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Collaborative recommendation is an information-filtering technique that
attempts to present information items that are likely of interest to an Inter-
net user. Traditionally, collaborative systems deal with situations with two
types of variables, users and items. In its most common form, the problem
is framed as trying to estimate ratings for items that have not yet been con-
sumed by a user. Despite wide-ranging literature, little is known about the sta-
tistical properties of recommendation systems. In fact, no clear probabilistic
model even exists which would allow us to precisely describe the mathemat-
ical forces driving collaborative filtering. To provide an initial contribution
to this, we propose to set out a general sequential stochastic model for col-
laborative recommendation. We offer an in-depth analysis of the so-called
cosine-type nearest neighbor collaborative method, which is one of the most
widely used algorithms in collaborative filtering, and analyze its asymptotic
performance as the number of users grows. We establish consistency of the
procedure under mild assumptions on the model. Rates of convergence and
examples are also provided.

1. Introduction. Collaborative recommendation is a Web information-fil-
tering technique that typically gathers information about your personal interests
and compares your profile to other users with similar tastes. The goal of this sys-
tem is to give personalized recommendations, whether this be movies you might
enjoy, books you should read or the next restaurant you should go to.

There has been much work done in this area over the past decade since the ap-
pearance of the first papers on the subject in the mid-90s [11, 13, 16]. Stimulated
by an abundance of practical applications, most of the research activity to date has
focused on elaborating various heuristics and practical methods [4, 10, 14] so as to
provide personalized recommendations and help Web users deal with information
overload. Examples of such applications include recommending books, people,
restaurants, movies, CDs and news. Websites such as amazon.com, match.com,
movielens.org and allmusic.com already have recommendation systems in opera-
tion. We refer the reader to the surveys by [3] and [2] for a broader picture of the
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TABLE 1
A (subset of a) ratings matrix for a movie recommendation system. Ratings are specified on a scale

from 1 to 10, and “NA” means that the user has not rated the corresponding film

Armageddon Platoon Rambo Rio Bravo Star wars Titanic

Jim NA 6 7 8 9 NA
James 3 NA 10 NA 5 7
Steve 7 NA 1 NA 6 NA
Mary NA 7 1 NA 5 6
John NA 7 NA NA 3 1
Lucy 3 10 2 7 NA 4
Stan NA 7 NA NA 1 NA
Johanna 4 5 NA 8 3 9

Bob NA 3 3 4 5 ?

field, an overview of results and many related references.
Traditionally, collaborative systems deal with situations with two types of vari-

ables, users and items. In its most common form, the problem is framed as trying
to estimate ratings for items that have not yet been consumed by a user. The rec-
ommendation process typically starts by asking users a series of questions about
items they liked or did not like. For example, in a movie recommendation system,
users initially rate some subset of films they have already seen. Personal ratings
are then collected in a matrix where each row represents a user, each column an
item, and entries in the matrix represent a given user’s rating of a given item. An
example is presented in Table 1 where ratings are specified on a scale from 1 to 10,
and “NA” means that the user has not rated the corresponding film.

Based on this prior information, the recommendation engine must be able to
automatically furnish ratings of as-yet unrated items and then suggest appropri-
ate recommendations based on these predictions. To do this, a number of practical
methods have been proposed, including machine learning-oriented techniques [1],
statistical approaches [15] and numerous other ad hoc rules [2]. The collaborative
filtering issue may be viewed as a special instance of the problem of inferring the
many missing entries of a data matrix. This field, which has very recently emerged,
is known as the matrix completion problem and comes up in many areas of sci-
ence and engineering, including collaborative filtering, machine learning, control,
remote sensing and computer vision. We will not pursue this promising approach,
and refer the reader to [5] and [6] who survey the literature on matrix completion.
These authors show in particular that under suitable conditions, one can recover an
unknown low rank matrix from a nearly minimal set of entries by solving a simple
convex optimization problem.

In most of the approaches, the crux is to identify users whose tastes/ratings are
“similar” to the user we would like to advise. The similarity measure assessing
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proximity between users may vary depending on the type of application but is
typically based on a correlation or cosine-type approach [15].

Despite wide-ranging literature, very little is known about the statistical proper-
ties of recommendation systems. In fact, no clear probabilistic model even exists
allowing us to precisely describe the mathematical forces driving collaborative fil-
tering. To provide an initial contribution to this, we propose in the present paper to
set out a general stochastic model for collaborative recommendation and analyze
its asymptotic performance as the number of users grows.

The document is organized as follows. In Section 2, we provide a sequen-
tial stochastic model for collaborative recommendation and describe the statisti-
cal problem. In the model we analyze, unrated items are estimated by averaging
ratings of users who are “similar” to the user we would like to advise. The simi-
larity is assessed by a cosine-type measure, and unrated items are estimated using
a kn-nearest neighbor-type regression estimate which is indeed one of the most
widely used procedures in collaborative filtering. It turns out that the choice of the
cosine proximity as a similarity measure imposes constraints on the model which
are discussed in Section 3. Under mild assumptions, consistency of the estimation
procedure is established in Section 4 whereas rates of convergence are discussed
in Section 5. Illustrative examples are given throughout the document, and proofs
of some technical results are postponed to Section 6.

2. A model for collaborative recommendation.

2.1. Ratings matrix and new users. Suppose that there are d + 1 (d ≥ 1) pos-
sible items, n users in the ratings matrix (i.e., the database) and that users’ ratings
take values in the set ({0} ∪ [1, s])d+1. Here, s is a real number greater than 1 cor-
responding to the maximal rating, and, by convention, the symbol 0 means that the
user has not rated the item (same as “NA”). Thus the ratings matrix has n rows,
d + 1 columns and entries from {0} ∪ [1, s]. For example, n = 8, d = 5 and s = 10
in Table 1 which will be our toy example throughout this section. Then a new user,
Bob, reveals some of his preferences for the first time, rating some of the first d

items but not the (d + 1)th (the movie Titanic in Table 1). We want to design a
strategy to predict Bob’s rating of Titanic using: (i) Bob’s ratings of some (or all)
of the other d movies and (ii) the ratings matrix. This is illustrated in Table 1,
where Bob has rated 4 out of the 5 movies.

The first step in our approach is to model the preferences of the new user, Bob,
by a random vector (X, Y ) of size d + 1 taking values in the set [1, s]d × [1, s].
Within this framework, the random variable X = (X1, . . . ,Xd) represents Bob’s
preferences pertaining to the first d movies whereas Y , the (unobserved) vari-
able of interest, refers to the movie Titanic. In fact, as Bob does not necessar-
ily reveals all his preferences at once, we do not observe the variable X, but in-
stead some “masked” version of it denoted hereafter by X�. The random variable
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X� = (X�
1, . . . ,X

�
d) is naturally defined by

X�
j =

{
Xj, if j ∈ M ,
0, otherwise,

where M stands for some nonempty random subset of {1, . . . , d} indexing the
movies which have been rated by Bob. Observe that the random variable X� takes
values in ({0} ∪ [1, s])d and that ‖X�‖ ≥ 1 where ‖ · ‖ denotes the usual Euclidean
norm on R

d . In the example of Table 1, M = {2,3,4,5} and (the realization of)
X� is (0,3,3,4,5).

We follow the same approach to model preferences of users already in the
database (Jim, James, Steve, Mary, etc. in Table 1), who will therefore be
represented by a sequence of independent [1, s]d × [1, s]-valued random pairs
(X1, Y1), . . . , (Xn, Yn) from the distribution (X, Y ). A first idea for dealing with
potential nonresponses of a user i in the ratings matrix (i = 1, . . . , n) is to consider
in place of Xi = (Xi1, . . . ,Xid), its masked version X̃i = (X̃i1, . . . , X̃id) defined
by

X̃ij =
{

Xij , if j ∈ Mi ∩ M ,
0, otherwise,

(2.1)

where each Mi is the random subset of {1, . . . , d} indexing the movies which have
been rated by user i. In other words, we only keep in Xi items corated by both user
i and the new user—items which have not been rated by X and Xi are declared
noninformative and simply thrown away.

However, this model, which is static in nature, does not allow to take into ac-
count the fact that, as time goes by, each user in the database may reveal more
and more preferences. This will, for instance, typically be the case in the movie
recommendation system of Table 1 where regular customers will update their rat-
ings each time they have seen a new movie. Consequently, model (2.1) is not fully
satisfying and must therefore be slightly modified to better capture the sequential
evolution of ratings.

2.2. A sequential model. A possible dynamical approach for collaborative rec-
ommendation is based on the following protocol: users enter the database one after
the other and update their list of ratings sequentially in time. More precisely, we
suppose that at each time i = 1,2, . . . , a new user enters the process and reveals his
preferences for the first time while the i − 1 previous users are allowed to rate new
items. Thus, at time 1, there is only one user in the database (Jim in Table 1), and
the (nonempty) subset of items he decides to rate is modeled by a random variable
M1

1 taking values in P �({1, . . . , d}), the set of nonempty subsets of {1, . . . , d}. At
time 2, a new user (James) enters the game and reveals his preferences according
to a P �({1, . . . , d})-valued random variable M1

2 , with the same distribution as M1
1 .

At the same time, Jim (user 1) may update his list of preferences, modeled by a
random variable M2

1 satisfying M1
1 ⊂ M2

1 . The latter requirement just means that
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TABLE 2
A sequential model for preference updating

Time 1 Time 2 ··· Time i ··· Time n

User 1 M1
1 M2

1 · · · Mi
1 · · · Mn

1

User 2 M1
2 · · · Mi−1

2 · · · Mn−1
2

...
. . .

...
...

...

User i M1
i · · · Mn+1−i

i
...

. . .
...

User n M1
n

the user is allowed to rate new items but not to remove his past ratings. At time 3, a
new user (Steve) rates items according to a random variable M1

3 distributed as M1
1 ,

while user 2 updates his preferences according to M2
2 (distributed as M2

1 ) and
user 1 updates his own according to M3

1 , and so on. This sequential mechanism is
summarized in Table 2.

By repeating this procedure, we end up at time n with an upper triangular ar-
ray (M

j
i )1≤i≤n,1≤j≤n+1−i of random variables. A row in this array consists of

a collection M
j
i of random variables for a given value of i, taking values in

P �({1, . . . , d}) and satisfying the constraint M
j
i ⊂ M

j+1
i . For a fixed i, the se-

quence M1
i ⊂ M2

i ⊂ · · · describes the (random) way user i sequentially reveals his
preferences over time. Observe that the later inclusions are not necessarily strict,
so that a single user is not forced to rate one more item at every single step.

Throughout the paper, we will assume that, for each i, the distribution of the
sequence of random variables (Mn

i )n≥1 is independent of i, and is therefore dis-
tributed as a generic random sequence denoted (Mn)n≥1, satisfying M1 	= ∅ and
Mn ⊂ Mn+1 for all n ≥ 1. For the sake of coherence, we assume that M1 and M

[see (2.1)] have the same distribution; that is, the new abstract user X� may be re-
garded as a user entering the database for the first time. We will also suppose that
there exists a positive random integer n0 such that Mn0 = {1, . . . , d}, and, con-
sequently, Mn = {1, . . . , d} for all n ≥ n0. This requirement means that each user
rates all d items after a (random) period of time. Last, we will assume that the pairs
(Xi , Yi), i = 1, . . . , n, the sequences (Mn

1 )n≥1, (Mn
2 )n≥1, . . . and the random vari-

able M are mutually independent. We note that this implies that the users’ ratings
are independent.

With this sequential point of view, improving on (2.1), we let the masked version
X(n)

i = (X
(n)
i1 , . . . ,X

(n)
id ) of Xi be defined as

X
(n)
ij =

{
Xij , if j ∈ Mn+1−i

i ∩ M ,
0, otherwise.



k-NEAREST NEIGHBOR COLLABORATIVE RECOMMENDATION 1573

Again, it is worth pointing out that, in the definition of X(n)
i , items which have not

been corated by both X and Xi are deleted. This implies in particular that X(n)
i may

be equal to 0, the d-dimensional null vector (whereas ‖X�‖ ≥ 1 by construction).
Finally, in order to deal with possible nonanswers of database users regarding

the variable of interest (Titanic in our movie example), we introduce (Rn)n≥1,
a sequence of random variables taking values in P �({1, . . . , n}), such that Rn is
independent of M and the sequences (Mn

i )n≥1, and satisfying Rn ⊂ Rn+1 for
all n ≥ 1. In this formalism, Rn represents the subset, which is assumed to be
nonempty, of users who have already provided information about Titanic at time n.
For example, in Table 1, only James, Mary, John, Lucy and Johanna have rated
Titanic and therefore (the realization of) Rn is {2,4,5,6,8}.

2.3. The statistical problem. To summarize the model so far, we have at hand
at time n a sample of random pairs (X(n)

1 , Y1), . . . , (X
(n)
n , Yn) and our mission is to

predict the score Y of a new user represented by X�. The variables X(n)
1 , . . . ,X(n)

n

model the database users’ revealed preferences with respect to the first d items.
They take values in ({0} ∪ [1, s])d , where a 0 at coordinate j of X(n)

i means that
the j th product has not been corated by both user i and the new user. The variable
X� takes values in ({0} ∪ [1, s])d and satisfies ‖X�‖ ≥ 1. The random variables
Y1, . . . , Yn model users’ ratings of the product of interest. They take values in [1, s]
and, at time n, we only see a nonempty (random) subset of {Y1, . . . , Yn}, indexed
by Rn.

The statistical problem with which we are faced is to estimate the regression
function η(x�) = E[Y |X� = x�]. For this goal, we may use the database observa-
tions (X(n)

1 , Y1), . . . , (X
(n)
n , Yn) in order to construct an estimate ηn(x�) of η(x�).

The approach we explore in this paper is a cosine-based kn-nearest neighbor re-
gression method, one of the most widely used algorithms in collaborative filtering
(see, e.g., [15]).

Given x� ∈ ({0} ∪ [1, s])d − 0 and the sample (X(n)
1 , Y1), . . . , (X

(n)
n , Yn), the

idea of the cosine-type kn-nearest neighbor (NN) regression method is to estimate
η(x�) by a local averaging over those Yi for which: (i) X(n)

i is “close” to x�, and (ii)
i ∈ Rn, that is, we effectively “see” the rating Yi . For this, we scan through the kn

neighbors of x� among the database users X(n)
i for which i ∈ Rn and estimate η(x�)

by averaging the kn corresponding Yi . The closeness between users is assessed
by a cosine-type similarity, defined for x = (x1, . . . , xd) and x′ = (x′

1, . . . , x
′
d) in

({0} ∪ [1, s])d by

S̄(x,x′) =
∑

j∈J xjx
′
j√∑

j∈J x2
j

√∑
j∈J x′2

j

,

where J = {j ∈ {1, . . . , d} :xj 	= 0 and x′
j 	= 0}, and, by convention, S̄(x,x′) = 0

if J = ∅. To understand the rationale behind this proximity measure, just note
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that if J = {1, . . . , d} then S̄(x,x′) coincides with cos(x,x′); that is, two users are
“close” with respect to S̄ if their ratings are more or less proportional. However,
the similarity S̄, which will be used to measure the closeness between X� (the new
user) and X(n)

i (a database user) ignores possible nonanswers in X� or X(n)
i , and is

therefore more adapted to the recommendation setting. For example, in Table 1,

S̄(Bob, Jim) = S̄((0,3,3,4,5), (0,6,7,8,9))

= S̄((3,3,4,5), (6,7,8,9)) ≈ 0.99,

whereas

S̄(Bob,Lucy) = S̄((0,3,3,4,5), (3,10,2,7,0))

= S̄((3,3,4), (10,2,7)) ≈ 0.89.

Next, fix x� ∈ ({0} ∪ [1, s])d − 0, and suppose for simplification that M ⊂ Mn+1−i
i

for each i ∈ Rn. In this case, it is easy to see that X(n)
i = X�

i = (X�
i1, . . . ,X

�
id)

where

X�
ij =

{
Xij , if j ∈ M ,
0, otherwise.

Besides, Yi ≥ 1,

S̄(x�,X�
i ) = cos(x�,X�

i ) > 0(2.2)

and an elementary calculation shows that the positive real number y which maxi-
mizes the similarity between (x�, y) and (X�

i , Yi), that is,

S̄((x�, y), (X�
i , Yi)) =

∑
j∈M x�

jX
�
ij + yYi√∑

j∈M x�
j

2 + y2
√∑

j∈M X�
ij

2 + Y 2
i

,

is given by

y = ‖x�‖
‖X�

i ‖ cos(x�,X�
i )

Yi.

This suggests the following regression estimate ηn(x�) of η(x�):

ηn(x�) = ‖x�‖ ∑
i∈Rn

Wni(x�)
Yi

‖X�
i ‖

,(2.3)

where the integer kn satisfies 1 ≤ kn ≤ n and

Wni(x�) =
{

1/kn, if X�
i is among the kn-MS of x� in {X�

i , i ∈ Rn},
0, otherwise.

In the above definition, the acronym “MS” (for most similar) means that we are
searching for the kn “closest” points of x� within the set {X�

i , i ∈ Rn} using the
similarity S̄—or, equivalently here, using the cosine proximity [by identity (2.2)].
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Note that the cosine term has been removed since it has asymptotically no influence
on the estimate, as can be seen by a slight adaptation of the arguments of the proof
of Lemma 6.1, Chapter 6 in [9]. The estimate ηn(x�) is called the cosine-type kn-
NN regression estimate in the collaborative filtering literature. Now, recalling that
definition (2.3) makes sense only when M ⊂ Mn+1−i

i for each i ∈ Rn (that is,

X(n)
i = X�

i ), the next step is to extend the definition of ηn(x�) to the general case.
In view of (2.3), the most natural approach is to simply put

ηn(x�) = ‖x�‖ ∑
i∈Rn

Wni(x�)
Yi

‖X(n)
i ‖ ,(2.4)

where

Wni(x�) =
{

1/kn, if X(n)
i is among the kn-MS of x� in

{
X(n)

i , i ∈ Rn

}
,

0, otherwise.

The acronym “MS” in the weight Wni(x�) means that the kn closest database points
of x� are computed according to the similarity

S
(
x�,X(n)

i

) = p
(n)
i S̄

(
x�,X(n)

i

)
with p

(n)
i = |Mn+1−i

i ∩ M|
|M| ,

(here and throughout, notation |A| means the cardinality of the finite set A).
The factor p

(n)
i in front of S̄ is a penalty term which, roughly, avoids over pro-

motion of the last users entering the database. Indeed, the effective number of
items rated by these users will be eventually low, and, consequently, their S̄-
proximity to x� will tend to remain high. On the other hand, for fixed i and n

large enough, we know that M ⊂ Mn+1−i
i and X(n)

i = X�
i . This implies p

(n)
i = 1,

S(x�,X(n)
i ) = S̄(x�,X�

i ) = cos(x�,X�
i ) and shows that definition (2.4) generalizes

definition (2.3). Therefore, we take the liberty to still call the estimate (2.4) the
cosine-type kn-NN regression estimate.

REMARK 2.1. A smoothed version of the similarity S could also be consid-
ered, typically,

S
(
x�,X(n)

i

) = ψ
(
p

(n)
i

)
S̄
(
x�,X(n)

i

)
,

where ψ : [0,1] → [0,1] is a nondecreasing map satisfying ψ(1/2) < 1 (assuming
|M| ≥ 2). For example, the choice ψ(p) = √

p tends to promote users with a
low number of rated items, provided the items corated by the new user are quite
similar. In the present paper, we shall only consider the case ψ(p) = p, but the
whole analysis carries over without difficulties for general functions ψ .

REMARK 2.2. Another popular approach to measure the closeness between
users is the Pearson correlation coefficient. The extension of our results to Pearson-
type similarities is not straightforward and more work is needed to address this
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challenging question. We refer the reader to [7] and [12] for a comparative study
and comments on the choice of the similarity.

Finally, for definiteness of the estimate ηn(x�), some final remarks are in order:

(i) If S(x�,X(n)
i ) = S(x�,X(n)

j ), i.e., X(n)
i and X(n)

j are equidistant from x�,
then we have a tie, and, for example, X(n)

i may be declared “closer” to x� if i < j ;
that is, tie-breaking is done by indices.

(ii) If |Rn| < kn, then the weights Wni(x�) are not defined. In this case, we
conveniently set Wni(x�) = 0; that is, ηn(x�) = 0.

(iii) If X(n)
i = 0, then we take Wni(x�) = 0, and we adopt the convention 0 ×

∞ = 0 for the computation of ηn(x�).
(iv) With the above conventions, the identity

∑
i∈Rn

Wni(x�) ≤ 1 holds in each
case.

3. The regression function. Our objective in Section 4 will be to establish
consistency of the estimate ηn(x�) defined in (2.4) toward the regression func-
tion η(x�). To reach this goal, we first need to analyze the properties of η(x�). Sur-
prisingly, the special form of ηn(x�) constrains the shape of η(x�). This is stated
in Theorem 3.1 below.

THEOREM 3.1. Suppose that ηn(X�) → η(X�) in probability as n → ∞.
Then

η(X�) = ‖X�‖E

[
Y

‖X�‖
∣∣∣∣ X�

‖X�‖
]

a.s.

PROOF. Recall that

ηn(X�) = ‖X�‖ ∑
i∈Rn

Wni(X�)
Yi

‖X(n)
i ‖

and let

ϕn(X�) = ∑
i∈Rn

Wni(X�)
Yi

‖X(n)
i ‖ .

Since (ηn(X�))n is a Cauchy sequence in probability and ‖X�‖ ≥ 1, the sequence
(ϕn(X�))n is also a Cauchy sequence. Thus there exists a measurable function ϕ on
R

d such that ϕn(X�) → ϕ(X�) in probability. Using the fact that 0 ≤ ϕn(X�) ≤ s

for all n ≥ 1, we conclude that 0 ≤ ϕ(X�) ≤ s a.s. as well.
Let us extract a sequence (nk)k satisfying ϕnk

(X�) → ϕ(X�) a.s. Observing that,
for x� 	= 0,

ϕnk
(x�) = ϕnk

(
x�

‖x�‖
)
,
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we may write ϕ(X�) = ϕ(X�/‖X�‖) a.s. Consequently, the limit in probability of
(ηn(X�))n is

‖X�‖ϕ
(

X�

‖X�‖
)
.

Therefore, by the uniqueness of the limit, η(X�) = ‖X�‖ϕ(X�/‖X�‖) a.s. More-
over,

ϕ

(
X�

‖X�‖
)

= E

[
ϕ

(
X�

‖X�‖
)∣∣∣∣ X�

‖X�‖
]

= E

[
η(X�)

‖X�‖
∣∣∣∣ X�

‖X�‖
]

= E

[
E

[
Y

‖X�‖
∣∣∣∣X�

]∣∣∣∣ X�

‖X�‖
]

= E

[
Y

‖X�‖
∣∣∣∣ X�

‖X�‖
]
,

since σ(X�/‖X�‖) ⊂ σ(X�). This completes the proof of the theorem. �

An important consequence of Theorem 3.1 is that if we intend to prove any
consistency result regarding the estimate ηn(x�), then we have to assume that the
regression function η(x�) has the special form

η(x�) = ‖x�‖ϕ(x�) where ϕ(x�) = E

[
Y

‖X�‖
∣∣∣∣ X�

‖X�‖ = x�

‖x�‖
]
.(F)

This will be our fundamental requirement throughout the paper, and it will be
denoted by (F). In particular, if x̃� = λx� with λ > 0, then η(x̃�) = λη(x�). That
is, if two ratings x� and x̃� are proportional, then so must be the values of the
regression function at x� and x̃�, respectively.

4. Consistency. In this section, we establish the L1 consistency of the regres-
sion estimate ηn(x�) toward the regression function η(x�). Using L1 consistency
is essentially a matter of taste, and all the subsequent results may be easily adapted
to Lp norms without too much effort. In the proofs, we will make repeated use
of the two following facts. Recall that, for a fixed i ∈ Rn, the random variable
X�

i = (X�
i1, . . . ,X

�
id) is defined by

X�
ij =

{
Xij , if j ∈ M ,
0, otherwise,

and X(n)
i = X�

i as soon as M ⊂ Mn+1−i
i . Recall also that, by definition, ‖X�

i ‖ ≥ 1.
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FACT 4.1. For each i ∈ Rn,

S(X�,X�
i ) = S̄(X�,X�

i ) = cos(X�,X�
i ) = 1 − 1

2
d2

(
X�

‖X�‖ ,
X�

i

‖X�
i ‖

)
,

where d is the usual Euclidean distance on R
d .

FACT 4.2. Let, for all i ≥ 1,

Ti = min(k ≥ i :Mk+1−i
i ⊃ M)

be the first time instant when user i has rated all the films indexed by M . Set

Ln = {i ∈ Rn :Ti ≤ n}(4.1)

and define, for i ∈ Ln,

W�
ni(x

�) =
{

1/kn, if X�
i is among the kn-MS of x� in {X�

i , i ∈ Ln},
0, otherwise.

Then

W�
ni(x

�) =
⎧⎨
⎩ 1/kn, if

X�
i

‖X�
i ‖

is among the kn-NN of
x�

‖x�‖ in
{

X�
i

‖X�
i ‖

, i ∈ Ln

}
,

0, otherwise,

where the kn-NN are evaluated with respect to the Euclidean distance on R
d . That

is, the W�
ni(x

�) are the usual Euclidean NN weights [9], indexed by the random
set Ln.

Recall that |Rn| represents the number of users who have already provided
information about the variable of interest (the movie Titanic in our example) at
time n. We are now in a position to state the main result of this section.

THEOREM 4.1. Suppose that |M| ≥ 2 and that assumption (F) is satisfied.
Suppose that kn → ∞, |Rn| → ∞ a.s. and E[kn/|Rn|] → 0 as n → ∞. Then

E|ηn(X�) − η(X�)| → 0 as n → ∞.

Thus, to achieve consistency, the number of nearest neighbors kn, over which
one averages in order to estimate the regression function, should on one hand, tend
to infinity but should, on the other hand, be small with respect to the cardinality
of the subset of database users who have already rated the item of interest. We
illustrate this result by working out two examples.

EXAMPLE 4.1. Consider, to start with, the somewhat ideal situation where all
users in the database have rated the item of interest. In this case, Rn = {1, . . . , n},
and the asymptotic conditions on kn become kn → ∞ and kn/n → 0 as n → ∞.
These are just the well-known conditions ensuring consistency of the usual (i.e.,
Euclidean) NN regression estimate ([9], Chapter 6).



k-NEAREST NEIGHBOR COLLABORATIVE RECOMMENDATION 1579

EXAMPLE 4.2. In this more sophisticated model, we recursively define the
sequence (Rn)n as follows. Fix, for simplicity, R1 = {1}. At step n ≥ 2, we first
decide (or not) to add one element to Rn−1 with probability p ∈ (0,1), indepen-
dently of the data. If we decide to increase Rn, then we do it by picking a random
variable Bn uniformly over the set {1, . . . , n} − Rn−1, and set Rn = Rn−1 ∪ {Bn};
otherwise, Rn = Rn−1. Clearly, |Rn| − 1 is a sum of n − 1 independent Bernoulli
random variables with parameter p, and it has therefore a binomial distribution
with parameters n − 1 and p. Consequently,

E

[
kn

|Rn|
]

= kn[1 − (1 − p)n]
np

.

In this setting, consistency holds provided kn → ∞ and kn = o(n) as n → ∞.

In the sequel, the letter C will denote a positive constant, the value of which
may vary from line to line. Proof of Theorem 4.1 will strongly rely on Facts 4.1,
4.2 and the following proposition.

PROPOSITION 4.1. Suppose that |M| ≥ 2 and that assumption (F) is satisfied.
Let αni = P(Mn+1−i 	⊃ M|M). Then

E|ηn(X�) − η(X�)|
≤ C

{
E

[
kn

|Rn|
]

+ E

[
1

|Rn|
∑

i∈Rn

Eαni

]
+ E

[ ∏
i∈Rn

αni

]

+ E

∣∣∣∣ ∑
i∈Ln

W�
ni(X

�)
Yi

‖X�
i ‖

− ϕ(X�)

∣∣∣∣
}
,

where Rn stands for the nonempty subset of users who have already provided
information about the variable of interest at time n, and Ln is defined in (4.1).

PROOF. Since ‖X�‖ ≤ s
√

d , it will be enough to upper bound the quantity

E

∣∣∣∣ ∑
i∈Rn

Wni(X�)
Yi

‖X(n)
i ‖ − ϕ(X�)

∣∣∣∣.
To this aim, we write

E

∣∣∣∣ ∑
i∈Rn

Wni(X�)
Yi

‖X(n)
i ‖ − ϕ(X�)

∣∣∣∣
≤ E

[ ∑
i∈Lc

n

Wni(X�)
Yi

‖X(n)
i ‖

]
+ E

∣∣∣∣ ∑
i∈Ln

Wni(X�)
Yi

‖X(n)
i ‖ − ϕ(X�)

∣∣∣∣,
where the symbol Ac denotes the complement of the set A. Let the event

An = [∃i ∈ Lc
n : X(n)

i is among the kn-MS of X� in
{
X(n)

i , i ∈ Rn

}]
.
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Since
∑

i∈Lc
n
Wni(X�) ≤ 1, we have

E

[ ∑
i∈Lc

n

Wni(X�)
Yi

‖X(n)
i ‖

]
= E

[ ∑
i∈Lc

n

Wni(X�)
Yi

‖X(n)
i ‖1An

]
≤ sP(An).

Observing that, for i ∈ Ln, X(n)
i = X�

i and Wni(X�)1Ac
n
= W�

ni(X
�)1Ac

n
(Fact 4.2),

we obtain

E

∣∣∣∣ ∑
i∈Ln

Wni(X�)
Yi

‖X(n)
i ‖ − ϕ(X�)

∣∣∣∣
= E

∣∣∣∣ ∑
i∈Ln

Wni(X�)
Yi

‖X�
i ‖

− ϕ(X�)

∣∣∣∣
= E

∣∣∣∣ ∑
i∈Ln

Wni(X�)
Yi

‖X�
i ‖

− ϕ(X�)

∣∣∣∣1An

+ E

∣∣∣∣ ∑
i∈Ln

W�
ni(X

�)
Yi

‖X�
i ‖

− ϕ(X�)

∣∣∣∣1Ac
n

≤ sP(An) + E

∣∣∣∣ ∑
i∈Ln

W�
ni(X

�)
Yi

‖X�
i ‖

− ϕ(X�)

∣∣∣∣.
Applying finally Lemma 6.5 completes the proof of the proposition. �

We are now in a position to prove Theorem 4.1.

PROOF OF THEOREM 4.1. According to Proposition 4.1, Lemma 6.1 and
Lemma 6.2, the result will be proven if we show that

E

∣∣∣∣ ∑
i∈Ln

W�
ni(X

�)
Yi

‖X�
i ‖

− ϕ(X�)

∣∣∣∣ → 0 as n → ∞.

For Ln ∈ P({1, . . . , n}), set

Zn
Ln

= 1

kn

∑
i∈Ln

1{X�
i /‖X�

i ‖ is among the kn-NN of X�/‖X�‖ in {X�
i /‖X�

i ‖,i∈Ln}}
Yi

‖X�
i ‖

− ϕ(X�).

Conditionally on the event [M = m], the random variables X� and {X�
i , i ∈ Ln}

are independent and identically distributed. Thus, applying Theorem 6.1 in [9], we
obtain

∀ε > 0 ∃Am ≥ 1 :kn ≥ Am and
|Ln|
kn

≥ Am �⇒ Em|Zn
Ln

| ≤ ε,
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where we use the notation Em[·] = E[·|M = m]. Let Pm(·) = P(·|M = m). By
independence,

Em|Zn
Ln

| = ∑
Ln∈P({1,...,n})

Em|Zn
Ln

|Pm(Ln = Ln).

Consequently, letting A = maxAm, where the maximum is taken over all possible
choices of m ∈ P �({1, . . . , d}), we get, for all n such that kn ≥ A,

Em|Zn
Ln

| = ∑
Ln∈P({1,...,n})

|Ln|≥Akn

Em|Zn
Ln

|Pm(Ln = Ln)

+ ∑
Ln∈P({1,...,n})

|Ln|<Akn

Em|Zn
Ln

|Pm(Ln = Ln)

≤ ε + sPm(|Ln| < Akn).

Therefore,

E|Zn
Ln

| = E[E[|Zn
Ln

||M]] ≤ ε + sP(|Ln| < Akn).

Moreover, by Lemma 6.2,

|Ln|
kn

= |Rn|
kn

(
1 − |Lc

n|
|Rn|

)
→ ∞ in probability as n → ∞.

Thus for all ε > 0, lim supn→∞ E|Zn
Ln

| ≤ ε, whence E|Zn
Ln

| → 0 as n → ∞. This
shows the desired result. �

5. Rates of convergence. In this section, we bound the rate of convergence
of E|ηn(X�)−η(X�)| for the cosine-type kn-NN regression estimate. To reach this
objective, we will require that the function

ϕ(x�) = E

[
Y

‖X�‖
∣∣∣∣ X�

‖X�‖ = x�

‖x�‖
]
,

satisfies a Lipschitz-type property with respect to the similarity S̄. More precisely,
we say that ϕ is Lipschitz with respect to S̄ if there exists a constant C > 0 such
that, for all x and x′ in R

d ,

|ϕ(x) − ϕ(x′)| ≤ C

√
1 − S̄(x,x′).

In particular, for x and x′ ∈ R
d − 0 with the same null components, this property

can be rewritten as

|ϕ(x) − ϕ(x′)| ≤ C√
2
d

(
x

‖x‖ ,
x′

‖x′‖
)
,

where we recall that d denotes Euclidean distance.
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THEOREM 5.1. Suppose that assumption (F) is satisfied and that ϕ is Lip-
schitz with respect to S̄. Let αni = P(Mn+1−i 	⊃ M|M), and assume that |M| ≥ 4.
Then there exists C > 0 such that, for all n ≥ 1,

E|ηn(X�) − η(X�)|

≤ C

{
E

[
kn

|Rn|
∑

i∈Rn

Eαni

]
+ E

[ ∏
i∈Rn

αni

]
+ E

[(
kn

|Rn|
)Pn

]
+ 1√

kn

}
,

where Pn = 1/(|M| − 1) if kn ≤ |Rn|, and Pn = 1 otherwise.

To get an intuition on the meaning of Theorem 5.1, it helps to note that the terms
depending on αni do measure the influence of the unrated items on the performance
of the estimate. Clearly, this performance improves as the αni decrease, that is, as
the proportion of rated items growths. On the other hand, the term E[(kn/|Rn|)Pn]
can be interpreted as a bias term in dimension |M|−1, whereas 1/

√
kn represents a

variance term. As usual in nonparametric estimation, the rate of convergence of the
estimate is dramatically deteriorated as |M| becomes large. However, in practice,
this drawback may be circumvented by using preliminary dimension reduction
steps, such as factorial methods (PCA, etc.) or inverse regression methods (SIR,
etc.).

EXAMPLE 5.1 (Example 4.1, continued). Recall that we assume, in this ideal
model, that Rn = {1, . . . , n}. Suppose in addition that M = {1, . . . , d}, that is, any
new user in the database rates all products the first time he enters the database.
Then the upper bound of Theorem 5.1 becomes

E|ηn(X�) − η(X�)| = O
((

kn

n

)1/(d−1)

+ 1√
kn

)
.

Since neither Rn nor M are random in this model, we see that there is no influence
of the dynamical rating process. Besides, we recognize the usual rate of conver-
gence of the Euclidean NN regression estimate ([9], Chapter 6) in dimension d −1.
In particular, the choice kn ∼ n2/(d+1) leads to

E|ηn(X�) − η(X�)| = O
(
n−1/(d+1)).

Note that we are led to a (d − 1)-dimensional rate of convergence (instead of the
usual d) just because everything happens as if the data is projected on the unit
sphere of R

d .

EXAMPLE 5.2 (Example 4.2, continued). In addition to model 4.2, we sup-
pose that at each time, a user entering the game reveals his preferences ac-
cording to the following sequential procedure. At time 1, the user rates exactly
4 items by randomly guessing in {1, . . . , d}. At time 2, he updates his prefer-
ences by adding exactly one rating among his unrated items, randomly chosen
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in {1, . . . , d} − M1
1 . Similarly, at time 3, the user revises his preferences according

to a new item uniformly selected in {1, . . . , d}−M2
1 , and so on. In such a scenario,

|Mj | = min(d, j + 3) and thus, Mj = {1, . . . , d} for j ≥ d − 3. Moreover, since
|M| = 4, a moment’s thought shows that

αni =
⎧⎨
⎩

0, if i ≤ n − d + 4,

1 − (d−4
n−i )

( d
n+4−i)

, if n − d + 5 ≤ i ≤ n.

Assuming n ≥ d − 5, we obtain

∑
i∈Rn

αni ≤
n∑

i=n−d+5

αni

≤
n∑

i=n−d+5

(
1 − (n + 4 − i)(n + 3 − i)(n + 2 − i)(n + 1 − i)

d(d − 1)(d − 2)(d − 3)

)

≤ (d − 4)

(
1 − 24

d(d − 1)(d − 2)(d − 3)

)
.

Similarly, letting Rn0 = Rn ∩ {n − d + 5, . . . , n}, we have∏
i∈Rn

αni = ∏
i∈Rn0

αni1{min(Rn)≥n−d+5}

≤
(

1 − 24

d(d − 1)(d − 2)(d − 3)

)|Rn0|
1{min(Rn)≥n−d+5}.

Since |Rn| − 1 has binomial distribution with parameters n − 1 and p, we obtain

E

[ ∏
i∈Rn

αni

]
≤ P

(
min(Rn) ≥ n − d + 5

)

≤ P(|Rn| ≤ d − 5) ≤ C

n
.

Finally, applying Jensen’s inequality,

E

[(
kn

|Rn|
)Pn

]
= E

[(
kn

|Rn|
)1/3

1{kn≤|Rn|}
]

+ E

[
kn

|Rn|1{kn>|Rn|}
]

≤ C

(
E

[
kn

|Rn|
])1/3

≤ C

(
kn

n

)1/3

.

Putting all the pieces together, we get with Theorem 5.1

E|ηn(X�) − η(X�)| = O
((

kn

n

)1/3

+ 1√
kn

)
.
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In particular, the choice kn ∼ n2/5 leads to

E|ηn(X�) − η(X�)| = O(n−1/5),

which is the usual NN regression estimate rate of convergence when the data is
projected on the unit sphere of R

4.

PROOF OF THEOREM 5.1. Starting from Proposition 4.1, we just need to up-
per bound the quantity

E

∣∣∣∣ ∑
i∈Ln

W�
ni(X

�)
Yi

‖X�
i ‖

− ϕ(X�)

∣∣∣∣.
A combination of Lemma 6.6 and the proof of Theorem 6.2 in [9] shows that

E

∣∣∣∣ ∑
i∈Ln

W�
ni(X

�)
Yi

‖X�
i ‖

− ϕ(X�)

∣∣∣∣
(5.1)

≤ C

{
1√
kn

+ E

[(
kn

|Ln|
)1/(|M|−1)

1{Ln 	=∅}
]

+ P(Ln = ∅)

}
.

We obtain

E

[(
kn

|Ln|
)1/(|M|−1)

1{Ln 	=∅}
]

= E

[(
kn

|Rn|(1 − |Lc
n|/|Rn|)

)1/(|M|−1)

1{|Lc
n|≤|Rn|/2}

]

+ E

[(
kn

|Ln|
)1/(|M|−1)

1{|Lc
n|>|Rn|/2}1{Ln 	=∅}

]

≤ E

[(
2kn

|Rn|
)1/(|M|−1)]

+ E
[
k1/(|M|−1)
n 1{|Lc

n|>|Rn|/2}
]
.

Since |M| ≥ 4, one has 21/(|M|−1) ≤ 2 and k
1/(|M|−1)
n ≤ kn in the rightmost term,

so that, thanks to Lemma 6.2,

E

[(
kn

|Ln|
)1/(|M|−1)

1{Ln 	=∅}
]

≤ C

{
E

[(
kn

|Rn|
)1/(|M|−1)]

+ E

[
kn

|Rn|
∑

i∈Rn

Eαni

]}
.

The theorem is a straightforward combination of Proposition 4.1, inequality (5.1)
and Lemma 6.1. �
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6. Technical lemmas. Before stating some technical lemmas, we remind the
reader that Rn stands for the nonempty subset of {1, . . . , n} of users who have
already rated the variable of interest at time n. Recall also that, for all i ≥ 1,

Ti = min(k ≥ i :Mk+1−i
i ⊃ M)

and

Ln = {i ∈ Rn :Ti ≤ n}.
LEMMA 6.1. We have

P(Ln = ∅) = E

[ ∏
i∈Rn

αni

]
→ 0 as n → ∞.

PROOF. Conditionally on M and Rn, the random variables {Ti, i ∈ Rn} are
independent. Moreover, the sequence (Mn)n≥1 is nondecreasing. Thus, the identity
[Ti > n] = [Mn+1−i

i 	⊃ M] holds for all i ∈ Rn. Hence,

P(Ln = ∅) = P(∀i ∈ Rn :Ti > n)

= E[P(∀i ∈ Rn :Ti > n|Rn,M)]
= E

[ ∏
i∈Rn

P(Ti > n|Rn,M)

]

= E

[ ∏
i∈Rn

P(Mn+1−i
i 	⊃ M|M)

]

[by independence of (Mn+1−i
i ,M) and Rn]

= E

[ ∏
i∈Rn

αni

]
.

The last statement of the lemma is clear since, for all i, αni → 0 a.s. as n → ∞.
�

LEMMA 6.2. We have

E

[ |Lc
n|

|Rn|
]

= E

[
1

|Rn|
∑

i∈Rn

Eαni

]

and

E

[
1

|Ln|1{Ln 	=∅}
]

≤ 2E

[
1

|Rn|
]

+ 2E

[
1

|Rn|
∑

i∈Rn

Eαni

]
.

Moreover, if limn→∞ |Rn| = ∞ a.s., then

lim
n→∞E

[ |Lc
n|

|Rn|
]

= 0.
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PROOF. First, using the fact that the sequence (Mn)n≥1 is nondecreasing, we
see that for all i ∈ Rn, [Ti > n] = [Mn+1−i

i 	⊃ M]. Next, recalling that Rn is inde-
pendent of Ti for fixed i, we obtain

E

[ |Lc
n|

|Rn|
∣∣∣∣Rn

]
= 1

|Rn|E
[ ∑
i∈Rn

1{Ti>n}
∣∣∣Rn

]
= 1

|Rn|
∑

i∈Rn

P(Mn+1−i
i 	⊃ M)

and this proves the first statement of the lemma. Now define Jn = {n + 1 − i, i ∈
Rn} and observe that

E

[ |Lc
n|

|Rn|
]

= E

[
1

|Jn|
∑

j∈Jn

P(Mj 	⊃ M)

]
,

where we used |Jn| = |Rn|. Since, by assumption, |Jn| = |Rn| → ∞ a.s. as n →
∞ and P(Mj 	⊃ M) → 0 as j → ∞, we obtain

lim
n→∞

1

|Jn|
∑

j∈Jn

P(Mj 	⊃ M) = 0 a.s.

The conclusion follows by applying Lebesgue’s dominated convergence theorem.
The second statement of the lemma is obtained from the following chain of in-
equalities:

E

[
1

|Ln|1{Ln 	=∅}
]

= E

[
1

|Rn|(1 − |Lc
n|/|Rn|)1{Ln 	=∅}

]

= E

[
1

|Rn|(1 − |Lc
n|/|Rn|)1{|Lc

n|≤|Rn|/2}
]

+ E

[
1

|Ln|1{|Lc
n|>|Rn|/2}1{Ln 	=∅}

]

≤ 2E

[
1

|Rn|
]

+ P

(
|Lc

n| >
|Rn|

2

)

≤ 2E

[
1

|Rn|
]

+ 2E

[ |Lc
n|

|Rn|
]
.

Applying the first part of the lemma completes the proof. �

LEMMA 6.3. Denote by Z� and Z�
1 the random variables Z� = X�/‖X�‖,

Z�
1 = X�

1/‖X�
1‖, and let ξ(Z�) = P(S(Z�,Z�

1) > 1/2|Z�). Then

P
(
2kn > |Ln|ξ(Z�)|Ln,M

) ≤ 2E

[
kn

|Rn|
∣∣∣∣Ln

]
E

[
1

ξ(Z�)

∣∣∣∣M
]

+ E

[ |Lc
n|

|Rn|
∣∣∣∣Ln,M

]
.
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PROOF. If M is fixed, Z� is independent of Ln and Rn. Thus by Markov’s
inequality,

P
(
2kn > |Ln|ξ(Z�)|Ln,M, Rn

)
= P

(
2kn > |Rn|ξ(Z�) − |Lc

n|ξ(Z�)|Ln,M, Rn

)
= P

(
2kn + |Lc

n|ξ(Z�) ≥ |Rn|ξ(Z�)|Ln,M, Rn

)
≤ 2kn

|Rn|E
[

1

ξ(Z�)

∣∣∣∣M
]

+ |Lc
n|

|Rn| .

The proof is completed by observing that Rn and M are independent random
variables. �

Let B(x, ε) be the closed Euclidean ball in R
d centered at x of radius ε. Recall

that the support of a probability measure μ is defined as the closure of the collec-
tion of all x with μ(B(x, ε)) > 0 for all ε > 0. The next lemma can be proved with
a slight modification of the proof of Lemma 10.2 in [8].

LEMMA 6.4. Let μ be a probability measure on R
d with a compact support.

Then ∫ 1

μ(B(x, r))
μ(dx) ≤ C

with C > 0 a constant depending upon d and r only.

LEMMA 6.5. Suppose that |M| ≥ 2, and let the event

An = [∃i ∈ Lc
n : X(n)

i is among the kn-MS of X� in
{
X(n)

i , i ∈ Rn

}]
.

Then

P(An) ≤ C

{
E

[
kn

|Rn|
]

+ E

[
1

|Rn|
∑

i∈Rn

Eαni

]
+ E

[ ∏
i∈Rn

αni

]}
.

PROOF. Recall that, for a fixed i ∈ Rn, the random variable X�
i = (X�

i1,
. . . ,X�

id) is defined by

X�
ij =

{
Xij , if j ∈ M ,
0, otherwise,

and X(n)
i = X�

i as soon as M ⊂ Mn+1−i
i .

We first prove the inclusion

An ⊂ [|{j ∈ Ln :S(X�,X�
j ) > 1/2}| ≤ kn].(6.1)
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Take i ∈ Lc
n such that X(n)

i is among the kn-MS of X� in {X(n)
i , i ∈ Rn}. Then, for

all j ∈ Ln such that S(X�,X�
j ) > 1/2, we have

S(X�,X�
j ) > 1

2 ≥ p
(n)
i S̄

(
X�,X(n)

i

) = S
(
X�,X(n)

i

)
since p

(n)
i ≤ 1 − 1/|M| ≤ 1/2 if |M| ≥ 2. If

|{j ∈ Ln :S(X�,X�
j ) > 1/2}| > kn,

then X(n)
i is not among the kn-MS of X� among the {X(n)

i , i ∈ Rn}. This contradicts

the assumption on X(n)
i and proves inclusion (6.1).

Next, define Z� = X�/‖X�‖, Z�
i = X�

i /‖X�
i ‖, i = 1, . . . , n, and let ξ(Z�) =

P(S(Z�,Z�
1) > 1/2|Z�). If kn − |Ln|ξ(Z�) ≤ −(1/2)|Ln|ξ(Z�) and Ln 	= ∅, we

deduce from (6.1) that

P(An|Ln,Z�)

≤ P

( ∑
j∈Ln

1{S(Z�,Z�
j )>1/2} ≤ kn

∣∣∣Ln,Z�

)

= P

( ∑
j∈Ln

(
1{S(Z�,Z�

j )>1/2} − ξ(Z�)
) ≤ kn − |Ln|ξ(Z�)

∣∣∣Ln,Z�

)

≤ P

( ∑
j∈Ln

(
1{S(Z�,Z�

j )>1/2} − ξ(Z�)
) ≤ −1

2
|Ln|ξ(Z�)

∣∣∣Ln,Z�

)

≤ 4|Ln|ξ(Z�)

(|Ln|ξ(Z�))2 = 4

|Ln|ξ(Z�)
(by Chebyshev’s inequality).

In the last inequality, we use the fact that, since σ(M) ⊂ σ(Z�), the random vari-
ables {Z�

i , i ∈ Ln} are independent conditionally on Z� and Ln. Using again the
inclusion σ(M) ⊂ σ(Z�), we obtain, on the event [Ln 	= 0],

P(An|Ln,M)

= E[P(An|Ln,Z�)|Ln,M]
≤ 4

|Ln|E
[

1

ξ(Z�)

∣∣∣∣Ln,M

]
+ P

(
kn − |Ln|ξ(Z�) > −1

2
|Ln|ξ(Z�)

∣∣∣Ln,M

)

= 4

|Ln|E
[

1

ξ(Z�)

∣∣∣∣M
]

+ P
(|Ln|ξ(Z�) < 2kn|Ln,M

)
.

Applying Lemma 6.3, on the event [Ln 	= ∅],
P(An|Ln,M) ≤ 4

|Ln|E
[

1

ξ(Z�)

∣∣∣∣M
]

+ 2E

[
kn

|Rn|
∣∣∣∣Ln

]
E

[
1

ξ(Z�)

∣∣∣∣M
]

+ E

[ |Lc
n|

|Rn|
∣∣∣∣Ln,M

]
.
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Moreover, by Fact 4.1,

ξ(Z�) = P
(
S(Z�,Z�

1) > 1
2

∣∣Z�) ≥ P
(
d2(Z�,Z�

1) ≤ 1
2

∣∣Z�).
Thus, denoting by νM the distribution of Z� conditionally to M , we deduce from
Lemma 6.4 that

E

[
1

ξ(Z�)

∣∣∣∣M
]

≤
∫ 1

νM(B(z,1/
√

2))
νM(dz) ≤ C,

where the constant C does not depend on M . Putting all the pieces together, we
obtain

P(An) ≤ C

{
E

[
1

|Ln|1{Ln 	=∅}
]

+ E

[
kn

|Rn|
]

+ E

[ |Lc
n|

|Rn|
]}

+ P(Ln = ∅).

We conclude the proof with Lemmas 6.1 and 6.2. �

In the sequel, we let X�
(1), . . . ,X�

(|Ln|) be the sequence {X�
i , i ∈ Ln} reordered

according to decreasing similarities S(X�,X�
i ), i ∈ Ln, that is,

S
(
X�,X�

(1)

) ≥ · · · ≥ S
(
X�,X�

(|Ln|)
)
.

Lemma 6.6 below states the rate of convergence to 1 of S(X�,X�
(1)).

LEMMA 6.6. Suppose that |M| ≥ 4. Then there exists C > 0 such that, on the
event [Ln 	= ∅],

1 − E
[
S
(
X�,X�

(1)

)|M, Ln

] ≤ C

|Ln|2/(|M|−1)
.

PROOF. Observe that

E
[
1 − S

(
X�,X�

(1)

)|X�, Ln

]
=

∫ 1

0
P

(
1 − S

(
X�,X�

(1)

)
> ε|X�, Ln

)
dε

=
∫ 1

0
P

(∀i ∈ Ln : 1 − S(X�,X�
i ) > ε|X�, Ln

)
dε.

Since σ(M) ⊂ σ(X�), given X� and Ln, the random variables {X�
i , i ∈ Ln} are

independent and identically distributed. Hence,

E
[
1 − S

(
X�,X�

(1)

)|X�, Ln

] =
∫ 1

0

[
P

(
1 − S(X�,X�

1) > ε|X�)]|Ln|
dε.

Denote by νM the conditional distribution of X�/‖X�‖ given M . The support of
νM is contained in both the unit sphere of R

d and in a |M|-dimensional vector
space. Thus, for simplicity, we shall consider that the support of νM is contained
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in the unit sphere of R
|M|. Let B|M|(x, r) be the closed Euclidean ball in R

|M|
centered at x of radius r . Since X� (resp., X�

1) only depends on M and X (resp.,
X1), then, given X�, the random variable X�

1/‖X�
1‖ is distributed according to νM .

Thus, for any ε > 0, we may write (Fact 4.1)

P
(
1 − S(X�,X�

1) > ε|X�) = 1 − νM

(
B|M|

(
X�

‖X�‖ ,
√

2ε

))

and, consequently,

E
[
1 − S

(
X�,X�

(1)

)|X�, Ln

] =
∫ 1

0

[
1 − νM

(
B|M|

(
X�

‖X�‖ ,
√

2ε

))]|Ln|
dε.

Using the inclusion σ(M) ⊂ σ(X�), we obtain

E
[
1 − S

(
X�,X�

(1)

)|M, Ln

]
(6.2)

=
∫ 1

0
E

[{
1 − νM

(
B|M|

(
X�

‖X�‖ ,
√

2ε

))}|Ln|∣∣∣∣M, Ln

]
dε.

Fix ε > 0, and denote by S(M) the support of νM . There exists Euclidean balls
A1, . . . ,AN(ε) in R

|M| with radius
√

2ε/2 such that

S(M) ⊂
N(ε)⋃
j=1

Aj and N(ε) ≤ C

ε(|M|−1)/2

for some C > 0 which may be chosen independently of M . Clearly, if x ∈ Aj ∩
S(M), then Aj ⊂ B|M|(x,

√
2ε). Thus

E

[{
1 − νM

(
B|M|

(
X�

‖X�‖ ,
√

2ε

))}|Ln|∣∣∣∣M, Ln

]

≤
N(ε)∑
j=1

∫
Aj

E

[{
1 − νM

(
BM

(
X�

‖X�‖ ,
√

2ε

))}|Ln|∣∣∣∣M, Ln

]
νM(dx)

≤
N(ε)∑
j=1

∫
Aj

(
1 − νM(Aj )

)|Ln|
νM(dx)

≤
N(ε)∑
j=1

νM(Aj )
(
1 − νM(Aj )

)|Ln|

≤ N(ε) max
t∈[0,1] t (1 − t)|Ln|

≤ C

|Ln|ε(|M|−1)/2 .
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Combining this inequality and equality (6.2), we obtain

E
[
1 − S

(
X�,X�

(1)

)|M, Ln

] ≤
∫ 1

0
min

(
1,

C

|Ln|ε(|M|−1)/2

)
dε.

Since |M| ≥ 4, an easy calculation shows that there exists C > 0 such that

E
[
1 − S

(
X�,X�

(1)

)|M, Ln

] ≤ C

|Ln|2/(|M|−1)
,

which leads to the desired result. �
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