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We consider dimension reduction for regression or classification in which
the predictors are matrix- or array-valued. This type of predictor arises when
measurements are obtained for each combination of two or more underlying
variables—for example, the voltage measured at different channels and times
in electroencephalography data. For these applications, it is desirable to pre-
serve the array structure of the reduced predictor (e.g., time versus channel),
but this cannot be achieved within the conventional dimension reduction for-
mulation. In this paper, we introduce a dimension reduction method, to be
called dimension folding, for matrix- and array-valued predictors that pre-
serves the array structure. In an application of dimension folding to an elec-
troencephalography data set, we correctly classify 97 out of 122 subjects as
alcoholic or nonalcoholic based on their electroencephalography in a cross-
validation sample.

1. Introduction. In many contemporary statistical applications, the sampling
unit of data is in the form of a matrix- or array-valued object, such as an image,
a video clip or an electroencephalography (EEG). Such data sets share two distinct
characteristics: they are large, usually containing gigabytes of information, and
they are structured, with each dimension of the random arrays (e.g., the rows and
columns of a random matrix) representing information of a different nature. The
exploration, reduction, comprehension and analysis of such large data sets, treat-
ing each array as an observation while preserving its structure, produce a fresh
challenge for data analysis. In this paper, we propose a new method, to be called
dimension folding, to deal with such types of data sets.

Our method is motivated by a study of an EEG data set which concerns the
relationship between genetic predisposition and tendency for alcoholism (http:
//kdd.ics.uci.edu/databases/eeg/eeg.data.html). The study involved two groups of
subjects: an alcoholic and a control group. Each subject was exposed to a stimulus
while voltage values were measured from 64 channels of electrodes placed on the
subject’s scalp for 256 time points. The full data set requires about 3 gigabytes of
memory. We are interested in the association between alcoholism and the pattern
of voltage over times and channels.
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FIG. 1. Perspective plots for the alcoholic group (upper panel) and the control group (lower panel).

Figure 1 shows a typical EEG pattern for an alcoholic (upper panel) and a non-
alcoholic (lower panel) subject, where time and channel are represented by two
horizontal axes and voltage is represented by the vertical axis. It is clear that the
EEG has different patterns for the two groups. We would like to represent these
different patterns in low dimension for better comprehension and classification.

In mathematical terms, the predictor is a random matrix X of dimension
pL × pR , and the response is a random variable Y —in this case, a binary ran-
dom variable indicating whether or not a subject is alcoholic. We are interested in
reducing the dimension of X as much as possible while preserving the (nonpara-
metric) regression relation between Y and X. Without any structural restriction on
the reduced predictor, the dimension reduction problem is no different from the
conventional dimension reduction for vector-valued predictors. That is, one can
simply treat the matrix X as a vector and consider the problem

Y ⊥⊥ vec(X)|ηT vec(X).(1)
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Here, vec(X) denotes the pLpR-dimensional vector obtained by stacking the
columns of X and η is a pLpR × d nonrandom matrix with d < pLpR . This is
the classical dimension reduction problem to which all of the existing methods ap-
ply; see, for example, Li (1991, 1992), Duan and Li (1991), Cook and Weisberg
(1991), Cook (1994, 1996, 1998).

However, there are practical reasons not to treat the matrix X as the vector
vec(X). First, problem (1) does not preserve the original matrix structure of the
predictor, and so important aspects of interpretation may be lost. For example, for
the EEG data, each column of X represents a time point and each row represents
a channel. It would be desirable for the reduced predictors to still represent time
and channel so that, for example, we can locate particular channels or time pat-
terns that characterize the alcoholic tendency most distinctively. But a predictor
of the form ηT vec(X) will have lost such an interpretation. Second, treating X as
a matrix rather than a vector greatly reduces the number of parameters needed in
dimension reduction, which enhances the accuracy of the estimated predictor.

In this paper, we give a theoretical formulation and develop estimation proce-
dures for dimension reduction problems with matrix- or array-valued predictors,
which preserve the interpretations of the underlying variables. Suppose that there
are matrices α and β , each with more rows than columns, such that Y is indepen-
dent of X given αT Xβ . In symbols,

Y ⊥⊥ X|αT Xβ.(2)

We then only need to know the smaller matrix αT Xβ to predict, or classify, Y .
Meanwhile, αT Xβ preserves the interpretations of channels and times—its rows
representing linear combinations of channels, or principal channels, and columns
representing linear combinations of times, or principal times. Such information
is clearly helpful: for example, we can use the linear coefficients of the principal
channel(s) to assess which parts of the brain is associated with alcoholism.

Letting ⊗ denote the Kronecker product, relation (2) is equivalent to

Y ⊥⊥ vec(X)|(β ⊗ α)T vec(X).(3)

The challenge of dimension reduction problem (2) is that the matrix η in (1) can-
not, in general, be written as the matrix β ⊗ α in (3). The essence of our approach
is to seek the smallest dimensional αT Xβ so that (i) ηT X is measurable with re-
spect to αT Xβ and (ii) the conditional independence (2) is preserved. We will also
extend our results to array-valued predictors. We refer to our method as dimen-
sion folding to emphasize its array-preserving nature and to distinguish it from the
conventional dimension reduction methods for vector-valued predictors.

In Section 2, we present the theoretical formulation and development of dimen-
sion folding. In Section 3, we introduce the key notion of the Kronecker envelope,
which provides the guiding principle for constructing dimension-folding estima-
tors from conventional dimension reduction estimators. In Sections 4 and 5, we
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develop three basic dimension-folding techniques: folded sliced inverse regres-
sion, folded sliced average variance estimation, and folded directional regression.
In Section 6, we outline the extension to array-valued predictors. In Section 7, we
make simulation comparisons between different dimension-folding methods, and
between dimension-folding methods and conventional dimension reduction meth-
ods. In Section 8, we apply dimension folding to the aforementioned EEG data.

2. Dimension-folding subspaces. First, let us introduce some notation and
terminology. For a p×q matrix A, span(A) stands for the subspace of R

p spanned
by the columns of A and PA stands for the orthogonal projection onto span(A),
that is, PA = A(AT A)†AT , where † denotes the Moore–Penrose inversion. If S is
a subspace of R

p and A is a matrix of full column rank such that span(A) = S ,
then we say that A is a basis matrix of S . Moreover, PS stands for the projection
onto S , that is, PS = PA, where A is any basis matrix of S . For a positive integer p,
Ip denotes the p × p identity matrix.

Suppose that there are matrices α ∈ R
pL×qL and β ∈ R

pR×qR , with qL ≤ pL

and qR ≤ pR , such that (2) holds. This is then equivalent to

Y ⊥⊥ X|(αAL)T X(βAR),

whenever AL ∈ R
qL×qL and AR ∈ R

qR×qR are nonsingular. In other words, relation
(2) depends on α and β only through their respective column spaces, span(α) and
span(β). Thus, the identifiable parameters of this problem are column spaces of α
and β , rather than α and β themselves.

DEFINITION 1. If there exist a subspace SL ⊆ R
pL and a subspace SR of R

dR

such that

Y ⊥⊥ X|PSL
XPSR

,(4)

then SL is called a left dimension-folding subspace for Y |X and SR is called a
right dimension-folding subspace for Y |X.

Under mild regularity conditions, it can be shown that if SL and S ′
L are two

left dimension reduction spaces for Y |X, then SL ∩ S ′
L is itself a left dimension

reduction space. The same can be said of the right dimension reduction subspace.
The situation here is similar to that in the classical setting of dimension reduction
where, under very mild conditions, the intersection of two dimension reduction
spaces is itself a dimension reduction space; see Cook (1998), Chiaromonte and
Cook (2001) and Yin, Li and Cook (2008). Because of the similarity, we will omit
the proof of this fact in the new context and take it for granted for the rest of
the paper. This closure under intersection makes it possible to achieve maximal
dimension folding because the intersection of all dimension-folding subspaces is
itself a dimension-folding subspace. For two subspaces S1 and S2 in R

m, let S1 ⊗
S2 denote the linear subspace spanned by the vectors {v1 ⊗ v2 : v1 ∈ S1,v2 ∈ S2}.
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DEFINITION 2. Let SY |◦X (or SY |X◦) be the intersection of all left (or right)
dimension-folding subspaces for Y |X. The subspace

SY |X◦ ⊗ SY |◦X

is called the central dimension-folding subspace and is written as SY |◦X◦.

Let βL ∈ R
pL×dL be a basis matrix of SY |◦X and βR ∈ R

pR×dR be a basis matrix
of SY |X◦. It is then easy to see that

SY |◦X◦ = span(βR) ⊗ span(βL) = span(βR ⊗ βL),

so the right-hand side is an equivalent definition of SY |◦X◦.
Henceforth, we no longer need to discuss any dimension-folding subspace that

is not minimal in the sense of Definition 2, so, for brevity, we will refer to the
central dimension-folding subspace simply as the dimension-folding subspace.
Similarly, we will refer to the conventional central dimension reduction subspace
(when X is a vector) simply as the conventional dimension reduction subspace.
Let SY |vec(X) be the conventional dimension reduction subspace of Y versus the
random vector vec(X). From Y ⊥⊥ vec(X)|(βR ⊗ βL)T vec(X), we see that

SY |vec(X) ⊆ SY |◦X◦.(5)

However, the opposite relation, SY |◦X◦ ⊆ SY |vec(X), does not generally hold. This
means that if we do not wish to preserve the matrix structure of X, then it is possi-
ble to further reduce the dimension of X. However, SY |◦X◦ is the best that we can
do if the reduced predictor is to preserve the matrix form. The following examples
help to fix the idea.

EXAMPLE 1. Let dL = dR = 2 and pL = pR = p. The response Y is a
Bernoulli random variable with success probability equal to π ; the conditional
distribution of X given Y is multivariate normal with conditional mean

E(X|Y = 0) = 0p×p, E(X|Y = 1) =
(

μI2 02×(p−2)

0(p−2)×2 0(p−2)×(p−2)

)
,

where μ 
= 0 and 0r×s is an r × s matrix with all of its elements equal to 0. The
conditional variances are specified by

var(Xij |Y = 0) =
{

σ 2, (i, j) ∈ A,
1, (i, j) /∈ A,

var(Xij |Y = 1) =
{

τ 2, (i, j) ∈ A,
1, (i, j) /∈ A,

where σ 
= τ and A is the index set {(1,2), (2,1)}. We assume that cov(Xij ,

Xi′j ′) = 0 whenever (i, j) 
= (i′, j ′).
Using Bayes’ theorem, we can deduce that the conditional probability P(Y =

1|X) [and hence also P(Y = 0|X)] is a function of X11 + X22, X2
12 and X2

21. So,
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if we let ei be the p-dimensional vector whose ith element is 1 and other elements
are 0, then the conventional dimension reduction subspace SY |vec(X) is spanned by

the following three vectors in R
p2

:

e1 ⊗ e1 + e2 ⊗ e2, e1 ⊗ e2, e2 ⊗ e1.

In the mean time, since the smallest submatrix of X that contains X11 + X22,X12
and X21 is (

X11 X12
X21 X22

)
,

the central dimension-folding subspace SY |◦X◦ is spanned by

e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2.(6)

Thus, in this case, SY |vec(X) is a proper subspace of SY |◦X◦.

The next example illustrates a situation where SY |vec(X) and SY |◦X◦ coincide.

EXAMPLE 2. If we choose the index set A in the definition of var(Xij |Y) in
Example 1 to be {(1,1), (1,2), (2,1)}, then it can be shown that P(Y = 1|X) is a
function of X2

11,X
2
12,X

2
21 and X11/τ

2 + X22. Thus, both SY |vec(X) and SY |◦X◦ are
spanned by the set of vectors in (6).

The subspace SY |◦X◦ enjoys an invariance property similar to that of a conven-
tional dimension reduction subspace; see Cook (1998), Proposition 6.4.

PROPOSITION 1. Let Z = AT XB, where A and B are nonsingular matrices
in R

pL×pL and R
pR×pR , respectively. Then

SY |◦Z◦ = (B−1 ⊗ A−1)SY |◦X◦.

PROOF. Let βL and βR be basis matrices SY |◦X and SY |X◦, respectively. Be-
cause Z and X have one-to-one correspondence, we have the following equiva-
lences:

Y ⊥⊥ X|βT
LXβR ⇔ Y ⊥⊥ X|βT

LA−T AT XBB−1βR

⇔ Y ⊥⊥ Z|(A−1βL)T ZB−1βR.

Thus, span(A−1βL) = A−1SY |◦X is a left dimension reduction space for Y |Z and
span(B−1βR) = B−1SY |X◦ is a right dimension reduction space for Y |Z. Conse-
quently,

SY |◦Z ⊆ A−1SY |◦X, SY |Z◦ ⊆ B−1SY |X◦.
By the same argument, SY |◦X ⊆ ASY |◦Z and SY |X◦ ⊆ BSY |Z◦, which completes
the proof. �
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3. Kronecker envelopes and dimension folding. We now introduce the no-
tion of the Kronecker envelope of a random matrix, which plays a key role in
constructing dimension-folding estimators.

THEOREM 1. Let U be an (rRrL)×k random matrix for some positive integers
rL, rR and k. There then exist subspaces S◦U and SU◦ of R

rR and R
rL , respectively,

such that:

1. span(U) ⊆ SU◦ ⊗ S◦U almost surely;
2. if there exists another pair of subspaces SR ∈ R

rR and SL ∈ R
rL that satisfies

condition 1, then SU◦ ⊗ S◦U ⊆ SR ⊗ SL.

The random matrix U, as well as the integers rL, rR, k, are related to specific
dimension-folding methods to be described later. For example, for folded-SIR,
U = �−1E[vec(X)|Y ], in which case rR = pR , rL = pL and k = 1. For folded-
SAVE, U is the random matrix �−1 − �−1 var(vec(X)|Y)�−1. In this case, rR =
pR , rL = pL and k = pLpR .

PROOF OF THEOREM 1. First, we note that there always exist SR ⊆ R
rR and

SL ⊆ R
rL so that span(U) ⊆ SR ⊗ SL because we can simply take SR = R

rR and
SL = R

rL . Thus, the following collection of subspaces is nonempty:

F = {SR ⊗ SL : span(U) ⊆ SR ⊗ SL, SR ⊆ R
rR , SL ⊆ R

rL}.
We will show that F is a π -system [Billingsley (1986), page 36], that is, the inter-
section of any two members of F is a member of F.

Let SR ⊗ SL and S̃R ⊗ S̃L be two members of F. Evidently, span(U) ⊆ (SR ⊗
SL) ∩ (S̃R ⊗ S̃L). We now show that

(SR ⊗ SL) ∩ (S̃R ⊗ S̃L) = (SR ∩ S̃L) ⊗ (SR ∩ S̃L).(7)

For two orthogonal subspaces, say S, S ′, we use S ⊕ S ′ to denote the subspace
spanned by the vectors in S and S ′. Let PR, P̃R,P∗

R be the projections onto SR ,
S̃R , SR ∩ S̃R , respectively, and let PL, P̃L,P∗

L be the projections on to SL, S̃L,
SL ∩ S̃L, respectively. Then

SR ⊗ SL = [P∗
R SR ⊕ (PR − P∗

R)SR] ⊗ [P∗
LSL ⊕ (PL − P∗

L)SL]
= (P∗

R SR ⊗ P∗
LSL) ⊕ [P∗

R SR ⊗ (PL − P∗
L)SL]

⊕ [(PR − P∗
R)SR ⊗ P∗

LSL]
⊕ [(PR − P∗

R)SR ⊗ (PL − P∗
L)SL]

≡ (P∗
R SR ⊗ P∗

LSL) ⊕ A.
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Similarly,

S̃R ⊗ S̃L = (P∗
R S̃R ⊗ P∗

LS̃L) ⊕ [P∗
R S̃R ⊗ (P̃L − P∗

L)S̃L]
⊕ [(P̃R − P∗

R)S̃R ⊗ P∗
LS̃L]

⊕ [(P̃R − P∗
R)S̃R ⊗ (P̃L − P∗

L)S̃L]
≡ (P∗

R S̃R ⊗ P∗
LS̃L) ⊕ B.

Note that

P∗
R SR ⊗ P∗

LSL = P∗
R S̃R ⊗ P∗

LS̃L = (SR ∩ S̃R) ⊗ (SL ∩ S̃L).(8)

We claim that there is no nonzero common element of A and B, that is, A ∩ B =
{0}. This is because, by construction,

[(PR − P∗
R)SR] ∩ [(P̃R − P∗

R)SR] = {0},
[(PL − P∗

L)SL] ∩ [(P̃L − P∗
L)SL] = {0}.

It follows that

[(P∗
R SR ⊗ P∗

LSL) ⊕ A] ∩ [(P∗
R S̃R ⊗ P∗

LS̃L) ⊕ B] = P∗
R SR ⊗ P∗

LSL.

This, combined with (8), proves equality (7). Hence, F is a π -system.
Let SU◦ ⊗ S◦U be any member of F that has the smallest dimension. It then

satisfies condition 1 of the theorem. Let SR ⊗ SL be any member of F. Then
(SR ⊗ SL) ∩ (SU◦ ⊗ S◦U) is also a member of F. Hence,

dim[(SR ⊗ SL) ∩ (SU◦ ⊗ S◦U)] = dim(SU◦ ⊗ S◦U),

which implies that SU◦ ⊗ S◦U ⊆ SR ⊗ SL. Thus, SU◦ ⊗ S◦U satisfies condition 2,
which completes the proof. �

This theorem justifies the following definition of a Kronecker envelope.

DEFINITION 3. The Kronecker product space SU◦ ⊗ S◦U in Theorem 1 is
called the Kronecker envelope of U and is written as E ⊗(U).

Theorem 1 guarantees that E ⊗(U) exists and is uniquely defined. Note that a
Kronecker envelope is defined with respect to fixed positive integers rL and rR .
Therefore, a fully rigorous terminology should be “Kronecker envelope of U with
respect to integers (rL, rR).” However, in our subsequent discussions, rL and rR
will be clear from the context—they will be the numbers of rows and columns
of a random matrix from which U is derived. For this reason, we will drop this
qualification.

Note that a vector v ∈ R
rRrL is orthogonal to span(U) almost surely if and only

if E[(vT U)2] = vT E[(UUT )]v = 0. Hence, span[E(UUT )] is the smallest linear
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subspace that contains the random subspace span(U) almost surely. If we use SU
to denote span[E(UUT )], then Theorem 1 and Definition 3 can both be stated with
respect to SU. Specifically, the condition “span(U) ⊆ SU◦ ⊗ S◦U almost surely” in
Theorem 1 can be replaced by “SU ⊆ SU◦ ⊗ S◦U” without changing the content of
the theorem. In the following, we will say E ⊗(U) is the Kronecker envelope of U
or that of SU interchangeably.

In the context of conventional dimension reduction [where X is a vector and
� = var(X)], Cook, Li and Chiaromonte (2007) introduced the notion of �-
envelope as the smallest reducing subspace of � that contains the dimension re-
duction space SY |X; see also Cook, Li and Chiaromonte (2009). Their purpose was
to preserve the eigenstructure of � so as to efficiently handle the singularity of �.
While the purpose and meaning of the Kronecker envelope differ from those of the
�-envelope, they both serve to impose extra structure on a dimension reduction
(or folding) subspace, with the former imposing an eigenstructure and the latter
imposing a Kronecker-product structure.

The next theorem is the theoretical basis for all of the dimension folding meth-
ods that will be described in the subsequent sections.

THEOREM 2. Suppose that U is a random matrix in R
pLpR×k such that

span(U) ⊆ SY |vec(X) almost surely. Then

E ⊗(U) ⊆ SY |◦X◦
and, consequently, S◦U ⊆ SY |◦X and SU◦ ⊆ SY |X◦.

PROOF. By (5), span(U) ⊆ SY |X◦ ⊗ SY |◦X almost surely. Hence, S◦U ⊆ SY |◦X
and SU◦ ⊆ SY |X◦. �

Theorem 2 means that if we can find a random vector or a random matrix
U whose column space lies almost surely within the conventional dimension
reduction space SY |vec(X), then its Kronecker envelope is a subspace of the
dimension-folding subspace SY |◦X◦. This is the fundamental principle by which
we will construct estimates of SY |◦X◦. Many estimators for the conventional di-
mension reduction space, especially those based on conditional moments of X
given Y , correspond to such random vectors or matrices. Thus, to estimate the
dimension-folding subspace, all we need to do is to estimate the Kronecker enve-
lope of the relevant random vectors or matrices which give rise to the conventional
dimension reduction estimators.

We shall focus on three conventional dimension reduction estimators: SIR,
SAVE and DR. In fact, using the same principle, we can develop dimension-fold-
ing methods in conjunction with all existing moment- (or conditional-moment-)
based conventional methods, such as those developed in Zhu and Fang (1996),
Bura and Cook (2001), Fung et al. (2002), Li (1992), Cook and Li (2002, 2004),
Yin and Cook (2002), Ye and Weiss (2003), Ferre and Yao (2005) and Li, Zha and
Chiaromonte (2005).
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4. Objective functions for Kronecker envelopes. In this section, we intro-
duce a general objective function whose minimization gives the Kronecker enve-
lope, which will guide us in the construction of sample estimates of Kronecker
envelopes.

4.1. Conventional dimension reduction estimators. We first review some basic
facts about SIR, SAVE and DR in the conventional setting. Let X be a p-dimen-
sional random vector and � = var(X). Let β be a basis matrix of SY |X. SIR is
based on the fact that if

E(X|βT X) is linear in βT X,(9)

then the random vector

�−1E(X|Y)(10)

belongs to SY |X almost surely; see Li (1991). Let (X̃, Ỹ ) be an independent copy
of (X, Y ). SAVE and DR are based on the fact that if, in addition to condition (9),
we have that

var(X|βT X) is a nonrandom matrix,(11)

then the column spaces for the random matrices

�−1[� − var(X|Y)] (SAVE),
(12)

�−1[
2� − E

(
(X̃ − X)(X̃ − X)T |Y, Ỹ

)]
(DR)

are subspaces of SY |X almost surely; see Cook and Weisberg (1991) and Li and
Wang (2007).

Vectors in the central space are extracted by eigendecompositions correspond-
ing to relations (10) and (12). For example, for SAVE, let

A = E[Ip − var(Z|Y)]2 where Z = �−1/2X,

and let v1, . . . ,vd be the eigenvalues of A corresponding to nonzero eigenvalues.
Then {�−1/2vi : i = 1, . . . , d} spans (at least) a subspace of SY |X.

4.2. General form of the objective function. We now return to the matrix
predictor case, where X ∈ R

pL×pR . Let η be a basis matrix of the conventional
dimension reduction subspace SY |vec(X). By the discussions in Section 4.1, if
E[vec(X)|ηT vec(X)] is linear in ηT vec(X), then the random vector (10), with
X replaced by vec(X) and � redefined as var[vec(X)], belongs to SY |vec(X) al-
most surely. If, in addition, var[vec(X)|ηT vec(X)] is nonrandom, then, with the
same replacements, the column spaces of the random matrices in (12) are sub-
spaces of SY |vec(X) almost surely. By Theorem 2, we can estimate the dimension-
folding subspace SY |◦X◦ by targeting the Kronecker envelopes of the SIR, SAVE
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and DR estimators of SY |vec(X). We refer to the dimension-folding methods thus
constructed as folded-SIR, folded-SAVE and folded-DR, respectively.

Again using the folded-SAVE to illustrate the idea, we minimize the objective
function

E‖[IpRpL
− var(vec(Z)|Y)] − �1/2(b ⊗ a)f(Y )‖2,

where vec(Z) = �−1/2 vec(X), over matrices a, b and matrix-valued func-
tions f(·). The matrix �1/2 in front of (b ⊗ a) corresponds to the transformation of
vi to �−1/2vi in a conventional procedure. The Kronecker product structure is im-
posed through the regression coefficient matrix b⊗a. The next theorem shows that
the solution to this minimization problem indeed gives the Kronecker envelope of
�−1[� − var(vec(X))], the object we desire. The theorem is stated sufficiently
generally to cover all three methods.

Let U be a pRpL × k random matrix, α0 and β0 be the basis matrices of S◦U
and SU◦, respectively, and mL and mR be the dimensions of S◦U and SU◦, respec-
tively. For positive integers k1 and k2, and a random vector W defined on �W, let
L

k1×k2
2 (�W) be the class of functions f :�W → R

k1×k2 such that E‖f(W)‖2 < ∞,
where ‖ · ‖ is the Frobenius matrix norm.

THEOREM 3. Suppose that the elements of U have finite variances and are
measurable with respect to a random vector W and that A is a pRpL × pRpL

nonrandom and nonsingular matrix. Let (a∗,b∗, f∗) be the minimizer of

E‖AU − A(b ⊗ a)f(W)‖2(13)

over all a ∈ R
pL×mL , b ∈ R

pR×mR and f ∈ L
mLmR×k
2 (�W). Then

span(b∗ ⊗ a∗) = E ⊗(U).

PROOF. Since span(β0 ⊗ α0) = E ⊗(U) and the elements of U are measurable
with respect to W, there is a random matrix φ(W) ∈ L

mLmR×k
2 (�W) such that

U = (β0 ⊗ α0)φ(W), which is equivalent to

AU = A(β0 ⊗ α0)φ(W).

Thus, (13) reaches its minimum 0 within the range of (a,b, f) given in the the-
orem. This implies that any minimizer (a∗,b∗, f∗) of (13) must satisfy A(b∗ ⊗
a∗)f∗(W) = AU almost surely and, consequently,

(β0 ⊗ α0)φ(W) = (b∗ ⊗ a∗)f ∗(W) almost surely.(14)

But this means that span(b∗ ⊗ a∗) contains U almost surely and has the same
dimensions as E ⊗(U). The theorem now follows from the uniqueness of the Kro-
necker envelope. �
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In the general objective function (13), the matrix A is �1/2 for all three
dimension-folding estimators. The random element W is the random variable Y

for folded-SIR and folded-SAVE; it is the random vector (Y, Ỹ ) for folded-DR.
The random element U is the random vector �−1E[vec(X)|Y ] for folded-SIR; it
is random matrix �−1[� − var(vec(X)|Y)]�−1/2 for folded-SAVE; it is the ran-
dom matrix

�−1{
2� − E

[(
vec(X) − var(X̃)

)(
vec(X) − var(X̃)

)T |Y, Ỹ
]}

�−1/2

for folded-DR. Note that the f(Y ) for folded-SIR is an mRmL-dimensional vector,
whereas the f(Y ) for folded-SAVE and f(Y, Ỹ ) for folded-DR are mRmL × pRpL

matrices.
The construction of the objective function in Theorem 3 expresses conditional

mean in a minimization problem, which echoes the constructions used in Cook and
Ni (2005), Li and Dong (2009) and Dong and Li (2009). This construction allows
us to impose the Kronecker structure on minimization.

In the context of conventional dimension reduction, Li and Wang (2007) showed
that both SAVE and DR are exhaustive, that is, the columns of the matrices in (12)
do not lie in a proper subspace of SY |X. It is also known that SIR is not exhaustive
when the relation between Y and X contains a U-shaped trend. Meanwhile, even
though SAVE is exhaustive at the population level, the sample estimate is often
insensitive to monotone trend. Li and Wang (2007) give strong evidence that DR
combines the advantages of both SIR and SAVE. A dimension-folding method
inherits the exhaustive property from its conventional counterpart. Specifically, let
Fn be the empirical distribution based on the sample (X1, Y1), . . . , (Xn, Yn) and let
F0 be the true distribution of (X, Y ). We say that a matrix-valued statistics β(Fn)

is an exhaustive estimator of a subspace S if span[β(F0)] = S .

PROPOSITION 2. If β(Fn) is an exhaustive estimator of the conventional cen-
tral space SY |vec(X), then the Kronecker envelope of span[β(Fn)] is an exhaustive
estimator of the dimension-folding space SY |◦X◦.

PROOF. Since β(Fn) is exhaustive, span[β(F0)] = SY |vec(X). Then E =
E ⊗{span[β(F0)]} is a Kronecker product space satisfying Y ⊥⊥ X|PE vec(X). It
follows that SY |◦X◦ ⊆ E . In the mean time, since SY |◦X◦ is a Kronecker product
space containing vec(X), we have E ⊆ SY |◦X◦. �

5. Estimation. In this section we develop an algorithm to minimize the sam-
ple version of the objective function (13). A very appealing property of the algo-
rithm is that it can be broken down into iterations among three elementary steps,
each being essentially least squares. This makes the minimization relatively fast
and stable, even for a large number of parameters, which is extremely important
for our applications, where the number of parameters is easily in the thousands.
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5.1. Population-level solution. We need the notion of a commutation matrix.
If A is an r1 × r2 matrix, then Kr1,r2 is the unique matrix in R

r1r2×r1r2 that
transforms vec(A) to vec(AT ) : Kr1,r2 vec(A) = vec(AT ). The explicit form and
the properties of a commutation matrix can be found in Magnus and Neudecker
(1979). Two properties that will be useful are: (a) if A ∈ R

r1×r2 and B = R
r3×r4 ,

then

A ⊗ B = Kr1,r3(B ⊗ A)Kr4,r2;(15)

and (b) for any integer r , Kr,1 = K1,r = Ir .

LEMMA 1. Let A and B be matrices in R
r1×r2 and R

r3×r4 , where r1, . . . , r4
are positive integers. Then

vec(A ⊗ B) = �[vec(A) ⊗ vec(B)],(16)

where � = Ir2 ⊗ [(Ir4 ⊗ Kr1,r3)Kr3r4,r1].
PROOF. Since A ⊗ B = (a1 ⊗ B, . . . ,ar2 ⊗ B), the vector vec(A ⊗ B) consists

of vec(a1 ⊗ B), . . . ,vec(ar2 ⊗ B) stacked together vertically. By (15), ai ⊗ B =
Kr1,r3(B ⊗ ai ). Hence, vec(ai ⊗ B) = (Ir4 ⊗ Kr1,r3)vec(B ⊗ ai ). But it is easy to
see that vec(B ⊗ ai ) = vec(B) ⊗ ai . Apply (15) again to obtain vec(B) ⊗ ai =
Kr3r4,r1(ai ⊗ vec(B)). Hence, vec(A ⊗ B) becomes⎛

⎜⎝
(Ir4 ⊗ Kr1,r3)Kr3r4,r1

(
a1 ⊗ vec(B)

)
...

(Ir4 ⊗ Kr1,r3)Kr3r4,r1

(
ar2 ⊗ vec(B)

)
⎞
⎟⎠ ,

which can be written as {Ir2 ⊗ [(Ir4 ⊗ Kr1,r3)Kr3r4,r1]}[vec(A) ⊗ vec(B)], as de-
sired. �

In the following, � is the matrix defined in Lemma 1 with (r1, r2, r3, r4) taken
to be (pR,mR,pL,mL), that is, � = ImR

⊗ [(ImL
⊗ KpR,pL

)KpLmL,pR
].

THEOREM 4. 1. For fixed f ∈ L
mRmL×k
2 (�W), a ∈ R

pL×mL , the minimizer of
(13) over b ∈ R

pR×mR is b = [E(VT
2 V2)]−1E(VT

2 V1), where

V1 = vec(AU), V2 = (fT ⊗ A)�[vec(a) ⊗ IpRmR
].(17)

2. For fixed f ∈ L
mRmL×k
2 (�W), b ∈ R

pR×mR , the minimizer of (13) over a ∈
R

pL×mL is a = [E(VT
2 V2)]−1E(VT

2 V1), where

V1 = vec(AU), V2 = (fT ⊗ A)�[IpLmL
⊗ vec(b)].(18)

3. For fixed a ∈ R
pL×mL and b ∈ R

pR×mR , the minimizer of (13) over f ∈
L

mRmL×k
2 (�W) is f(w) = (VT

2 V2)
−1[VT

2 V1(w)], where

V1(w) = vec[AU(w)], V2 = IpRpL
⊗ [A(b ⊗ a)].(19)
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PROOF. By standard calculations, if V1 is an r1-dimensional random vector
and V2 is an r1 × r2-dimensional random matrix, each having finite second mo-
ments, then the minimizer of

E‖V1 − V2c‖2(20)

over all c ∈ R
r2 is

c∗ = [E(VT
2 V2)]−1E(VT

2 V1).(21)

We now rewrite the objective function (13) as

E‖vec(AU) − vec[A(b ⊗ a)f]‖2.(22)

To prove part 1, note that

vec[A(b ⊗ a)f] = (fT ⊗ A)vec(b ⊗ a) = (fT ⊗ A)�[vec(b) ⊗ vec(a)],
where the second equality follows from Lemma 1. Note that vec(b) ⊗ vec(a) =
vec[vec(b)vecT (a)] = [vec(a) ⊗ IpRmR

]vec(b). Hence,

vec[A(b ⊗ a)f] = (fT ⊗ A)�[vec(a) ⊗ IpRmR
]vec(b).

Thus, (22) is of the form (20), with V1,V2 defined as in (17) and c = vec(b). The
assertion of part 1 now follows from (21).

The proof of part 2 is similar to that of part 1 and is thus omitted. Let us turn to
part 3. For each fixed w, f(w) is the minimizer of

E[‖AU − A(b ⊗ a)f(Z)‖2|W = w]
(23)

= ‖vec[AU(w)] − [IpRpL
⊗ A(b ⊗ a)]vec[f(w)]‖2,

where, since U(w) and f(w) are fixed given W = w, the conditional expectation
E(·|W = w) disappears. Now, apply (21) to (23) with V1(w),V2 defined in (19)
and c = vec[f(w)] to complete the proof. �

When k = 1, as is the case for folded-SIR, the solution can be further simplified.
Let a be a vector in R

rs , where r and s are positive integers. Thus, a can be written
as (aT

1 , . . . ,aT
s )T , where each ai is a vector in R

r . We define matr (a) to be the
r × s matrix (a1, . . . ,as). This is an inverse operation of vec, in the sense that, for
any matrix A ∈ R

r×s and any vector a ∈ R
rs , we have

matr [vec(A)] = A, vec[matr (a)] = a.

Note that the operation matr is specified by a number r , but no such specification
is needed for the definition of vec. A useful property of the mat operation is that if
A ∈ R

r1×r2 , b ∈ R
r2r3 and C ∈ R

r3×r4 for some positive integers r1, . . . , r4, then

matr1[(CT ⊗ A)b] = A matr2(b)C.(24)
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This can be verified by taking vec on both sides and observing that

vec[A matr2(b)C] = (CT ⊗ A)vec[matr2(b)] = (CT ⊗ A)b.

If k = 1, then f is an mRmL-dimensional vector. So, by (24), (b⊗a)f can be written
as vec[a matmL

(f)bT ], which, in turn, can be written as

[IpR
⊗ a matmL

(f)]vec(bT ) = [IpR
⊗ a matmL

(f)]KpR,mR
vec(b)

or

[b matTmL
(f) ⊗ IpL

]vec(a).

Thus, the V2 in (17), (18), (19) in Theorem 4 can be replaced by

A[IpR
⊗ a matmL

(f)]KpR,mR
,A[b matTmL

(f) ⊗ IpL
],A(b ⊗ a),

respectively. This alternative expression often requires less computation for
folded-SIR.

5.2. Numerical procedures. We now describe the estimation procedures for
folded-SIR and folded-DR at the sample level. The procedure for folded-SAVE is
similar to folded-DR and is thus omitted. Let (X1, Y1), . . . , (Xn, Yn) be an i.i.d.
sample of (X, Y ). We estimate � by the sample moment

�̂ = n−1
n∑

i=1

vec(Xi − X̄)vecT (Xi − X̄).

As with the conventional dimension reduction methods such as SIR, we discretize
the response Y . Let J1, . . . , Js be a partition of �Y . Let D = δ(Y ) be the discrete
random variable defined by

δ(Y ) = � if Y ∈ J�, � = 1, . . . , s.

For a function h of (X, Y ), let Enh(X, Y ) denote the sample average n−1 ×∑n
i=1 h(Xi , Yi). We summarize the estimating procedure for the folded-SIR as the

following five-step algorithm:

1. generate the initial values of a0 ∈ R
pL×mL , {f0(�) :� = 1, . . . , s}, say, from a

sample of the N(0,1) variables;
2. for � = 1, . . . , s, compute p̂� = En[I (D = �)] and

V̂1(�) = p̂−1
� vec{�̂−1/2En[vec(X)I (D = �)]},

V̂2(�) = �̂1/2[IpR
⊗ a0 matmL

(f0(�))]KpR,mR
,

then compute vec(b1) by[
s∑

i=1

p̂�V̂T
2 (�)V̂2(�)

]−1[
s∑

i=1

p̂�V̂T
2 (�)V̂1(�)

]
;(25)
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3. recompute V̂2(�) as �̂1/2[b1 matTmL
(f0(�)) ⊗ IpL

], then compute vec(a1) using

(25), but with the recomputed V̂2(�);
4. recompute V̂2 as IpRpL

⊗[�̂1/2(b1 ⊗ a1)], noting that, at this step, V̂2 does not
depend on �, then compute f1(�) = (V̂T

2 V̂2)
−1V̂T

2 V̂1(�);
5. return to step 2 and iterate, each time using the most recent a, b and f, until

s∑
�=1

p̂�‖�̂−1/2En[vec(X)|D = �] − �̂1/2(b ⊗ a)f(�)‖2

stabilizes, then use the resulting a and b as the estimates of α0 and β0.

The algorithm for folded-DR is similar to folded-SIR, except that the V̂1 and
V̂2 become more complicated. Let ∇̃ = vec(X̃), � = ∇̃ −∇ and D̃ = δ(Ỹ ). Then,
for k, � = 1, . . . , s,

E(��T |D = k, D̃ = �)

= E(∇∇T |D = k) − E(∇|D = k)E(∇̃T |D̃ = �)

− E(∇̃|D̃ = �)E(∇T |D = k) + E(∇̃∇̃T |D̃ = �).

Let n1, . . . , ns be the numbers of observations in slices J1, . . . , Js . The sample
estimate for the above conditional expectation is

En(��T |D = k, D̃ = �)

= 1

nk

∑
r∈Jk

∇r∇T
r − 1

nkn�

∑
r∈Jk

∇r

∑
t∈J�

∇T
t

− 1

nkn�

∑
r∈J�

∇r

∑
t∈Jk

∇T
t + 1

n�

∑
t∈J�

∇t∇T
t .

We now summarize the algorithm for folded-DR:

1. generate the initial values of a0 ∈ R
pL×mL , {f0(k, �) :k, � = 1, . . . , s} from, say,

a sample of the N(0,1) variables;
2. for k, � = 1, . . . , s, compute p̂k� = nkn�/n and

V̂1(k, �) = vec{�̂−1/2[2�̂ − En(��T |D = k,D = �)]�̂−1/2},
V̂2(k, �) = [fT0 (k, �) ⊗ �1/2]�[vec(a0) ⊗ IpRmR

],
then compute vec(b1) using the formula

[
s∑

k=1

s∑
�=1

p̂k,�V̂T
2 (k, �)V̂2(k, �)

]−1[
s∑

k=1

s∑
�=1

p̂k,�V̂T
2 (k, �)V̂1(k, �)

]
;(26)
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3. recompute V̂2(k, �) as

V̂2(k, �) = [fT0 (k, �) ⊗ �1/2]�[IpLmL
⊗ vec(b1)],

then compute vec(a1) by (26), using the newly computed V̂2(k, �);
4. compute f1(k, �) by

f1(k, �) = [(b0 ⊗ a1)
T �̂(b1 ⊗ a1)]−1(b1 ⊗ a1)

T

× [2�̂ − En(��T |D = k, D̃ = �)]�̂−1/2;
5. repeat steps 2, 3, 4, using the most updated a, b and f at each step, until the

objective function

s∑
k,�=1

p̂k�‖�̂−1/2[2�̂ − En(∇∇T |D = k, D̃ = �)]�̂−1/2 − �̂1/2(b ⊗ a)f(l, �̃)‖2

stabilizes.

5.3. Singularity of �̂. When pRpL > n, the sample covariance matrix �̂ of
vec(X) is singular and �̂−1 does not exist. There are several ways to deal with this.
One is to replace vec(X) by its principal components. Chiromonte and Martinell
(2002) and Li and Li (2004) used this method in the conventional setting. If all
principal components corresponding to nonzero eigenvalues of �̂ are used, then
this amounts to using the Moore–Penrose inverse �̂† in place of �̂−1. Another
option is to use the ridge-regression-type inverse (�̂ + εIpRpL

)−1, where ε > 0, in
place of �̂−1; see Hoerl (1962) and Marquardt (1970). For a related development
in conventional dimension reduction, see Tyekucheva and Chiaromonte (2008) and
Li (2008). Finally, it is possible to adapt the iterative transformation approach of
Cook, Li and Chiaromonte (2007) to dimension folding, but further research is
needed in this regard. In the subsequent simulations and application, we use the
first two approaches to handle the singularity of �̂.

5.4. Robustness. The dimension-folding methods proposed here are based on
sample moments, which are known to be sensitive to outliers. Zhou (2009) de-
scribed a weighting scheme to achieve robustness in the conventional setting for
a dimension reduction method derived from canonical correlations [Fung et al.
(2002)]. We outline how that scheme can be adapted to dimension folding.

For a given sample, let ŵ(x), x ∈ R
pL×pR be a decreasing and nonnegative func-

tion of [vec(x)−En vec(x)]T �̂−1[vec(x)−En vec(x)] such that
∑n

i=1 ŵ(Xi) = 1.
To downplay observations lying far away from the center of observed predictors,
we replace the empirical measure that assigns probability mass 1/n to each pair
(Xi , Yi) with the alternative random measure that assigns probability mass ŵ(Xi )

to (Xi , Yi). We then replace the usual sample moments and sample conditional
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moments by moments calculated from this alternative measure. For example, for
folded-SIR, we replace En vec(X), �̂ and En[vec(X)|D = �] by

E∗
n vec(Xi ) =

n∑
i=1

ŵ(Xi )vec(Xi ),

n∑
i=1

ŵ(Xi)[vec(Xi ) − E∗
n vec(X)][vec(Xi ) − E∗

n vec(X)]T ,

n∑
i=1

ŵ(Xi )vec(Xi )I (Di = �)
/ n∑

i=1

ŵ(Xi )I (Di = �).

The rest of the algorithm remains the same. Folded-SAVE and folded-DR can be
robustified in a similar fashion.

6. Array-valued predictors. As mentioned in the Introduction, we some-
times also encounter sampling units in the form of higher-dimensional arrays. For
example, a video clip is a three-dimensional array. In this section, we extend di-
mension folding to these cases. For reasons of brevity, we omit the details of algo-
rithms, which can be constructed analogously.

Let X = {Xj1···ju : j1 = 1, . . . , p1, . . . , ju = 1, . . . , pu} be a u-way random array
of dimension p1 × · · · × pu, and let Y be a scalar-valued random response. Our
goal is to reduce X to a smaller u-way array of dimension d1 × · · · × du while
preserving the regression relation between X and Y . That is, we seek nonrandom
matrices

α(1) = {
α

(1)
i1j1

: i1 = 1, . . . , p1, j1 = 1, . . . , d1
}
,

...

α(u) = {
α

(u)
iuju

: iu = 1, . . . , pu, ju = 1, . . . , du

}
,

such that Y is conditional independent of X given the array{ p1∑
i1=1

· · ·
pu∑

iu=1

α
(1)
i1j1

· · ·α(u)
iuju

Xi1···iu : i1 = 1, . . . , d1, . . . , iu = 1, . . . , du

}
.(27)

Let vec(X) denote the vector of elements of X with its first index changing the
fastest. That is,

vec(X) = (X1···1,X2···1, . . . ,X1···2,X2···2, . . . ,Xp1···pu)T .

Parallel to the definition of the matr operator introduced in Section 5, we define
arrp1···pu as the inverse operator of vec(X). That is, arrp1···pu[vec(X)] = X. The
array (27) can then be written as

arrp1···pu

[(
α(u) ⊗ · · · ⊗ α(1))T vec(X)

]
.
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Since the above array has a one-to-one relation with (α(u) ⊗ · · · ⊗ α(1))T vec(X),
the general dimension-folding problem can be stated as

Y ⊥⊥ X|(α(u) ⊗ · · · ⊗ α(1))T vec(X).(28)

We note that, as in the matrix-predictor case, the order of 1, . . . , u is reversed in the
string of Kronecker products: the coefficient matrix associated with the last index
of X appears first in the string of Kronecker products.

The central dimension-folding subspace is then defined as the smallest subspace

span
(
α(u)) ⊗ · · · ⊗ span

(
α(1))

for which the relation (28) is satisfied. This subspace will be written as SY |X◦u .
Once again, the idea is to start with a random matrix whose column space lies

almost surely in the conventional dimension reduction space SY |vec(X) and to use
the Kronecker envelope of this random matrix to estimate the dimension-folding
subspace. The next theorem is parallel to Theorem 1 and Definition 3, so its proof
is omitted.

DEFINITION 4. Let U be a random matrix in R
(p1···pu)×k . There are subspaces

S1 ⊆ R
p1, . . . , Su ⊆ R

pn of dimensions t1 ≤ p1, . . . , tu ≤ pu such that:

1. span(U) ⊆ S1 ⊗ · · · ⊗ Su almost surely;
2. if there exists another u-tuple of subspaces S ′

1 ⊆ R
p1, . . . , S ′

u ⊆ R
pu that satis-

fies condition 1, then

S1 ⊗ · · · ⊗ Su ⊆ S ′
1 ⊗ · · · ⊗ S ′

u

and the subspace S1 ⊗ · · · ⊗ Su is called the Kronecker envelope of U.

We denote the generalized Kronecker envelope of U by E ⊗
p1,...,pr

(U). Using an
argument similar to that used in Section 3, we can prove the following result.

THEOREM 5. Let X be a random array in R
p1×···×pu . If U is a random matrix

in R
(p1···pu)×k whose column space is contained in SY |vec(X) almost surely, then

E ⊗
p1,...,pu

(U) is contained in SY |X◦u .

This theorem provides the guiding principle for estimating the central dimen-
sion-folding space SY |X◦u . That is, we start with a conventional dimension reduc-
tion method such as SIR, SAVE or DR for estimating SY |vec(X) and then con-
struct the estimates of its Kronecker envelope via objective functions analogous
to (13).
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7. Simulation studies. In this section, we evaluate by simulation the perfor-
mance of the three dimension folding estimators, in a classification problem in
which the response is a binary variable and the predictor matrices corresponding
to the two values of Y differ both in location and variation. Our comparison is
twofold: we compare the performance among the three dimension folding meth-
ods themselves and compare them with conventional dimension reduction methods
when the dimension reduction subspace coincides with the dimension-folding sub-
space. While dimension-folding methods are introduced primarily to preserve the
array structure, intuitively, they should be more accurate than their conventional
counterparts when S◦X◦ = SY |vec(X) because the former contains far fewer para-
meters. The second comparison is made in order to confirm this intuition.

To assess the accuracy of a dimension-folding method, we use the criterion

‖P
β̂⊗α̂

− Pβ⊗α‖,(29)

where ‖ · ‖ is a matrix norm, which, for example, can be the Frobenius norm or
the largest singular value. This is a measure of discrepancy between the subspaces
span(β∗ ⊗ α∗) and span(β ⊗ α); see Li, Zha and Chiaromonte (2005) for intu-
ition about and further discussion of this criterion. In the following, we use the
Frobenius norm.

To make a sensible comparison, it is helpful to define a “benchmark” of this
discrepancy, that is, its value when the two spaces are not related at all. Let
α∗ ∈ R

pL×dL and β∗ ∈ R
pR×dR be random matrices whose entries are i.i.d. stan-

dard normal. We define E(‖Pβ∗⊗α∗ − Pβ⊗α‖) to be the benchmark distance. The
benchmark is easily computed by simulation. It depends on dimensions pL,pR, dL

and dR , but is independent of the model and the estimator, as well as of α and β
(despite its appearance). A similar benchmark was used in Li, Wen and Zhu (2008)
in the classical setting. The performance of the conventional dimension reduction
methods is assessed similarly. Let η̂ be the conventional dimension reduction esti-
mates of η, a basis matrix for SY |vec(X). We use

‖Pη̂ − Pη‖(30)

to assess the error of the conventional methods. Note that Pβ⊗α = Pη, so the com-
parison is on equal footing.

EXAMPLE 1 (Continued). Let X and Y be defined as in Example 1 in Sec-
tion 2. We take π = 1/2, σ 2 = 0.1 and τ 2 = 1.5. Recall that, in this case, SY |vec(X)

is a proper subset of SY |◦X◦.
We generate n pairs of observations, (X1, Y1), . . . , (Xn, Yn), from this model,

with n = 100,200,300,500,800 and p = 5,10. We apply folded-SIR, folded-
SAVE and folded-DR. Table 1 gives the means of criterion (29), as calculated
from N = 500 simulated samples for each combination of n and p. The standard
errors of these means are all within 0.02 and are not presented. From the table, we
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TABLE 1
Comparison among dimension-folding methods

Method n = 100 n = 200 n = 300 n = 500 n = 800

pL = pR = 5 (benchmark distance = 2.586)

Folded-SIR 1.115 0.751 0.598 0.496 0.369
Folded-SAVE 0.566 0.295 0.220 0.161 0.121
Folded-DR 0.531 0.287 0.215 0.158 0.119

pL = pR = 10 (benchmark distance = 2.772)

Folded-SIR 2.006 1.289 1.034 0.772 0.604
Folded-SAVE 2.710 1.410 0.581 0.345 0.236
Folded-DR 2.296 1.019 0.542 0.331 0.230

can see that the overall best performer is folded-DR, followed by folded-SAVE and
folded-SIR. Both folded-DR and folded-SAVE perform much better than folded-
SIR. This is because the two mixing components for Y = 0 and Y = 1 differ both
by location and variance, the latter of which cannot be captured by folded-SIR.

To give a sense of how the methods perform, in Figure 2, we present the scat-
terplot matrices of the four elements of âT Xb̂ (mL = mR = 2), as estimated by
folded-SIR (left panel) and folded-DR (right panel). We see that the four predictors
by folded-SIR separate the two groups by location, whereas folded-DR separates
them by both location and variation, as shown in the (X11,X22) plot in the lower
panel.

EXAMPLE 2 (Continued). Let X and Y be defined as in Example 2 in Sec-
tion 2. Again take π = 1/2, σ 2 = 0.1 and τ 2 = 1.5. The difference from the pre-
vious example is that the index set A for the definition of var(Xij |Y) is changed
to ensure that SY |vec(X) = SY |◦X◦, so that the comparison of dimension-folding
methods and conventional dimension reduction methods is on an equal footing.

With the same choices of n, p and N , in Table 2, we present the means of either
criterion (29) (for dimension-folding methods) or criterion (30) (for conventional
dimension reduction methods). We observe very substantial improvements by di-
mension folding. This is due to the fact that the column space of β ⊗α contains far
fewer parameters than the column space of η, if both matrices have the same di-
mension. We also see that folded-SAVE and folded-DR perform much better than
folded-SIR and the same pattern holds for their conventional counterparts, for the
same reason explained in the previous comparison.

8. Application. We now apply the dimension-folding methods to analyze the
EEG data mentioned in the Introduction. The study involved two groups of sub-
jects: an alcoholic group of 77 subjects and a control group of 45 subjects. Each
subject was exposed to either one stimulus or two stimuli. During an exposure,
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FIG. 2. Scatterplot matrices for the reduced predictors estimated by folded-SIR (upper panel) and
folded-DR (lower panel) for Example 1.
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TABLE 2
Comparison between dimension-folding and conventional dimension reduction

Method n = 100 n = 200 n = 300 n = 500 n = 800

pL = pR = 5 (benchmark distance = 2.586)

Folded-SIR 1.057 0.716 0.580 0.432 0.343
SIR 1.865 1.806 1.758 1.759 1.753
Folded-SAVE 0.523 0.287 0.221 0.161 0.123
SAVE 1.615 1.294 1.089 0.757 0.579
Folded-DR 0.497 0.278 0.215 0.157 0.119
DR 1.596 1.289 1.075 0.747 0.574

pL = pR = 10 (benchmark distance = 2.586)

Folded-SIR 1.924 1.246 0.984 0.750 0.577
SIR 2.626 2.142 2.051 1.963 1.921
Folded-SAVE 2.709 1.085 0.537 0.334 0.234
SAVE 2.753 2.677 1.956 1.605 1.406
Folded-DR 2.271 0.850 0.505 0.321 0.226
DR 2.753 2.503 1.871 1.593 1.392

the voltage values were measured from 64 channels of electrodes and for 256 time
points (at 256 Hz per second). The 64 electrodes are placed at different locations on
the subject’s scalp. The stimuli were pictures chosen from a picture set. When two
pictures were shown, they were displayed in either a matched condition, where
two pictures were identical, or a unmatched condition, where they were differ-
ent. Each subject had 120 trials under these three conditions: single stimulus, two
matched stimuli and two unmatched stimuli. The primary interest was to study the
association between alcoholism and the pattern of voltage values over times and
channels.

To keep matters simple, in this paper, we use only part of the data set: we in-
clude only the single stimulus condition and, for each subject, we take the average
of all the trials under that condition. That is, the portion of the data we use consists
of (X1, Y1), . . . , (X122, Y122), where Xi is a 256 × 64 matrix with each entry rep-
resenting the mean voltage value of subject i at a combination of a time point and
a channel, averaged over all trials under the single stimulus condition, and Yi is a
binary random variable indicating whether the ith subject is alcoholic (Yi = 1) or
nonalcoholic (Yi = 0).

To apply the dimension-folding methods, we need to perform the spectral de-
composition on the pLpR ×pLpR = 16384×16384-dimensional matrix �̂, which
is quite large. So, prior to dimension folding, we have implemented a somewhat
heuristic pre-screening phase. Let v1, . . . ,vsL be the first sL eigenvectors of the
matrix En(X − X̄)(X − X̄)T and w1, . . . ,wsR be the first sR eigenvectors of the
matrix En(X − X̄)T (X − X̄). Let V = (v1, . . . ,vsL) and W = (w1, . . . ,wsR )T . Let
X∗

i = VT XiW.
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Using two sets of dimensions, (sL, sR, dL, dR) = (30,20,2,2) and (30,20,

1,2), we apply folded-SIR, folded-SAVE and folded-DR to the pre-screened
data set (X∗

1, Y1), . . . , (X∗
n, Yn). The results for (dL, dR) = (2,2) are presented

in Figure 3, which contains two scatterplot matrices of the four predictors in the
2 × 2 matrices âT X∗b̂ obtained by folded-SAVE (left panel) and folded-DR (right
panel). The four predictors are labeled as X11, X12, X21, X22 in the plots. A strik-
ing feature of these plots is that the EEG data for alcoholic cases (represented by
red ◦’s) show markedly less variation than those for nonalcoholic cases (repre-
sented by black +’s). This can be interpreted as indicating that the EEG patterns
for the alcoholic subjects are more similar than those for the nonalcoholic cases.
We also observe that folded-SAVE predictors show strong separation by variation,
but no obvious separation by location, whereas folded-DR successfully separates
the two clusters by both location and variation. The results for (dL, dR) = (1,2)

are presented in Figure 4, which contains three scatterplots for the two predictors
in the 1 × 2 matrix âT X∗b̂ obtained by folded-SIR (upper panel), folded-SAVE
(lower-left panel) and folded-DR (lower-right panel). The two predictors are la-
beled as X11, X12 in the plots. From these plots, we observe the differences in
performance of the three methods: folded-SIR works well in separating locations,
folded-DR works well in separating variations, whereas folded-DR combines the
advantages of both.

Of course, the ultimate purpose of dimension folding (or more generally, di-
mension reduction) is to assist regression or classification. Thus, the true test for
the usefulness of our methods is whether they can help us to identify whether or
not a person is alcoholic using his/her EEG data. For this reason, we have per-
formed a classification analysis after dimension folding. For each i = 1, . . . , n,
we withhold the ith subject from the sample, treating it as the test set and the re-
maining 121 subjects as the training set. Based on each training set, we first carry
out dimension folding (including pre-screening) and then apply quadratic discrim-
inant analysis [Johnson and Wichern (2007), Chapter 11] to develop a classifi-
cation rule. This classification rule is then used to classify the withheld subject.
Using (sL, sR, dL, dR) = (15,15,1,2) and the folded-DR, we correctly predicted
(as alcoholic or nonalcoholic) 97 out of the 122 cases; folded-SIR correctly clas-
sifies 94 out of 122 cases. We also compute the number of correct classifications
using the conventional SIR, which gives 92 out 122 correct decisions. For the
conventional SIR, we use (sL, sR) = (9,9) and d = 1. For all three methods, the
ridge-regression-type inverse (�̂ + εIpRpL

)−1 is used, with ε = 0.5. Noting that
we have used only a portion of the data set, it is conceivable that an even stronger
association could be established if the full data set were used.

The matrix structure preserved by dimension folding is helpful to gain further
insights into the relationship between EEG patterns and alcoholism. In particular,
the right dimension-folding subspace contains the weights of the channels that are
important in predicting alcoholism, whereas the left dimension-folding subspace
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FIG. 3. Scatterplot matrices for the four reduced predictors estimated by folded-SAVE (upper
panel) and folded-DR (lower panel), for (dL, dR) = (2,2). Red ◦’s represent the alcoholic cases;
black +’s represent the nonalcoholic cases.
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FIG. 4. Scatterplots for the two reduced predictors estimated by folded-SIR (upper panel),
folded-SAVE (lower-left panel) and folded-DR (lower-right panel), for (dL, dR) = (1,2). Red ◦’s
represent the alcoholic cases; black +’s represent the nonalcoholic cases.

contains the principal patterns of how voltage varies over time in the important
channels. These could provide important information for understanding how each
part of the brain and the way it responds to stimuli are related to alcoholism.
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