lemma is given in Section 5.

Lemma 3.2. For any positive number r, there exist positive constants ki,
kao(r) < A, such that

ﬁ < O(K!) a.s. and {E (ﬁ)}l/ < O(r3) -

4. Product of random matrices

This section is devoted to establishing some properties related to the product
of random matrices P} = A} A, ;... A} that was used in Section 3 to establish
Lemma 3.1. Recall that the GARCH model can be written in vector matrix
notation Y, = A}Y/ ; (see Section 2). The product P/ arises from applying the
above recursive relationship repeatedly. Oseledec’s multiplicative ergodic theo-
rem and the concepts of Lyapunov exponents are essential tools for our purpose.
According to Oseledec’s multiplicative ergodic theorem, p+ g — 1 Lyapunov ex-
ponents are associated to P/ to characterize the asymptotic behavior of P;.
The results on 1
lim ¥1og(elT PlY'))

t—o0

and I Al / /
AjAL - AgY

T Al At I\ !
e; A A4 ApYZ,

are given in subsection 4.2 and 4.3 respectively. Subsection 4.1 provides an
introduction to Oseledec’s multiplicative ergodic theorem which is essential to
understanding the materials presented in subsections 4.2 and 4.3.
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4.1. Oseledec’s multiplicative ergodic theorem

Results related to Oseledec’s multiplicative ergodic theorem are introduced in
this subsection. References on this topic can be found in Ledrappier [10], the
collections of Cohen et al. [5] and Arnold, Crauel and Eckmann [1]. Section 1.5
of Krengal [9] also provides a short introduction to some of the results.

Oseledec’s multiplicative ergodic theorem is stated in Theorem 4.1, in which,
Lyapunov exponents and their multiplicities are defined. Ledrappier’s version
of multiplicative ergodic theorem and some related results are stated without
proof in Theorem 4.2.

Theorem 4.1 (Oseledec’s Multiplicative Ergodic Theorem, see Krengal [9]
and Cohen, et al. [6]). Let {M;(w)}iez be a stationary and ergodic stochas-
tic process of d x d random matrices such that Elog™ ||[Mi|| < oo. Define
P, = M;M; 1 ---M. Then, there exists an L-invariant measurable set €)' C Q,
i.e., LY = with P(Y) =1 such that in Q, the following holds.

(I). The limit

lim {PL(w)Pi(w)}"* = Bw)

exists. Let p1 > pa > -+ > ps > —o0 be distinct log-eigenvalues of B(w) with
multiplicities 1,72, ...,1s. Then, p1,...,ps and ri,ra, ..., 75 are constants. The
eigenvalues are called the Lyapunov exponents and the largest one is called the

top Lyapunov exponent. If a Lyapunov exponent has a multiplicity one, then it
is called simple.

(IT). For 1 <k <s, the random set
a. o1
Vi(w) =<z € R": thm ;10g|Pt3:| < pr
s a subspace with dimension ry + - -+ rs.
(III). The subspaces can be arranged in an asending order

ViCVigC--CVi=R%
When = € Vi(w) — Vi—1(w),

1
tlim i log |Px| = pi,

and Vi, (Lw) = My (w) Vi (w).

Theorem 4.2. Let M (w), Ma(w), ... be a stationary and ergodic stochastic pro-
cess of invertible dx d matrices such that Elog™ | M;|| < co and Elog™ || My || <
0o. Define P, = MyM,;_1--- M. Then, there exists Q' C Q with P(Q') =1 such
that for all w € ', we have a direct sum decomposition

RI=Wi(w) @ Wa(w) @ - & W,(w),

with the following properties.
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1. For 1 <k<s, and u € Wy. We have

1
—log |Pyu| — pi -
n

o

Wi (Lw) = My (w)Wi(w).

3. The dimension of Wi(w) is r1, the multiplicity of the top Lyapunov expo-
nent.

4. Let &(w) € Wi(w) be a random vector. Then,

Py (w)
| P (w)]

5. If the dimension of Wi(w) is 1 and &, (w) is the unit vector in Wi (w), we
have the version of LeJan [11] for Oseledec’s theorem

P& (w) t

— = =& (L'w).

| Pk (w)]
In addition, & (w) depends only on the values of My for —oo <t <0 and
hence the process & (L'w) is stationary, ergodic, and adapted.

e Wi (Ltw).

4.2. Top Lyapunov exponent of A}

The purpose of the subsection is to prove Proposition 4.1 below.

Proposition 4.1. Let 2 > 0, x # 0 be a (p+ g — 1)-dimensional non-random
vector and z' = (27, 1)T .

1 1 1
tlim n log(el' Plz’) = tlim n log |P/2'| = tlim n log || P/|| = ¢’

Proof of Proposition 4.1. We prove this statement in two steps.

Step 1: To show that 1|P/z’| — p}. Note that pi >0, |P/ep4q| =1, and P, and
 are all non-negative, it is enough to show that 1 log|P/e1], ..., +log |Pleysq—1]
converge to the same limit pf .

Theorem 4.1 guarantees that 1 log|P/e;| converges. To obtain the conver-
gence of 1 log|Ples|, ..., tlog|Pley+q—1], the following identities will be used.
Similar identities can be found in the proof of Theorem 1.3 in Bougerol and
Picard [4]. For simplicity, we use the notation (H?ZQA;-) = AjA,_,--- Al Then

Ple, = B, (H;-:QA;-) e,
Pleprg-1 = aqg (H§:2A;') €1,
Pler = Bp (I_yA)) e1 + (Ij_gA)) exy1, for 2<k <p-—1,
Plegrr = ag (HE-:QA;-) e1 + (H;-:QA;-) eptht1, for 1 <k <gq—2.
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It can be seen from these identities that Ilog|P/es|,..., 1 log|P/eptq—1],
converge to limy_.o 1 log|P/e;|. Take 1 log|Ple,_1| as an example. We have

Pt/epfl = 6;071 (H;ZQA;) €1+(H§-:2A;) ep = 6;071 (H;ZQA;) €1 +6p (H§:3A;) €1

The required result follows from the following fact.
For all positive sequences a,, , b, and positive constants k1, ko , we have % log a,, —
a and %10g b,, — b implies % log(k1an, + kob,) — max{a,b}.

That limy_. +log|P/e1| = p} is a consequence of the above fact and the
following inequalities,

|Plex] < |PlIl < |Plex| + [Plea| + -+ [Plepsqo] +1.

The second inequality is obtained by considering y such that sup),_; |P/y| is
attained. Since the absolute values of all components of ¥y must be smaller than
one, we have

[Pl = |Plyl < [Plex| + [Piea| + -+ + [Pleprg1| + 1.

Step 2: To show that 1log(e] P/a’) — py. Clearly, we have e1 P/x < |P/2/|. To
obtain a lower bound for e; P/z, we use Lemma A.16 to get

1 1 1 1
|Plz'| < e1 P’ I+ 5+ +5—+=5+ "+
Ibh p—1 01 Qg1
This yields the required result. O

4.3. Asymptotic behavior of P/ = AjA] | --- A}

The purpose of this subsection is to establish the following lemma.

Lemma 4.1. Assume that Elog™ || A}|| < co and the top Lyapunov exponent
for A} is simple. Suppose that F' : Q — RPTY is a random vector. Assume that

1
—log |ALA; - AVF'| — )

ast — oo, then there exists a stationary, ergodic, and adapted stochastic RPTI+!-
valued process {n}}1ez such that as n — oo,

ApAG AT o

el ALA, - AVFY !

— 0 almost surely

and for all t € Z,
A

/
M1 = T A/ /-
€1 At+177t
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Outline of the proof of Lemma 4.1:

To proof Lemma 4.1, we construct the stochastic process 7, from Ledrap-
pier’s version of multiplicative ergodic theorem, which is stated in Theorem 4.2.
This theorem associates a stationary and ergodic sequence of invertible matrices
{M;(w)}tez with a random vector & (w) such that

MM, ... M& (w)
|My M1 ... M& (w)]

=& (Ltw) )

provided that the top Lyapunov exponent of M, is simple. It is natural to
construct 7; from & (L'w). However, since A} is not invertible, M; cannot be
chosen as A} . Here, we construct invertible matrix M; and a linear transform
B, : Rmx(pa)+1 _, RPF4 guch that for any z € R™ax(Pa)+1

A;A;,1 e A/lEo.CC = EtMtMt,1 e Ml.CC . (41)

The proof is organized as follows. Firstly, the invertible random matrices M;
and the linear transform E; are defined. Proposition 4.2 relates the matrix A} to
M, , which can be used to establish the identity (4.1). We show in Proposition
4.3 that A} and M; share the same set of Lyapunov exponents except —oo that
appears in A} only. These allow us to establish the asymptotic behavior of A}
from those of M; . Finally, we show that

r_ Etgl (Ltw)
Tt el B (Ltw)
can be served as an approximation to
ALA, - ALEY
el ALAL - AR

Linking A} to the invertible matrix M;:

M; and the linear transform E; : R™*(P-0)+1 —, RP+a that links A} and M;,
are constructed as follows.

Case ¢ > p : Consider the vectors Z, = (U?H,...,a?7p+2,Xt27p+1,...,

Xffq +2,1). We have an alternative representation of the GARCH(p, ¢) model,
Zt = Mtthl y where

2 2
1€ + 61 e e O[pet,p+1 + 6;0 Qpt1  vv ... Qg | W
1

2
Mt etprrl
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Define
Et§ - (515 ) gpa 6?525 ) 6?7p+2§;05 §p+1a ) §q+1)T

and

I, 00 0

G=|0 0 I O

0 00 1
Then, we have Y/ = E;Z; and Z; = GY; .
Case ¢ < p: Consider the vectors Z; = (07,1,...,07 ,49,1). Define

are2 + 6 ... aqefﬂﬁl +08y Bg+1 . Bplw
1
Mt = . ’
10
1

Et§ - (515 ceey gpa 6?525 ) 6?7q+2§qa §q+1)T 5

(I, 00
G_(o 0 1)'

We have Zt = Mtthl y }/t/ = EtZt and Zt = G}/t .

and

Remark 4.1. In order to apply Theorem 4.2, we need Elog™ || M, || < oc. The
choice of the norm here is immaterial as all matrix norms are equivalent. It is
more convenient to work with the norm ||-||;. For {M;} chosen in this subsection,
the condition holds as Elog™ |¢g| 72 < o0, or equivalently, E|ey| =% < oo for some
§>0.

Proposition 4.2. For any max(p, q) + 1-dimensional vector x, we have
A;JrlEt{E = EtJrlMtJrlx

and

EoGAYA' ... A

— min(p,q)+2 = AéALl s A/

— min(p,q)+2 *

Proof. Directly from the definition. O

Proposition 4.3. Let p., < pl._; < -+ < py be distinct Lyapunov exponents of
M. Then, —co and p., ..., p} are the Lyapunov exponents of A, . The multi-
plicities of a Lyapunov exponents pl, ..., py are the same for A}, and M; .
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Proof. First, we show that —oo is a Lyapunov exponent of A} . Let J.(\) be
the standard Jordan block of order r with diagonal elements equaling A. Sim-
ple algebraic manipulations show that a non-random full-rank matrix P with
min(p, ¢) — 1 columns can be found so that

AP = PJuin(p,g—1(0),

where the columns of P satisfy AjPy . =0and Aj P =P/, for 1 <i<

min(p, ¢) — 2. As a result, for n > min(p, q) — 1,
(ALAL 1 - ADT (AL, -~ AP =0,

showing that —oo is a Lyapunov exponent of A} with multiplicity at least equal-
ing to min(p, q) — 1 (see Theorem 4.1).
By Theorem 4.1, we can find vector spaces

Vi(w) C Ve_i(w) C -+ C Vi (w) = RO+l
such that ¢ € Vi (Ltw) if and only if

1
tlggo n log |[MyM;—y - - - My€&| < pj.

Let Vp be the vector space spanned by the columns of P. Define a set of vector
spaces
Vp CEVs;®Vp C - C EgVi ®Vp = RPta,

What remains is to show that for n € EoVy @& Vp, we have
1
Jim = log Ay ALy -+ Ayl < pi
and the dimension of EyVj, 4+ Vp is min(p,q) — 1 + 7 + - - - + r4. Note that

(EOVk D Vp) — (Eokal &b Vp) = Eo(Vk — Vk71> & Vp.

Consider n = Eo& +np where £ € Vi, —Vi_1 and np € Vp. Then, by Proposition
4.2,

.1 1
Jim, —log | 4147 -+ Aj| = lim —log| E,MM; 1+ Mig] = g,

The linear transformation Ey does not change the dimension of a vector space.
In addition, for any 1 < k < s, any elements in Vp, np, say, cannot be writ-
ten as a linear combination of any basis of EgVy, &1, ...,&, say. To see this,
assume on the contrary that np = Y %, ¢;Eo&; . Clearly, for ¢ > min(p,q) — 1,
A, -+ Alnp = 0. However,

Tk Tk

Ay ALY ciBo& = By Y eiMy- - Mg

=1 =1

By the invertibility of M , we have M, ---M;&; are linearly independent and
hence, A} A} >%, ¢;Eo& = 0 if and only if all ¢; = 0. As a result, the

1=

dimension of EgVj, + Vp must be min(p,q) — 1+ 7+ -+ 7s. O
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Proof of Lemma 4.1. By Theorem 4.2, we have a direct sum decomposition
R2x(pa) 4 = W (w) @ Wa(w) @ - - - @ Wy (w) such that for any &, € Wy (Llw),

o1
tlggo n log | My M1 -+ - Mi&g| = P;c

and
MiM;_y -~ - Mq&

|MyMy_q - - Mi&|

S Wk(w).

By Proposition 4.3, p) for the matrices M; is simple. Ignoring the sign, there is
only one unit vector in Wy (w) (see Theorem 4.2). Let this unit vector be & (w) .

We now show that
;o Etgl (Ltw)

= el Eié (Liw)

meets our requirement. From Proposition 4.2

1Al ’ o ’ ’
A Al 1 Al in(pag)—2) = EeMeMioy - MG Ay - AL (i p.g)-2)-
Decompose the vector
A / /
§o=GAg A min(pg) -2 F
into the components of Wy (w), Wa(w), . . ., Ws(w), then we have a random vector

(915 -, 9s)(w) and unit vectors & (w) € W;(w) such that for any integer n,

§o = (W) (w) + g2(W)&2(w) + - - + gs(w)&s (w).
For simplicity, define Pt’)k = MyM;_1 -+ M1 (w). Note that ¢g1(w) # 0 almost

surely. Otherwise, let 2”7 C € be a measurable set such that P(£2”) > 0 and
g1(w) = 0 when w € Q. Without loss of generality, assume that gs(w) # 0.

1 1
7 log [AjA, 1 AL in(pug -2 F'l = n log |Ey My M;—y - - - Mi&o|
1
= Jlog|E{g2(wW) Pl + -+ gs(W) P} -

Using Theorem 4.2,

92(W)P/ 5+ -+ gs(w) P/
= g2(w)|Pfof&(L'w) + -+ - + gs(w)| P/ |&(L1w) .

When ¢ — oo, the term ga(w)| P/ 5|&2(L'w) dominates. In Q”,
11 A/A/ A/ F/ /
t Og| t4—1"" " 42— (min(p,q)—2) | — P2

which contradicts the assumption.
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Now, it can be seen that

A;Aéfl o 'AL(min(p,q)72)F/

— )IPL| {Etsl<Ltw>+---+ 9) Widlpe (1 w>} .

g1(w) [P/,
Then
t gs(w) |Pis ¢
AQA;71 o .AL(min(p,q)72)F Eté.l (L (.()) Tt gl(w) |P/ |Et§S(L )

T » - .
ey AyA - 'AL(min(p,q)72)F/ el {Etfl(Ltw) 4+ 4 gigwg :P/ |Et§S(Ltw)}

Since
E Lt gs(w) |Pt E L
€1(Liw) -+ oGy - B (L) Eg&(L'w)
@) 1P - )
ef {E@(Ltw) oot B e pe (D)) BG (L)
the process
77/ _ Etgl(Ltw)
"B (Lw)
fulfills the requirement.
By Proposition 4.2 and the fact that
Mya&i (L") = & (L w),
we have 7}, = % O

5. Miscellaneous results on matrices

This appendix presents two results of the matrices B and (Q%7);; introduced
in Section 3. These two results are frequently used. In the following, (B?); is
the (7, k)-th element of the j-th power of B.

Proposition 5.1. (I) (B7)11 satisfies the recursive relationship

_ min(4,p) o
(B = Z Bi(B”" )11
i=1
(II) For any § > 0, we have (B7)1; < K(p(B) +6)7 forj=1,2,....
(III) If B1,...,Bp > 0, then the eigenvalue with the largest modulus A\ is real

and positive, has a multiplicity of one, and is equal to p(B). Also, for 1 <i < p,
the elements in the first row of the j-th power of B have order (B7)1; = O(N]).
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Proof. (I) The first conclusion is trivial.

(IT) The characteristic equation of B is given by

62 ﬁp o
51+7+~~~+)\p71 = A (5.1)
Let Aq1,..., A, be the eigenvalues, then,
[1=6(z)] = [(1=Xz)---(1=Ap2)|
z A =[xl-f2) - (= Ap] - 2])
= (=M [2])P.

Take R = (JA1]+9). By Cauchy’s estimation (see Theorem 10.26 in Rudin [14]),
an upper bound is given by

< — - =
" =Ri (1= R[NP &7

) 1 p+J
(B, < 1 (Ml + 0

(III) Under the condition that f,..., 5, > 0, the characteristic equation (5.1)
has one and only one positive real root, which is also the root with the largest
modulus.

Consider the Jordan decomposition B = PJP~!. Normalizing the first com-
ponent, the eigenvector corresponding to \; is

1 1 '
1, —, ..., —
(a)\la ,)\;T1> ’

and the corresponding row in P~! with the first component normalized is

(1= 81X = Bt = By AT = BT = = B, ).

Note that all elements in this row vector must be greater than zero. If any one
of them is negative, for example, the second component, then we have

A = BT == B = (A = BN = BN - = B, <0

The characteristic equation is no longer satisfied by A;. Since A; only appears
once in the Jordan matrix J and the coefficients of \{ for el B in the decom-
position B/ = PJ/P~! do not equal to zero, we have (B?)1; = O(\]). O

Remark 5.1. A necessary and sufficient condition for B’ to decay exponentially
is that p(B) < 1. This condition is equivalent to the condition that all roots of
1 — B(z) = 0 lie outside the unit disc. The latter one will be used often.

Lemma 5.1. For any positive number r, there exist positive constants ki,
kao(r) < A, such that

(Qt,l% < O(x!) a.s. and {E (ﬁ)r}w < O(k).
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Proof. Assume that the eigenvalue decomposition of By is Adjug + Aoug + -+ -+
Apup. Here we set Ay = A, i.e., the one with the largest modulus. Let 0 < § <
R(u1) be arbitrarily chosen, where R(-) refers to the real part of the number.
Since _ )
B)11(B?
lim 7( )1.1(. Ju
i,j—00 (BHFJ)H
there exists an integer k; such that when ¢,j > k1,

(B)11(B’)11
(B*)11
On the other hand, for any given ¢,

. (BY1(B)11 (BY)1a
1 — = — .
JLIEO (BHJ)H 2\

= §R(ul) ’

> §R(’UJ1) —9.

Choose 0 < §; < (B)\ﬁ Then, we can find ko > ki such that for all 0 < i <
kl, and 7> ko , _ ) _
(B")11(B?)11 - (B*)11

(Bi+i)q; \ —0;.

Take

BYy1(B7 B!
p= min(( (gli(j)ll)lla( )\311 —6i, R(ur) =610 <i < ky,0< 5 < ko,

0§l§@>>0,

we have

(B)11(B7)11 .
0<p< 2B o i j<1.
== (B /

Here p depends on B and on the choices of § and d;s.
We turn to the multinomial expansion of (Q%*)q; .

(@)1 =]

¢
H(B + alefiele{)] e1

i=1
¢
— (B" Bii—1 2
= (B")1u + ( )1lalft—j1
=1 1<j1<j2 < <5<l

(BRI Y naned_j, - (BT D nane - (B0

J j1—1
BJl
>@u+y Y S

0
I=1 1<j1<ja<-<ji<t (B%)n
(B2 Y, (B Y, (B
P (Bit), A1€t—j p(BJ'lfl)n i p(le)ll

e .
(B)11 2 )
> ——— tpaie_; | .
pg ((311)11 Pt
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Next, we show that

(B)11

. 1
B, Trad) T <K<y

E( 3

for sufficiently large i and that (Q%*)11 decays exponentially almost surely. Note

that 0 ](337)11)111 — X, then for an arbitrarily chosen ¢’ > 0, we have

(Bi)ll / .
———>A—0§ forj > N.
(Bi—1)1; J
Let

f(z) =E\ — 24 pa1e?)™" and g(x) = Elog(A — x + pa€?).

For non-degenerate €2, f(0) < A=" and g(0) > log A\. By the right-continuity of
both f(x) and g(x) at = 0, we can choose ¢’ > 0 such that K1 = f(¢') < A™"
and Ky = g(§") > log()\) also. Almost sure exponential decay of (Q%%)1; follows
from

(B

B,L 1) +pa1€t ’L)

10g(Qt > 7 Zlog

¢
1
é Zl Bl 1 + parer ) Z Z log(A — 0" + paier_;)
i=N+1

— Elog(A —d" + pozleQ) almost surely
= K2
> log \.

Appendix A: A detail Proof of Theorem 2.1

We will closely follow the method of Jensen and Rahbek [7] to complete the
proof of Theorem 2.1. It would be much easier to establish Theorem 2.1 with
the additional assumptions that w = w® and Hy = (0§,0%,,...,0%,,,), in
which case h(6°) = o7. Under such assumptions, we have the following Theo-
rem A.1, which is proved in subsections A.1 to A.3. In subsection A.4, we prove
Theorem 2.1 by showing that the difference

sup |Ln(97wa h’O; h’fla ) h*p+l) - Ln(oawoa US) 0'2715 ) 0'27 +1)|
M(6%) P

and its derivatives up to order three converge in probability to zero.

Theorem A.l. Suppose A1-A3 are satisfied. Let Hy = (03,02, ..., U%erl)
and w = w°. The conclusions in Theorem 2.1 hold.

Some technical lemmae to be used are given in subsection A.5. In what fol-
lows, we give an outline of the proof of Theorem A.1. It suffices to construct



N.H. Chan and C.T. Ng/Non-stationary GARCH 974

positive-definite matrices 1, 2, and a neighbourhood of 8, N(6°) such that
the following conditions C1-C3 hold. Then, Lemma 1 of Jensen and Rahbek [7]
yields our results.

(C1)
VnVL,(6°) =4 N(0,Q;),
(C2)
V2L, (0°) =P Qs
and

(C3) the third-order derivatives are uniformly bounded by n-dependent random
variables C, o

max  sup ’8“’12’131)71(9)’ <C,,

11,12,13 g N (90)
where C,, —P ¢ for some 0 < ¢ < 00.

The mean ergodic theorem and the martingale-array central limit theorem
(see Pollard, [12]) can be be used to establish C1-C3 provided that we are able to
construct stationary and ergodic stochastic processes which approximate I;(6°)
and its derivatives up to the second order. Similarly, to establish C3, we need
stationary and ergodic stochastic processes v;"*>"** such that Ev;"**"* < co and
that SUDge N (99) ’8“’““%(9)’ < ’Uzhlz’la .

The derivatives of [;(0) up to first three orders are given below (see equations
8-10 in Jensen and Rahbek [7]).

2',(0) = _1 - hi((;)_ nt,(8), (A.1)
o) = [1- 0] e - |12 oo, @)
117213 _ [ Xt2 ] 111213 Xt2

guiisl (g) = _1— ™ol hiLi=is(9) — [1_2ht(0)]
x [hy2 (0)RY;(0) + oy (0)h33(0) + hii' (0)hi}(6))]
+2 [1 -3 h)f(;)] OIS OIACOR (A.3)

Below, we consider the terms X?2/h(0), hi,(6), hb,*(0), and h%,">* (0) that
appear in the above equations individually. Some useful identities are given.
First, when w = «° and Ho = (0§3,02,,...,02,,,), we have h;(§°) = o7 and

X7 o hi(6°)

e (9) —  h(0)

In particular, we have
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The quantities 9°h;(0) , 91%2h,(0) , and 91%2%h,(0) can be expressed in terms
of hy—;(8), for j = 1,2,3,... Consider the following recursive relationship in
vector-matrix form,

Ht(ﬁ) = BHt,l(G) 4+ vi_1eq y (A4)

where Hy(0) = (he, he—1,. .., hi—qi1)(0) ,

q
Vi1 = w+ 5 o X,
=1

and

B B .. . B
1

1 0

With (A.4), the recursive relationships for the derivatives of H; up to order
three can be obtained. For example, the first order derivatives are given by

O H,(0) = (' B)H,_1(0) + B(0'Hy_1(0)) + (9'vy_1(0))er .

Applying the above recursive relationships repeatedly, we have

t
H(0) = B'Ho+» B lu_jer, (A.5)
j=1
t

O'H(0) = Y BN 0'B)H,;(0)

Jj=1

+ ZBﬂ'*l(aivt,j(o))el , (A.6)

ailigHt(o) _ Z Bj*l(ailB)(a'Lé Ht,j(e))

j=1

+Y BTN 9=B)(0" Hi—(0)), (A7)

j=1

t
81'11'21'3Ht(9) _ Z ijl(ailB)(aiziaHt,j(o))

j=1

+Y BITH9™B)(0" " Hy(6))

j=1

+Y BTN 0" B)(0" "2 H,4(0)) . (A.8)

j=1
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By using these recursive relationships, stationary and ergodic stochastic pro-
cesses uzlt”'i" are constructed in subsection A.1 to approximate h};lt'”i’“
Conditions C1 and C2 are established in subsection A.2 using the results on
ull; " given in subsection A.1. Finally, in subsection A.3, a neighborhood N (6°)
is constructed so that the items h.(6°)/h(0), hi,(0), k> (6), and hy,">" (0)
that appear in Equations (A.1)—(A.3) are bounded by some stationary and er-
godic stochastic processes within N(6°). Condition C3 is then a consequence of

the mean ergodic theorem.

A.1. Approximating hil " by uiL-i*

This subsection is devoted to establishing the approximations to h},(6°) and
hélt” (6°) by stationary and ergodic processes which are then used in subsec-
tion A.1 to guarantee C1 and C2. Since we are only interested in § = #° when
establishing C1 and C2, we drop the term (6°) and write (o, 3) instead of
(a®, 39). Throughout this section, we assume that the conditions in Theorem
A.1 hold.

Applying Y; = A, Y;_1 + b repeatedly, hy can be written as the sum of

{(e i)

=1 =1

Note that the first term will be dominated when h; = 07 — +o0, which is
guaranteed by Lemma 2.1. In addition, we have

Yij1 _ A;7j71A27j72 A
hi—j el Al / ALY

t—j—144—j5-2"

It is shown in Lemma 3.1 that there exists a stationary, ergodic, and adapted
stochastic vector-valued process {n;} such that when ¢ — oo,

ALA - AY
e{AéAéfl o 'Aéyil

— (1n,0)" — 0 almost surely .

The approximation to h?,(6°) and hb>(6°) are given by u}, and uj;">. For
0; = B, where =1, ..., p, define

o0
; i -1
ufy =Y (B (el Aer - Avjopane—jop) s
j=1
and for 0; = a,, where p=1,...,q, define

o0

- . —1
ub, =Y (B ne e (T Ay A am—i)
j=1
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The second order derivatives hb,”* are approximated by
’U,;ltl2 Z TBJ 1(811B) (61 At 1° At,jnt,jfl) ’U,lfytij
Z BJ 1 812B) (S{At,1 tee At,jT]t,jfl) ’U,lllytij .

The moment condition for {ukt %1 is established in Lemma A.1. The relation-

ships between A}, and u},~"* are given in Lemma A.2.

Lemma A.1. For integer k = 1,2, the processes {uzlt“‘} are stationary and

ergodic with finite moments E(uzlt VP < oo for any integer p > 0.

Proof. Here, the proof is given for the cases ; = {1} and {60;,,0;,} = {51, 51}
only. Other situations can be handled in the same manner. Below, we show the
existence of the moment E(uj,**)P. Stationarity and ergodicity follow directly
from the Lebesgue dominated convergence theorem.

When 0; = {1}, applying Minkowski’s inequality and Lemma 3.2, we have

B1yp\ /P (B | ! nv
(E(u™)?) < Z(B )i |E T A1 Ay i

j=1 L 1 - —Jt=3—=
| 1 pql/p

< B~ E

- ;( u ! (elTAtl"'Atj€1> ]
i T 1 py1/p

- S ()]
= L\ (@)

< 00.

When {6;,,0;,} = {81, 61}, (Q"7)11 and uf!,_; are independent. Using Minkowski’s
inequality and the preceding result of E(u},)?, we have

(E(u&lﬁl)p)” '

<0 (B(@ ) ") B ()]

Jj=1

LS By i (B(@ ) ™) " [B @g;»ﬂ”p
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978
_ [E (ult) } Z ¢T B 3ﬁ13)( (@) )1/p
+[ (uu) } Z TBJ 1 ﬁlB) (E((Qtj)ll),p)l/p
< 00.
O

Lemma A.2. If A3 is satisfied, we have for k=1,2

1.k Q1. 0k Ly
by =g =70,

1 & .
7 2 L0 () = () (uip)] =70,
J:l

and

MH

4112 1112 LP
(hay"? —udl?) == 0.

J:1

Proof. Step 1: First, we give upper and lower bounds for the differences ull

kt
hyl;** and show that the upper and lower bounds converge to zero in L?
Here, we only consider the case {0;} = {(1}. In this case, we have
: 1 h
B _ j—1 t—j
u?t — R = B’ .
lt 1t Z( )11 (elTAtl' )

=1 "Atfjntfjfl hy

It should be noted that for any integer j , the summand converges almost surely
to zero as t — oo according to Lemma 3.1 and it can be bounded by

) 1 hi—j
w0 -52)
( )11 €1TAt71 e 'Atfjntfjfl Iy

_ 1 1
> (B n -
TA Ay A AT
. Y77
(BJ71)11 . G{Atfl"'At*j( ;ztjjl _T]t*jfl)
el Ay q- A jm—j el A1 Ay Y}ijl

< _(Bj71)11 1M=Lk
- (Qt7j)11 1<k<p+q—1 }/t*jflyk/h’t*j

Here, the quantity

MNt—1,k
max 1 —_
1<k<ptq—1 Yioix/he
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is bounded above by some random variable with finite moment according to
Lemma A.16. In addition, it converges to zero almost surely as ¢ — oo by Lemma
3.1. Therefore, the moments of this quantity converge to zero by dominated
convergence theorem. Also, we have

Bl 1 ) -
11 -
€1TAt71 e 'Atfjntfjfl Iy
by noting that the term _
(BJI)u)
E(—+—
( (Q@"7)11
vanishes as a result of Proposition 5.1 and Lemma 3.2.
The lower bound for uf, — h%, can be given by
‘ .
) ) (BJ71>11 Tt—5i—1,k
i, —hy, > — - 11—
e = Z (Q%)11 1<k<p+q—1 Yioj_1x/hi—;

j=1

That the p-th moment of the upper bound converges to zero can be shown using
Minkoswki’s inequality and the following fact.
Let a; and by be two sequences. If a; decays exponentially and b; — 0, then,

the sequence
t
Xry = E Cijt,j
j=1

converges to zero.

To see this, let n be an integer such that for j > n, we have |b,| < §, where
d > 0 is an arbitrarily small real number. Suppose that |a;] < K\!. Then, for
t>n,

|z <6 Z [ J|+Z|at il - 1bjl < K(1 = X) 15+Z|at il |
Jj=n-+1 Jj=1

The last term converges to zero as t — 0, hence the required result.
Next, we construct an upper bound for u hftl Note that by Proposition
5.1 and Lemma 3.2, the sum

>{r (%thltlf}w

converges. Then, suppose that n is an integer so that the sum

> {e(G) )

Jj=n+1
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is sufficiently small. Assume that ¢ > n, then we have

- 1 hi_j
i, —hi, < BJ 1 ( _ tJ)
1t 1t ; €1TAt—1 .. .Atfjmfjfl he
Ly
— €1 At 1° Atfjntfjfl
Then we have the required result h uftl -0,

Step 2: Define vy = Z(;o 1 ((BQ]t ])) m . Then vy¢ can be used to bound the differ-

ence,
1,0 11 7,0 1 [ [ [ [ [
uyjuyy — hyhyy = B [(UU + Ny )(uu hi5) + (uu + hij)(uy — h’11j>] .

Below, we only consider the case {0;,,0;,} = {51, 31}. We have

py 1/p
1 n
B\~ Z (uyj + (uf} — i)
Jj=1
py 1/p

2 n
B1
;Zv” ulJ hi )
Jj=1

’U 2p 1/2102{ hﬁl 2p}1/2p

almost surely.

IN

IN
© 3|l\9/—/h
el

Step 3: That u,> — hb» —" 0 can be shown in a similar manner as in Step 1
by means of Lemma A.1 and the recursive relationship (A.7). O

A.2. Conditions C1 and C2

With the stationary and ergodic stochastic processes ui, and uglt” constructed
in the last subsection, conditions C1 and C2 are established in this subsection.
Again, since we are only interested in § = 6° when establishing C1 and C2, we
drop the term (0°) and write («, 3) instead of (a2, 5%).

Define Q = (E (ullltull"’t))lgingpﬂ, where ; and Qs in Lemma 2.1 are chosen

to be E(1 — €2)%Q and € respectively. Lemma A.3 gives C1 while Lemma A.4
gives C2. Lemma A.5 establishes the positive-definiteness of €.

Lemma A.3.
ViV L, = N(0, E(1 — €2)%Q,).
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Proof. The convergence of the first order derivative of the quasi log-likelihood

function,
n

T 1 [
O'Ln =~ > (=€),

t=1

can be obtained by the martingale central limit theorem. Using Lemma A.2 and
the mean ergodic theorem, the sum of conditional covariances is

1 oo 1 n o

“E(L-e)? Y hihy = —B-e)? Y [hhY - uiul + upu]
j=1 j=1

= BE(l-¢})? E{ullull} +o0(1)

To show that the Linderberg condition holds, we bound k!, by a stationary and
ergodic process. For 6° = 3,,, consider

. h 1 _
1 —i— ,u+1 1 tyi+p—1
hii < E Bl < E Bil ( e ) =y

and for 6" = «,, consider
t L t .
i i—1 2 t—i—pl i—1 2 titpu—1 o
hyy < E By Choimptl™ <D _Bii € (@1 = Uyy-
; i—1

Here v}, is stationary and ergodic by Lemma 3.2. The Linderberg condition
holds as hi, < v}, and

@ B (= @20l - i) > ovi)
S B ) I~ Dokl > o)
— B((1- P0LP - @)l > va))
— 0

Lemma A.4. _ _
2L, (6°) —P E(ulllt) (uﬁ) )

Proof.

€ )y — (1= 2€})hyshit}

1119 1112 1192
1_5t (hay'® — ugy”™ + ug )}

Pl
=
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n

1

= =D {0 = 2e)) (kY - wiud + uijur) }
i=1
1 - 2\, 1112 2\, %1, %2 3 D
~ o Z {(1—€)uyy™ — (1 —2¢))ufful}  in LP.
i=1

Since €; and (u1¢, ug;) are independent, we have E(1 — €7)ug; = 0 and E(2¢} —
Duyuy; = Bujjuyi. O
Lemma A.5. ) is positive-definite.

Proof. In the following, the notations hi; = (hl,, ..., A% %) and uy; = (ul,, . ..,

uF9) are used. Let A be a p + g-dimensional non-random constant vector such

that Au;; = 0. We need to show that A must be zero. Consider the recursive
relationship for h; and its derivatives,

he =w+ Brhi—1 4+ Bphe—p + X7 + -+ g X7 .

For ' = 33, _ _ _
O'hy = 10"he—1 + -+ Bp0"hy—p + hy—y.

For ¢ = «,, _ _ _
Ohe = 10 hy—1+ -+ Bp0'hy—p + X7,

Then,
Ahie = Bidhi—1 4+ BpAhi—p
+ hit {Mhicr -+ Xphep + X1 X7 4+ X X7, )
Let Py = H§:1 Ni—j+1,2. Applying Lemma A.16, 3.1, A.2, and using the as-
sumption that Auj; = 0, we have
MPio11+ -+ NP1+ M€ P+ o+ )\erqe?fthfl,q = 0.
On the other hand, we have
BiPiig+ -+ BpPicip+ o6 Povg+ o+ aqeffqptfl,q =1

Let 55 :614—)\1,...,6; = By + Ap and o :a1+)\p+1,...,aj§:aq+)\p+q.
Define

min(q,t) _ min(q,t) _
ve= Y By’ andyp= ) aj(Byy),
j=1 j=1

where B* is the matrix B formed by the parameters (a*, 8*). It can be shown
that

Jj=1 Jj=1
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What remains are similar to the arguments in Berkes et al. [3]. If there is a
positive integer m such that i, # ¥, and for all 0 < i < m, 1; = 9}, then

1 = .
G — 71/)* v ZWmﬂ — Vi) Pr—m—1 | Pi—1,m = 0.

Since the first and second terms in the square bracket are independent, the
distribution of €2_,, must be degenerate, which is impossible under our assump-
tion. Thus we must have ¢; = ¢ for all j = 1,2,.... Within the radius of

convergence,
az) _ a'(z)
=3 1T-5()

by the assumption that «(z) and 1 — 3(z) are co-prime, a(z) = a*(z) and
B(z) = *(z). That is, A = 0. O

P(z) = =¢*(2),

A.3. Condition C3

This subsection is devoted to bounding the quantities h.(6°)/hi(0), hi,(6),
h52(0), and h%,"*"*(6) that appear in Equations (A.1)~(A.3). The results are
given in Lemmas A.8 to A.11. It should be noted that the conditions w = w°
and Hy = (05,0%,,...,0%,,;) are never used in this subsection, and so, the
results given here are applicable to proving Theorem 2.1, too.

The neighborhood N (#°) is chosen as a rectangular region #* < 6 < 0V such
that all components in O are strictly positive. The notations 8% = (3%, a’) and
oY = (BY,aY) are used. Using Proposition 5.1 and Lemma 3.2, together with
the continuity of Em with respect to 3, if #% is chosen enough close

to 6 5 ”lell
B‘] [’)’
I Z 11 )

N(60°) 2 Q” )11(BE, aP)

converges almost surely and has a finite expectation.
For this selected neighborhood N (6Y), we have the following two useful lem-
mas.

Lemma A.6.
ht(ﬁa aO) U h’t(ﬁa ) L

< k" and > K

ht(ﬁa O[) ht(ﬂa )

for some positive constants kU and k"

Lemma A.7. For (3, a), (5% a) € N(0Y), with ' > 8° > %, we have

e} <o (Clommat )
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Proof of Lemma A.6. The lemma holds by setting

0o .0 .0 0
w' ooy« 5
kY = sup 22 (A.9)
N(HD) w 7 012 O[p
and
o ,0 .0 af
kL = inf {1,“’—,ﬂ,%,...,—p}. (A.10)
N(09) W o Qg Qp

This can be directly checked by the expansion formula (A.5) of h(0),

h(@)—elBHo—l-Z - 11UtJ9)
O
Proof of Lemma A.7. By Lemma A.6 and (A.12) of Lemma A.13,
hej(Bh ) hei (B @) h(B% 0%) (B, af) hej (5%, %)
he(B?, o) hi—j (81, a®) hi(62, @) hi—j (62, 0°%) hi(B?, a%)
< ﬂht,j(ﬂl,ao) 1

wE he (52, a0) (Q17)11(82,0%)

Note that % is independent of (Q%7)11(3?,a"). We need to prove that

1 0
there is a stationary and ergodic process vy; such that Ellxgggzog < Evg < 00.

In fact, if 3% < 8%, by Lemma A.14, we have
h’t(ﬁlaao) < h’t(BLaao)

h’t(62aa0) B h’t(BUaaO)
t ) e L 0
SRR C T 1) S MERL A L
Jj=1 ’
t _ L 0
6 - B B () e
=1 t )
t
) 1
U L -1 U .
< 1+ (5 51)j:1(BJ (B )(Qt>j)11(5L,a0)+
t
U _ AL - U 1
+ By — By );: (B (s )(Qt,jJrqfl)ll(ﬁL,OéO)
< Br)
J

—

1
(Qt’”q’l)ll(ﬁL, a?)

1
- 1
U
2B ) G
BJ

DY

=1

1
11 BU

<.

= Vot -
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In the remaining subsection, the bounds for h.(6°)/h.(0), hi,(0), h>(0),
and h5,"***(0) are given in Lemmas A.8 to A.11.

Lemma A.8. There ezists a stationary and ergodic process {vo:} such that

sup {A} < ot
9en(00) L he(0)
and the r-th moment Evg, < oo forr =1,2,3,4.
Proof. Let 6§ € © and partition the vector § into § and «. Then
he (B a®) (B, a%)
hi(0)  hu(B,0%) hi(B,a)
We establish a bound for the right-hand side. By Lemma A.6,

h’t(ﬂoa aO) U

<K

ht(ﬁa ao) ,

where kY is defined in (A.9), which is non-stochastic and does not depend on
#. Consider the quantity

he (8%, a°)
ht(ﬁa ao) '
By (A.13) of Lemma A.13,
ht(ﬁa aO) Z ht(ﬁLa ao) .
Together with Lemma A.14 and (A.12) in Lemma A.13,

su h < ht
ephtw, 0 = h(BL,a)

t
h,tf'(ﬁL O[O)
= 1+( (B Y =
61 ; 11 ht(ﬂL,OxO)

t

— B%) Z (BI1) htfijﬂ(ﬂL,Oéo)

2 he(B%, a0)
< 14+(B - mg( *””m

o (B~ BY) jé(le)ll T
< 1+ (6 - Bl)i(le)llm

+ - 87) 3 (B )

- H(@bita1)11 (B, o)
= Vot - (All)

<.
—
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The result for higher moments can be obtained by applying Minkoswki’s In-
equality to (A.11). O

Lemma A.9. There exist a neighbourhood N(6Y) and a stationary and ergodic
processes {vi,} such that _ _
sup h’llt(e) S ’Uita
0eN(6°)
and the r-th moment Ev], < oo forr =1,2,3,4.

Proof. Suppose that there exist #% and 6V such that ¥ < 6 < 6Y for all
6 € N(6°). We consider the derivatives with respect to 6; for 6; = a, and
0; = [, respectively as follows.

Case (i): When 6° = 3,,, the derivative becomes

: -7 lht J— #+1(65 )
; ht(ﬁa ) '

J

By Lemma A.7,
hi—j—p+1(B; @) < 1
hi (B, @) (@Q")11(8, )’

thus, the derivative is bounded by
(BT (5”) i

which is almost surely convergent with finite expectation.

E

Case (ii): When 6 = «,, the derivative becomes

t y
(B e b w6, @)
Z ht(ﬁa O[) ’

j=1

which is bounded by

Hzet L BhuE)

(Qtit#—1),, (BL, a) 7’Ult'
O
Lemma A.10. There exists a stationary and ergodic process {vi:} such that

sup h 12 < ;1;2,
0N (6°)

and the r-th moment E(v “12) < oo forr=1,2,3,4.
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Proof. From equation (A.7) for the second derivatives, we only need to consider

the term .

> BTN 0" B) (0™ Hy—(0)).
j=1
Consider the case that 0;, = 3,,. We have

iy 07 he g () heju, (0)
Z(B Jn hi—j— . (0) h(0)

j=1
L 02he_ i () [ he—je (BU, Q)
j—1 U t—j—m t—j—m )
< ;(B )1 (B ){9:}}[150) Frt— i (0) { he(BE, a) }
= i—1 U Uli%tf'f +1
< ;(BJ )11(8 )(Qt7j+#,1;11lt(5L,a0)
=

O
A result similar to Lemma A.10 is stated below without proof.

Lemma A.11. There exists a stationary and ergodic process {vglt”“} such that

119213 919213
sup sy < gy,

0EN(60)

and the r-th moment E(vgltmg)r < oo forr=1,2,3,4.

A.J}. Proofs of Theorem 2.1

Consider the neighborhood N (#") constructed in subsection 3.5. Theorem 2.1
can be shown using Theorem A.l. In Lemma A.12, results on the asymptotic
properties of the differences

L (0, w, Hy) — Ly, (0, w0, HY)

where H) = (03,0%,,...,0 2,p+1)T , are given. Theorem 2.1 directly follows from
Lemma A.12 and Theorem A.1.

Lemma A.12. For allw > 0 and Hy > 0, the first order derivatives satisfy
VI (0L (6°,w, Hy) — 0" L (6°,w°, HY)) —7 0,

the second order derivatives satisfy
(0" Ly (6°,w, Ho) — 8" Ly, (6°,w°, HY)) —P 0,

and the third order derivatives satisfy

sup (0" L, (0,w, Ho) — 0" L, (0,°, HY)) —* 0,
N(09)

where 6; are chosen from o and (3.
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Proof of Lemma A.12. Consider a p+1-dimensional close set U containing ¢° =
(w°, HY) as an interior point and covering all ¢ = (w, Hp) of interest. Below,
the notations hy(6, ) and L, (0, ¢) are used. The lemma can be shown by using
the mean-value theorem and the following convergence results,

sup \/ﬁaiOian(ooa <P) —P Oa
peU

sup |92 L, (6°, ¢)| —P 0,
peU
sup 9012 L, (6%, ¢)] =7 0,
@EU,0EN(09)
where the variable associated with the index ¢ is chosen from ¢, while that
associated with 41, i, i3 are chosen from (5, ).

The derivatives up to order three that appear in the above relations are
given in Equations (A.1)-(A.3). The fourth order derivatives can be obtained
by differentiating Equation (A.3). By using Lemma A.15, the convergence results
hold if the following two conditions are satisfied.

1. X?/hi(0, ) and the quantities h}} """ that relate to differentiations with
respect to (a, 3) only are bounded by some stationary and ergodic pro-
cesses with finite unconditional moments.

2. The quantities hzlt'”i’“ that involve differentiations with respect to ¢ decay
almost surely at the rate < O(t*u') for some non-negative integer k and
O<p<l.

The first condition is established in Lemmas A.8 to A.11. We now show that
the second condition holds. By Equation (A.5), when 6% = w,

| ¢ _ O\ if A > 1,
O H(0,0) =Y B' ey =4 O(1) ifAr<1,
j=1 o) itx=1

where A is the eigenvalue of B with the largest modulus. Similarly, when 6;, =
h_u+1, we have _ _

9" Hy(0,p) = B e, = O(\").
Note that

1 - ht(ﬁo, (p) 1

h’t(oa <P) B h’t(oa <P) h’t(ooa <P) '
A bound for the first term on the right-hand side is given in Lemma A.8. For
the second term, we have

1 1
< .
he(0°, ) = e Ap_q - ApY

According to Proposition 4.1, for all 0 < § < p,

ha(6°, 9) = O(eP~0").
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If § is chosen so that O(e?=9%) > O((Q"*)11(6°)), then,

" hy (0, ¢) t
sup —— =0(pu
peU,0en(00)  he(0,¢) ()

for some 0 < p < 1. Using similar arguments as presented above, it is not
difficult to show that we have in general,

0ok hy(6, )

sup = Ot )
peUen(o)  hi(0,0)
for some non-negative integer k¥’ < kand 0 < pu < 1. O

A.5. Technical Lemmae
Lemma A.13. If 3 < 3%, fort > 1 and j < t, the following inequality holds

he(B.0%) > (Q")1(B,a")he—;(B,a°). (A.12)

Let 0* = (B, @) and 0% = (5%, ), here both vectors share the same parameters
a and further assume that 3 > 32, then

h(B'a) > (3 a). (A.13)

Proof. Inequality (A.13) follows from

h(B'a) = e BYBYHy+ > (B )11(8 )vi—j(a)

j=1
t
> o BUS) Ho+ Y (B ui(5)vi—j ()
j=1
= (5 ).
Using (A.4) and (A.13), we have
Ht(ﬁa aO) = BHtfl(ﬂa aO) +Ut71(a0)61

> BH;1(8,a°) + afef_1hi1(6%, a%)er
> BH; 1(8,a°) + ale_1hi1(B,0%)er
= (B+aYe jerel)H,_1(B,a°%)
N

> QY (B,a") Hy—j(B,a°).

By noting that all entries in the above inequality are positive,

he(0%) > (Q")11.(6% Yhe—(8,0°) .
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Lemma A.14. Given two sets of parameters (8%, a) and (32, ), the following
expansion holds,

t
H(B', ) = Hi(B*, ) = > BB (B(B") — B(B*)Hi— (5, a).
j=1
In particular, the first element is given by

he(B' @) = hi(B%,0) = (8] = B7) Y BB (B, @)
j=1

t
+o (B = 5 Y BB g (87, 0)
j=1

Proof. The recursive relationships for Hy(3*, ) and H;(3?, ) are given by

Hy(8", ) = B(B" ) H; 1 (8", @) + vi—1(a)
and
Hy(#%,a) = B(B°)H; 1 (8", o) + vp—1(a),
respectively. It follows that
Ht(ﬁla CY) - Ht(62a CY)
= B(BYH, (8", a)— B(B*)H, 1 (5, )
(B(8") = B(B*))Hi—1(8", a) + B(8*)(Hy—1 (8", a) — Hi_1(5°, @)

= B'(6%)(Ho — Ho) + Z BB (B(BY) — B(B*)) He—j (5%, )

= Y BTNENBEY) - BB H (8, 0).

j=1
O

Lemma A.15. If {a,} is a stationary ergodic process with finite unconditional
expectation and b, — 0 almost surely, then

1 n
— g atby — 0 almost surely.
n

t=1

Moreover, if > i, tby converges almost surely, then

n
Z atby — 0 almost surely.
t=1

L
NG
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Proof. Using mean ergodic theorem, we have

1 n
— E a; — Ea, almost surely .
n

t=1

Simple mathematical analysis arguments yield the lemma. O

Lemma A.16. Let 1), be defined in Lemma 4.1 and n) = Plz'/el Plx'. For
p > 1, define ¢, = e¥n, and ¢ = e¥n). For p = 1, define ¢, = ¢, %1, and

1" -2 1

L =€ n . We have

(1) Apamy = (Glon) ™ ir and Ay yn) = (Gla) ™ 0y -
(1) efmy = efn) =1.

(III) Define

o o
Kt:1+51+@+"'+ Bp +a1€?+_2+...+ g
51 6;071 (3} Qg1
Then, ¢, > K; ' and ¢ > K; .
(IV) For 2 <k <p,
k—1
T -1
ey = H Gojr1 < By s
j=1
k—1
e = H Gl < Bty
j=1
T k—1
k't —(k—1
T < B (k1) H K ji1.
Cr M j=1
(IV) For 1 <k<gqg-1,
k
T -1
il = € p H Gioji S,
j=1
k
T 2 -1
eprkli = € ki H Gl <ag,
j=1
T,/ k
€M —k
S < oM [ Ky
Cr Tt j=1

Proof. This is a consequence of Lemma 4.1. O
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