REPLY TO "ON SOME PROBLEMS IN THE ARTICLE EFFICIENT LIKELIHOOD ESTIMATION IN STATE SPACE MODELS¹" BY CHENG-DER FUH [Ann. Statist. 34 (2006) 2026–2068]

BY CHENG-DER FUH

National Central University and Academia Sinica

The author is grateful for the comments by Dr. Jensen. This note is in reply to his comments.

Problem 2.1. Definition of iterated function system.

(2.6)
$$\mathbf{P}_{\theta}(\xi_j)h(x) = \int_{y \in \mathcal{X}} p_{\theta}(y, x) f(\xi_j; \theta | x, \xi_{j-1})h(y)m(dy).$$

Define the composition of two random functions as

(2.7)
$$\mathbf{P}_{\theta}(\xi_{j+1}) \circ \mathbf{P}_{\theta}(\xi_{j})h(x) = \int_{z \in \mathcal{X}} p_{\theta}(z, x) f(\xi_{j+1}; \theta | x, \xi_{j}) \\ \times \left(\int_{y \in \mathcal{X}} p_{\theta}(y, z) f(\xi_{j}; \theta | z, \xi_{j-1})h(y)m(dy) \right) m(dz).$$

Page 2042. C1. ... for all $s_0, s_1 \in \mathbf{R}^d$, and $\sup_{x \in \mathcal{X}} \int p_\theta(y, x) m(dy) < \infty$. Since *m* is σ -finite, there exist pairwise disjoint \mathcal{X}_n such that $\mathcal{X} = \bigcup_{n=1}^{\infty} \mathcal{X}_n$, and $0 < m(\mathcal{X}_n) < \infty$. Assume $E[\sum_{n=1}^{\infty} \frac{1}{2^n} \sup_{x \in \mathcal{X}_n} f(\xi_1; \theta | x, s_0)] < \infty$ for all $s_0 \in \mathbf{R}^d$. Denote $g_\theta(\xi_0, \xi_1) = \sup_{x \in \mathcal{X}} \int p_\theta(y, x) f(\xi_1; \theta | x, \xi_0) m(dy)$. Furthermore, we assume that there exists $p \ge 1$ as in K2 such that

(5.2)
$$\sup_{(x_0,s_0)\in\mathcal{X}\times\mathbf{R}^d} E^{\theta}_{(x_0,s_0)} \left\{ \log \left(g_{\theta}(s_0,\xi_1)\cdots g_{\theta}(\xi_{p-1},\xi_p) \frac{w(X_p,\xi_p)}{w(x_0,s_0)} \right) \right\} < 0.$$

The example on Page 2044, L12, holds if $\alpha \neq 0$. The original (5.6) was wrong; it should be

(5.6)
$$M_n := \mathbf{P}_{\theta}(\xi_n) \circ \cdots \circ \mathbf{P}_{\theta}(\xi_1) \circ \mathbf{P}_{\theta}(\xi_0) \pi \qquad (\text{page 2045}).$$

Received August 2009; revised September 2009.

¹Editors' note: The standard *Annals of Statistics* policy is that brief author responses and corrigenda are only reviewed for style and appropriateness; authors themselves are responsible for their correctness.

Page 2046. LEMMA 3. ... Furthermore, under conditions C1, C6–C9, the function g defined in (5.7) belongs to $\mathcal{L}(Q \times Q)$.

PROOF OF LEMMA 3. We consider only the case of $\mathbf{P}(\xi_1)$, since the case of $\mathbf{P}(\xi_0)$ and $\mathbf{P}(\xi_j)$, for j = 2, ..., n, is a straightforward consequence. For any two elements $h_1, h_2 \in \mathbf{M}$, and two fixed elements $s_0, s_1 \in \mathbf{R}^d$, by (5.8) we have

$$d(\mathbf{P}(s_1)h_1, \mathbf{P}(s_1)h_2) = \sup_{x \in \mathcal{X}} \left| \int p_{\theta}(y, x) f(s_1; \theta | x, s_0) h_1(y) m(dy) - \int p_{\theta}(y, x) f(s_1; \theta | x, s_0) h_2(y) m(dy) \right|$$

$$\leq d(h_1, h_2) \sup_{x \in \mathcal{X}} \int p_{\theta}(y, x) f(s_1; \theta | x, s_0) m(dy)$$

$$\leq C \left(\sup_{x \in \mathcal{X}} \int p_{\theta}(y, x) m(dy) \right) d(h_1, h_2),$$

where $0 < C = \sup_{x \in \mathcal{X}} f(s_1; \theta | x, s_0) < \infty$, and by assumption C1, is a constant. Note that $\sup_{x \in \mathcal{X}} \int p_{\theta}(y, x)m(dy) < \infty$ by assumption C1. The equality holds only if $h_1 = h_2$ *m*-almost surely. This proves the condition of Lipschitz continuity in the second argument.

Note that C1 implies that K1 holds. Recall that $M_n = \mathbf{P}(\xi_n) \circ \cdots \circ \mathbf{P}(\xi_1) \circ \mathbf{P}(\xi_0) \pi$ for $\pi \in \mathbf{M}$ in (5.6). To prove the weighted mean contraction property K2, we observe that for $p \ge 1$,

$$\sup_{x_{0},s_{0}} \mathbf{E}_{(x_{0},s_{0})} \left\{ \log \left(L_{p} \frac{w(X_{p},\xi_{p})}{w(x_{0},s_{0})} \right) \right\}$$

$$= \sup_{x_{0},s_{0}} \mathbf{E}_{(x_{0},s_{0})} \left\{ \log \left(\sup_{h_{1} \neq h_{2}} \frac{d(M_{p}h_{1},M_{p}h_{2})}{d(h_{1},h_{2})} \frac{w(X_{p},\xi_{p})}{w(x_{0},s_{0})} \right) \right\}$$

$$(7.1) \quad < \sup_{x_{0},s_{0}} \mathbf{E}_{(x_{0},s_{0})} \left\{ \log \left(\prod_{j=1}^{p} \left[\sup_{x_{j} \in \mathcal{X}} \int p_{\theta}(x_{j-1},x_{j}) \times f(\xi_{j};\theta|x_{j},s_{j-1}) \times m(dx_{j-1}) \right] \frac{w(X_{p},\xi_{p})}{w(x_{0},s_{0})} \right) \right\} < 0.$$

The last inequality follows from (5.2) in condition C1.

To verify that assumption K3 holds, as *m* is σ -finite, we have $\mathcal{X} = \bigcup_{n=1}^{\infty} \mathcal{X}_n$ where the \mathcal{X}_n are pairwise disjoint and $0 < m(\mathcal{X}_n) < \infty$. Set

(7.2)
$$h(x) = \sum_{n=1}^{\infty} \frac{I_{\mathcal{X}_n}(x)}{2^n m(\mathcal{X}_n)}.$$

It is easy to see that $\int_{x \in \mathcal{X}} h(x)m(dx) = 1$ and hence belongs to **M**. Observe that

(7.3)

$$\mathbf{E}d^{2}(\mathbf{P}(\xi_{1})h,h) = \mathbf{E}\left[\sup_{x_{1}\in\mathcal{X}}\left|\int p_{\theta}(x_{0},x_{1})f(\xi_{1};\theta|x_{1},s_{0})h(x_{0})m(dx_{0})-h(x_{1})\right|\right]$$

$$\leq \mathbf{E}\left[\sum_{n=1}^{\infty}\frac{1}{2^{n}}\sup_{x_{1}\in\mathcal{X}_{n}}f(\xi_{1};\theta|x_{1},s_{0})\right]\left[\sup_{x_{1}\in\mathcal{X}}\int p_{\theta}(x_{0},x_{1})m(dx_{0})\right]$$

$$+\sup_{x_{1}\in\mathcal{X}}|h(x_{1})|.$$

Note that h(x) is piecewise constant by definition (7.2), $E[\sum_{n=1}^{\infty} \frac{1}{2^n} \sup_{x \in \mathcal{X}_n} f(\xi_1; \theta | x, s_0)] < \infty$ for all $s_0 \in \mathbf{R}^n$ by assumption C1 and $p_{\theta}(x_0, x_1)$ is integrable of x_0 over the subset \mathcal{X}_n by assumption C1. These imply that (7.3) is finite.

Finally, we observe

$$\sup_{x_{0},s_{0}} \mathbf{E}_{(x_{0},s_{0})} \left\{ L_{1} \frac{w(X_{1},\xi_{1})}{w(x_{0},s_{0})} \right\}$$

$$= \sup_{x_{0},s_{0}} \mathbf{E}_{(x_{0},s_{0})} \left\{ \sup_{h_{1}\neq h_{2}} \frac{d(\mathbf{P}(\xi_{1})h_{1},\mathbf{P}(\xi_{1})h_{2})}{d(h_{1},h_{2})} \frac{w(X_{1},\xi_{1})}{w(x_{0},s_{0})} \right\}$$

$$< \sup_{x_{0},s_{0}} \mathbf{E}_{(x_{0},s_{0})} \left\{ \left(\sup_{x_{1}\in\mathcal{X}} \int p_{\theta}(x_{0},x_{1})f(\xi_{1};\theta|x_{1},s_{0})m(dx_{0}) \right) \frac{w(X_{1},\xi_{1})}{w(x_{0},s_{0})} \right\}$$

$$< \infty.$$

The last inequality follows from (5.3) in condition C1.

Note that C8 and C9 imply that $g \in \mathcal{L}(Q \times Q)$. Hence, the proof is complete.

Problem 2.2. Harris recurrence of iterated function. This paper is an extension of Fuh (2003) for finite state space in which the likelihood function can be expressed as the L_1 -norm of products of Markovian random matrices. Note that M_n defined in (5.6) is an iterated random functions system governed by a Markov chain Y_n . And $Y_n = (X_n, \xi_n)$ in the state space models case. In Theorem 1 I only assume $Y_n = (X_n, \xi_n)$ is Harris recurrent. The purpose of the statement, "*Note that under* K1–K3, ... a Markovian iterated random functions system in Theorem 2," is to relate Theorems 1 and 2, to which I can apply limiting theorems in Markov chains to the law of large numbers and central limit theorem (and Edgeworth expansion) for (Y_n, M_n) .

In Lemma 4 I want to prove $Z_n = ((X_n, \xi_n), M_n)$ is Harris recurrent (Z_n is defined in lines 1 and 2 on page 2056). In the proof, I can use the results in Theorem 1 since only $Y_n = (X_n, \xi_n)$ is assumed to be Harris recurrent in Theorem 1. It is known that C1 implies that $Y_n = (X_n, \xi_n)$ is Harris recurrent. A new proof of Lemma 3 was given on pages 1 and 2.

Problem 2.3. Asymptotic properties of score function and observed information. Page 2060, L12. In the proof of Lemma 6, (7.9) defined a new iterated functions system; therefore Corollary 1 cannot be used directly. The same situation happens for Theorems 5 and 7. The rigorous proofs of these results will be given in a separate paper.

Problem 2.4. Generality of conditions. C5. For $\theta \in N_{\delta}(\theta_0)$,

$$E_x^{\theta} \left(\frac{\partial \log \int_{y \in \mathcal{X}} \pi(x) p(x, y) f(s_0; \theta | x) f(\xi_1; \theta | y, s_0) m(dy)}{\partial \theta_i} \right)^2 < w(x, s_0)$$

for all $i = 1, \ldots, q$.

Change C5 accordingly. It is straightforward to check that C5 holds for the examples considered in Section 6. The proof of Lemma 5 can be done under C5.

Other typos and mistakes. Page 2032, L1. $\cdots p_{\theta}(y, x) f(\xi_j; \theta | x, \xi_{j-1}) \cdots X_{j-1} = y$ and $X_j \in dx, \ldots$

(3.7)
$$\pi(y)\mathbf{P}(Y_n \in dz, M_n \in \cdot | Y_0 = y) = \pi(z)\tilde{\mathbf{P}}(\tilde{Y}_n \in dy, \tilde{M}_n \in \cdot | \tilde{Y}_0 = z).$$

Page 2028, L5. $(1 - \alpha^2)$. Page 2043, C7, $\theta \to \varphi_x(\theta)$ was a typo; delete it. Page 2047, L1, then, "each component of" the Fisher information matrix. L5, replace "positive definite" by "finite." Page 2048, Theorem 5, assume $I(\theta_0)$ is invertible. Page 2057, L3, the notation $m \times Q \times Q$ may be confusing; change it to $m \times Q \times \overline{Q}$.

> GRADUATE INSTITUTE OF STATISTICS NATIONAL CENTRAL UNIVERSITY JHONGLI TAIWAN E-MAIL: stcheng@stat.sinica.edu.tw