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QUANTILE ESTIMATION WITH ADAPTIVE IMPORTANCE
SAMPLING

BY DANIEL EGLOFF AND MARKUS LEIPPOLD

QuantCatalyst and University of Zurich

We introduce new quantile estimators with adaptive importance sam-
pling. The adaptive estimators are based on weighted samples that are neither
independent nor identically distributed. Using a new law of iterated logarithm
for martingales, we prove the convergence of the adaptive quantile estimators
for general distributions with nonunique quantiles thereby extending the work
of Feldman and Tucker [Ann. Math. Statist. 37 (1996) 451–457]. We illustrate
the algorithm with an example from credit portfolio risk analysis.

1. Introduction. We introduce a new sample-based quantile estimators with
adaptive importance sampling. Importance sampling is a widely used technique for
variance reduction to improve the statistical efficiency of Monte Carlo simulations.
It reduces the number of samples required for a given level of accuracy. The basic
idea is to change the sampling distribution so that a greater concentration of sam-
ples are generated in a region of the sample space which has a dominant impact on
the calculations. The change of distribution is then compensated by weighting the
samples using the Radon–Nikodym derivative of the original measure with respect
to the new measure. However, in a multivariate setting, it is far from obvious how
such a change of measure should be obtained.

Given its importance for practical applications, especially for risk management
in the finance industry, the literature on sample-based quantile estimation with
variance reduction is rather sparse.1 The focus of variance reduction schemes is
almost exclusively geared towards the estimation of expected values. The reason
might lie in the additional intricateness that sample-based quantile estimators ex-
hibit. The quantile function, viewed as a map on the space of distribution functions,
generally fails to be differentiable in the sense of Hadamard. For certain distribu-
tions, the quantile may be nonunique. If the lower and upper quantiles of a random
variable Y for a probability level α ∈ (0,1), defined as

qα(Y )= inf{y | P(Y ≤ y)≥ α},
qα(Y )= sup{y | P(Y ≤ y)≤ α},
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are distinct, then the ordinary quantile estimator Y�nα�,n based on the order statis-
tics Y1,n, . . . , Yn,n of samples Y1, . . . , Yn is not consistent anymore. For the special
case of independent and identically distributed (i.i.d.) samples Y1, . . . , Yn, Feldman
and Tucker [12] prove that Y�nα�,n oscillates across the interval [qα(Y ), qα(Y )] in-
finitely often. Using the classical law of iterated logarithm for sequences of i.i.d.
random variables, they also show that consistency can be retained for the modified
estimator Yν(n),n if the function ν(n) ∈N satisfies

(1+ k)
√

2n log logn≤ �nα� − ν(n)≤Kn1/2+γ(1.1)

for some positive constants γ, k,K .
For the estimation of expected values with importance sampling, a common

procedure is to apply the change of measure suggested by a large deviation upper
bound. Although this approach often leads to an asymptotically optimal sampling
estimator, it can also fail completely, as shown in Glasserman and Wang [14].

Our method for quantile estimation does not rely on large deviation princi-
ples. Instead, it is adaptive. Adaptive algorithms, but only for expected values and
not for quantiles, are introduced in the work of [2] and [3]. They apply the trun-
cated Robbins–Monro algorithm of Chen, Guo and Gao in [7] for pricing financial
options under different assumptions on the underlying process. Robbins–Monro
methods and stochastic approximation date back to the historical work of Robbins
and Monro [30] and Kiefer and Wolfowitz [21]. See also [23] and the more recent
references [5, 24] and [25].

Using an adaptive strategy to obtain a quantile estimator means that every new
sample is used to improve the parameters of the importance sampling density.
Therefore, we cannot rely on the results of Feldman and Tucker [12]. Our quantile
estimators, derived from weighted samples, are neither independent nor identically
distributed. However, we derive a new law of iterated logarithms for martingales
which allows us to prove the convergence of the adaptive quantile estimators for
distributions with nondifferentiable and nonunique quantiles without requiring the
i.i.d. assumption thereby extending the result of Feldman and Tucker.

Our paper is structured as follows. In Section 2, we present the general setup and
we introduce the notation. Section 3 gives a brief review of adaptive importance
sampling for estimating the mean. In Section 4, we start with the discussion of the
metric structure underlying our adaptive algorithm. We then derive two theorems,
Theorems 4.1 and 4.2, which extend Feldman and Tucker [12]. The proof of the
theorems build on a new result for the law of iterated logarithms for martingales
which we present in Theorem 4.4. Finally, in Section 5 we provide an application
of our new quantile estimator which we borrow from credit risk management. All
proofs are delegated to the Appendix.

2. Setup and notation. Let ϕθ(x) be a probability density depending on a
parameter θ of a random variable X relative to some reference measure λ, defined
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on a measurable space (X , F ) with a countably generated σ -field F . We assume
that the parameters θ take their values in a metric space (�, d) for some fixed
metric d and equip it with the Borel σ -algebra B(�). For now, we do not have to
further distinguish the parameter space � and the set of densities {ϕθ(x) | θ ∈�}.
For the expectation, under the measure ϕθ dλ, we write

Eθ [f (X)] =
∫
X

f (x)ϕθ (x) dλ(x)(2.1)

and we define for all p, 1≤ p ≤∞,

Lp(θ)= {f :X →R | f is F -measurable,‖f ‖pθ,p = Eθ [|f (X)|p]<∞}.
Let ϕθ0(x) be our reference or sample density. We assume that all densities in

� are absolutely continuous with respect to the reference density ϕθ0(x) and we
denote by

wx(θ)= ϕθ0(x)

ϕθ (x)
(2.2)

the likelihood ratio or Radon–Nikodym derivative. In particular, wx :x 
→ wx(θ)

is measurable for all θ ∈�. If f ∈ L1(θ0), we have

Eθ [wX(θ)f (X)] = Eθ0[f (X)] ∀θ ∈�.(2.3)

For p ≥ 1, we introduce the (weighted) moments

mf,p(θ)= Eθ [|wX(θ)f (X)|p] = Eθ0[wX(θ)p−1|f (X)|p].(2.4)

We use the abbreviation mf (θ)=mf,2(θ) for the second moment and

σ 2
f (θ)=Varθ [wX(θ)f (X)] =mf (θ)−Eθ0[f (X)]2(2.5)

for the variance.

3. Review: Adaptive importance sampling for estimation of means. Be-
fore we derive our adaptive quantile estimators, we start this section with a
brief review of adaptive importance sampling for the estimation of means. Con-
sider a function f ∈ L1(θ0). Static importance sampling estimates the expectation
Eθ0[f (X)] by the weighted sample average

ês(n, f )= 1

n

n∑
i=1

wXi
(θ)f (Xi)(3.1)

with Xi ∼ ϕθ dλ i.i.d. The usual error estimates based on the central limit theorem
indicate that the most advantageous choice for θ would be the variance minimizer

θ∗ = arg min
θ∈�

σ 2
f (θ)= arg min

θ∈�
mf (θ).(3.2)
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Unfortunately, in most cases (3.2) cannot be solved explicitly. An alternative to
the approach on the basis of large deviation upper bounds is an adaptive strategy.
The solution θ∗ is estimated by a sequence (θn)n≥0, generated, for instance, by a
stochastic approximation algorithm of Kiefer–Wolfowitz or Robbins–Monro type.
Replacing the fixed parameter θ in (3.1) by the sequentially generated parameters
(θn)n≥0 leads to the adaptive importance sampling estimator

êa(n, f )= 1

n

n∑
i=1

wXi
(θi−1)f (Xi),(3.3)

where Xn ∼ ϕθn−1(x) dλ(x) is simulated from the importance sampling distribu-
tion determined from the parameter θn−1. In contrast to static importance sam-
pling, the random variables wXn(θn−1) and f (Xn) in (3.3) are neither independent
nor identically distributed. However, we still obtain a martingale.

LEMMA 3.1. Let θn be a sequence of parameters and Xn ∼ ϕθn−1 dλ. Define
Fn = σ(θ0, . . . , θn,X1, . . . ,Xn). Then, for f ∈ L1(θ0),

Mn =
n∑

i=1

(
wXi

(θi−1)f (Xi)−Eθ0[f (X)])(3.4)

is a martingale with respect to the filtration F= (Fn)n≥0.

PROOF. If (Zn)n≥0 is a sequence of integrable random variables, then

Mn =
n∑

i=1

(Zi −E[Zi |Z1, . . . ,Zi−1])(3.5)

is a martingale. The integrability of wXi
(θi−1)f (Xi) and the martingale property

for (3.4) follow from

E[wXi
(θi−1)f (Xi) |Fi−1] = Eθi−1[wXi

(θi−1)f (Xi)] = Eθ0[f (X)],(3.6)

where the second equality is a consequence of (2.3). �

A strong law of large numbers and a central limit theorem for (3.3) has been
obtained in [2] by applying classical martingale convergence results for which we
refer to [17] and [15]. For a proof of the theorem below, we refer to [2].

THEOREM 3.1. Let θn, Xn, and F = (Fn)n≥0 be as in Lemma 3.1. Assume
that θn→ θ∗ ∈� converges almost surely and that there exists a > 1 such that for
all θ ∈�

Eθ [|wX(θ)f (X)|2a]<∞,(3.7)

the function mf,2a : θ 
→mf,2a(θ) is continuous in θ∗, and

E[mf,2a(θn)]<∞ ∀n≥ 0.(3.8)
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Then

lim
n→∞

1

n

n∑
i=1

wXi
(θi−1)f (Xi)= Eθ0[f (X)] almost surely,(3.9)

and

√
n

(
1

n

n∑
i=1

wXi
(θi−1)f (Xi)−Eθ0[f (X)]

)
d→N(0, σ 2

f (θ∗)),(3.10)

where
d→ denotes convergence in distribution.

4. Adaptive importance sampling for quantile estimation. Having re-
viewed the estimation of the mean with adaptive importance sampling in the previ-
ous section, we introduce now the metric structure and the algorithm that underlies
our new adaptive quantile estimation.

4.1. Riemannian structure for parameter tuning. The procedure to estimate
the variance optimal parameter (3.2) crucially depends on the metric structure of
the parameter space �. The metric is not only important if it comes to the actual
numerical implementation, but is also material to determine existence and unique-
ness of a solution.

Let the parameter space � be a smooth manifold. It is known that the canonical
metric on a family of densities {ϕθ(x) | θ ∈ �} is induced by the Riemannian
structure given by the Fisher information metric

g = Eθ [dlX ⊗ dlX].(4.1)

Here, lx(θ)= logϕθ(x) is the log-likelihood function with differential

dlx :�→ T ∗�,(4.2)

considered as a one-form on � and with T ∗�, the co-tangent space of the mani-
fold �. In particular, (4.1) defines a nondegenerate symmetric bilinear form on the
tangent space T �, hence a Riemannian metric.2

Having equipped the parameter space � with a Riemannian metric, we can
formulate the first order condition for (3.2) in terms of the Riemannian gradient ∇
as

∇mf (θ)= 0.(4.3)

Under suitable assumptions on X and the likelihood ratio wx(θ), we can exchange
integration and differentiation to arrive at

∇mf (θ)=−Eθ0[f (X)2wX(θ)∇lX(θ)] = −Eθ [f (X)2wX(θ)2∇lX(θ)](4.4)

2For the basic concepts of Riemannian geometry, we refer to [20, 22] and the references therein.
The usage of the Riemannian metric based on the Fisher information goes back to [28].
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with ∇lx(θ) the Riemannian gradient of the log-likelihood. To approximate a so-
lution ∇mf (θ∗) = 0, we can now use the representation (4.4) and a stochastic
approximation scheme

θn+1 = θn + γn+1H(Xn+1, θn), Xn+1 ∼ ϕθn dλ,(4.5)

with average descent direction

H(X,θ)=−f (X)2wX(θ)2∇lX(θ).(4.6)

In this paper, we want to keep the focus on adaptive importance sampling for
quantile estimation and we therefore restrict ourselves to vector spaces. An exam-
ple with a flat metric is provided by the Gaussian densities

�= {N(θ,	) | θ ∈R
k}(4.7)

with fixed covariance structure 	.3 The first and second order differentials of the
likelihood lx(θ) are

dlx(θ)=	−1(x − θ), d2lx(θ)=−	−1.(4.10)

Hence, the Fisher metric on � is

g	(u, v)=−Eθ [d2lX(θ)(u, v)] = u�	−1v.(4.11)

Because

g	(∇lx(θ), u)=∇lx(θ)�	−1u= dlx(θ)(u)= (x − θ)�	−1u,(4.12)

the gradient of the likelihood with respect to the metric (4.11) is

∇lx(θ)= (x − θ).(4.13)

Note that the gradient ∇ of the Fisher metric defers by a factor of 	−1 from the
gradient induced by the standard Euclidian metric.

3A well-known example of a nonflat Riemannian structure on a space of distributions is the Fisher
information metric of a location scale family of densities

�=
{
ϕ(μ,σ )(x)= 1

σ
ϕ

(
x −μ

σ

)∣∣∣(μ,σ ) ∈R×R
+

}
.(4.8)

A second example is given by the space of all multivariate normal distributions

�= {N(θ,	) | θ ∈R
k,	 ∈ S+(k)}(4.9)

which is not flat anymore.
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4.2. Parameter tuning with adaptive truncation. In practical applications, the
parameter space � is often noncompact or it is difficult to a priori identify a
bounded region to which the optimal parameter must belong. We therefore suppose
that the parameter sequence (θn)n≥0 is generated by an algorithm that enforces re-
currence and boundedness of the sequence θn by adaptive truncation. A series of
work [6–10] shows that stochastic approximation algorithms with adaptive trun-
cation behave numerically more smoothly and converge under weaker hypotheses.
No restrictive conditions on the mean field or a-priori boundedness assumptions
have to be imposed. We follow Andrieu, Moulines and Priouret [1] who analyze
the convergence of stochastic approximation algorithms with more flexible trunca-
tion schemes and Markov state-dependent noise. To specify the algorithm, we let
(Kj )j∈N be an increasing compact covering of � satisfying

�=
∞⋃

j=1

Kj , Kj ⊂ int(Kj+1)(4.14)

and

γ = (γn)n∈N, ε = (εn)n∈N,(4.15)

two monotonically decreasing sequences. We introduce the counting variables

(κn, νn, ζn)n∈N ∈N×N×N,(4.16)

where κn records the active truncation set in the compact covering, νn counts the
number of iterations since the last re-initialization (truncation) and ζn is the index
in the sequences γ , ε introduced in (4.15). If νn �= 0, the algorithm operates in the
active truncation set Kκn so that

θj ∈Kκn ∀j ≤ n with νj �= 0.(4.17)

If νn = 0, the update at iteration n caused a jump outside of the active truncation
set Kκn and triggers a re-initialization at the next iteration n+ 1. We assume that a
stochastic vector field is generated from a measurable map

H :X ×�→�,(4.18)

where X and � are both equipped with countably generated σ -fields B(X ) and
B(�), respectively. We also suppose that � is an open subset of some Euclidian
vector space.

To handle jumps outside the parameter space �, we introduce an isolated point
θc taking the role of a cemetery point. Let �̄=� ∪ {θc}. For an arbitrary γ ≥ 0,
we define a kernel Qγ on X × �̄ by

Qγ (x, θ;A×B)=
∫
A

Pθ(dy)1{θ+γH(y,θ)∈B}
(4.19)

+ 1{θc∈B}
∫
A

Pθ(dy)1{θ+γH(y,θ)/∈B},
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where (x, θ) ∈X ×� and A ∈ B(X ), B ∈ B(�̄), and Pθ(dx) is a measure on X
parameterized by θ . For a sequence of step sizes γ , we define the process (Xn, θn)

by

(Xn+1, θn+1)∼Qγn+1(Xn, θn; ·)(4.20)

unless θn = θc, in which case we stop the process and set θn+1 = θc, Xn+1 =Xn.
The law of the nonhomogeneous Markov process (4.20) with initial conditions
(x, θ), represented on the product space (X × �̄)N, is denoted by P

γ
x,θ . Let X0 ⊂

X be a compact subset


 :X ×�→X0 ×K0,(4.21)

be a measurable map and φ : N→ Z with φ(n) >−n.

ALGORITHM 4.1. The stochastic approximation algorithm with adaptive
truncation is the homogeneous Markov chain defined by the following transition
law from step n to n+ 1:

(i) If νn = 0, then we perform a reset operation which starts in X0 ×K0 and
draws

(Xn+1, θn+1)∼Qγζn

(

(Xn, θn);dx × dθ

)
.

Otherwise, we simulate

(Xn+1, θn+1)∼Qγζn
(Xn, θn;dx × dθ).

(ii) If ‖θn+1 − θn‖ ≤ εζn and θn+1 ∈Kκn , then we update

νn+1 = νn + 1, ζn+1 = ζn + 1, κn+1 = κn;
else we prepare for a reset operation in the next iteration by setting

νn+1 = 0, ζn+1 = φ(ζn), κn+1 = κn + 1.

The convergence of Algorithm 4.1 under suitable conditions on the measure
Pθ(dx), the mean field h defined as

h(θ)=
∫
X

H(x, θ)Pθ (dx)(4.22)

and the sequences γ , ε are established in [1].4

4In fact, [1] treat the more general case of state dependent noise where the measure Pθ (dy) takes
the form of a Markov kernel Pθ (x, dy).
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4.3. Quantile estimation. After having introduced the metric structure and the
parameter tuning in the previous sections, we can now turn our focus to the esti-
mation of quantiles of a real-valued random variable

Y =�(X), � : X →R,

defined in terms of an F -measurable function � . We denote by

qα = qα(Y )= inf{y | P(Y ≤ y)≥ α}, 0 < α < 1,

the lower α-quantile of Y . Furthermore, let (θn)n≥0 be a sequence of tuning para-
meters. In favor of a more compact notation, we introduce the abbreviations

wn =wXn(θn−1), Yn =�(Xn), n≥ 1.(4.23)

We recall that, under the assumptions of Theorem 3.1, the weights wn satisfy

E[wn |Fn−1] = Eθn−1[wn] = 1,
1

n

n∑
i=1

wi→ 1 almost surely.(4.24)

We first consider generalizations of the empirical distribution function to
weighted samples. Because the sum of the weights

∑n
i=1 wi is not necessarily

normalized to one, we introduce the renormalized weighted empirical distribution
function

Fn,w(y)= 1∑n
i=1 wi

n∑
i=1

wi1{Yi≤y}(4.25)

and set

Fn,w,ν(y)= 1

ν(n)
Fn,w(y),(4.26)

where ν : N→R
+ is a normalization function, which we determine later to prevent

the oscillation of the quantile estimators. We can use the increasing function Fn,w,ν

to define the quantile estimator

qn,w,ν(α)= F←n,w,ν(α)= inf{y | Fn,w,ν(y)≥ α},(4.27)

where F←n,w,ν is the generalized inverse of Fn,w,ν . Besides the re-normalized
weighted empirical distribution function (4.25), there are alternative ways to gen-
eralize the empirical distribution function to weighted samples. For example,

F l
n,w,ν(y)= 1

ν(n)

n∑
i=1

wi1{Yi≤y}(4.28)
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puts the emphasis on the left tail of the distribution. However, if the concern is on
the right tail, then

F r
n,w,ν(y)= 1

ν(n)

n∑
i=1

wi1{Yi≤y} +
(

1− 1

ν(n)

n∑
i=1

wi

)

(4.29)

= 1− 1

ν(n)

n∑
i=1

wi1{Yi>y}

is the proper choice. We denote the corresponding quantile estimators by

ql
n,w,ν(α)= F l←

n,w,ν(α), qr
n,w,ν(α)= F r←

n,w,ν(α).(4.30)

The functions (4.26), (4.28) and (4.29) are no longer genuine empirical distribution
functions because conditions limx→−∞F(x) = 0 and limx→∞F(x) = 1 may be
violated. However, we still have

lim
y→−∞Fn,w,ν(y)= 0, lim

y→−∞F l
n,w,ν(y)= 0, lim

y→∞F r
n,w,ν(y)= 1.

For studying the convergence of the weighted quantile estimators, we assume that
the sequence (θn)n≥0 is generated by any adaptive algorithm as described in Sec-
tion 4.2 which converges to some limit value θ∗. We would like to point out that it
is not required that θ∗ is the solution of a variance minimization problem such as
given by (3.2). Later, we will propose a specific tuning algorithm and state verifi-
able conditions that guarantee its convergence.

ASSUMPTION 4.1. (Kj )j∈N is a compact exhaustion of the parameter space
as in (4.14). The sequence (θn)n≥0 satisfies

θn→ θ∗ ∈� almost surely.(4.31)

For any ρ ∈ (0,1), there exists a constant C(ρ) such that

P

(
sup
n≥1

κn ≥ j
)
≤ C(ρ)ρj ,(4.32)

where κn is the counter of the active truncation set of (θn)n≥0 defined in such a
way that (4.17) holds. For some p∗ > 1, there exists W ∈ Lp∗(θ0) such that for
any compact set K⊂�,

1{θ∈K}wx(θ)≤Cp∗(diam(K))W(x),(4.33)

where Cp∗(diam(K)) is a constant only depending on p∗ and the diameter of K.
The compact covering (4.14) is selected such that

Cp∗(diam(Kj ))≤ ekp∗+mp∗j(4.34)

for some positive constants kp∗ , mp∗ .
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Because of (4.32), the number of truncations remains almost surely finite and
every path of θn remains in a compact subset of �. However, this does not im-
ply that there exists a compact set K∗ such that θn ∈K∗ almost surely for all n.5

Condition (4.33) guarantees the continuity of moments as a function of the para-
meters θ . Condition (4.34) provides a growth restriction on the compact exhaustion
(4.14).

We first address convergence when quantiles are unique but without imposing
differentiability of the distribution function at the quantiles.

THEOREM 4.1. Assume that the distribution function F(y) = P(Y ≤ y) is
strictly increasing at qα . Under Assumption 4.1,

qn,w,ν(α)→ qα almost surely (n→∞),

for the normalization function ν(n)≡ 1, and

qr
n,w,ν(α)→ qα, ql

n,w,ν(α)→ qα almost surely (n→∞),

for ν(n)= n.

If the quantiles are not unique, a proper choice of the normalization function
ν(n) eliminates the oscillatory behavior and leads to consistent estimators. For
notational convenience, let

v = σ 2
1 (θ∗) and vα = σ 2

1(−∞,qα ]◦�(θ∗)= σ 2
1(qα,∞)◦�(θ∗).(4.35)

THEOREM 4.2. Suppose the conditions in Assumption 4.1 are satisfied. If
there exists η > 0, k > 0, and 0 < γ < 1

2 such that

n− kn1/2+γ

n− (1+ η)
√

2nv log log(nv)
(4.36)

≤ ν(n)≤ n− (1+ η)/α
√

2nvα log log(nvα)

n+ (1+ η)
√

2nv log log(nv)
,

then

qn,w,ν(α)→ qα almost surely (n→∞).(4.37)

If there exists η > 0, k > 0, and 0 < γ < 1
2 such that

n+ 1+ η

1− α

√
2nvα log log(nvα)≤ ν(n)≤ n+ kn1/2+γ ,(4.38)

then

qr
n,w,ν(α)→ qα almost surely (n→∞).(4.39)

5We would like to thank the anonymous referee for pointing this out to us.
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If there exist η > 0, k > 0, and 0 < γ < 1
2 such that

n− kn1/2+γ ≤ ν(n)≤ n− 1+ η

α

√
2nvα log log(nvα),(4.40)

then

ql
n,w,ν(α)→ qα almost surely (n→∞).(4.41)

The proofs of Theorems 4.1 and 4.2 are given in Section 6. They rely on a law of
iterated logarithm for martingales which we present in a later section (Section 4.6).

The normalization functions used in Theorem 4.2 are difficult to implement, be-
cause vα depends on the unknown quantile qα and the unknown limit parameter θ∗.
In this regard, the following corollary is helpful.

COROLLARY 4.1. If θ∗ = arg minθ σ 2
1(qα,∞)◦�(θ), then

vα = σ 2
1(qα,∞)◦�(θ∗)

≤ σ 2
1(qα,∞)◦�(θ0)= Pθ0

(
�(X) > qα

)− Pθ0

(
�(X) > qα

)2 ≤ 1
4 .

Therefore, the conclusions of Theorem 4.2 hold, if vα in conditions (4.36),
(4.38), and (4.40) is replaced by 1

4 .
To compare Theorem 4.2 with Theorem 4 of Feldman and Tucker in [12], we

state here a refined version of their result.

THEOREM 4.3. Let Y1,n, . . . , Yn,n be the order statistics of i.i.d. samples
Y1, . . . , Yn of a random variable Y . Let

wα = P
(
Y ≤ qα(Y )

)− P
(
Y ≤ qα(Y )

)2
.(4.42)

If the normalization function ν(n) ∈N satisfies

(1+ k)
√

2wαn log logn≤ �nα� − ν(n)≤Kn1/2+γ(4.43)

with γ, k,K positive constants, then Yν(n),n→ qα(Y ) almost surely.

We omit the proof, as it is similar to the proof of Theorem 4.2. Condition (4.43)
is now expressed in a way that allows a direct comparison with (4.38). We recall
the original condition in Theorem 4 of Feldman and Tucker,

(1+ k)
√

2n log logn≤ �nα� − ν(n)≤Kn1/2+γ ,(4.44)

which apparently does not depend on the variance of the tail probabilities. How-
ever, because wα ≤ 1

4 we see that (4.43) is indeed a weaker assumption than (4.44)
used in [12].
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4.4. Sequential parameter tuning for quantile estimation. We still have to pro-
vide a strategy to determine the limit parameter θ∗ and the construction of an ap-
proximation sequence θn converging to θ∗ almost surely. For the estimation of the
expected value E[f (X)], Theorem 3.1 suggests that the optimal parameter θ∗ is
the variance minimizer θ∗ = arg minθ σ 2

f (θ) which can be estimated by a stochas-
tic approximation algorithm. However, for quantile estimation, the choice of an
optimal parameter θ∗ is less obvious. If the distribution function F of the random
variable Y =�(X) is differentiable in a neighborhood of qα , the functional delta-
method applied to the empirical process (see, e.g., Corollary 21.5 of [33]) suggests
to minimize the variance of the weighted tail event wX(θ)1{�(X)>qα} such that

θ∗ = arg min
θ

m1(qα,∞)◦�(θ).(4.45)

Instead of arguing with the delta-method as above, we can also use Theorem 4.2
to motivate the choice (4.45) even in the most general situation, in which quantiles
may not be unique. For instance, let us consider the quantile estimator qr

n,w,ν .
The bounds for ν(n) in (4.38) lead to a bias for qr

n,w,ν . To minimize this bias,
we must ensure that ν(n) is as close as possible to n while, at the same time,
satisfying condition (4.38). This means that we must select vα such that the term√

2nvα log log(nvα) becomes as small as possible. From the definition of vα in
(4.35), we see that the parameter θ∗ satisfying (4.45) provides the smallest value
for vα . The same arguments hold for ql

n,w,ν .
For the estimator qn,w,ν(α) defined in (4.27), we must keep ν(n) as close as

possible to 1 in order to minimize the bias. From condition (4.36), we see that we
must not only minimize

√
2nvα log log(nvα), but also

√
2nv log log(nv). Hence,

for qn,w,ν(α) we have to choose θ to make both the variance of the weighted tail
event wX(θ)1{�(X)>qα} and the variance of the weights wX(θ) as small as possible.

Unfortunately (4.45) is not constructive either because the quantile qα is not yet
known and must be replaced by a suitable estimator. Suppose now that we could
find a rough estimate q̂α for the quantile qα ; then the scheme (4.5) based on the
stochastic gradient,

Hq̂α
(Xn+1, θn), Xn+1 ∼ ϕθn dλ(4.46)

with

Hq(x, θ)=−1{�(x)>q}wx(θ)2∇lx(θ)(4.47)

could be used to generate a sequence (θn)n≥0 approximating the solution θ∗ for the
first order condition ∇m1(qα,∞)◦�(θ∗)= 0. However, if qα is an extreme quantile,
the simulated values for the stochastic gradient (4.46) would be mostly zero for
parameter values θn close to the starting value θ0. Even worse, if the simulation
produces a nonvanishing stochastic gradient, it is generally very inaccurate and
could drive the parameter values to a wrong region of the parameter space. As a
consequence, the convergence rate of the algorithm is very poor. It freezes at an
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early stage and one might be tempted to use a sufficiently large step size. How-
ever, in practical applications, compensating an erratic stochastic gradient with a
large step size is not a solution, as it increases the risk that the algorithm fails to
converge.

A simple and practically very efficient approach is to gradually bridge from a
moderate tail event to an extreme tail event during the simulation. More precisely,
let

Mq1,q2(θ)= b(n)m1(q1,∞)◦�(θ)+ (
1− b(n)

)
m1(q2,∞)◦�(θ)(4.48)

with b(n) weighting functions depending on the sample index n. The values qi are
selected such that qα ∈ [q1, q2]. We choose q1 such that {�(X) > q1} is a moder-
ate tail event. Hence, the corresponding stochastic gradient Hq1(Xn+1, θn) can be
estimated with sufficient accuracy for θn in a neighborhood of θ0. The value q2 is
selected in the range of qα or even larger. A preliminary simulation or some ini-
tial samples can be used to obtain a crude estimate for qα , including a confidence
interval. The function b(n) is assumed to converge to zero as n→∞. A suitable
choice would be, for example, b(n)= 1/ log(n+1) which decays sufficiently slow
such that the component (4.46) of the stochastic gradient from q1 drives θn towards
a solution for the extreme tail event. Stochastic approximation with adaptive trun-
cation can then be used to generate a sequence of parameters θn converging to

θ∗ = arg min
θ

Mq1,q2(θ)(4.49)

as we will see below.6

4.5. Verifiable convergence criteria. Each of the above criterion is based on a
stochastic vector field generated by a map H(x, θ). For instance, in case of (4.48),
we have

H(x, θ)= b(n)Hq1(x, θ)+ (
1− b(n)

)
Hq2(x, θ).(4.50)

We provide verifiable conditions on H(x, θ), its mean field, and the sequences
γ , ε, which imply the convergence of Algorithm 4.1 for state independent tran-
sition kernels. To this end, we introduce for any compact set K ⊂� the partial
sum

Sl,n(γ , ε, K)= 1{σ(K,ε)≥n}
n∑

k=l

γk

(
H(Xk, θk−1)− h(θk−1)

)
,

(4.51)
1≤ l ≤ n,

6Yet another approach is to sequentially update an estimator q̂α for the quantile along the simula-
tion as well to improve the upper value q2 in (4.49), leading to a coupled stochastic approximation
scheme for the parameters (θn, q̂n). A sequential quantile estimator has been proposed in [32] (see
also [31]). Because the quantile estimator does interfere with the update scheme for the tuning para-
meter θn, the convergence of the joint parameter set is more subtle.
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where σ(K, ε)= σ(K)∧ ν(ε) and σ(K) and ν(ε) are the stopping times

σ(K)= inf{k ≥ 1 | θk /∈K},(4.52)

ν(ε)= inf{k ≥ 1 | |θk − θk−1| ≥ εk}.(4.53)

If a= (al)l∈N is a sequence, we write

a←k = (al+k)l∈N

for the sequence shifted by the offset k.

ASSUMPTION 4.2. The parameter set � is an open subset of R
d . For some

p > 1, there exists a function W ∈ Lp(θ0) such that for every compact set K⊂�,

sup
x∈X

sup
θ∈K

‖H(x, θ)‖p
wx(θ)W(x)p

≤ CK <∞(4.54)

with CK a constant only depending on K. The mean field

h(θ)= Eθ [H(X,θ)](4.55)

is continuous and there exists a C1 Lyapunov function w :�→ [0,∞) satisfying
the following conditions:

(i) There exists 0 < M0 <∞ such that

L≡ {θ ∈� | 〈h(θ),∇w(θ)〉 = 0} ⊂ {θ ∈� |w(θ) < M0}.
(ii) For M > 0, let WM = {θ ∈� | w(θ) ≤M}. There exists M1 ∈ (M0,∞]

such that WM1 is a compact subset of �.
(iii) For any θ ∈� \L it holds that 〈h(θ),∇w(θ)〉< 0.
(iv) The closure of w(L) has empty interior.

The sequences γ , ε are nonincreasing, positive, and satisfy εn→ 0,

∞∑
n=0

γn =∞,

∞∑
n=0

(
γ 2
n +

(
γn

εn

)p)
<∞.(4.56)

The existence of a Lyapunov function in (i) simplifies, if h = ∇m is a gradi-
ent field of a continuously differentiable function m. In this case, we can choose
w =m. The next result is along the lines of Proposition 5.2 in [1]. Its proof is sim-
ilar to the proof of [1], Proposition 5.2, but less involved because we consider only
state-independent transition probabilities. Therefore, we do not need to consider
the existence and regularity of the solution of the Poisson equation. The conver-
gence of the algorithm is then a consequence of [1], Theorem 5.5.
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PROPOSITION 4.1. Let

A(δ,M,γ , ε)= sup
(x,θ)∈X0×K0

{
P

γ

(x,θ)

(
sup
n≥1
‖S1,n(γ , ε, WM)‖> δ

)
(4.57)

+ P
γ

(x,θ)

(
ν(ε) < WM

)}
.

If K0 ⊂WM0 , then for every M ∈ [M0,M1) there exist n0, δ0 > 0, and a constant
C > 0 such that for all j > n0,

P

(
sup
k≥1

κk ≥ j
)
≤ C

(
sup
k≥n

A(δ0,M,γ←k, ε←k)
)j

.(4.58)

Under Assumption 4.2, we have for every M ∈ [M0,M1) and δ > 0,

lim
k→∞A(δ,M,γ←k, ε←k)= 0.(4.59)

In particular, the key requirements, (4.31) and (4.32), of Assumption 4.1 are satis-
fied.

To completely specify the stochastic approximation algorithm, we first have to
make some selections for the initial parameter θ0. Because our target criterion puts
more emphasis on a moderate tail event at the beginning of the simulation, it is
sensible to start with the reference density. Alternatively, we can start with a large
deviation approximation.

The performance of a stochastic approximation algorithm usually depends
strongly on an appropriate selection of the step size sequence. However, with
the bridging strategy in (4.48), our algorithm is considerably less sensitive to the
choice of the step size parameters. Since the sequence of step size parameters γn

must satisfy condition (4.56), we simply set

γn = a

n+ 1
(4.60)

and select εn accordingly to satisfy the second condition in (4.56). The parameter
a serves as a tuning parameter. A practical approach is to follow a greedy strategy
which starts with a large value for a and reduces it after each re-initialization.
Alternatively we can determine a by some step size selection criteria based, for
example, on an approximation of the Hessian of the target criterion.

The algorithm can be further robustified by Polyak’s averaging principle. The
idea is to use a large step size γn of the order n−2/3 which converges much slower
to zero than n−1 but is still fast enough to ensure convergence. The larger step size
prevents the algorithm from freezing at an early stage of the algorithm far off the
local minimum. Polyak and Juditsky show in [27] that the averaged parameters
converge at an optimal rate.
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4.6. Law of iterated logarithm for martingales. Before we discuss an applica-
tion for our adaptive quantile estimator, we present the law of iterated logarithm
for the sequence of martingale differences wXn(θn−1)f (Xn) − E[f (X)] which
we require as an ingredient for the proofs of Theorems 4.1 and 4.2. We state the
main result below and present the proof in Section 6. We use the following nota-
tion. If Mn is a square integrable martingale adapted to a filtration (Fn)n≥0 with
�Mi =Mi −Mi−1, then we denote the predictable quadratic variation by

〈M〉0 = 0, 〈M〉n =
n∑

i=1

E[�M2
i |Fi−1], n≥ 1,(4.61)

the total quadratic variation by

[M]0 = 0, [M]n =
n∑

i=1

�M2
i , n≥ 1,(4.62)

and by s2
n =

∑n
i=1 E[�M2

i ] the total variance.

THEOREM 4.4. Suppose the conditions in Assumption 4.1 are satisfied, and
let f : X →R be a measurable function in Lp(θ0). Assume that

p(p∗ + 1)

p+ p∗
> 4,(4.63)

where p∗ is from condition (4.33). Let

wx : θ 
→wx(θ)(4.64)

be continuous in θ∗ for almost all x ∈X . Define

ξn =wXn(θn−1)f (Xn)−E[f (X)].(4.65)

Then Mn =∑n
i=1 ξi is a square integrable martingale and

lim
n→∞

[M]n
〈M〉n = 1,(4.66)

lim
n→∞

s2
n

n
= (

mf (θ∗)−E[f (X)]2)= σ 2
f (θ∗).(4.67)

Moreover, if we let φ(t)=√2t log log(t), then

lim sup
n→∞

φ(Wn)
−1Mn =+1,(4.68)

lim inf
n→∞ φ(Wn)

−1Mn =−1,(4.69)

almost surely, where the weighting sequence Wn is given by either Wn = [M]n,
Wn = 〈M〉n, or Wn = s2

n .
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5. Applications. We next provide an explicit example for our adaptive quan-
tile estimator and compare it to crude Monte Carlo simulation. We borrow our
application from the financial industry, more precisely from portfolio credit risk.
The so-called Value at Risk (VaR) is by far the most widely adopted measure of
risk and represents the maximum level of losses that can be exceeded only with a
small probability. This quantile-based risk measure is of particular importance to
market participants and supervisors. For credit risk, supervisors require banks to
calculate the credit VaR as the 99.9% quantile of the loss distribution.

5.1. Importance sampling for portfolio credit risk. The aim of portfolio credit
risk analysis is to provide a distribution of future credit losses for a portfolio of
obligers based on historically observed losses and possibly combined with market
views. In a simplified setting, the outstanding credit amount for each obligor i =
1, . . . ,m is aggregated to a net credit exposure ci . Defaults are tracked over a single
period. At the end of the period, the portfolio loss is

L=
m∑

i=1

ciYi,(5.1)

where Yi ∼ Ber(pi) are the default indicators. For portfolios of illiquid commercial
loans or corporate credits, the exposures ci are generally assumed to be constant
which gives rise to a discrete loss distribution. The quantiles are nondifferentiable
and not unique. Hence, to construct an adaptive importance sampling algorithm,
we can rely on the results of the previous sections.

For our application, we start from a Gaussian copula framework (see, e.g., [11]),
in which the default indicators are modeled as

Yi = 1{Ai∈(−∞,θi ]}.(5.2)

The credit quality variable Ai is given by

Ai =
√

1− v2
s(i)Xs(i) + vs(i)εi, i = 1, . . . ,m,(5.3)

for some classification function s : {1, . . . ,m} → {1, . . . , k}. Usually in credit risk
management, the m obligors are classified into k industry sectors. The default
thresholds θi are calibrated to match the obligors’ default probabilities. The com-
mon factors X = (Xs)s=1,...,k ∼ N(0,	) are multivariate Gaussian. The idiosyn-
cratic part ε = (εi)i=1,...,m ∼ N(0,1m) is independent from X. We restrict our-
selves to the adjustment of the mean of the common factors X and keep the covari-
ance structure 	 fixed. We note that importance sampling on the common factors
can also be combined seamlessly with importance sampling on the idiosyncratic
variables ε = (εi)i=1,...,m.7

7For instance, [13] and [26] apply an exponential twist to the conditional default indicators

Yi |X ∼ Ber(pi(X)) where pi(x)=
((θi−
√

1− v2
s(i)

xs(i))/vs(i)), is the conditional default prob-
ability.
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Given the above setup, we are in the setting of Section 4.3 with Y = L=�(X)

and � : Rk→R given as8

�(x)=
m∑

i=1

ci1{
√

1−v2
s(i)xs(i)+vs(i)εi≤θi}.(5.4)

For the implementation of the adaptive importance sampling scheme, we use the
criterion (4.48) and determine the values for q1, q2 as described in Section 4.4, that
is, we start with a moderate q1 and choose q2 by an educated guess in the region
of interest.

5.2. Verifying convergence criteria for Gaussian distributions. For our credit
risk application, assume a fixed covariance structure, and endow the Gaussian dis-
tributions (4.9) with the Fisher information metric g	 in (4.11). Before we can
proceed, we need to make sure that Assumptions 4.1 and 4.2 hold in our setup.
The noncompactness of the parameter space and exponentially unbounded likeli-
hood ratios call for adaptive truncation and make it a challenging test case, even
though the Gaussian distributions have many special analytical properties. From
the expression

wx(θ)= exp
(−g	(x, θ)+ 1

2g	(θ, θ)
)

for the likelihood ratio, it follows that

wx(θ)≤ exp
(

h+ 2

4
g	(θ, θ)

)
exp

(
1

h
g	(x, x)

)
∀h≥ 1.(5.5)

The verification of Assumptions 4.1 and 4.2 for the Gaussian distributions is now
a straightforward consequence of (5.5) and Hölder’s inequality.

LEMMA 5.1. If ‖f ‖θ0,h <∞ for some h > 2, we can exchange differentiation
and integration to obtain ∇mf (θ)= Eθ [H(X,θ)] with

H(x, θ)= (θ − x)f (x)2wx(θ)2.

The Hessian with respect to the Fisher information metric g	 , given by

∇2mf (θ)= Eθ

[(
idk+(θ −X)(θ −X)�

)
f (X)2wX(θ)2]

,(5.6)

is positive definite. If P(f (X) > 0) > 0, then mf (θ)→∞ for g	(θ, θ)→∞. In
particular, there is a unique minimizer

θ∗ = arg min
θ

mf (θ) ∈R
k.(5.7)

Moreover, for some p > 1 there exists W ∈ Lp(θ0) satisfying (4.33) and (4.54).

8For notational convenience, we drop the dependency of � on ε as it is not affected by the impor-
tance sampling scheme.
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The parametrization (4.9) works rather well if the ratio of the largest and small-
est eigenvalue of 	 is not too far away from one and the dimension of 	 is not
too large. For many practical applications, the correlation ellipsoid is very skewed.
The first few principal components explain most of the variance and the last few
are negligibly small. Even though the metric defined in (4.11) properly respects
the covariance structure, and we use the gradient relative to this metric, we require
a suitable dimension reduction. Therefore, we translate the mean in the span of the
eigenvalues of the first few principal components. Let 	 =U�UT where U is the
orthogonal matrix with columns given by the eigenvectors, and � is the diagonal
matrix of eigenvalues. We write

Jl : Rl→R
k(5.8)

for the embedding of R
l into R

k ; that is, Jl sets the last k − l coordinates to zero
with corresponding projection J�l : Rk→R

l . Let

�l = {N(UJl(a),	) | a ∈R
l}.(5.9)

The first and second order differential of the likelihood lx(a) is

dlx(a)= J�l �−1(U�x − Jla), d2lx(a)=−J��−1J.(5.10)

Hence, the Fisher metric on �l is

ga(u, v)=−Ea[d2lX(a)(u, v)] = u�J��−1Jv.(5.11)

Because

ga(∇lx(a), u)=∇lx(a)�J�l �−1Jlu= dlx(a)(u)= (x�U − a�J�l )�−1Jlu

and x�U�−1Jlu= x�UJlJ
�
l �−1Jlu, the gradient of the likelihood with respect

to the metric (4.11) is

∇lx(a)= (J�l U�x − a).(5.12)

We adapt Lemma 5.1 to the parametrization given in (5.9).

LEMMA 5.2. If ‖f ‖θ0,q <∞ for some q > 2, we can exchange differentiation
and integration to obtain ∇mf (a)= Eθ(a)[H(X,a)] with

H(x, a)= (a − J�l U�x)f (x)2wx(θ(a))2

and θ(a)=UJl(a). The Hessian with respect to the Fisher information metric ga ,
given by

∇2mf (θ)= Eθ

[(
idl+(a − J�l U�X)(a − J�l U�X)�

)
f (X)2wX(θ(a))2]

,

is positive definite. If P(f (X) > 0) > 0, then mf (a)→∞ for ga(a, a)→∞. In
particular, there is a unique minimizer

a∗ = arg min
a

mf (a) ∈R
l .(5.13)

Moreover, for some p > 1 there exists W ∈ Lp(θ0) satisfying (4.33) and (4.54).
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5.3. Numerical example. We consider a set of 2000 obligors with default
probabilities comparable to a typical loan portfolio. We assume that the portfolio
risk is driven by m = 14 industry factors, but restrict our analysis using only the
first two principal components which already explain 84% of total variance. In the
current regulatory framework as promoted by Basel II, credit risk (as well as op-
erational risk) needs to be calculated at the 99.9% quantile of the loss distribution.
Performing a crude Monte Carlo (MC) simulation, we see that the loss (expressed
in percentage numbers) at the 99.9% quantile lies somewhere around 0.2. This
crude estimate allows us to make an educated guess for the parameters q1 and q2

required for our adaptive importance sampling (AIS) estimator. We set q1 = 0.1
and q2 = 0.23. Instead of using the MC estimate as a starting point, we could also
first do an AIS simulation with some arbitrarily set q1 and q2 to find some more
appropriate numbers in a second simulation. Our numerical experiments indicated
that the algorithm is not very sensitive to these approximate choices. Indeed, we
just have to guarantee that we choose q1 small so that the initial step sizes are
large enough. To clarify this point with an example, we find that we get almost
identical results for q1 = 0.01. More precisely, with a fixed seed for the random
number generator we get an estimate for 99.9%-quantile of 0.2271 with q1 = 0.1
and 0.2276 with q1 = 0.01.

Based on a sample of 10,000 draws, Figure 1 shows the convergence of the mean
shifts for our AIS algorithm. The solid line represents the path for the step size of
order n−2/3. The dashed line represents the averaged values based on Polyak’s av-
eraging principle. We observe that the shift in the first principal component, which
explains 75% of total variance, is substantial. The shift in the second component,
which explains an additional 9%, is only very small.

Figure 2 plots the cumulative distribution function for the right tail of the dis-
tribution. In contrast to standard MC simulation, our AIS algorithm provides a
very smooth distribution function. Therefore, we can expect a considerable reduc-
tion for the variance of our quantile estimators. To substantiate this conjecture,
we additionally perform 1000 independent quantile estimations. In Table 1, we
report the results for the standard Monte Carlo simulations to calculate F←n,1(α)

and for our AIS algorithm using the quantile definition in (4.30) which is based
on the weighted empirical distribution F r

n,w,ν(y). The first column shows the dif-
ferent loss levels at which we simulate the quantiles. The next two columns report
the mean values for the estimations F←n,1(α) and F r,←

n,w,ν(α), respectively. The fi-
nal row reports the variance ratio defined as the variance from the MC simulation
divided by the variance of the AIS estimator. When we compare the variances of
the estimators, we observe that for the region of interest, that is, around the 99.9%
quantile, our AIS estimator outperforms the result from the MC simulation by a
factor of around 20. This number increases further to more than 112 when we look
at the 99.99% quantile.
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FIG. 1. Parameter convergence from Polyak’s averaging principle. The graph illustrates the con-
vergence of the means of the first two principal components. The solid line represents the convergence
for step size of order n−2/3. The dashed line represents the averaged values. Panel B zooms in the
rectangle area marked in panel A.

6. Proofs. For the proofs for Theorems 4.1, 4.2 and 4.4 we start with collect-
ing the basic properties of the generalized inverse of an increasing function.9

LEMMA 6.1. Let F be a right continuous increasing function. Then, the gen-
eralized inverse

F←(α)= inf{x | F(x)≥ α}(6.1)

is increasing and left continuous, and we have

F(x) ≥ α ⇔ F←(α)≤ x;
F(x) < α ⇔ F←(α) > x;

F(x1) < α ≤ F(x2) ⇔ x1 < F←(α)≤ x2;

9See for instance [29], Section 0.2.
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FIG. 2. Cumulative distribution function of Monte Carlo and AIS simulation. The graph plots the
cumulative distribution function using a Monte Carlo simulation and the AIS algorithm based on
10,000 samples. Our area of interest, the 99.9% quantile, is marked with a dotted line.

F(F←(α)) ≥ α, with equality for F continuous;
F←(F (x)) ≤ x, with equality for F← increasing;
F continuous ⇔ F← increasing;
F increasing ⇔ F← continuous.

6.1. Proof of Theorem 4.4 (iterated law of logarithm). Let κn denote the active
truncation set for θn and

κ∞ = lim
n→∞κn,(6.2)

which exists because of assumption (4.32). We have

θi ∈Kκn ∀i ≤ n with νi �= 0.

To get rid of the condition νi �= 0, we decompose Mn into

Mn =
n∑

i=1

ξi1{νi �=0} +
n∑

i=1

ξi1{νi=0}.(6.3)
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TABLE 1
Quantile estimates for standard MC and AIS simulation at different loss levels based on 1000
simulations. Quantiles are expressed in percentage numbers, and the variance ratio is defined

as the variance of F←n,1(α) divided by the variance of F
r,←
n,w,ν(α)

Mean (in %)

Loss level λ F
r,←
n,w,ν(α) F←

n,1(α) Variance ratio

0.1000 98.2449 98.2217 1.7988
0.1100 98.6193 98.6011 2.0759
0.1200 98.9099 98.8943 2.6251
0.1300 99.1366 99.1238 3.0764
0.1400 99.3162 99.3053 3.7290
0.1500 99.4577 99.4488 4.6726
0.1600 99.5701 99.5638 5.9360
0.1700 99.6596 99.6559 6.0449
0.1800 99.7309 99.7287 7.3198
0.1900 99.7877 99.7851 9.7769
0.2000 99.8322 99.8305 12.0368
0.2100 99.8677 99.8663 14.3319
0.2200 99.8955 99.8946 17.5088
0.2300 99.9173 99.9167 21.1197
0.2400 99.9344 99.9340 25.3890
0.2500 99.9477 99.9474 29.9903
0.2600 99.9581 99.9578 35.6695
0.2700 99.9662 99.9658 40.5849
0.2800 99.9726 99.9724 45.6628
0.2900 99.9776 99.9776 49.8262
0.3000 99.9816 99.9817 61.3741
0.3100 99.9849 99.9852 73.4072
0.3200 99.9875 99.9878 87.6728
0.3300 99.9897 99.9899 112.9891
0.3400 99.9914 99.9917 121.8812
0.3500 99.9929 99.9932 134.6083

The second term satisfies

n∑
i=1

ξi1{νi=0} ≤
κ∞∑
i=1

ξi1{νi=0} <∞,(6.4)

almost surely, because the number of reinitialization remains finite and converges
to zero if normalized by φ(Wn). We can therefore just drop the second term in
(6.3) and assume that

θn ∈Kκn
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regardless whether νn �= 0 holds or not. Let K be an arbitrary compact set. As-
sumption (4.33) implies

wx(θn−1)
q−1|f (x)|q1{θ∈K} ≤ C(diam(K))q−1W(x)q−1|f (x)|q .(6.5)

By Hölder’s inequality, we have for q < p and all θ ∈K,

mq,f (θ)1{θ∈K} = Eθ0

[
wX(θ)q−1|f (X)|q1{θ∈K}

]
≤ ‖f ‖qθ0,p

C(diam(K))q−1
Eθ0

[
W(X)p(q−1)/(p−q)](p−q)/q(6.6)

<∞
as long as q satisfies the condition

q <
p(p∗ + 1)

p+ p∗
.(6.7)

Note that (6.7) implies also q < p because p(p∗+1)
p+p∗ ≤ p for p ≥ 1. Condition (4.63)

implies

mq,f (θ) <∞ ∀1≤ q ≤ 4.(6.8)

Let K be a compact neighborhood of θ∗. Lebesgue’s theorem together with the
continuity condition (4.64) and the upper bound (6.5), which is integrable by (6.6),
shows that

mf,q : θ 
→mf,q(θ)(6.9)

is continuous for q ≤ 4. Without loss of generality, we assume from now on that
E[f (X)] = 0. By assumptions (4.33) and (4.34), we have for q < p and a > 1

E
[
wXn(θn−1)

q |f (Xn)|q1{κ∞=j} |Fi−1
]

= Eθ0

[
wXn(θn−1)

q−1|f (Xn)|q1{κ∞=j}
]

≤ ‖f ‖qθ0,p
Eθ0

[
wXn(θn−1)

p(q−1)/(p−q)1{κ∞=j}
](p−q)/p

≤ ‖f ‖qθ0,p
P(κ∞ = j)(p−q)/p1/a,

Eθ0

[
wXn(θn−1)

p(q−1)/(p−q)a/(a−1)1{κ∞=j}
](p−q)/p(a−1)/a

≤ ‖f ‖qθ0,p
C(ρ)(p−q)/p1/aekp∗ (p−q)/p1/a

× (
ρ(p−q)/p1/a+p(q−1)/(p−q)mp∗ logρ(e))j‖W‖q−1

θ0,q1
<∞,

if q1 ≤ p∗ holds for

q1 = p(q − 1)

p− q

a

a − 1
.(6.10)
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We may choose a arbitrarily large at the expense of increasing the constant in the
above estimate. Therefore, q1 ≤ p∗ holds if

p(q − 1)

p− q
< p∗(6.11)

which is equivalent to (6.7). Next, we choose

ρ < e−amp∗p(q−1)/(p−q),(6.12)

such that we can sum over j = 1, . . . ,∞ to obtain

mf,q(θn−1)= E[wXn(θn−1)
q |f (Xn)|q |Fn−1]

=
∞∑

j=1

E
[
wXn(θn−1)

q |f (Xn)|q1{κ∞=j} |Fn−1
]

< C(ρ,a,p,p∗, q,‖f ‖θ0,p,‖W‖θ0,p
∗)

with an upper bound independent of n. Assumption (4.63) implies that

sup
n

E[mf,q(θn−1)]<∞ ∀1≤ q ≤ 4.(6.13)

We have

〈M〉n =
n∑

i=1

(
mf,2(θi−1)−E[f (X)]2)

.(6.14)

Because θ 
→mf,2(θ) is continuous at θ∗ and θi−1→ θ∗ almost surely, we obtain
from Cesaro’s lemma that

〈M〉n
n
= 1

n

n∑
i=1

(
mf,2(θi−1)−E[f (X)]2) → mf,2(θ

∗)−E[f (X)]2 = σ 2
f (θ∗),

almost surely. By (6.13) and Lebesgue’s dominated convergence theorem,

s2
n

n
= E[〈M〉n]

n
→ σ 2

f (θ∗).(6.15)

Set

M̄n =
n∑

i=1

(ξ2
i −E[ξ2

i |Fi−1]).

By (6.13) M̄n is a square integrable martingale because

E[�M̄2
i |Fi−1] = E

[
(ξ2

i −E[ξ2
i |Fi−1])2 |Fi−1

]
≤ 8

(
mf,4(θi−1)+E[f (X)]4)

.
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More precisely,

E[�M̄2
i |Fi−1] =mf,4(θi−1)−mf,2(θi−1)

2 − 4mf,3(θi−1)E[f (X)]
+ 8mf,2(θi−1)E[f (X)]2 − 4E[f (X)]4.

The continuity of θ 
→mf,p(θ) in θ∗ for 1≤ p ≤ 4 and Cesaro’s lemma imply

1

n

n∑
i=1

E[�M̄2
i |Fi−1]

→mf,4(θ
∗)−mf,2(θ

∗)2 − 4mf,3(θ
∗)E[f (X)](6.16)

+ 8mf,2(θ
∗)E[f (X)]2 − 4E[f (X)]4,

almost surely, which together with (6.15) implies

lim
n→∞ s−2

n

n∑
i=1

(ξ2
i −E[ξ2

i |Fi−1])= lim
n→∞

1

n

n∑
i=1

(ξ2
i −E[ξ2

i |Fi−1])= 0,(6.17)

almost surely. Therefore,

lim
n→∞

[M]n
〈M〉n = 1+ lim

n→∞

( 〈M〉n
n

)−1 1

n

n∑
i=1

(ξ2
i −E[ξ2

i |Fi−1])= 1,(6.18)

almost surely. To apply Corollary 4.2 in [15], we need to verify the three condi-
tions:

s−2
n [M]n→ η2 > 0 almost surely;(6.19)

∀ε > 0
∞∑

n=1

s−1
n E

[|ξn|1{|ξn|>εsn}
]
<∞;(6.20)

∃δ > 0
∞∑

n=1

s−4
n E

[|ξn|41{|ξn|≤δsn}
]
<∞.(6.21)

Condition (6.19) holds because

lim
n→∞

[M]n
s2
n

= lim
n→∞

(
s2
n

n

)−1 〈M〉n
n

+ lim
n→∞ s−2

n

n∑
i=1

(ξ2
i −E[ξ2

i |Fi−1])(6.22)

= 1,

almost surely, as a consequence of (6.15) and (6.17). By (6.15), we may replace s2
n

by n for the verification of conditions (6.20) and (6.21).
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Let 1 < a < 2. We first approach (6.20). From Hölder’s and Chebyshev’s in-
equalities, we have

√
n
−1

E
[|ξn|1{|ξn|>ε

√
n}

]
≤√n

−1
E[|ξn|2a]1/(2a)

P
(|ξn|> ε

√
n
)1−1/(2a)

(6.23)

≤√n
−1

E[|ξn|2a]1/(2a)
E[|ξn|2a]1−1/(2a)

(
1

ε
√

n

)2a−1

≤ ε1−2a
E[|ξn|2a]n−a

for every fixed ε > 0. Therefore,

∞∑
n=1

√
n
−1

E
[|ξn|1{|ξn|>ε

√
n}

]≤ ε1−2a
∞∑

n=1

E[|ξn|2a]n−a <∞.(6.24)

This last equation implies condition (6.20). To check condition (6.21), note that

∞∑
n=1

n−2
E

[|ξn|41{|ξn|≤δ
√

n}
]≤ ∞∑

n=1

n−2
E

[(
δ
√

n
)4−2a|ξn|2a1{|ξn|≤δ

√
n}

]
(6.25)

≤ δ4−2a
∞∑

n=1

n−a
E[|ξn|2a]<∞.

The sums (6.24) and (6.25) are finite because

E[|ξn|2a |Fn−1] ≤ 22a−1(
mf,2a(θn)+E[f (X)]2a)

,(6.26)

and supn E[mf,2a(θn)]<∞, as shown in (6.13).

6.2. Proof of Theorem 4.2. Under the assumptions of Theorem 4.2, the bound-
edness of the functions

fy = 1(−∞,y] ◦�, 1− fy, y ∈R(6.27)

allows us to apply the law of iterated logarithm (Theorem 4.4). We verify the con-
vergence statement by proving that

P
(
qn,w,ν(α)≤ qα − δ i.o.

)= 0 ∀δ > 0,(6.28)

and

P
(
qn,w,ν(α) > qα i.o.

)= 0,(6.29)

where i.o. stands for infinitely often and is defined as

An i.o.= lim sup
n

An =
∞⋂

n=1

∞⋃
k=n

Ak.(6.30)
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Let F(y)= P(Y ≤ y) denote the distribution function of Y =�(X). We first ana-
lyze the estimator qn,w,ν(α). Define

An(δ)= {qn,w,ν(α)≤ qα − δ}.(6.31)

It follows from (4.26) and Lemma 6.1 that

An(δ)=
{

1

ν(n)
∑

i wi

∑
i

wi1{Yi≤qα−δ} ≥ α

}
(6.32)

=
{∑

i

(
wi1{Yi≤qα−δ} − F(qα − δ)

)≥ ν(n)α
∑
i

wi − nF(qα − δ)

}
.

Let

Wn(η)=
{∣∣∣∣∑

i

(wi − 1)

∣∣∣∣≤ (1+ η)φ(nv)

}
.(6.33)

We consider

An(δ)⊂An(δ)∩Wn(η)∪ �Wn(η).(6.34)

Then

An(δ)∩Wn(η)

⊂
{∑

i

(
wi1{Yi≤qα−δ} − F(qα − δ)

)
(6.35)

≥ ν(n)α
(
n− (1+ η)φ(nv)

)− nF(qα − δ)

}
.

Similarly, we have

Bn = {qn,w,ν(α) > qα}
(6.36)

=
{∑

i

(
wi1{Yi≤qα} − F(qα)

)
< ν(n)α

∑
i

wi − nF(qα)

}

and

Bn ∩Wn(η)

⊂
{∑

i

(
wi1{Yi≤qα} − F(qα)

)
(6.37)

< ν(n)α
(
n+ (1+ η)φ(nv)

)− nF(qα)

}
.

For arbitrary η > 0, let

ALIL
n (δ, η)=

{∑
i

(
wi1{Yi≤qα−δ} − F(qα − δ)

)≥ (1+ η)φ(nvqα−δ)

}
(6.38)
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and

BLIL
n (η)=

{∑
i

(
wi1{Yi≤qα} − F(qα)

)≤−(1+ η)φ(nvα)

}
.(6.39)

Then
1+ η

α
φ(nvqα−δ)+ F(qα − δ)

α
n≤ ν(n)

(
n− (1+ η)φ(nv)

)
(6.40)

�⇒ An(δ)∩Wn(η)⊂ALIL
n (δ, η)

and

ν(n)
(
n+ (1+ η)φ(nv)

)≤ F(qα)

α
n− 1+ η

α
φ(nvα)

(6.41)
�⇒ Bn ∩Wn(η)⊂ BLIL

n (δ, η).

Recall that

lim sup
n

(An ∪Bn)= lim sup
n

An ∪ lim sup
n

Bn.(6.42)

Hence, if (6.40) is satisfied, we have

P
(
An(δ) i.o.

)≤ P
(
An(δ)∩Wn(η) i.o.

)+ P
(
�Wn(η) i.o.

)
(6.43)

≤ P
(
ALIL

n (δ, η) i.o.
)+ P

(
�Wn(η) i.o.

)
.

From the law of iterated logarithm in Theorem 4.4, we know that

P
(
ALIL

n (δ, η) i.o.
)= 0, P

(
�Wn(η) i.o.

)= 0.(6.44)

Therefore, P(An(δ) i.o.)= 0 for all δ > 0. In the same way, we obtain

P(Bn i.o.)= 0.(6.45)

To verify that condition (4.36) implies (6.41) and (6.41), it is sufficient to note that
F(qα)≥ α. Because F(qα − δ) < α, it follows that

1+ η

α
φ(nvqα−δ)+ F(qα − δ)

α
n≤ n− kn1/2+γ

for n large enough and for all δ > 0.
The convergence proof for qr

n,w,ν(α) is slightly simpler. From (4.29) and Lem-
ma 6.1, we get

Ar
n(δ)= {qr

n,w,ν(α)≤ qα − δ}

=
{

1− 1

ν(n)

∑
i

wi1{Yi>qα−δ} ≥ α

}
(6.46)

=
{∑

i

(
wi1{Yi>qα−δ} − (

1− F(qα − δ)
))

≤ ν(n)(1− α)− n
(
1− F(qα − δ)

)}
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and

Br
n = {qr

n,w,ν(α) > qα}

=
{∑

i

(
wi1{Yi>qα} −

(
1− F(qα)

))
(6.47)

> ν(n)(1− α)− n
(
1− F(qα)

)}
.

For arbitrary η > 0, let

Ar,LIL
n (δ, η)=

{∑
i

(
wi1{Yi>qα−δ} − (

1− F(qα − δ)
))

(6.48)

≤−(1+ η)φ(nvqα−δ)

}
and

Br,LIL
n (η)=

{∑
i

(
wi1{Yi>qα} −

(
1− F(qα)

))≥ (1+ η)φ(nvα)

}
.(6.49)

We have

ν(n)≤ 1− F(qα − δ)

1− α
n− 1+ η

1− α
φ(nvqα−δ)

(6.50)
�⇒ Ar

n(δ)⊂Ar,LIL
n (δ, η),

and
1+ η

1− α
φ(nvα)+ 1− F(qα)

1− α
n≤ ν(n) �⇒ Br

n ⊂ Br,LIL
n (η).(6.51)

By the law of iterated logarithm (Theorem 4.4), we obtain

P
(
Ar,LIL

n (δ, η) i.o.
)= 0,P

(
Br,LIL

n (η) i.o.
)= 0.(6.52)

Therefore, conditions (6.50) and (6.51) are sufficient to guarantee (6.28) and (6.29)
for qr

n,w,ν . Because 1− F(qα)≤ 1− α and 1− F(qα − δ) > 1− α for all δ > 0,
condition (4.38) is sufficient for (6.50) and (6.51).

In a completely analogous manner, we obtain

Al
n(δ)= {ql

n,w,ν(α)≤ qα − δ}
(6.53)

=
{∑

i

(
wi1{Yi≤qα−δ} − F(qα − δ)

)≥ ν(n)α− nF(qα − δ)

}

and

Bl
n = {ql

n,w,ν(α) > qα}
(6.54)

=
{∑

i

(
wi1{Yi≤qα} − F(qα)

)
< ν(n)α − nF(qα)

}
.
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This time, let, for η > 0,

Al,LIL
n (δ, η)=

{∑
i

(
wi1{Yi≤qα−δ} − F(qα − δ)

)≥ (1+ η)φ(nvqα−δ)

}
(6.55)

and

Bl,LIL
n (η)=

{∑
i

(
wi1{Yi≤qα} − F(qα)

)≤−(1+ η)φ(nvα)

}
.(6.56)

We have
1+ η

α
φ(nvqα−δ)+ F(qα − δ)

α
n≤ ν(n) �⇒ Al

n(δ)⊂Al,LIL
n (δ, η)(6.57)

and

ν(n)≤ F(qα)

α
n− 1+ η

α
φ(nvα) �⇒ Bl

n ⊂ Bl,LIL
n (η).(6.58)

By the law of iterated logarithm, equations (6.57) and (6.58) are a sufficient con-
dition to guarantee (6.28) and (6.29) for ql

n,w,ν . Similarly as above, (4.40) is suffi-
cient for (6.57) and (6.58). This proves Theorem 4.2.

6.3. Proof of Theorem 4.1. We again apply the law of iterated logarithm 4.4.
We only prove the result for qn,w,ν(α). The other estimators are treated analo-
gously. Because F is increasing in qα , it follows that F← is continuous in α. It is
sufficient to prove for any δ > 0 that

P
(
qn,w,ν(α)≤ qα − δ i.o.

)= 0(6.59)

and

P
(
qn,w,ν(α) > qα + δ i.o.

)= 0.(6.60)

For ν(n)≡ 1, we obtain from (6.40),

1+ η

α
φ(nvqα−δ)+ F(qα − δ)

α
n+ (1+ η)φ(nv)≤ n

(6.61)
�⇒ An(δ)∩Wn(η)⊂ALIL

n (δ, η).

If we define

Bn(δ)= {qn,w,ν(α) > qα + δ}
(6.62)

=
{∑

i

(
wi1{Yi≤qα+δ} − F(qα + δ)

)
< α

∑
i

wi − nF(qα + δ)

}
,

we deduce

n≤ F(qα + δ)

α
n− (1+ η)φ(nv)− 1+ η

α
φ(nvqα+δ)

(6.63)
�⇒ Bn(δ)∩Wn(η)⊂ BLIL

n (δ, η).
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For any δ > 0, F(qα − δ) < α and F(qα + δ) > α. Therefore, if n is large enough,
conditions (6.61) and (6.63) are satisfied. We conclude as in the proof of Theo-
rem 4.2.

6.4. Proof of Proposition 4.1. Let K be a compact subset of W . We apply
Markov’s and Burkholder’s inequality,

P

(
max
k≤n
‖S1,k(γ , ε, K)‖> δ

)

≤ Bp

δp
E

[(
1{n≤σ(K,ε)}

n∑
k=1

γ 2
k ‖H(Xk, θk−1)− h(θk−1)‖2

)p/2]

≤ 2pBp

δp

(
n∑

k=1

γ 2
k E

[
1{k−1≤n≤σ(K,ε)}

(‖H(Xk, θk−1)‖p

+ ‖h(θk−1)‖p)]2/p

)p/2

,

where Bp is a universal constant only depending on p. To estimate

E
[
1{k−1≤n≤σ(K,ε)}(‖H(Xk, θk−1)‖p)

]2/p
,

note that by our assumptions

E
[
1{k−1≤n≤σ(K,ε)}‖H(Xk, θk−1)‖p]2/p

= E
[
1{k−1≤σ(K,ε)}Eθk−1[‖H(Xk, θk−1)‖p]]2/p

= E

[
1{k−1≤σ(K,ε)}Eθ0

[ ‖H(Xk, θk−1)‖p
wθk−1(Xk)Wp(Xk)

Wp(Xk)

]]2/p

= C2
KE

[
1{k−1≤σ(K,ε)}Eθ0[Wp(Xk)]]2/p ≤ C2

K‖W‖2θ0,p
,

where the constant CK comes from assumption (4.54). Because h is continuous
and K compact, 1{k−1≤σ(K,ε)}‖h(θk−1)‖ is bounded as well. Therefore, we arrive
at the estimate

P

(
max
k≤n
‖S1,k(γ , ε, K)‖> δ

)
≤ C

1

δp

(
n∑

k=1

γ 2
k

)p/2

.

The bound

P
γ

(x,θ)

(
ν(ε) < K

)≤C

n∑
k=1

(
γk

εk

)p

is derived similarly as in the proof of Proposition 5.2 in [1] .
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