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1. Introduction

Self-similar stochastic processes are of practical interest in various applications,
including econometrics, internet traffic, and hydrology. These are processes
X = {X (t) : t ≥ 0} whose dependence on the time parameter t is self-similar,
in the sense that there exists a (self-similarity) parameter H ∈ (0, 1) such that
for any constant c ≥ 0, {X (ct) : t ≥ 0} and

{

cHX (t) : t ≥ 0
}

have the same
distribution. These processes are often endowed with other distinctive proper-
ties.

The fractional Brownian motion (fBm) is the usual candidate to model phe-
nomena in which the selfsimilarity property can be observed from the empirical
data. This fBm BH is the continuous centered Gaussian process with covariance
function

RH(t, s) := E
[

BH (t)BH (s)
]

=
1

2
(t2H + s2H − |t− s|2H). (1)

The parameter H characterizes all the important properties of the process.
In addition to being self-similar with parameter H , which is evident from the
covariance function, fBm has correlated increments: in fact, from (1) we get, as
n → ∞,

E
[(

BH (n) − BH (1)
)

BH (1)
]

= H (2H − 1)n2H−2 + o
(

n2H−2
)

; (2)
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when H < 1/2, the increments are negatively correlated and the correlation
decays more slowly than quadratically; when H > 1/2, the increments are
positively correlated and the correlation decays so slowly that they are not
summable, a situation which is commonly known as the long memory property.
The covariance structure (1) also implies

E
[

(

BH (t) − BH (s)
)2
]

= |t − s|2H
; (3)

this property shows that the increments of fBm are stationary and self-similar;
its immediate consequence for higher moments can be used, via the so-called
Kolmogorov continuity criterion, to imply that BH has paths which are almost-
surely (H − ε)-Hölder-continuous for any ε > 0.

It turns out that fBm is the only continuous Gaussian process which is self-
similar with stationary increments. However, there are many more stochastic
processes which, except for the Gaussian character, share all the other proper-
ties above for H > 1/2 (i.e. (1) which implies (2), the long-memory property,
(3), and in many cases the Hölder-continuity). In some models the Gaussian
assumption may be implausible and in this case one needs to use a different self-
similar process with stationary increments to model the phenomenon. Natural
candidates are the Hermite processes: these non-Gaussian stochastic processes
appear as limits in the so-called Non-Central Limit Theorem (see [5, 8, 25]) and
do indeed have all the properties listed above. While fBm can be expressed as a
Wiener integral with respect to the standard Wiener process, i.e. the integral of
a deterministic kernel w.r.t. a standard Brownian motion, the Hermite process of
order q ≥ 2 is a qth iterated integral of a deterministic function with q variables
with respect to a standard Brownian motion. When q = 2, the Hermite process
is called the Rosenblatt process. This stochastic process typically appears as
a limiting model in various applications such as unit the root testing problem
(see [31]), semiparametric approach to hypothesis test (see [13]), or long-range
dependence estimation (see [15]). On the other hand, since it is non-Gaussian
and self-similar with stationary increments, the Rosenblatt process can also be
an input in models where self-similarity is observed in empirical data which
appears to be non-Gaussian. The need of non-Gaussian self-similar processes in
practice (for example in hydrology) is mentioned in the paper [26] based on the
study of stochastic modeling for river-flow time series in [16]. Recent interest in
the Rosenblatt and other Hermite processes, due in part to their non-Gaussian
character, and in part for their independent mathematical value, is evidenced
by the following references: [4, 6, 10, 18, 19, 20, 27, 28].

The results in these articles, and in the previous references on the non-central
limit theorem, have one point in common: of all the Hermite processes, the most
important one in terms of limit theorem, apart from fBm, is the Rosenblatt
process. As such, it should be the first non-Gaussian self-similar process for
which to develop a full statistical estimation theory. This is one motivation for
writing this article.

Since the Hurst parameter H , thus called in reference to the hydrologist
who discovered its original practical importance (see [14]), characterizes all the
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important properties of a Hermite process, its proper statistical estimation is of
the utmost importance. Several statistics have been introduced to this end in
the case of fBm, such as variograms, maximum likelihood estimators, or spectral
methods, k-variations and wavelets. Information on these various approaches,
apart from wavelets, for fBm and other long-memory processes, can be found
in the book of Beran [3]. More details about the wavelet-based approach can be
found in [2, 11] and [30].

In this article, we will concentrate on one of the more popular methods to
estimate H : the study of power variations; it is particularly well-adapted to the
non-Gaussian Hermite processes, because explicit calculations can be performed
via Wiener chaos analysis. In its simplest form, the kth power variation statistic
of a process {Xt : t ∈ [0, 1]}, calculated using N data points, is defined as follow-
ing quantity (the absolute value of the increment may be used in the definition
for non-even powers):

VN :=
1

N





N−1
∑

i=0

(

X i+1
N

− X i
N

)k

E
(

X i+1
N

− X i
N

)k
− 1



 . (4)

There exists a direct connection between the behavior of the variations and
the convergence of an estimator for the selfsimilarity order based on these vari-
ations (see [7, 28]): if the renormalized variation satisfies a central limit theorem
then so does the estimator, a desirable fact for statistical purposes.

The recent paper [28] studies the quadratic variation of the Rosenblatt pro-
cess Z (the VN above with k = 2), exhibiting the following facts: the normalized
sequence N1−HVN satisfies a non-central limit theorem, it converges in the mean
square to the Rosenblatt random variable Z (1) (value of the process Z at time
1); from this, we can construct an estimator for H whose behavior is still non-
normal. The same result is also obtained in the case of the estimators based
on the wavelet coefficients (see [2]). In the simpler case of fBm, this situation
still occurs when H > 3/4 (see for instance [29]). For statistical applications, a
situation in which asymptotic normality holds might be preferable. To achieve
this for fBm, it has been known for some time that one may use “longer filters”
(that means, replacing the increments X i+1

N
− X i

N
by the second-order incre-

ments X i+1
N

−2X i
N

+X i−1
N

, or higher order increments for instance; see [7]). To

have asymptotic normality in the case of the Rosenblatt process, it was shown
in [28] that one may perform a compensation of the non-normal component of
the quadratic variation. In fact, this is possible only in the case of the Rosen-
blatt process; it is not possible for higher-order Hermite processes, and is not
possible for fBm with H > 3/4 [recall that the case of fBm with H ≤ 3/4 does
not require any compensation]. The compensation technique for the Rosenblatt
process yields asymptotic variances which are difficult to calculate and may be
very high.

The question then arises to find out whether using longer filters for the Rosen-
blatt process might yield asymptotically normal estimators, and/or might result
in low asymptotic variances. In this article, using recent results on limit theorems
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for multiple stochastic integrals based on the Malliavin calculus (see [22, 23]),
we will see that the answer to the first question is negative, while the answer to
the second question is affirmative. We will use quadratic variations (k = 2) for
simplicity. A summary of our results is as follows. Here Ω denotes the underlying
probability space, and L1 (Ω) and L2 (Ω) are the usual spaces of integrable and
square-integrable random variables.

• VN = T2 + T4 where Ti is in the ith Wiener chaos (Proposition 2).

•
√

N
c1,H

T4 converges in distribution to a standard normal (Theorem 2), where

c1,H is given in Proposition 4.

• N1−H

√
c2,H

VN and N1−H

√
c2,H

T2 both converge in L2(Ω) to the Rosenblatt random

variable Z(1) (Theorem 3); the asymptotic variance c2,H is given explicitly
in formula (16) in Proposition 3.

• There exists a strongly consistent estimator ĤN for H based on VN (The-

orem 5), and 2 c
−1/2
2,H (log N)N1−ĤN

(

ĤN − H
)

converges in L1 (Ω) to a
Rosenblatt random variable (Theorem 7). Here c2,H is again given in
(16). Note that while the rate of convergence of the estimator, of order
N−1+H log−1 N , depends on H , the convergence result above can be used
without knowledge of H since one may plug in ĤN instead of H in the
convergence rate.

• The asymptotic variance c2,H in the above convergence decreases as the
length of the filter increases; this decrease is much faster for wavelets-based
filters than for finite-difference-based filters: for values of H < 0.95, c2,H

reaches values below 5% for wavelet filters of length less than 6, but for
finite-difference filters of length no less than 16.

• When H ∈ (1/2, 2/3), then N
c3,H

[

VN −
√

c2,H

N1−H Z(1)
]

converges in distri-

bution to a standard normal, where c2,H is given explicitly in formula
(16) and c3,H in formula (19). Similarly, for the estimator we have that

N
c3,H

[

−2 log(ĤN −H)−
√

c2,H

N1−H Z(1)
]

converges in distribution to the same

standard normal. However, no mater how much we increase the order
and/or the length of the filter, we cannot improve the threshold of 2/3 for
H .

What prevents the normalization of VN from converging to a Gaussian, no
matter how long the filter is, is the distinction between the two terms T2 and T4.
In the case of fractional Brownian motion, VN contains only one “T2”-type term
(second chaos), but this term has a behavior similar to our term T4, and does
converge to a normal when the filter is long enough; this fact has been noted
before (see [7]). In our case, the normalized T2 always converges (in L2 (Ω)) to a
Rosenblatt random variable; the piece that sometimes has normal asymptotics
is T4, but since T2 always dominates it, VN ’s behavior is always that of T2. This
sort of phenomenon was already noted in [6] with the order-one filter for all non-
Gaussian Hermite processes, but now we know it occurs also for the simplest
Hermite process that is not fBm, for filters of all orders.
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The organization of our paper is as follows. Section 2 summarizes the stochas-
tic analytic tools we will use, and gives the definitions of the Rosenblatt process
and the filter variations. Therein we also establish a specific representation of
the 2-power variation as the sum of two terms, one in the second Wiener chaos,
which we call T2, and another, T4, in the fourth Wiener chaos. Section 3 estab-
lishes the correct normalizing factors for the variations, by computing second
moments, showing in particular that T2 is the dominant term. Section 4 proves
that the renormalized T4 is asymptotically normal. Section 5 proves that T2

converges in L2 (Ω) to the value Z (1) of the Rosenblatt process at time 1. In
Section 6 it is shown that the variation obtained by subtracting this observed
limit of T2 leads to a correction term which is asymptotically normal. Section 7
establishes the strong consistency of the estimator Ĥ for H based on the vari-
ations, and proves that the renormalized estimator converges to a Rosenblatt
random variable in L1 (Ω). Its asymptotic variance is given explicitly for any
filter, thanks to the calculations in Section 3. In Section 8, we compare the nu-
merical values of the asymptotic variances for various choices of filters, including
finite-difference filters and wavelet-based filters, concluding that the latter are
more efficient.

2. Preliminaries

2.1. Basic tools on multiple Wiener-Itô integrals

Let {Wt : t ∈[ 0, 1]} be a classical Wiener process on a standard Wiener space
(Ω,F , P ). If a symmetric function f ∈ L2([0, 1]n) is given, the multiple Wiener-
Itô integral In (f) of f with respect to W is constructed and studied in detail in
[21, Chapter 1]. Here we collect the results we will need. For the most part, the
results in this subsection will be used in the technical portions of our proofs,
which are in the Appendix. One can construct the multiple integral starting
from simple functions of the form f :=

∑

i1,...,in
ci1,...in

1Ai1×···×Ain
where the

coefficient ci1,...,in
is zero if two indices are equal and the sets Aij

are disjoint
intervals, by setting

In(f) :=
∑

i1,...,in

ci1,...in
W (Ai1) . . .W (Ain

)

where we put W
(

1[a,b]

)

= W ([a, b]) = Wb−Wa; then the integral is extended to
all symmetric functions in L2([0, 1]n) by a density argument. It is also convenient
to note that this construction coincides with the iterated Itô stochastic integral

In(f) = n!

∫ 1

0

∫ tn

0

· · ·
∫ t2

0

f(t1 , . . . , tn)dWt1 . . . dWtn
.

The application In is extended to non-symmetric functions f via

In(f) = In

(

f̃
)

(5)
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where f̃ denotes the symmetrization of f defined by

f̃(x1, . . . , xx) =
1

n!

∑

σ∈Sn

f(xσ(1), . . . , xσ(n)).

The map (n!)
−1/2

In can then be seen to be an isometry from L2([0, 1]n) to
L2(Ω). The nth Wiener chaos is the set of all integrals

{

In (f) : f ∈ L2([0, 1]n)
}

;
the Wiener chaoses form orthogonal sets in L2 (Ω). Summarizing, we have

E (In(f)Im(g)) = n!〈f, g〉L2([0,1]n) if m = n, (6)

E (In(f)Im(g)) = 0 if m 6= n.

The product for two multiple integrals can be expanded explicitly (see [21]):
if f ∈ L2([0, 1]n) and g ∈ L2([0, 1]m) are symmetric, then it holds that

In(f)Im(g) =

m∧n
∑

ℓ=0

ℓ!Cℓ
mCℓ

nIm+n−2ℓ(f ⊗ℓ g) (7)

where the contraction f ⊗ℓ g belongs to L2([0, 1]m+n−2ℓ) for ℓ = 0, 1, . . . , m∧ n
and is given by

(f ⊗ℓ g)(s1, . . . , sn−ℓ, t1, . . . , tm−ℓ)

=

∫

[0,1]ℓ
f(s1 , . . . , sn−ℓ, u1, . . . , uℓ)g(t1, . . . , tm−ℓ, u1, . . . , uℓ)du1 . . . duℓ.

Note that the contraction (f ⊗ℓ g) is not necessary symmetric. We will denote
by (f⊗̃ℓg) its symmetrization.

Our analysis will be based on the following result, due to Nualart and Peccati
(see Theorem 1 in [22]).

Proposition 1. Let n be a fixed integer. Let In(fN ) be a sequence of sym-
metric square integrable random variables in the nth Wiener chaos such that
limN→∞ E

[

In(fN )2
]

= 1. Then the following are equivalent:

(i) As N → ∞, the sequence {In(fN ) : N ≥ 1} converges in distribution to a
standard Gaussian random variable.

(ii) For every τ = 1, . . . , n− 1

lim
N→∞

||fN ⊗τ fN ||2L2[[0,1](2n−2τ) ] = 0.

2.2. Rosenblatt process and filters: definitions, notation, and chaos

representation

The Rosenblatt process is the (non-Gaussian) Hermite process of order 2 with
Hurst index H ∈ (1

2 , 1). It is self-similar with stationary increments, lives in the
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second Wiener chaos and can be represented as a double Wiener-Itô integral of
the form

Z(H)(t) := Z(t) =

∫ t

0

∫ t

0

Lt(y1, y2)dWy1dWy2 . (8)

Here {Wt, t ∈ [0, 1]} is a standard Brownian motion and Lt(y1 , y2) is the kernel
of the Rosenblatt process

Lt(y1, y2) = d(H)1[0,t](y1)1[0,t](y2)

∫ t

y1∨y2

∂KH′

∂u
(u, y1)

∂KH′

∂u
(u, y2)du, (9)

where

H ′ =
H + 1

2
and d(H) =

1

H + 1

(

H

2(2H − 1)

)−1/2

and KH is the standard kernel of fBm, defined for s < t and H ∈ (1
2 , 1) by

KH(t, s) := cHs
1
2−H

∫ t

s

(u − s)H− 3
2 uH− 1

2 du (10)

where cH =
( H(2H−1)

β(2−2H,H− 1
2 )

)
1
2 and β(·, ·) is the beta function. For t > s, we

have the following expression for the derivative of KH with respect to its first
variable:

∂KH

∂t
(t, s) := ∂1K

H(t, s) = cH

(s

t

)
1
2−H

(t − s)H− 3
2 . (11)

The term Rosenblatt random variable denotes any random variable which has
the same distribution as Z(1). Note that this distribution depends on H .

Definition 1. A filter α of length ℓ ∈ N and order p ∈ N \ 0 is an (ℓ + 1)-
dimensional vector α = {α0, α1, . . . , αℓ} such that

ℓ
∑

q=0

αqq
r = 0, for 0 ≤ r ≤ p − 1, r ∈ Z

ℓ
∑

q=0

αqq
p 6= 0

with the convention 00 = 1.

If we associate such a filter α with the Rosenblatt process we get the filtered
process V α according to the following scheme:

V α

(

i

N

)

:=

ℓ
∑

q=0

αqZ

(

i − q

N

)

, for i = ℓ, . . . , N − 1.

Some examples are the following:
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1. For α = {1,−1}

V α

(

i

N

)

= Z

(

i

N

)

− Z

(

i − 1

N

)

.

This is a filter of length 1 and order 1.
2. For α = {1,−2, 1}

V α

(

i

N

)

= Z

(

i

N

)

− 2Z

(

i − 1

N

)

+ Z

(

i − 2

N

)

.

This is a filter of length 2 and order 2.
3. More generally, longer filters produced by finite-differencing are such that

the coefficients of the filter α are the binomial coefficients with alternat-
ing signs. Therefore, borrowing the notation ∇ from time series analysis,
∇Z (i/N) = Z (i/N)−Z ((i − 1) /N), we define ∇j = ∇∇j−1 and we may
write the jth-order finite-difference-filtered process as follows

V αj

(

i

N

)

:=
(

∇jZ
)

(

i

N

)

.

From now on we assume the filter order is strictly greater than 1
(p ≥ 2).

For such a filter α the quadratic variation statistic is defined as

VN :=
1

N − ℓ

N−1
∑

i=ℓ

[

∣

∣V α
(

i
N

)
∣

∣

2

E
∣

∣V α
(

i
N

)
∣

∣

2 − 1

]

.

Using the definition of the filter, we can compute the covariance of the filtered
process V α

(

i
N

)

:

πα
H(j) := E

[

V α

(

i

N

)

V α

(

i + j

N

)]

=

ℓ
∑

q,r=0

αqαrE

[

Z

(

i − q

N

)

Z

(

i + j − r

N

)]

=
N−2H

2

ℓ
∑

q,r=0

αqαr

(

|i − q|2H + |i + j − r|2H − |j + q − r|2H
)

= −N−2H

2

ℓ
∑

q,r=0

αqαr|j + q − r|2H

+
N−2H

2

ℓ
∑

q,r=0

αqαr

(

|i − q|2H + |i + j − r|2H
)

.
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Since the term
∑ℓ

q,r=0 αqαr

(

|i − q|2H + |i + j − r|2H
)

vanishes we get that

πα
H(j) = −N−2H

2

ℓ
∑

q,r=0

αqαr|j + q − r|2H . (12)

Therefore, we can rewrite the variation statistic as follows

VN =
1

N − ℓ

N−1
∑

i=ℓ

[

∣

∣V α
(

i
N

)∣

∣

2

πα
H(0)

− 1

]

=
2N2H

N − ℓ

(

−
ℓ
∑

q,r=0

αrαq|q − r|2H

)−1 N−1
∑

i=ℓ

[

∣

∣

∣

∣

V α

(

i

N

)∣

∣

∣

∣

2

− πα
H(0)

]

=
2N2H

c(H)(N − ℓ)

N−1
∑

i=ℓ

[

∣

∣

∣

∣

V α

(

i

N

)
∣

∣

∣

∣

2

− πα
H(0)

]

,

where

c(H) = −
ℓ
∑

q,r=0

αrαq|q − r|2H. (13)

The next lemma is informative, and will be useful in the sequel.

Lemma 1. c (H) is positive for all H ∈ (0, 1]. Also, c (0) = 0.

Proof. For H < 1, we may rewrite c (H) by using the representation of the
function |q − r|2H via fBm BH , as its canonical metric given in (3), and its
covariance function RH given in (1). Indeed we have

c (x) = −
ℓ
∑

q,r=0

αrαqE
[

(

BH (q) − BH (r)
)2
]

= −
ℓ
∑

q,r=0

αrαq (RH (q, q) + RH (r, r) − 2RH (q, r))

= −2

(

ℓ
∑

q=0

αq

)(

ℓ
∑

r=0

αrRH (r, r)

)

+ 2

ℓ
∑

q,r=0

αrαqRH (q, r)

= 0 + 2

ℓ
∑

q,r=0

αrαqRH (q, r) = E





(

ℓ
∑

q=0

αqB
H (q)

)2


 > 0

where in the second-to-last line we used the filter property which implies
∑ℓ

q=0

αq = 0, and the last inequality follows from the fact that
∑ℓ

q=0 αqB
H (q) is

Gaussian and non-constant. When H = 1, the same argument as above holds
because the Gaussian process X such that X (0) = 0 and E

[

(X (t) − X (s))
2]

=

|t − s|2 is evidently equal in law to X (t) = tN where N is a fixed standard
normal r.v. The assertion that c(0) = 0 comes from the filter property.
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Observe that we can write the filtered process as an integral belonging to the
second Wiener chaos

V α

(

i

N

)

=

ℓ
∑

q=0

αqZ

(

i − q

N

)

= I2

(

ℓ
∑

q=0

αqL i−q
N

)

:= I2 (Ci) ,

where

Ci :=

ℓ
∑

q=0

αqL i−q
N

. (14)

Using the product formula (7) for multiple stochastic integrals now results in
the Wiener chaos expansion of VN .

Proposition 2. With Ci as in (14), the variation statistic VN is given by

VN =
2N2H

c(H)(N − l)

N−1
∑

i=ℓ

[

|I2(Ci)|2 − πα
H(0)

]

=
2N2H

c(H)(N − ℓ)

[

N−1
∑

i=ℓ

I4 (Ci ⊗ Ci) + 4

N−1
∑

i=ℓ

I2 (Ci ⊗1 Ci)

]

:= T4 + T2,

where T4 is a term belonging to the 4th Wiener chaos and T2 a term living in
the 2nd Wiener chaos.

In order to prove that a variation statistic has a normal limit we may use the
characterization of N (0, 1) by Nualart and Ortiz-Latorre (Proposition 1). Thus,
we need to start by calculating E

[

|VN |2
]

so that we can then scale appropriately,
in an attempt to apply the said proposition.

3. Scale constants for T2 and T4

In order to determine the convergence of VN , using the orthogonality of the
integrals belonging in different chaoses, we will study each term separately.
This section begins by calculating the second moments of T2 and T4.

In this section we use an alternative expression for the filtered process. More
specifically, denoting bq :=

∑q
r=0 αr, we rewrite Ci as follows, for any i =

ℓ, . . . , N − 1:

Ci,ℓ := Ci =

ℓ
∑

q=0

αqL i−q
N

= α0

(

L i
N
− L i−1

N

)

+ (α0 + α1)
(

L i−1
N

− L i−2
N

)

+ · · ·
+ (α0 + · · ·+ αℓ−1)

(

L i−(ℓ−1)
N

− L i−ℓ
N

)

=
ℓ
∑

q=0

bq

(

L i−(q−1)

N

− L i−q

N

)

. (15)

Recall that the filter properties imply
∑ℓ

q=0 αq = 0 and αℓ = −∑ℓ−1
q=0 αq.
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3.1. Term T2

By Proposition 2, we can express E(T 2
2 ) as:

E(T 2
2 ) =

64 N4H

c(H)2(N − ℓ)2
E





(

N−1
∑

i=ℓ

I2 (Ci ⊗1 Ci)

)2




=
2! 64 N4H

c(H)2(N − ℓ)2

N−1
∑

i,j=ℓ

〈Ci ⊗1 Ci, Cj ⊗1 Cj〉L2([0,1]2)

Proposition 3. We have

lim
N→∞

E
[

∣

∣N1−H T2

∣

∣

2
]

= c2,H .

where

c2,H =
64

c(H)2

(

2H − 1

H (H + 1)2

)

×
{

ℓ
∑

q,r=0

bqbr

[

|1 + q − r|2H′

+ |1 − q + r|2H′ − 2|q − r|2H′

]

}2

. (16)

This proposition is proved in the Appendix.

3.2. Term T4

In this paragraph we estimate the second moment of T4, the fourth chaos
term appearing in the decomposition of the variation VN . Here the function
∑N−1

i=ℓ (Ci ⊗ Ci) is no longer symmetric and we need to symmetrize this kernel
to calculate T4’s second moment. In other words, by Proposition 2, we have that

E
(

T 2
4

)

=
4N4H

c(H)2(N − ℓ)2
E





(

N−1
∑

i=ℓ

I4(Ci ⊗ Ci)

)2




=
4N4H

c(H)2(N − ℓ)2
4!

N−1
∑

i,j=ℓ

〈Ci⊗̃Ci, Cj⊗̃Cj〉L2([0,1]4)

where Ci⊗̃Ci := C̃i ⊗ Ci. Thus, we can use the following combinatorial formula:
If f and g are two symmetric functions in L2([0, 1]2), then

4!〈f⊗̃f, g⊗̃g〉L2([0,1]4)

= (2!)2〈f ⊗ f, g ⊗ g〉L2([0,1]4) + (2!)2〈f ⊗1 g, g ⊗1 f〉L2([0,1]2).
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It implies

E
(

T 2
4

)

=
4N4H

c(H)2(N − ℓ)2
4!

N−1
∑

i,j=ℓ

〈Ci⊗̃Ci, Cj⊗̃Cj〉L2([0,1]4)

=
4N4H

c(H)2(N − ℓ)2
4

N−1
∑

i,j=ℓ

〈Ci ⊗ Ci, Cj ⊗ Cj〉L2([0,1]4)

+
4N4H

c(H)2(N − ℓ)2
4

N−1
∑

i,j=ℓ

〈Ci ⊗1 Cj, Cj ⊗1 Ci〉L2([0,1]2)

:= T4,(1) + T4,(2).

The proof of the next proposition, in the Appendix, shows that the two terms
T4,(1) and T4,(2) have the same order of magnitude, with only the normalizing
constant being different.

Proposition 4. Recall the constant c (H) defined in (13). Let

τ1,H :=

∞
∑

k=ℓ

ℓ
∑

q1,q2,r1,r1=0

bq1bq2br1br2

∫

[0,1]4
dudvdu′dv′

[

|u − v + k − q1 + r1|2H′−2 |u′ − v′ + k − q2 + r2|2H′−2

|u − u′ + k − q1 + q2|2H′−2 |v − v′ + k − r1 + r2|2H′−2
]

.

and

ρα
H(k) :=

∑ℓ
q,r=0 αqαr |k + q − r|2H

c(H)

Then we have the following asymptotic variance for
√

NT4:

lim
N→∞

E

[

∣

∣

∣

√
N T4

∣

∣

∣

2
]

= c1,H := 4!

(

1 +

∞
∑

k=0

|ρα
H(k)|2

)

+ τ1,H . (17)

This proposition is proved in the Appendix. Observe that in the Wiener chaos
decomposition of VN the leading term is the term in the second Wiener chaos
(i.e. T2) since it is of order NH−1, while T4 is of the smaller order N−1/2. We
note that, in contrast to the case of filters of lenght 1 and power 1, the barrier
H = 3/4 does not appear anymore in the estimation of the magnitude of T4

Thus, the asymptotic behavior of VN is determined by the behavior of T2. In
other words, the previous three propositions imply the following.

Theorem 1. For all H ∈ (1/2, 1) we have that

lim
N→∞

E
[

∣

∣N1−H VN

∣

∣

2
]

= c2,H ,

where c2,H is defined in (16).
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From the practical point of view, one only needs to compute the constant
c2,H to find the first order asymptotics of VN . This constant is easily computed
exactly from its formula (16), unlike the constant c1,H in Proposition (4) which
can only be approximated via its unwieldy series-integral representation given
therein.

4. Normality of the term T4

We study in this section the limit of the renormalized term T4 which lives in
the fourth Wiener chaos and appears in the expression of the variation VN . Of
course, due to Theorem 1 above, this term does not affect the first order behavior
of VN but it is interesting from the mathematical point of view because its limit
is similar to those of the variation based on the fractional Brownian motion
([29]). In addition, in Section 6, we will show that the asymptotics of T4, and
indeed the value of c1,H , are not purely academic. They are needed in order to
calculate the asymptotic variance of the adjusted variations, those which have
a normal limit when H ∈ (1/2, 2/3).

Define the quantity

GN :=

√
N

c1,H
T4 =

√
N

√
c1,H

2N2H

c(H)(N − ℓ)

N−1
∑

i=ℓ

I4 (Ci ⊗ Ci)

= I4

( √
N 2 N2H

√
c1,H c(H) (N − ℓ)

N−1
∑

i=ℓ

(Ci ⊗ Ci)

)

:= I4(gN ). (18)

From the calculations above we proved that limN→∞ E(G2
N) = 1. Using the

Nualart–Peccati criterion in Proposition 1, we can now prove that GN is asymp-
totically standard normal.

Theorem 2. For all H ∈ (1/2, 1) GN defined in (18) converges in distribution
to the standard normal.

Setup of proof of Theorem 2. To prove this theorem, by Proposition 4 and
Proposition 1, it is sufficient to show that for all τ = 1, 2, 3,

lim
N→∞

∥

∥gN⊗̃τgN

∥

∥

L2([0,1](8−2τ))
= 0.

For τ = 1, 2, 3, this quantity can be written as

lim
N→∞

(

4N4H+1

c1,Hc(H)2(N − ℓ)2

)2
∥

∥

∥

∥

∥

∥

N−1
∑

i,j=ℓ

(Ci ⊗ Ci)⊗̃τ (Cj ⊗ Cj)

∥

∥

∥

∥

∥

∥

2

L2([0,1](8−2τ))

≤ lim
N→∞

(

4N4H+1

c1,Hc(H)2(N − ℓ)2

)2
∥

∥

∥

∥

∥

∥

N−1
∑

i,j=ℓ

(Ci ⊗ Ci) ⊗τ (Cj ⊗ Cj)

∥

∥

∥

∥

∥

∥

2

L2([0,1](8−2τ))
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= lim
N→∞

(

4N4H+1

c1,Hc(H)2(N − ℓ)2

)2

N−1
∑

i,j,m,n=ℓ

〈(Ci ⊗ Ci) ⊗τ (Cj ⊗ Cj), (Cm ⊗ Cm) ⊗τ (Cn ⊗ Cn)〉 .

The Appendix can now be consulted for proof that for each τ = 1, 2, 3 this
quantity converges to 0, establishing the theorem.

5. Anormality of the T2 term and asymptotic distribution of the
2-variation

For the asymptotic distribution of the variation statistic we have the following
proposition.

Theorem 3. For all H ∈ (1/2, 1), both N1−H

√
c2,H

T2 and the normalized 2-variation

N1−H

√
c2,H

VN converge in L2(Ω) to the Rosenblatt random variable Z(1).

Setup of proof of Theorem 3. The strategy for proving this theorem is sim-
ple. First of all Proposition 4 implies immediately that N1−HT4 converges to
zero in L2(Ω). Thus if we can show the theorem’s statement about T2, the
statement about VN will following immediately from Proposition 2.

Next, to show N1−H

√
c2,H

T2 converges to the random variable Z (1) in L2 (Ω),

recall that T2 is a second-chaos random variable of the form I2(fN ), where
fN (y1, y2) is a symmetric function in L2([0, 1]2), and that this double Wiener-
Itô integral is with respect to the Brownian motion W used to define Z (1),
i.e. that Z (1) = I2 (L1) where L1 is the kernel of the Rosenblatt process at
time 1, as defined in (9). Therefore, by the isometry property of Wiener-Itô

integrals (see (6)), it is necessary and sufficient to show that N1−H

√
c2,H

fN converges

in L2([0, 1]2) to L1. This is proved in the Appendix.

6. Normality of the adjusted variations

In the previous section we proved that the distribution of the variation statistic
VN is never normal, irrespective of the order of the filter. However, in the de-
composition of VN , there is a normal part, T4, which implies that if we subtract
T2 from VN the remaining part will converge to a normal law. But T2 is not ob-
served in practice. Following the idea of the adjusted variations in [28], instead
of T2 we subtract Z(1) which is observed. Z(1) is the value of the Rosenblatt
process at time 1. Thus, we study the convergence of the adjusted variation:

VN −
√

c2,H

N1−H
Z(1) = VN − T2 + T2 −

√
c2,H

N1−H
Z(1)

:= T4 + U2.
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In Section 4 we showed that
√

N
c1,H

T4 converges to a normal law. For the quan-

tity U2 we prove the following proposition

Proposition 5. For H ∈
(

1
2 , 2

3

)

,
√

NU2 converges in distribution to normal
with mean zero and variance given by

c3,H := c2,H

∞
∑

k=1

(N − k − 1)k2HF

(

1

k

)

, (19)

where c2,H is defined as in (16) and F is defined as follows

F (x) = d(H)2α(H)2
ℓ
∑

q1q2r1r2=0

∫

[0,1]4
dudvdu′dv′ |(u − u′ + q2 − q1)x + 1|2H′−2

[

128α(H)2d(H)2

c2,Hc(H)2
|u − v − q1 + r1|2H′−2 |u′ − v′ − q2 + r2|2H′−2

|(v − v′ − r1 + r2)x + 1|2H′−2 − 16d(H)α(H)
√

c2,Hc(H)
|u − v − q1 + r1|2H′−2

|(v − u′ − q2 + r1)x + 1|2H′−2
+ |(u − u′ + q1 − q2)x + 1|2H′−2

]

.

Proof. The proof follows the proof of [28, Proposition 5] and is omitted here.

Therefore, for the adjusted variation we can prove the following

Theorem 4. Let Zt : t ∈ (0, 1) be a Rosenblatt process with H ∈ (1/2, 2/3).
Then the adjusted variation

√
N

c1,H + c3,H

(

VN (2, α) − c2,H

N1−H
Z(1)

)

.

converges to a standard normal law. Here c1,H , c2,H , and c3,H are given in (17),
(16), and (19).

Proof. The proof follows the steps of the proof of [28, Theorem 6] and is omit-
ted.

7. Estimators for the self-similarity index

We construct estimators for the self-similarity index of a Rosenblatt process Z
based on the discrete observations at times 0, 1

N
, 2

N
, . . . , 1. Their strong consis-

tency and asymptotic distribution will be consequences of the theorems above.
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7.1. Setup of the estimation problem

Consider the quadratic variation statistic for a filter α of order p based on the
observations of our Rosenblatt process Z:

SN :=
1

N

N
∑

i=ℓ

(

ℓ
∑

q=0

αqZ

(

i − q

N

)

)2

. (20)

We have already established that E [SN ] = −N−2H

2

∑ℓ
q,r=0 αqαr|q − r|2H (see

expression (12)). By considering that E [SN ] can be estimated by the empirical
value SN , we can construct an estimator ĤN for H by solving the following
equation:

SN = −N−2ĤN

2

ℓ
∑

q,r=0

αqαr|q − r|2ĤN .

In this case, unlike the case of a filter of length 1 which was studied in [28],
we cannot compute an analytical expression for the estimator. Nonetheless, the
estimator ĤN can be easily computed numerically by solving the following non-
linear equation for fixed N , with unknown x ∈ [1/2, 1]:

−N−2x

2

ℓ
∑

q,r=0

αqαr|q − r|2x − SN (2, α) = 0. (21)

This equation is not entirely trivial, in the sense that one must determine
whether it has a solution in [1/2, 1], and whether this solution is unique. As
it turns out, the answer to both questions is affirmative for large N , as seen in
the next Proposition, proved further below.

Proposition 6. Almost surely, for large N , equation (21) has exactly one so-
lution in [1/2, 1].

Definition 2. We define the estimator ĤN of H to be the unique solution
of (21).

Note that Equation (21) can be rewritten as SN = c(x)N−2x/2 where the
function c was defined in (13). The proposition is established via the following
lemma.

Lemma 2. For any H ∈ (1/2, 1), almost surely, limN→∞ N2HSN = c (H) /2.

Proof. Firstly, we show that VN converges to zero almost surely as N → ∞.
We already know that this is true in L2 (Ω). Consider the following

P
(

|VN | > N−β
)

≤ N qβE (|VN |q) ≤ cq,4

[

E
(

V 2
N

)]q/2 ≤ c N qβN (H−1)q.

If we choose β < 1 − H and q large enough so that (1 − H − β)q > 1. This
implies that

∞
∑

N=0

P
(

|VN | > N−β
)

≤ c
∞
∑

N=0

N (β+H−1)q < +∞
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Therefore, the Borel-Cantelli lemma implies |VN | → 0 a.s., with speed of con-
vergence equal to N−β, for all β < 1 − H . Since VN = SN

E(SN ) − 1 we have

1 + VN = − 2N2H

∑ℓ
q,r=0 αqαr|q − r|2H

SN = 2N2HSN/c (H) . (22)

The almost-sure convergence of VN to 0 yields the statement of the lemma.

Proof of Proposition 6. For x ∈ [ 1
2
, 1] and for any fixed N , define the func-

tion

FN (x) =
c(x)

2
N−2x − SN = −N−2x

2

ℓ
∑

q,r=0

αqαr|q − r|2x − SN .

Equation (21) is FN (x) = 0. Observe that FN(x) is strictly decreasing. Indeed,
we have that

F ′
N (x) = log

(

N−2x
)

ℓ
∑

q,r=0

αqαr|q − r|2x − N−2x
ℓ
∑

q,r=0

αqαr log |q − r| |q − r|2x.

Then, F ′
N (x) < 0 is equivalent to

N > exp

{

∑ℓ
q,r=0 αqαr log |q − r| |q − r|2x

∑ℓ
q,r=0 αqαr|q − r|2x

}

,

since we know, using Lemma 1, that c (x) =
∑ℓ

q,r=0 αqαr|q − r|2x, which is

evidently continuous on [ 1
2
, 1], is strictly negative on that interval. Thus, if we

choose N to be large enough, i.e.

N > max
x∈[ 121]

exp

{

∑ℓ
q,r=0 αqαr log |q − r| |q − r|2x

∑ℓ
q,r=0 αqαr|q − r|2x

}

the function FN (x) is invertible on [ 1
2
, 1], and equation (21) has no more than

one solution there.
To guarantee existence of a solution, we use Lemma 2. This lemma implies the

existence of a sequence εN such that 2N2HSN = c(H)+εN and limN→∞ εN = 0
almost surely. Since in addition c is continuous, then almost surely, we can choose
N large enough, so that 2N2HSN is in the image of [ 1

2
, 1] by the function c.

Thus the equation c (x) = 2N2HSN has at least one solution in [ 1
2
, 1]. Since this

equation is equivalent to (21), the proof of the proposition is complete.

7.2. Properties of the estimator

Now, it remains to prove that any such ĤN is consistent and to determine its
asymptotic distribution.
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Theorem 5. For H ∈ (1/2, 1) assume that the observed process used in the
previous definition is a Rosenblatt process with Hurst parameter H. Then strong
consistency holds for ĤN , i.e.

lim
N→∞

ĤN = H, a.s.

In fact, we have more precisely that limN→∞
(

H − ĤN

)

log N = 0 a.s.

Proof. From line (22) in the proof of Lemma 2, and using the fact that ĤN

solves equation (21), i.e. c
(

ĤN

)

N−ĤN = 2SN , we can write

1 + VN = − 2N2H

∑ℓ
q,r=0 αqαr|q − r|2H

SN =
c(ĤN)

c (H)
N2(H−ĤN).

Now note that c(ĤN)/c (H) is the ratio of two values of the continuous func-
tion c at two points in [1/2, 1]. However, Lemma 1 proves that on this interval,
the function c is strictly positive; since it is continuous, it is bounded above and
away from 0. Let a = minx∈[1/2,1] c (x) > 0 and A = maxx∈[1/2,1] c (x) < ∞.

These constants a and A are of course non random. Therefore c(ĤN)/c (H) is
always in the interval [a/A, A/a]. Thus, almost surely,

∣

∣

∣
log
(

c(ĤN )/c (H)
)
∣

∣

∣
≤ log

A

a
.

We may now write

log (1 + VN) = 2
(

H − ĤN

)

log N + log

(

c(ĤN)

c (H)

)

. (23)

Since in addition limN→∞ log (1 + VN ) = 0 a.s., we get that almost surely,

∣

∣

∣
H − ĤN

∣

∣

∣
= O

(

1

logN

)

.

This implies the first statement of the proposition.
The second statement, which is more precise, is now obtained as follows.

Since ĤN → H almost surely, and c is continuous, log
(

c(ĤN)/c (H)
)

converges
to 0. The second statement now follows immediately.

The asymptotic distribution of the estimator ĤN is stated in the next result.
Its proof uses Theorem 3 and Theorem 1, plus the expression (23). While novel
and interesting, this proof is more technical than the proofs of the proposition
and theorem above, and is therefore relegated to the Appendix.

Theorem 6. For any H ∈ (1
2 , 1), the convergence

lim
N→∞

2c
−1/2
2,H N1−H

(

ĤN − H
)

logN = Z(1)

holds in L2 (Ω), where Z(1) is a Rosenblatt random variable.
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As can be seen from Theorem 3 and Theorem 6, the renormalization of the
statistic VN , as well as the renormalization of the difference ĤN − H , depend
on H : it is of order of N1−H . The quantities N1−HVN and N1−HĤN cannot be
computed numerically from the empirical data, thereby compromising the use
of the asymptotic distributions for statistical purposes such as model validation.
Therefore one would like to have other quantities with known asymptotic distri-
bution which can be calculated using only the data. The next theorem addresses
this issue by showing that one can replace H by ĤN in the term N1−H , and
still obtain a convergence as in Theorem 6, this time in L1 (Ω). Its proof is in
the Appendix.

Theorem 7. For any H ∈ (1
2 , 1), with the Rosenblatt random variable Z (1),

lim
N→∞

E
[
∣

∣

∣
2 c

−1/2
2,H N1−ĤN log N

(

ĤN − H
)

− Z (1)
∣

∣

∣

]

= 0.

8. Numerical computation of the asymptotic variance

In practice certain issues may occur when we compute the asymptotic variance.
The most crucial question is what order of filter we should choose. Indeed, from
(16) with ĤN instead of H , it follows that the constants of the variance not only
depend on the filter length/order (ℓ, p), but also on the number of observations
(N). We measure the “accuracy” of the estimator ĤN by its standard error
which is the following quantity:

√c2,ĤN

2N1−ĤN log N
.

There are several types of filters that we can use. In this paper, we choose to
work with finite-difference and wavelet-type filters.

• The finite-difference filters are produced by finite-differencing the process.
In this case the filter length is the same as the order of the filter. The
coefficients of the order-ℓ finite difference filter are given by

αk = (−1)k+1

(

ℓ

k

)

, k = 0, . . . , ℓ.

• The wavelet filters we are using are the Daubechies filters with k-vanishing
moments. (By vanishing moments we mean that all moments of the wavelet
filter are zero up to a power). The Daubechies wavelets form a family of
orthonormal wavelets with compact support and the maximum number
of vanishing moments. In this scenario, the number of vanishing moments
determines the order of the filter and the filter length is twice the order.
For more details, the reader can refer to [17].

We computed the standard error for N = 10, 000 observations, filters of order
varying from 2 to 20 and Hurst parameters varying from 0.55 to 0.95. This means
that the corresponding lengths of the finite-difference filters were 2 to 20 and



A. Chronopoulou et al./Rosenblatt variations using longer filters 1413

0 5 10 15 20 25 30
0

0.5

1

1.5

Filter Order

S
ta

n
d

a
rd

 E
rr

o
r

Standard Error vs. Order of Filter (for different H)

 

 
H=0.55
H=0.65
H=0.75
H=0.85
H=0.95

Fig 1. Finite Difference Filters.
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Fig 2. Wavelet Filters.
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for the wavelets 4 to 40. The code we use to simulate the Rosenblatt process is
based on a Donsker-type limit theorem and was provided to us by J.M. Bardet
[1]. The results are illustrated in the figures 1, 2, and 3, on the next page; these

are graphs of the asymptotic standard error
√

c2,H/(2N1−ĤN logN) for various
fixed values of H as the order of the filters increase.

We observe that the standard error decreases with the order of the filter.
Furthermore, we observe that the wavelet filters are more effective than the
finite-difference ones, since they have a higher impact on the decrease of the
standard error for the same order, as the filter increases. Specifically, the graph
in Fig. 1, with the finite difference filters, shows that for fixed H , there is no
advantage to using a filter beyond a certain order p, since the standard error
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tends to a constant as p → ∞. This does not occur for the wavelet filters, where
the standard error continues to decrease as p → ∞ in all cases as seen in the
graph in Fig. 2. On the other hand, the finite-difference filters have lower errors
than the wavelet filters for low filter lengths; only after a certain order p∗ do
the latter become more effective; this comparison is seen in the graph in Fig. 3,
where p∗ is roughly 9.

In addition, since the order of convergence depends on the true value of the
Hurst parameter H , we investigated the behavior of the error with respect to
H . It seems that the higher H is, the more we lose in terms of accuracy; this is
visible in all three graphs.

In general, the choice of a longer filter might lead to a smaller error, but at
the same time it increases the computational time needed in order to compute Ĥ
and its standard error. In a future work, we will study extensively this trade-off
and other consequences of using longer filters.

9. Appendix: proofs

9.1. Proof of Proposition 3

We start by computing the contraction term Ci ⊗1 Ci:

(Ci ⊗1 Ci)(y1, y2) =

∫ 1

0

Ci(x, y1)Ci(x, y2)dx

=

ℓ
∑

q,r=0

bqbr

∫ 1

0

(

L i−(q−1)
N

(x, y1) − L i−q
N

(x, y1)
)

×
(

L i−(r−1)
N

(x, y2) − L i−r
N

(x, y2)
)

dx

= d(H)2
ℓ
∑

q,r=0

bqbr1[0, i−q+1
N

](y1)1[0, i−r+1
N

](y2)

∫
i−q+1

N
∧ i−r+1

N

0

dx

×
(

∫
i−q+1

N

i−q

N

∂KH′

∂u
(u, x)

∂KH′

∂u
(u, y1)du

)

×
(

∫
i−r+1

N

i−r
N

∂KH′

∂v
(v, x)

∂KH′

∂v
(v, y2)dv

)

= d(H)2
ℓ
∑

q,r=0

bqbr1[0, i−q+1
N

](y1)1[0, i−r+1
N

](y2)

×
∫

Iiq

∫

Iir

du dv
∂KH′

∂u
(u, y1)

∂KH′

∂u
(v, y2)dudv

×
(

∫ u∧v

0

dx
∂KH′

∂u
(u, x)

∂KH′

∂v
(v, x)

)
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= α(H)d(H)2
ℓ
∑

q,r=0

bqbr1[0, i−q+1
N

](y1)1[0, i−r+1
N

](y2)

∫

Iiq

∫

Iir

du dv|u − v|2H′−2 ∂KH′

∂u
(u, y1)

∂KH′

∂v
(v, y2)dudv,

where Iiq
=
(

i−q
N

, i−q+1
N

]

.
Now, the inner product computes as

〈Ci ⊗1 Ci, Cj ⊗1 Cj〉L2[0,1]2

= α(H)2d(H)4
ℓ
∑

q1,r1,q2,r2=0

bq1br1bq2br2

∫ 1

0

∫ 1

0

dy1dy2

∫

Iiq1

∫

Iir1

∫

Ijq2

∫

Ijr2

dudvdu′dv′|u − v|2H′−2|u′ − v′|2H′−2

∂KH′

∂u
(u, y1)

∂KH′

∂v
(v, y2)

∂KH′

∂u′ (u′, y1)
∂KH′

∂v′
(v′, y2)dudvdu′dv′

= α(H)2d(H)4
ℓ
∑

q1,r1,q2,r2=0

bq1br1bq2br2

∫

Iiq1

∫

Iir1

∫

Ijq2

∫

Ijr2

dudvdu′dv′|u − v|2H′−2|u′ − v′|2H′−2

(

∫ u∧u′

0

∂KH′

∂u
(u, y1)

∂KH′

∂u′ (u′, y1)dy1

)

(

∫ v∧v′

0

∂KH′

∂u
(u, y1)

∂KH′

∂v′
(v′, y2)dy2

)

= α(H)4d(H)4
ℓ
∑

q1,r1,q2,r2=0

bq1br1bq2br2

∫

Iiq1

∫

Iir1

∫

Ijq2

∫

Ijr2

dudvdu′dv′

× |u − v|2H′−2|u′ − v′|2H′−2|u − u′|2H′−2|v − v′|2H′−2.

We make the following change of variables

ū =

(

u − i − q1

N

)

N

and the second moment of T2 becomes

E
(

T 2
2

)

=
128 α(H)4d(H)4

c(H)2
N4H

(N − ℓ)2

N−1
∑

i,j=ℓ

ℓ
∑

q1,r1,q2,r2=0

bq1br1bq2br2

∫

Iiq1

∫

Iir1

×
∫

Ijq2

∫

Ijr2

dudvdu′dv′|u− v|2H′−2|u′ − v′|2H′−2|u− u′|2H′−2|v − v′|2H′−2
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=
128 α(H)4d(H)4

c(H)2
N4H

(N − ℓ)2
1

N4N8H′−8

N−1
∑

i,j=ℓ

ℓ
∑

q1,r1,q2,r2=0

bq1br1bq2br2

×
∫

[0,1]4
dudvdu′dv′|u − v − q1 + r1|2H′−2|u′ − v′ − q2 + r2|2H′−2

× |u− u′ + i − j − q1 + q2|2H′−2|v − v′ + i − j − r1 + r2|2H′−2

=
128 α(H)4d(H)4

c(H)2
1

(N − ℓ)2

N−1
∑

i,j=ℓ

ℓ
∑

q1,r1,q2,r2=0

bq1br1bq2br2

∫

[0,1]4
dudvdu′dv′

× |u− v − q1 + r1|2H′−2|u′ − v′ − q2 + r2|2H′−2

×
(

|u− u′ + i − j − q1 + q2|2H′−2|v − v′ + i − j − r1 + r2|2H′−2
)

.

Let cst. =
128 α(H)4d(H)4

c(H)2 . We study first the diagonal terms of the above double
sum

E
(

T 2
2−diag

)

= cst.
N − ℓ − 1

(N − ℓ)2

ℓ
∑

q1,r1,q2,r2=0

bq1br1bq2br2

∫

[0,1]4
dudvdu′dv′

× |u− v − q1 + r1|2H′−2|u′ − v′ − q2 + r2|2H′−2

× |u− u′ − q1 + q2|2H′−2|v − v′ − r1 + r2|2H′−2.

We conclude that
E
(

T 2
2−diag

)

= O
(

N−1
)

.

Let’s consider now the non-diagonal terms

E
(

T 2
2−off

)

= 2cst.

ℓ
∑

q1,r1,q2,r2=0

bq1br1bq2br2

×
∫

[0,1]4
dudvdu′dv′ × |u − v − q1 + r1|2H′−2|u′ − v′ − q2 + r2|2H′−2

1

(N − ℓ)2

N−1
∑

i,j=ℓ, i 6=j

|u − u′ + i − j − q1 + q2|2H′−2|v − v′ + i − j − r1 + r2|2H′−2

(24)

Observe that the term (24) can be calculated as follows:

1

(N − ℓ)2

N−1
∑

i,j=ℓ i 6=j

|u − u′ + i − j − q1 + r1|2H′−2|v − v′ + i − j − r1 + r2|2H′−2

=
1

(N − ℓ)2

N−1
∑

i=ℓ

N−i
∑

k=1

|u− u′ + k − q1 + q2|2H′−2|v − v′ + k − r1 + r2|2H′−2
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=
1

(N − ℓ)2

N−1
∑

k=ℓ

(N − k − 1)

× |u− u′ + k − q1 + q2|2H′−2|v − v′ + k − r1 + r2|2H′−2

= N4H′−4 N

(N − ℓ)2

N−1
∑

k=ℓ

(

1 − k + 1

N

)

×
∣

∣

∣

∣

u − u′

N
+

k

N
− q1 − q2

N

∣

∣

∣

∣

2H′−2 ∣
∣

∣

∣

v − v′

N
+

k

N
− r1 − r2

N

∣

∣

∣

∣

2H′−2

.

We may now use a Riemann sum approximation and the fact that 4H ′ − 4 =
2H−2 > −1. Since ℓ is fixed and q1 and q2 are less than ℓ, we get that the term
in (24) is asymptotically equivalent to

N−1
∑

k=ℓ

(

1 − k

N

)
∣

∣

∣

∣

k

N

∣

∣

∣

∣

2H′−2 ∣
∣

∣

∣

k

N

∣

∣

∣

∣

2H′−2

=

∫ 1

0

(1 − x)x2H−2dx + o (1) =
1

2H (2H − 1)
+ o (1) .

We conclude that

E
(

T 2
2

)

+ o
(

N2H−2
)

=
cst.N2H−2

H(2H − 1)

ℓ
∑

q1,r1,q2,r2=0

bq1br1bq2br2

×
∫

[0,1]4
dudvdu′dv′|u− v − q1 + r1|2H′−2|u′ − v′ − q2 + r2|2H′−2.

Using the fact that

∫

[0,1]2
|u − v − q + r|2H′−2dudv

=
1

2H ′(2H ′ − 1)

[

|1 + q − r|2H′

+ |1− q + r|2H′ − 2|q − r|2H′

]

the proposition follows.

9.2. Proof of Proposition 4

9.2.1. The term E
(

T 2
4,(1)

)

We have

E
(

T 2
4,(1)

)

=
4N4H

c(H)2(N − ℓ)2
4!

N−1
∑

i,j=ℓ

〈Ci ⊗ Ci, Cj ⊗ Cj〉L2([0,1]4)
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=
4N4H

c(H)2(N − ℓ)2
4!

N−1
∑

i,j=ℓ

∣

∣〈Ci, Cj〉L2([0,1]2)

∣

∣

2

The scalar product computes as

〈Ci, Cj〉L2([0,1]2)

=

〈

ℓ
∑

q=0

αqL i−q
N

,

ℓ
∑

r=0

αrL j−r
N

〉

L2([0,1]2)

=

∫ 1

0

∫ 1

0

(

ℓ
∑

q=0

αqL i−q
N

(y1, y2)

)(

ℓ
∑

r=0

αrL j−r
N

(y1, y2)

)

dy1dy2

= d(H)2
ℓ
∑

q,r=0

αqαr

∫ 1

0

∫ 1

0

[

∫
i−q

N

y1∨y2

∂KH′

∂u
(u, y1)

∂KH′

∂u
(u, y2)du

]

×
[

∫
j−r

N

y1∨y2

∂KH′

∂v
(v, y1)

∂KH′

∂v
(v, y2)dv

]

dy1dy2

= d(H)2
ℓ
∑

q,r=0

αqαr

∫
i−q

N

0

∫
j−r

N

0

(

∫ u∧v

0

∂KH′

∂u
(u, y1)

∂KH′

∂v
(v, y1)dy1

)2

dudv

= α(H)2 d(H)2
ℓ
∑

q,r=0

αqαr

∫
i−q
N

0

∫
j−r
N

0

|u− v|2H−2dudv

where α(H) = H(H+1)
2

= H ′(2H ′ − 1) and

∫
i−q

N

0

∫
j−r

N

0

|u− v|2H−2dudv =

1

H(2H − 1)

[

∣

∣

∣

∣

i − q

N

∣

∣

∣

∣

2H

+

∣

∣

∣

∣

j − r

N

∣

∣

∣

∣

2H

−
∣

∣

∣

∣

j − i + q − r

N

∣

∣

∣

∣

2H
]

(25)

Using the fact that α(H)2 d(H)2

H(2H−1) = 1
2 and (25) the scalar product becomes

〈Ci, Cj〉L2([0,1]2)

=
α(H)2 d(H)2

H(2H − 1)

ℓ
∑

q,r=0

αqαr

[

∣

∣

∣

∣

i − q

N

∣

∣

∣

∣

2H

+

∣

∣

∣

∣

j − r

N

∣

∣

∣

∣

2H

−
∣

∣

∣

∣

j − i + q − r

N

∣

∣

∣

∣

2H
]

=
1

2

ℓ
∑

q,r=0

αqαr

[

∣

∣

∣

∣

i − q

N

∣

∣

∣

∣

2H

+

∣

∣

∣

∣

j − r

N

∣

∣

∣

∣

2H

−
∣

∣

∣

∣

j − i + q − r

N

∣

∣

∣

∣

2H
]

=
1

2

[(

ℓ
∑

q=0

αq

∣

∣

∣

∣

i − q

N

∣

∣

∣

∣

2H
)(

ℓ
∑

r=0

αr

)

+
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(

ℓ
∑

r=0

αr

∣

∣

∣

∣

j − r

N

∣

∣

∣

∣

2H
)(

ℓ
∑

q=0

αq

)

−
ℓ
∑

q,r=0

αqαr

∣

∣

∣

∣

i − j + q − r

N

∣

∣

∣

∣

2H
]

= −1

2

ℓ
∑

q,r=0

αqαr

∣

∣

∣

∣

i − j + q − r

N

∣

∣

∣

∣

2H

= πα
H(i − j).

The last equality is true since
∑ℓ

q=0 αq = 0 by the filter definition. Therefore,
we have

N−1
∑

i,j=ℓ

∣

∣〈Ci, Cj〉L2([0,1]2)

∣

∣

2
=

1

4

N−1
∑

i,j=ℓ

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr

∣

∣

∣

∣

i − j + q − r

N

∣

∣

∣

∣

2H
∣

∣

∣

∣

∣

2

=
1

4

N−1
∑

i=ℓ

N−2
∑

k=0

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr

∣

∣

∣

∣

k + q − r

N

∣

∣

∣

∣

2H
∣

∣

∣

∣

∣

2

=
N−4H(N − ℓ − 1)

4

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr|q − r|2H

∣

∣

∣

∣

∣

2

+
1

4

N−1
∑

i=ℓ

N−2
∑

k=1

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr

∣

∣

∣

∣

k + q − r

N

∣

∣

∣

∣

2H
∣

∣

∣

∣

∣

2

= c(H)2
N−4H(N − ℓ − 1)

4
+

1

4

N−2
∑

k=0

(N − k − 2)

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr

∣

∣

∣

∣

k + q − r

N

∣

∣

∣

∣

2H
∣

∣

∣

∣

∣

2

= c(H)2
(N − l − 1)N−4H

4
+

N−4H+1

4

N−2
∑

k=0

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr |k + q − r|2H

∣

∣

∣

∣

∣

2

− 2
N−4H

4

N−2
∑

k=0

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr |k + q − r|2H

∣

∣

∣

∣

∣

2

+
N−4H

4

N−2
∑

k=0

k

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr |k + q − r|2H

∣

∣

∣

∣

∣

2

.

At this point we need the next lemma to estimate the behavior of the above
quantity. This lemma is the key point which implies the fact that the longer
variation statistics has, in the case when the observed process is the fractional
Brownian motion, a Gaussian limit without any restriction on H (see [12]).

Lemma 3. For all H ∈ (0, 1), we have that

(i)
∑∞

k=1

∣

∣

∣

∑ℓ
q,r=0 αqαr|k + q − r|2H

∣

∣

∣

2

< +∞

(ii)
∑∞

k=1 k
∣

∣

∣

∑ℓ
q,r=0 αqαr|k + q − r|2H

∣

∣

∣

2

< +∞.
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Proof. Proof of (i). Let f(x) =
∑ℓ

q,r=0 αqαr (1 + (q − r)x)
2H

, so the summand
can be written as

ℓ
∑

q,r=0

αqαr|k + q − r|2H = k2Hf

(

1

k

)

.

Using a Taylor expansion at x0 = 0 for the function f(x) we get that

(1 + (q − r)x)
2H ≈

1 + 2H(q − r)x + · · ·+ 2H(2H − 1) . . . (2H − n + 1)

n!
(q − r)nxn.

For small x we observe that the function f(x) is asymptotically equivalent to

2H(2H − 1) . . . (2H − (p − 1))x2p,

where p is the order of the filter. Therefore, the general term of the series is
equivalent to

(2H)2(2H − 1)2 . . . (2H − (p − 1))2k4H−4p

Therefore for all H < p − 1
4

the series converges to a constant depending only
on H . Due to our choice for the order of the filter p ≥ 2, we obtain the desired
result.

Proof of (ii). Similarly as before, we can write the general term of the series
as

k

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr|k + q − r|2H

∣

∣

∣

∣

∣

2

= k

∣

∣

∣

∣

k2Hf

(

1

k

)∣

∣

∣

∣

2

≈ (2H)2(2H − 1)2 . . . (2H − (p − 1))2k4H−4p−1

Therefore for all H < p the series converges to a constant depending only
on H .

Combining all the above we have

E
(

T 2
4,(1)

)

=
4 N4H

c(H)2(N − ℓ)2
4!

N
∑

i,j=1

∣

∣〈Ci, Cj〉L2([0,1]2)

∣

∣

2

=
4 N4H

c(H)2(N − ℓ)2
4!

[

1

4
c(H)2(N − ℓ − 1)N−4H

+
N−4H+1

4

N−2
∑

k=0

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr |k + q − r|2H

∣

∣

∣

∣

∣

2

− 2
N−4H

4

N−2
∑

k=0

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr |k + q − r|2H

∣

∣

∣

∣

∣

2
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+
N−4H

4

N−2
∑

k=0

k

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr |k + q − r|2H

∣

∣

∣

∣

∣

2 ]

=
4!

c(H)2

[

c(H)2
N − ℓ − 1

(N − ℓ)2
+

(

N1

(N − ℓ)2
− 2

1

(N − ℓ)2

)

N−2
∑

k=0

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr |k + q − r|2H

∣

∣

∣

∣

∣

2

+
1

(N − ℓ)2

N−2
∑

k=0

k

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr |k + q − r|2H

∣

∣

∣

∣

∣

2 ]

=
4!

c(H)2

[

c(H)2
(

N

(N − ℓ)2
− l + 1

(N − ℓ)2

)

+
N − 2

(N − ℓ)2

N−2
∑

k=0

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr |k + q − r|2H

∣

∣

∣

∣

∣

2

+
1

(N − ℓ)2

N−2
∑

k=0

k

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr |k + q − r|2H

∣

∣

∣

∣

∣

2 ]

≈ 4!

c(H)2

[

c(H)2
(

N−1 − (ℓ + 1)N−2
)

+
(

N−1 − 2N−2
)

N−2
∑

k=0

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr |k + q − r|2H

∣

∣

∣

∣

∣

2

+ N−2
N−2
∑

k=0

k

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr |k + q − r|2H

∣

∣

∣

∣

∣

2 ]

.

Since the leading term is of order N−1 we have that

E
(

T 2
4,(1)

)

≃ 4! c(H)−2N−1



c(H)2 +
N−2
∑

k=0

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr |k + q − r|2H

∣

∣

∣

∣

∣

2


 .

If we define the correlation function of the filtered process as

ρα
H(k) =

πα
H(k)

πα
H(0)

=

∑ℓ
q,r=0 αqαr |k + q − r|2H

c(H)

we can express the asymptotic variance limN→∞ N E
(

T 2
4,(1)

)

in terms of a series

involving ρα
H(k).
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9.2.2. The term E
(

T 2
4,(2)

)

In order to handle this term we use the alternate expression (15) of Ci. Therefore,
following similar calculations as in the T2 case we get that

E
(

T 2
4,(2)

)

=
c
(1)
4,H

(N − ℓ)2

ℓ
∑

q1,q2,r1,r1=0

bq1bq2br1br2

∫

[0,1]4
dudvdu′dv′

×
N−1
∑

i,j=ℓ

[

|u − v + i − j − q1 + r1|2H′−2 |u′ − v′ + i − j − q2 + r2|2H′−2

|u − u′ + i − j − q1 + q2|2H′−2 |v − v′ + i − j − r1 + r2|2H′−2
]

=
c
(2)
4,H

(N − ℓ)2

ℓ
∑

q1,q2,r1,r1=0

bq1bq2br1br2

∫

[0,1]4
dudvdu′dv′

×
N−1
∑

i=ℓ

N−ℓ−i
∑

k=0

[

|u − v + k − q1 + r1|2H′−2 |u′ − v′ + k − q2 + r2|2H′−2

|u − u′ + k − q1 + q2|2H′−2 |v − v′ + k − r1 + r2|2H′−2
]

=
c
(3)
4,H

(N − ℓ)2

ℓ
∑

q1,q2,r1,r1=0

bq1bq2br1br2

∫

[0,1]4
dudvdu′dv′

×
N−ℓ
∑

k=0

(N − k − 1)

[

|u − v + k − q1 + r1|2H′−2 |u′ − v′ + k − q2 + r2|2H′−2

|u − u′ + k − q1 + q2|2H′−2 |v − v′ + k − r1 + r2|2H′−2
]

.

We study the convergence of the above series as N → ∞
N−1
∑

k=0

(N − k − 1)

[

|u − v + k − q1 + r1|2H′−2 |u′ − v′ + k − q2 + r2|2H′−2

|u − u′ + k − q1 + q2|2H′−2 |v − v′ + k − r1 + r2|2H′−2
]

= (N − 1)

N−1
∑

k=0

[

|u − v + k − q1 + r1|2H′−2 |u′ − v′ + k − q2 + r2|2H′−2

|u − u′ + k − q1 + q2|2H′−2 |v − v′ + k − r1 + r2|2H′−2
]

−
N−1
∑

k=0

k

[

|u − v + k − q1 + r1|2H′−2 |u′ − v′ + k − q2 + r2|2H′−2
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|u − u′ + k − q1 + q2|2H′−2 |v − v′ + k − r1 + r2|2H′−2
]

:= (I) + (II).

Therefore the general term of the series is asymptotically equivalent to

(

(2H ′ − 2) . . . (2H ′ − 2p − 1)

(2p)!

)4

(u − v − q1 + r1)
2p (u′ − v′ − q2 + r2)

2p

· (u − u′ − q1 + q2)
2p (v − v′ − r1 + r2)

2p k4H−4−8p,

which converges for all H ∈ (1
2 , 1). We treat the second series (II) in the same

way and we get that it is asymptotically equivalent to cst. k4H−4−8p. Combining
all the above we have

E
(

T 2
4,(2)

)

=
c′4,H

(N − ℓ)2

ℓ
∑

q1,q2,r1,r1=0

bq1bq2br1br2

∫

[0,1]4
dudvdu′dv′

{

(N − ℓ)

N−1
∑

k=ℓ

[

|u − v + k − q1 + r1|2H′−2 |u′ − v′ + k − q2 + r2|2H′−2

|u − u′ + k − q1 + q2|2H′−2 |v − v′ + k − r1 + r2|2H′−2
]

−
N−1
∑

k=ℓ

k

[

|u − v + k − q1 + r1|2H′−2 |u′ − v′ + k − q2 + r2|2H′−2

|u − u′ + k − q1 + q2|2H′−2 |v − v′ + k − r1 + r2|2H′−2
]}

.

The leading term in E
(

T 2
4,(2)

)

is of order N−1 and the constant computes as

τ1,H =

∞
∑

k=ℓ

ℓ
∑

q1,q2,r1,r1=0

bq1bq2br1br2

∫

[0,1]4
dudvdu′dv′

[

|u − v + k − q1 + r1|2H′−2 |u′ − v′ + k − q2 + r2|2H′−2

|u − u′ + k − q1 + q2|2H′−2 |v − v′ + k − r1 + r2|2H′−2
]

.

Therefore, combining the two terms we get the statement of the proposition.

9.3. End of proof of Theorem 2

Recall that we only need to show that for τ = 1, 2, 3 the terms
||gN ⊗τ gN ||2L2([0,1]8−2τ ) converge to 0 as N tends to infinity.
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• Term for τ = 1.

J1 =

(

4N4H+1

c1,Hc(H)2(N − ℓ)2

)2

×
N−1
∑

i,j,m,n=ℓ

〈(Ci ⊗ Ci) ⊗1 (Cj ⊗ Cj), (Cm ⊗ Cm) ⊗1 (Cn ⊗ Cn)〉

=

(

4N4H+1

c1,Hc(H)2(N − ℓ)2

)2 N−1
∑

i,j,m,n=ℓ

〈Ci, Cm〉L2([0,1]2)

×〈Cj , Cn〉L2([0,1]2)〈Ci ⊗1 Cj, Cm ⊗1 Cn〉L2([0,1]2).

Thus, we have

J1 =

≤ cst.
N8H+2

(N − ℓ)4
1

N4

N−1
∑

i,j,m,n=ℓ

ℓ
∑

q1,r1,q2,r2,q3,r3,q4,r4=0

bq1br1bq2br2bq3br3bq4br4

×
∣

∣

∣

∣

i − m + q1 − r1

N

∣

∣

∣

∣

2H ∣

∣

∣

∣

j − n + q2 − r2

N

∣

∣

∣

∣

2H [ ∫

[0,1]4
dudvdu′dv′

×
∣

∣

∣

∣

u − v + i − j − q3 + r3

N

∣

∣

∣

∣

2H′−2 ∣
∣

∣

∣

u′ − v′ + m − n − q4 + r4

N

∣

∣

∣

∣

2H′−2

×
∣

∣

∣

∣

u − u′ + i − m − q3 + q4

N

∣

∣

∣

∣

2H′−2 ∣
∣

∣

∣

v − v′ + j − n + r3 + r4

N

∣

∣

∣

∣

2H′−2 ]

≤ cst.
N2

(N − ℓ)4

N−1
∑

i,j,m,n=ℓ

ℓ
∑

q1,r1,q2,r2,q3,r3,q4,r4=0

bq1br1bq2br2bq3br3bq4br4

× |i − m + q1 − r1|2H |j − n + q2 − r2|2H

[
∫

[0,1]4
dudvdu′dv′

× |u− v + i − j − q3 + r3|2H′−2|u′ − v′ + m − n − q4 + r4|2H′−2

× |u− u′ + i − m− q3 + q4|2H′−2|v − v′ + j − n + r3 + r4|2H′−2

]

.

As in the computations for T4,(2) we can show that the above series con-

verges and thus J1 = O(N−2), which implies that for all H ∈ (1
2 , 1)

lim
N→∞

J1 = 0.

• Term for τ = 2

J2 =

(

4N4H+1

c1,Hc(H)2(N − ℓ)2

)2
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N−1
∑

i,j,m,n=ℓ

〈(Ci ⊗ Ci) ⊗2 (Cj ⊗ Cj), (Cm ⊗ Cm) ⊗2 (Cn ⊗ Cn)〉

=

(

4N4H+1

c1,Hc(H)2(N − ℓ)2

)2 N−1
∑

i,j,m,n=ℓ

〈Ci, Cj〉L2([0,1]2)

×〈Cm, Cn〉L2([0,1]2)〈Ci, Cm〉L2([0,1]2) 〈Cj, Cn〉L2([0,1]2).

J2 ≤ cst.
N8H+2

(N − ℓ)4

N−1
∑

i,j,m,n=ℓ

〈Ci, Cj〉L2[0,1]2〈Ci, Cm〉L2[0,1]2〈Cm, Cn〉L2[0,1]2〈Cj , Cn〉L2[0,1]2

= cst.
N8H+2

(N − ℓ)4

N−1
∑

i,j,m,n=ℓ

ℓ
∑

q1q2q3q4=0

αq1αq2αq3αq4

∣

∣

∣

∣

i − j + q1 − q2

N

∣

∣

∣

∣

2H

×
∣

∣

∣

∣

i − m + q1 − q3

N

∣

∣

∣

∣

2H ∣
∣

∣

∣

m − n + q3 − q4

N

∣

∣

∣

∣

2H ∣
∣

∣

∣

j − n + q2 − q4

N

∣

∣

∣

∣

2H

= cst.
N2

(N − ℓ)4

N−1
∑

i,j,m,n=ℓ

ℓ
∑

q1q2q3q4=0

αq1αq2αq3αq4 |i − j + q1 − q2|2H

× |i − m + q1 − q3|2H |m− n + q3 − q4|2H |j − n + q2 − q4|2H
.

The series converges for all H ∈ (1/2, 1), so the whole term is of order O(N−2)
which means that goes to zero as N → ∞.

• Term for τ = 3.

J3 =

(

4N4H+1

c1,Hc(H)2(N − ℓ)2

)2

N−1
∑

i,j,m,n=ℓ

〈(Ci ⊗ Ci) ⊗3 (Cj ⊗ Cj), (Cm ⊗ Cm) ⊗3 (Cn ⊗ Cn)〉

=

(

4N4H+1

c1,Hc(H)2(N − ℓ)2

)2 N−1
∑

i,j,m,n=ℓ

〈Ci, Cj〉L2([0,1]2)

×〈Cm, Cn〉L2([0,1]2)〈Ci ⊗1 Cj, Cm ⊗1 Cn〉.

With similar computations as in the case of T4 we conclude that J3 =
O(N−2).
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9.4. Proof of Theorem 3

According to our previous computations we can write

fN (y1, y2) =
8N2H

c(H)(N − ℓ)

N−1
∑

i=ℓ

(Ci ⊗1 Ci)(y1 , y2)

=
8d(H)2α(H)

c(H)

N2H

(N − ℓ)

N−1
∑

i=ℓ

ℓ
∑

q,r=0

bqbr1[0, i−q+1
N

](y1)1[0, i−r+1
N

](y2)

×
∫

Iiq

∫

Iir

dudv|u− v|2H′−2 ∂1K
H′

(u, y1)∂1K
H′

(v, y2)

Let us show first that we can reduce this function to the interval y1 ∈ [0, i−q
N ]

and y2 ∈ [0, i−r
N ]. We will show that if y1 ∈ Iiq

, y2 ∈ [0, i−r
N ] (and similarly for

the situations y1 ∈ [0, i−q
N ], y2 ∈ Iir

and y1 ∈ Iiq
, y2 ∈ Iir

) the corresponding
terms goes to zero as N → ∞. We have, due to the fact that the intervals Iiq

are disjoint,

‖N1−HN2H

(N − ℓ)

N−1
∑

i=ℓ

ℓ
∑

q,r=0

bqbr1Iiq
(y1)1[0, i−r

N
](y2)

∫

Iiq

∫

Iir

dudv|u− v|2H′−2 ∂1K
H′

(u, y1)∂1K
H′

(v, y2)‖2
L2([0,1]2)

=
N2+2H

(N − ℓ)2

N
∑

i=ℓ

ℓ
∑

q1,r1,q2,r2=0

bq1br1bq2br2

∫

Iiq1

∫

Iir1

∫

Iiq2

∫

Iir2

dv′du′dvdu

× (|u − v| · |u′ − v′| · |u− u′| · |v − v′|)2H′−2

=
N2+2H

(N − ℓ)2
1

N4

1

N4(2H′−2)

N
∑

i=ℓ

ℓ
∑

q1,r1,q2,r2=0

bq1br1bq2br2

∫

[0,1]4
dudvdu′dv′

× |u − v − q1 + r1|2H′−2|u′ − v′ − q2 + r2|2H′−2

|u − u′ − q1 + q2|2H′−2|v − v′ − r1 + r2|2H′−2 ≍ N1−2H

which tends to zero because 2H > 1.
This proves the following asymptotic equivalence in L2([0, 1]2):

fN (y1, y2) ≃
8d(H)2α(H)

c(H)

N2H

(N − ℓ)

N−1
∑

i=ℓ

ℓ
∑

q,r=0

bqbr1[0, i−q

N
](y1)1[0, i−r

N
](y2)

×
∫

Iiq

∫

Iir

dudv|u− v|2H′−2 ∂1K
H′

(u, y1)∂1K
H′

(v, y2).

We will show that the above term, normalize by N1−H

√
c2,H

, converges pointwise for

y1, y2 ∈ [0, 1] to the kernel of the Rosenblatt random variable.
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On the interval Iiq
× Iir

we may attemp to replace the evaluation of ∂1K
H′

at u and v by setting u = (i − q)/N and v = (i − r)/N . More precisely, we can
write

∂1K
H′

(u, y1)∂1K
H′

(v, y2) =

(

∂1K
H′

(u, y1) − ∂1K
H′

(

i − q

N
, y1

))

∂1K
H′

(v, y2)

+ ∂1K
H′

(

i − q

N
, y1

)(

∂1K
H′

(v, y2) − ∂1K
H′ − ∂1K

H′

(

i − r

N
, y2

))

and all the above summand above can be treated in the same manner. For the
first one, using the definition of the derivative of KH′

with respect to the first
variable, we get for any y1 ∈ [0, i−q

N ],

∂1K
H′

(u, y1) − ∂1K
H′

(

i − q

N
, y1

)

= cHy
1
2−H
1

(

(u − y1)
H− 3

2 uH− 1
2 −

(

i − q

N
− y1

)H− 3
2
(

i − q

N

)H− 1
2

)

≤ cHy
1
2−H
1

(

i − q

N
− y1

)H− 3
2

(

uH− 1
2 −

(

i − q

N

)H− 1
2

)

≤ cHy
1
2−H
1

(

i − q

N
− y1

)H− 3
2
(

u −
(

i − q

N

))H− 1
2

≤ cHN
1
2−Hy

1
2−H
1

(

i − q

N
− y1

)H− 3
2

and for any y2 ∈ [0, i−r
N ]

∂1K
H′

(v, y2) = cHy
1
2−H
2 (v − y2)

H− 3
2 vH− 1

2

≤ cHy
1
2−H
2

(

i − r

N
− y1

)H− 3
2

(
i − r + 1

N
)H− 1

2 .

As a consequence of the above estimates,

N1−H N2H

N − ℓ

N−1
∑

i=ℓ

ℓ
∑

q,r=0

bqbr1[0, i−q

N
](y1)1[0, i−r

N
](y2)

×
∫

Iiq

∫

Iiq

dvdu|u− v|2H′−2

(

∂1K
H′

(u, y1) − ∂1K
H′

(

i − q

N
, y1

))

∂1K
H′

(v, y2)

≤ cN
1
2−H N1+H

N − ℓ

N−1
∑

i=ℓ

ℓ
∑

q,r=0

bqbr1[0, i−q

N
](y1)1[0, i−r

N
](y2)

(

i − q

N
− y1

)H− 3
2

×
(

i − r

N
− y2

)H− 3
2
(

i − r + 1

N

)H− 1
2
∫

Iiq

∫

Iiq

dvdu|u− v|2H′−2
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≤ cN
1
2−H 1

N − ℓ

N−1
∑

i=ℓ

ℓ
∑

q,r=0

bqbr1[0, i−q

N
](y1)1[0, i−r

N
](y2)

×
(

i − q

N
− y1

)H− 3
2
(

i − r

N
− y2

)H− 3
2
(

i − r + 1

N

)H− 1
2

. (26)

The quantity 1
N−ℓ

∑N−1
i=ℓ 1[0, i−q

N
](y1)1[0, i−r

N
](y2)

(

i−q
N − y1

)H− 3
2
(

i−r
N − y2

)H− 3
2 ×

( i−r+1
N )H− 1

2 is comparable, for large N, to the integral
∫ 1

y1∨y2
(u − y1)

H− 3
2 (u −

y2)
H− 3

2 uH− 1
2 and the term N

1
2−H in front gives the convergence to zero of (26)

for any fixed y1, y2.
This means we have proved the following pointwise asymptotically equivalent

for fN (y1, y2):

N1−H

√
c2,H

fN (y1, y2) ≃
8d(H)2α(H)√

c2,H c(H)

N1+H

(N − ℓ)

N−1
∑

i=ℓ

ℓ
∑

q,r=0

1[0, i−q

N
](y1)1[0, i−r

N
](y2)bqbr

∂1K
H′

(

i − q

N
, y1

)

∂1K
H′

(

i − r

N
, y2

)
∫

Iiq

∫

Iir

dudv|u− v|2H′−2.

Recall that
∫

Iiq

∫

Iir

dvdu|u− v|2H′−2

=
N−(1+H)

2H ′(2H ′ − 1)

{

|1 − q + r|2H′

+ |1 + q − r|2H′ − 2|q − r|2H′

}

.

Thus we get

N1−H

√
c2,H

fN (y1, y2)

≃ 8d(H)2α(H)

c2,H c(H)

ℓ
∑

q,r=0

bqbr

{

|1− q + r|2H′

+ |1 + q − r|2H′ − 2|q − r|2H′

}

× 1

(N − ℓ)

N−1
∑

i=ℓ

∂1K
H′

(

i − q

N
, y1

)

∂1K
H′

(

i − r

N
, y2

)

.

Further, we can ignore the terms q/N and r/N in comparison with i/N in the
last line above, and thus invoke a Riemann sum approximation, which proves
that, for every y1, y2 ∈ (0, 1)2

lim
N→∞

N1−H

c2,H
fN (y1, y2)

=
8d(H)2α(H)

c2,H c(H)

ℓ
∑

q,r=0

bqbr

{

|1− q + r|2H′

+ |1 + q − r|2H′ − 2|q − r|2H′

}
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1

(N − ℓ)
lim

N→∞

N−1
∑

i=ℓ

∂1K
H′

(
i − q

N
, y1)∂1K

H′

(
i − r

N
, y2)

= d(H)

∫

y1∨y2

∂1K
H′

(
u

N
, y1)∂1K

H′

(
u

N
, y2)du

= L1(y1, y2).

To finish the proof it suffices to check that N1−HfN is a Cauchy sequence in
L2([0, 1]2). Up to a constant depending on H we have that for all M , N ,

||N1−HfN − M1−HfM ||2L2[0,1]2

= N2−2H||fN ||2L2[0,1]2 + M2−2H||fM ||2L2([0,1]2) − 2N1−HM1−H〈fN , fM〉L2[0,1]2

= cst.
N2H+2

(N − ℓ)2

N−1
∑

i,j=ℓ

ℓ
∑

q1,r1,q2,r2=0

bq1br1bq2br2

∫

IN
iq1

∫

IN
ir1

∫

IN
jq2

∫

IN
jr2

dudvdu′dv′

× |u − v|2H′−2|u′ − v′|2H′−2|u − u′|2H′−2|v − v′|2H′−2

+ cst.
M2H+2

(M − ℓ)2

M−1
∑

i,j=ℓ

ℓ
∑

q1,r1,q2,r2=0

bq1br1bq2br2

∫

IM
iq1

∫

IM
ir1

∫

IM
jq2

∫

IM
jr2

dudvdu′dv′

× |u − v|2H′−2|u′ − v′|2H′−2|u − u′|2H′−2|v − v′|2H′−2

− cst.
M1+HN1+H

(M − ℓ)(N − ℓ)

N−1
∑

i=ℓ

M−1
∑

j=ℓ

ℓ
∑

q1,r1,q2,r2=0

bq1br1bq2br2

∫

IN
iq1

∫

IN
ir1

∫

IM
jq2

∫

IM
jr2

dudvdu′dv′|u − v|2H′−2|u′ − v′|2H′−2|u − u′|2H′−2|v − v′|2H′−2.

The first two terms have already been studied and will converge to the same
constant as M, N → ∞. Concerning the inner product, by making the usual
change of variable we have

(MN)H+1

(M − ℓ)(N − ℓ)

(NM)2H′−2

N2M2

N−1
∑

i=ℓ

M−1
∑

j=ℓ

ℓ
∑

q1,r1,q2,r2=0

∫

[0,1]4
dudvdu′dv′

× |u − v − q1 + r1|2H′−2|u′ − v′ − q3 + r3|2H′−2

×
∣

∣

∣

∣

u

N
− u′

M
+

i

N
− j

N
− q1

N
+

q2

N

∣

∣

∣

∣

2H′−2 ∣
∣

∣

∣

v

N
− v′

M
+

i

N
− j

N
− r1

N
+

r2

N

∣

∣

∣

∣

2H′−2

.

For large i, j we can ignore the terms u
N

, u′

N
, q1

N
, etc., compared to i

N
and j

N
.

Therefore, the above quantity is a Riemann sum that converges to the same
constant as the squared terms, as M, N → ∞. This finishes the proof of the
theorem.
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9.5. Proof of Theorem 6

We wish to show that, as N → ∞,

E := E

[

(

Z (1) − 2c
−1/2
2,H N1−H

(

ĤN − H
)

logN
)2
]

→ 0.

A minor technical difficulty occurs when VN is not small. We deal with this as
follows. We decompose the above expectation E according to whether or not
|VN | ≤ 1/2: we have E = E1 + E2 where

E1 = E

[

1|VN |>1/2

(

Z (1) − 2c
−1/2
2,H N1−H

(

ĤN − H
)

logN
)2
]

.

Dealing with this term first, Schwarz’s and Minkowski’s inequalities yields

E1 ≤ 2P1/2 [|VN | > 1/2]

×
(

E1/2
[

Z (1)
4]

+ 4c−1
2,HN2−2H log2 N E1/2

[

(

ĤN − H
)4
])

.

Since ĤN is bounded, the sum of the two rooted expectation terms above is
bounded above by a constant multiple of N2−2H . Therefore to deal with E1,
one only needs to show that P [|VN | > 1/2] ≪ N−4+4H . It is well known that
any random variable X which can be written as a finite sum of Wiener chaos
terms up to order q satisfies, for any integer n, E

[

X2n
]

≤ Kn,q

(

E
[

X2
])n

where
Kn,q depends only on n and q. This can be proved iteratively by using formula
(7), for instance. Therefore, since VN is a sum of terms in the second and 4th
chaos (q = 4), by Chebyshev’s inequality, and using Theorem 1, with N large
enough,

P [|VN | > 1/2] ≤ 4nE
[

|VN |2n
]

≤ 4ncn,4

(

E
[

|VN |2
])n

≤ 8nKn,4c
n
2,HN2Hn−2n.

It is thus sufficient to choose n = 3 to guarantee that E1 → 0.
We now only need to study E2. We invoke the mean value theorem to express

(

ĤN − H
)

log N more explicitly. For any x, y ∈ [1/2, 1], there exists ξ ∈ (x, y)
such that

log
c (x)

c (y)
= (x − y) (log c)

′
(ξ) .

Here the function (log c)
′

is bounded on [1/2, 1], because c′ is bounded and c
is bounded below. Therefore, denoting by ξN ∈ [1/2, 1] the value corresponding
to x = H and y = ĤN , and using line (23) in the proof of Theorem 5, we can
write

log (1 + VN ) =
(

ĤN − H
) (

2 logN + (log c)
′
(ξN )

)

and thus

(

ĤN − H
)

(2 log N) = log (1 + VN ) − log (1 + VN )

2 logN + (log c)
′
(ξN )

.
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Since
∣

∣(log c)
′
(ξN)

∣

∣ is bounded (by a non-random value), by choosing N large

enough, an upper bound for the last fraction above, in absolute value, is 2 VN

log N
.

Therefore (using Minkowski’s inequality),

√

E2 = E1/2

[

1|VN |≤1/2

(

Z (1) − 2c
−1/2
2,H N1−H

(

ĤN − H
)

logN
)2
]

≤ E1/2

[

1|VN |≤1/2

(

Z (1) − c
−1/2
2,H N1−H (log (1 + VN))

)2
]

(27)

+ E1/2

[

1|VN |≤1/2

(

2c
−1/2
2,H N1−HVN/ log N

)2
]

. (28)

By Theorem 1, the term in line (28) is bounded above by 1/ log2 N , and thus
converges to 0. For the term in line (27), because of the indicator 1|VN |≤1/2, we
use the fact that when |x| ≤ 1/2, we have |x − log (1 + x)| ≤ x2. Thus this line
is bounded above by

E1/2

[

1|VN |≤1/2

(

Z (1) − c
−1/2
2,H N1−HVN

)2
]

(29)

+ E1/2

[

1|VN |≤1/2

(

c
−1/2
2,H N1−H |VN |2

)2
]

. (30)

The term in line (29) converges to 0 by Theorem 3. Finally, by Theorem 1
again, and the earlier statement about higher powers of random variables with
finite chaos expansions, the term in line (30) is of order N2H−2, and therefore
converges to 0 as well. This proves that E2 converges to 0, finishing the proof
of the theorem.

9.6. Proof of Theorem 7

It is sufficient to prove that

lim
N→∞

E
[
∣

∣

∣

(

N1−ĤN − N1−H
)

(

ĤN − H
)

log N
∣

∣

∣

]

= 0.

We decompose the probability space depending on whether ĤN is far or not
from its mean. For a fixed value ε > 0 it is convenient to define the event

D =
{

ĤN > ε + 2H − 1
}

.

We have

E
[∣

∣

∣

(

N1−ĤN − N1−H
)

(

ĤN − H
)

log N
∣

∣

∣

]

=

= E
[

1D

∣

∣

∣

(

N1−ĤN − N1−H
)

(

ĤN − H
)

log N
∣

∣

∣

]

+

+ E
[

1Dc

∣

∣

∣

(

N1−ĤN − N1−H
)

(

ĤN − H
)

log N
∣

∣

∣

]

:= A + B.
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Proof.

Term A:
Introduce the notation
x = max

(

1− H, 1− ĤN

)

and y = min
(

1 − H, 1− ĤN

)

.

∣

∣

∣
N1−ĤN − N1−H

∣

∣

∣
= ex log N − ey log N = ey log N

(

e(x−y) log N − 1
)

≤ Ny(logN)(x − y)Nx−y = 2 logNNx
∣

∣

∣
H − ĤN

∣

∣

∣

= logNNx
∣

∣

∣
H − ĤN

∣

∣

∣
.

Thus,

A ≤ E

[

1DNx
∣

∣

∣
H − ĤN

∣

∣

∣

2

log2 N

]

= E

[

Nx−(2−2H)1DN2−2H
∣

∣

∣
H − ĤN

∣

∣

∣

2

log2 N

]

Now, choose ε ∈ (0, 1 − H). In this case, if ω ∈ D and x = 1 − H , we get
x − (2− 2H) = −x < −ε. On the other hand, for ω ∈ D and x = 1− ĤN

we get x − (2 − 2H) = 2 − 2ĤN − (2 − 2H) < −ε. In conclusion, on D,
x − (2 − 2H) < −ε which implies immediately

A ≤ N−εE

[

N2−2H
∣

∣

∣
ĤN − H

∣

∣

∣

2

log2 N

]

.

and since the last expectation is bounded

lim
N→∞

A = 0.

Term B
Now, let ω ∈ Dc then H − ĤN > 1 − H − ε. Since ε < 1 − H it implies

H > ĤN . Consequently, it is not sufficient to bound
∣

∣

∣
N1−ĤN − N1−H

∣

∣

∣

above by N1−ĤN . In the same fashion we bound
∣

∣

∣
Ĥ − H

∣

∣

∣
above by H .

Using Hölder’s inequality with powers 1
4

and 3
4

B ≤ H logNE
[

1DcN1−ĤN

]

≤ H logN [P (Dc)]
3/4
(

E
[

N (1−ĤN)4
])1/4

.

By Chebyshev’s inequality, we have

P3/4 [Dc] ≤
E3/4

[

∣

∣H − Ĥ
∣

∣

2
]

(1 − H − ε)
3/2

≤ cN−3(2−2H)/4 (31)
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for some constant c depending only H . Dealing with the other term in the
upper bound for B is a little less obvious. We must return to the definition
of Ĥ . We have

1 + VN = N2(H−Ĥ) = N4(H−Ĥ) = N4(1−Ĥ)N−4(1−H).

Therefore,

E1/4
[

N(1−Ĥ)4
]

≤ N1−HE1/(4) [1 + VN ] ≤ 2N1−H .

Finally, we get
B ≤ 2Hc (log N)N−(1−H).

Finally, B goes to 0 as N → ∞. This finishes the proof of the theorem.
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