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‘We consider the solution u(x, t) to a stochastic heat equation. For fixed x,
the process F(t) = u(x, t) has a nontrivial quartic variation. It follows that F'
is not a semimartingale, so a stochastic integral with respect to F' cannot be
defined in the classical It6 sense. We show that for sufficiently differentiable
functions g(x, 1), a stochastic integral [ g(F(¢),t)dF(t) exists as a limit of
discrete, midpoint-style Riemann sums, where the limit is taken in distribu-
tion in the Skorokhod space of cadlag functions. Moreover, we show that this
integral satisfies a change of variable formula with a correction term that is an
ordinary It6 integral with respect to a Brownian motion that is independent
of F.

1. Introduction. Recall that the classical It6 formula (i.e., change of vari-
able formula) contains a “stochastic correction term” that is a Riemann integral.
A purely intuitive conjecture is that the Itd integral itself may appear as a stochas-
tic correction term in a change of variable formula when the underlying stochas-
tic process has fourth order scaling properties. The first formula of this type was
proven in [1]; however, the “fourth order scaling” process considered in that paper
was a highly abstract object with little intuitive appeal. The present article presents
a change of variable formula with Itd correction term for a family of processes
with fourth order local scaling properties; see (1.5) and Corollary 6.4.

The process which is our primary focus is the solution, u(x, t), to the stochastic
heat equation 0;u = % 8%14 + W(x, t) with initial conditions u(x, 0) = 0, where W
is a space—time white noise on R x [0, 0o). That is,

(1.1) u(x,t):/R [Ot]p(x—y,t—r)W(dyxdr),

where p(x,t) = (2m‘)*1/ze*x2/2’ is the heat kernel. Let F(f) = u(x,t), where
x € Ris fixed. In the prequel to this paper [15], it was shown that F is a continuous,
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centered Gaussian process with covariance function
(1.2) p(s.0)=EF($)F) = Q@m)~ (It +5]'2 — |t —s]'/%)

and that F has a nontrivial quartic variation. In particular,

- 6
SoIFG/m = F(G=D/m) > 2

j=l1

in L2. It follows that F is not a semimartingale, so a stochastic integral with respect
to F cannot be defined in the classical Itd sense. In this paper, we complete the
construction of a stochastic integral with respect to ' which is a limit of discrete
Riemann sums.

More generally, we shall construct a stochastic integral with respect to any
process X of the form X = cF + &, where ¢ € R and £ is a continuous stochastic
process, independent of F, satisfying

(1.3) £eC'((0,00)) and ﬁ@/(m <00  as.

This allows us, for example, to consider solutions to (1.1) with nonzero initial
conditions. Another example of such an X is fractional Brownian motion with
Hurst parameter 1/4; see Examples 6.7 and 6.8 for more details.

Note that £ (and therefore X) need not be a Gaussian process. If it is Gaussian,
however, its mean function will be pux (1) = EX(f) = ug(f) and its covariance
function will be px (s, t) = c? p(s,1) + pg (s, t). Conversely, the results in this pa-
per will apply to any Gaussian process X whose mean and covariance have the
respective forms pux = i and px = c¢?p + p, where i and 5 are the mean and
covariance, respectively, of a Gaussian process satisfying (1.3).

We conjecture that the results in this paper hold when £ is only required to be
of bounded variation. We require £ to be C!, however, because of our particular
method of proof; see the proofs of Corollaries 4.6 and 6.4 for further details.

For simplicity, we consider only evenly spaced partitions. That is, given a posi-
tive integer n, let At = n~1, tj=jAtand AX; = X(t;)— X (tj—1).Let |x] denote
the greatest integer less than or equal to x. For g € C(R x [0, 00)), we consider
the midpoint-style Riemann sums

ln1/2]
(1.4) IX(g, )= Y g(X(t2j-1). aj—D)(X(t2)) — X (t2j-2)).
j=1

When X = F, we will simply write 7, rather than 1.

In the construction of the classical Ito integral, the quadratic variation of the
integrator plays a crucial role. Although the quadratic variation of X is infinite, the
“alternating quadratic variation” of X is finite. That is, fo ()= Z}":’{ZJ (AX% i
AX% j_l) converges in law. If we denote the limit process by {X};, then it is a
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simple corollary of the main result in [15] that {X}; is a Brownian motion which is
independent of X. More specifically, (X, Q,’f ) — (X, /cczB), where B is a standard
Brownian motion, independent of X, and « &~ 1.029 [see (2.10) for the precise
definition of «]. The convergence here is in law in the Skorokhod space of cadlag
functions from [0, c0) to R2, denoted by Dg2[0, 00).

We shall show that InX (g,t) also converges in law. If fot g(X(s),s)dX(s) de-
notes a process with this limiting law, then our main result (Corollary 6.4) is the
following change of variable formula:

t t
g(X(t),l)=g(X(0),0)+/0 3zg(X(S),S)ds+/0 0, 8(X (s),5)dX(s)

1 rt
+§/0 Big(X(s),S)d{X}s,

where the equality is in law as processes. This can be rewritten as

t t
g(X(1).1) = g(X(0),0) + /0 8,g(X (). 5)ds + /0 8:g(X (5). 5)dX (s)
(1.5)

2t
+%/0 d2g(X (5),5)dB(s),

where this last integral is a classical It6 integral with respect to a standard Brown-
ian motion that is independent of X.
To state our results more completely, let Y be a semimartingale and define

t
1Y (3,8,1) = g(X(1), 1) — g(X(0),0) —fo dg(X(s),s)ds
(1.6)

K t
-3 /O 32g(X (s),5)dY (s).
‘We show that

(F, QF  IX (3,8, ) — (F.x B, 1¥"B(d,g,))

n’>"n

in law in Dg3[0, 00) whenever g € C;"' (R x [0, 00)). [See (3.2)~(3.5) for the
precise definition of the space C f*l. Also see Remarks 6.5 and 6.6.]

The benefit of having the convergence of this triple, rather than just the Riemann
sums, can be seen if one considers two separate sequences of sums: {I,f( (g1, )}
and {I,f( 2(g2,+)}. As n — oo, these sequences will converge jointly in law. Sepa-
rately, each limit will satisfy (1.5); moreover, the Brownian motions which appear
in the two limits will be identical. In this sense, the Brownian motion in (1.5) de-
pends only on F and not on &, ¢ or g. Clearly, this can be extended to any finite
collection of sequences of Riemann sums.
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In the course of our analysis, we will also obtain the asymptotic behavior of the
trapezoid-style sum

TX(g 1) = LnXt% g(X(fj—l)a ljfl) +g(X(tj), tj)

(1.7) >

AX;.
=

We shall see (Corollary 4.6) that TnX(Bxg, 1) — g(X@),1) — g(X(0),0) —
fot 0:g(X(s),s)ds uniformly on compacts in probability (ucp) whenever g €
C; o1 (R x [0, 00)). This result remains true even when X = cF + &, where & satis-
fies only (1.3), and is not necessarily independent of F.

It is instructive to contrast these results with those of Russo, Vallois and coau-
thors [5, 6, 13, 14], who, in the context of fractional Brownian motion, use a regu-
larization procedure to transform these Riemann sums into integrals before passing
to the limit; see also [2]. For instance, if g does not depend on 7, then the regular-
ized midpoint sum is

1 t
[ FONEs e - P ey v o) ds

and the regularized trapezoid sum is

1 t
- [+ (F6+ o) (F6+) = F3) ds.

Using a change of variables, we can see that if g’ is locally integrable, then the dif-
ference between these two integrals goes to zero almost surely as ¢ — 0. Hence,
under the regularization procedure, the midpoint and trapezoid sums exhibit the
same limiting behavior: they converge ucp to integrals satisfying the classical
change of variable formula from ordinary calculus. Under the discrete approach
which we are following, however, we see new behavior for the midpoint sum: the
emergence of a correction term which is a classical It6 integral against an indepen-
dent Brownian motion.

It should be noted that all of our convergence results rely on the fact that F is a
quartic variation process. That is,

(1.8) A < EAF} < CyAr*H

where H = 1/4. For example, the convergence of Q,f to a Brownian motion is
made plausible by the fact that it is a sum of terms of the form AF22j — AFZZJ._1 ,
each of which is approximately mean zero with an approximate variance of Af.
If we replace F by a rougher process which satisfies (1.8) for some H < 1/4,
then the midpoint sums will evidently diverge. On the other hand, the ucp conver-
gence of the trapezoid sums 7}, (9, g, t) remains plausible for any H > 1/6. This is
consistent with the analogous results in [2, 5] for regularized sums.
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The critical case for the trapezoid sum is H = 1/6. At the time of writing, we
know of only one result in this case. If g(x, ) = x3, then

Lnt ]
1
T,(0:g,1) ~ F (1) — F(0)* + 5 Y AF;.
j=1

[Here, and in what follows, X, (¢) ~ Y, (¢) shall mean that X,, — Y,, — O ucp.] If
F is replaced by fractional Brownian motion with Hurst parameter H = 1/6, then
this last sum converges in law to a Brownian motion; see [12], for example. It is
natural to conjecture that a result analogous to (1.5) also holds in this case.

Our project is related to, and inspired by, several areas of stochastic analysis.
Recently, a new approach to integration was developed by T. Lyons (with coau-
thors, students and other researchers). The new method is known as “rough paths”;
an introduction can be found in [9]. Our approach is much more elementary since
it is based on a form of Riemann sums. We consider it of interest to see how far
the classical methods can be pushed and what they can yield. The It6-type cor-
rection term in our change of variable formula has a certain elegance to it, and a
certain logic, if we recall that our underlying process has quartic variation. Finally,
our project can be considered a toy model for some numerical schemes. The fact
that the correction term in the change of variable formula involves an independent
Brownian motion may give some information about the form and size of errors in
numerical schemes.

After the first draft of this paper had been finished, we received a preprint [10]
from Nourdin and Réveillac, prepared independently of ours and using different
methods. That paper contains a number of results, one of which, Theorem 1.2,
is a special case of our Corollary 6.4. Namely, if X = B'/# (fractional Brownian
motion with Hurst parameter H = 1/4), if g does not depend on ¢ and if g satisfies
an additional moment condition (see H, in Section 3 of [10]), then [10] gives
the convergence in distribution of the scalar-valued random variables I,f( (g, 1.
While [10] is devoted exclusively to fractional Brownian motion, it is mentioned
in a footnote that a Girsanov-type transformation can be used to extend the results
from B'/* to F.

2. Preliminaries.

2.1. Tools for cadlag processes. Here, and in the remainder of this paper,
C shall denote a constant whose value may change from line to line.

Let Dpaq[0, 00) denote the space of cadlag functions from [0, co) to RY en-
dowed with the Skorokhod topology. We use the notation x(f—) = limgy; x(s)
and Ax(t) = x(t) — x(t—). Note that if F,(r) = F(|nt]/n), then AF,(t;) =
F(tj) — F(tj—1). Asin Section 1, we shall typically use A F; as a shorthand nota-
tion for AF,(¢;).



1822 K. BURDZY AND J. SWANSON

We note for future reference that if x is continuous, then x,, — x in the Sko-
rokhod topology if and only if x, — x uniformly on compacts. For our conver-
gence results, we shall use the following moment condition for relative compact-
ness, which is a consequence of Theorem 3.8.8 in [4].

THEOREM 2.1. Let {X,} be a sequence of processes in Dpal0, 00). Let
q(x) = |x| A 1. Suppose that for each T > 0, there exist v >0, 8 >0, C >0
and 6 > 1 such that:

(1) Elq(Xn(t+h) — Xa(0))P2q (X, (t) — Xu(t —h)P/?] < Ch for all n and
all0<t<T+1,0<h <t
(i) lims—qsup, E[q(X,(8) — X,(0))?]=0;
(iii) sup, E[|X,(T)|"] < oo.

Then {X,} is relatively compact, that is, the distributions are relatively compact in
the topology of weak convergence.

COROLLARY 2.2. Let {X,} be a sequence of processes in Dgal0, 00). Let
q(x) = |x| A . Let @1, @2 be nonnegative functions of n such that sup, n~ ¢y (n) x
@2(n) < 0o. Suppose that for each T > 0, there exist v >0, § >0, C > 0 and
6 > 1 such that sup,, E[|X,(T)|"] < oo and

@2(n) L1 (W)t ] — @2 (n) @1 (n)s ] )9

n

Q1) E[q(Xa() — Xu()*] < C(

foralln and all 0 <s,t <T.Then {X,} is relatively compact.

PROOF. We apply Theorem 2.1. By hypothesis, condition (iii) holds. Taking
s=0and t =4 in (2.1) gives condition (ii). By Holder’s inequality,

E[q(Xu(t +h) — X2 (0)?q(X0 (1) — Xt —h))P'?]
< c(wzm) L1 (n)(t +h) | — @2(n) L1 (n)t ] )"/2

n

(soz(n) L1 (n)t] — ga(n) @1 (n) (¢ — )] )9/2
X .

n

If 1 (n)h < 1/2, then the right-hand side of the above inequality is zero. Assume
that ¢y (n)h > 1/2. Then

E[q(Xa(t +h) — X, (0)?q (X0 (1) — Xt — ))P/?]

< C<<P2(n)<ﬂl(n)h + goz(n))" S 6(h N

n

0
) =can,
e1(n)
which verifies condition (i). [
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In general, the relative compactness in Dg[0, oo) of {X,} and {Y;,} does not
imply the relative compactness of {X, + Y,}. This is because addition is not a
continuous operation from Dg[0, oo)2 to DR[O, c0). It is, however, a continuous
operation from Dp2[0, 00) to Dr[0, 00). To make use of this, we shall need the
following well-known result and its subsequent corollary.

LEMMA 2.3.  Suppose that x,, — x in DR[0, c0) and y, — y in Dr[0, 00). If
Ax(t)Ay(t) =0 forallt >0, then x,, + y, — x + y in Dr[0, 00).

COROLLARY 2.4. Suppose that the sequences {X,} and {Y,} are relatively
compact in DR[O, 0o). If every subsequential limit of {Y,} is continuous, then
{X, + Y} is relatively compact.

The following lemma is Problem 3.22(c) in [4].

LEMMA 2.5. For fixed d > 2, {(X,ll, ey X,‘f)} is relatively compact in
Drpal0, 00) if and only if{X,’;} and {X’,ﬁ + Xﬁ} are relatively compact in Dg[0, 00)
forall k and £.

We will also need the following lemma, which connects relative compactness
and convergence in probability. This is Lemma A2.1 in [3].

LEMMA 2.6. Let {X,}, X be processes with sample paths in Dpa[0, 00) de-
fined on the same probability space. Suppose that {X,} is relatively compact in
Dral0, 00) and that for a dense set H C [0, 00), X,(t) — X (t) in probability
for all t € H. Then X,, — X in probability in Dya[0, 00). In particular, if X is
continuous, then X, — X ucp.

Our primary tool is the following theorem, which is a special case of Theo-
rem 2.2 in [7].

THEOREM 2.7. For each n, let Y,, be a cadlag, R™-valued semimartingale
with respect to a filtration {F['}. Suppose that Y, = M,, + A,, where M), is an
{F'}-local martingale and A, is a finite variation process, and that

(2.2) sup E[[My]; + Vi(A,)] < 00

for each t > 0, where V;(A,) is the total variation of A, on [0, t] and [M,] is
the quadratic variation of M. Let X, be a cadlag, {F|'}-adapted, REX™ _yalued
process and define

Zu(t) = /0 Xo(s—) dY(s).
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Suppose that (X, Y,) = (X, Y) in law in Dgixmpgm[0, 00). Then, Y is a semi-
martingale with respect to a filtration to which X and Y are adapted and
(Xn, Yn, Zy) = (X, Y, Z) in law in Dgixm ygm «gr[0, 00), where

t
Z(t) =/0 X(s—)dY(s).

If (X,, Yn) — (X, Y) in probability, then Z,, — Z in probability.

REMARK 2.8. In the setting of Theorem 2.7, if {W,} is another sequence
of cadlag, {F]'}-adapted, R¢-valued processes and (W,, X,,,Y,) converges to
(W, X,Y) in law in Dpe pixmgm[0, 00), then (W,, X,,Y,, Z,) converges to
(W, X,Y,Z) in law in Dpe, gixm gy gk [0, 00). This can be seen by applying
Theorem 2.7 to (X,,, Y,,), where X,, is the block diagonal (k + £) x (m + 1) ma-
trix with upper-left entry W,, and lower-right entry X,,, and ¥, = (0, Y17

2.2. Estimates from the prequel. We now recall some of the basic estimates
from [15].
By (2.6) in [15], for all s <t¢,

|E|F(t) — F(s)|> — /) 2|t — s|V?| < w7121 42127132 — 512

Hence,

(2.3) a2 —s|V2 < E|\F(t) — F(s)|> < 2|t — 5|2
In particular, if orjz =F AF].Z, then

(2.4) 07 — @/m) Al <172 A = TR AL
and

(2.5) 1 PA? <07 <2112

Theorem 2.3 in [15] shows that F' has a nontrivial quartic variation. A special case

of this theorem is the fact that ZJL'ZJI AFJ‘.1 — 6t /7 ucp. The proof can be easily
adapted to show that

[nz] 4 3 [nt] 4 3
2.6 AF? — —t and AFT — —¢
(2.6) ; fids ; [
J odd J even
ucp.
Let
(2.7) yi=2j"*—(j =D+

and note that 3°52 | y; = 1. By (2.4) in [15],if i < j, then

|E[AF;AF; 1+ Q) Py AtV2 < (6 + 1) 2 A7 = (i + j) 2 Aar!2,
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Some related estimates are 0 < y; < 2_1/2j_3/2, which is (2.8) in [15], and
(2.8) =20t — 1) PAP = 2(j — i) ?At!/? < E[AF;AF;1 <0,

which precedes (2.10) in [15].
Leto; = E[F(tj—1)AF;]. Since
j—1
6+ @) PA 2 =Y (E[AFAF;1+ Qm) Py At'/?)

i=1
o0
+@m) T PAl Yy,
i=j
it follows that
(2.9) G; 4+ Qm)2Al 2 < T2 A2

In particular, |G;] < CAt!'/? and |aj2 —Qm) 'A< CjT12Ar.

LEMMA 2.9. Ifintegers c,i and j satisfy 0 <c <i < j, then:

() |E[(F(ti1) — F(t:)AF;1| < CAtY2((j — i) v )72
(i) |E[(F(tj—1) — Ft)AF] < CAt'V2[((j —i) v DTV2 4 (i — )71/,
(iii) |E[F(t;—)AF] < CAt'"2((j —i)v 1)~1/2,

PROOF. By (2.8),

i—1 i—1
[E[(F(ti—1) — Fi)AF]| < Y |EIAFRAF; < CAY Y (G -k
k=c+1 k=c+1

Hence,

|E[(F(ti—) — F(to))AF;]| < CAt'2 Y~ k32,
k=j—i+1

which proves the first claim.
For the second and third claims, it is easy to see that they hold when i > j — 1.
Assume i < j — 1. Note that

E[F(tj-)AF]1=p,tj—1) — p(ti—1,tj-1)
=p(tic1 + At 1) — p(tiz1,tj-1)
= Atdsp(ti—1 +0AL, 1)

for some 6 € (0,1). Since j > i, t;—1 + 0At < tj_;. In the regime s < 1,
dsp(s, 1) = B8m)V2((t + 5)7V2 + (t — 5)71/?). Hence, 0 < d;p(s,1) < C(t —
$)~ 12 1t follows that

0<E[F(tj-)AF1<CAtltj-y — ;|7 =Cat'?(j —i —1)71/2
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Since j — i > 2, this implies that E[F(t;_1)AF;] < CAt'/2(j —i)~!/2, which
proves the third claim. Combining this with the first claim gives
|E[(F(tj—1) — F(t.)) AF]|
<|E[F@tj-DAF] +|ELF (1) AF]|
<CANP( =)+ (=072,

which proves the second claim. [l

Recall y;, defined by (2.7). Let

4 9 > . 1/2
(2.10) K=(;+;ZJ/]-2(—1)]> >0
j=1

(the quantity in the brackets is strictly positive by Proposition 4.7 of [15]) and
define
2|nt /2] _
(2.11) By(t)y=«k"" > AF;(-1).
j=1
(Note that this is simply « ~' Q¥ in the notation of Section 1.) By Propositions 3.5
and 4.7 in [15],

2|nt/2] —2Lns/2j>2

(2.12) EWAD—&QWSC( -

for all s and ¢. Recall that F(t) = u(x, t), where u is given by (1.1). Let m denote
Lebesgue measure and define the filtration
(2.13) Fr=c{W(A):ACR x[0,¢t],m(A) < o0}.

Fix T > 0 and define G(t) = F(t + t) — E[F(t 4+ ) | F¢]. In the proof of Lem-
ma 3.6 in [15], it was shown that G and F have the same law and that G is inde-
pendent of F;. In particular, if j > ¢ and Afj = AF; — E[AF; | F; ], then Afj
is independent of F;, and equal in law to AF;_..

According to the equation displayed above (3.32) in [15],if 0 <t <s <¢, then

(2.14) E|E[F(t) — F(s) | Fe11? < 2|t — st — t| /2.

In particular, E|AF; — AF ;1> <2A1%(t; — 1) 73/ = 2At1/2(j — ¢)73/2, which,
together with (2.5) and Holder’s inequality, implies that

E|AF; — AF;|* = E[|AF; + AF,||AF; — AF "]
(2.15) < CeAPMA (1 — 1) 734
_ CkAtk/z(j — )3k,

Finally, we recall the main result of interest to us, which is Proposition 4.7 in [15].
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THEOREM 2.10. Let {B,} be given by (2.11) and let B be a standard Brown-
ian motion, independent of F. Then, (F, B,) — (F, B) in law in Dp2[0, 00).

2.3. Tools for Gaussian random variables. Let
dl’l
(2.16) B (x) = (—1)1e* /2 (=12
dx"

be the nth Hermite polynomial so that {4, } is an orthogonal basis of Lz(y,), where
w(dx) = (2m)~12e=%*/24x; see Section 1.1.1 of [11] for details. Let || - | and (-, -)
denote the norm and inner product, respectively, in L ().

The first few Hermite polynomials are hg(x) =1, h1(x) = x, ha(x) = xz—1
and h3(x) = x> — 3x. We adopt the convention that 4_1(x) = 0. The Hermite
polynomials satisfy the following identities for n > 0O:

(2.17) hy (X) = nhy—1 (x),
(2.18) Xhp(x) = hpy1(x) +nhy—1(x),
(2.19) hp(=x) = (=1)"hy (x).

Any polynomial can be written as a linear combination of Hermite polynomials by
using the formula

[n/2] "
(2.20) X" = Z (2j> 2j = Dlhy_2;(x),
j=0
where 2j — D' =(2j —1)(2j —3)(2j —5) - - - 1. Note that this can be rewritten
as
n n .
(2.21) x":Z( .>E[YJ]hnj(x),
=07
where Y is a standard normal random variable.
In the remaining part of Section 2.3, X shall denote a standard normal random
variable. If r € [—1, 1], then X, Y, shall denote jointly normal random variables
with mean zero, variance one and E[X,Y,] =r. By Lemma 1.1.1 in [11],

_ 10, if n #m,
(222) E[hn(Xr)hm(Yr)] - {n!rn’ lff’l =m.
In particular, |4, ||> = E[h,(X)*] = n!. Hence, if g € L?(11), then
X1
(2.23) g= Z()—!(g,h”)h”,
n=

where the convergence is in Lz(,u).
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If g and g’ have polynomial growth and n > 1, then integration by parts gives

(g, hn) / g hn(x)e ™2 dx —( l)n (e ) dx
(2.24)
<—1)"*1 g dh ,
= N g(x)m(e Ydx =(g', hp—1).

Thatis, E[g(X)h,(X)] = E[g'(X)h,—1(X)]. Using (2.22) and (2.23), we can gen-
eralize this as follows:

X1
Elg(X)ha(Y)] =) — (8 hn) Elhin (X ) hn (Y,)]
m=0 """
(2.25) = (g, ha)r" =r{g, hy_1)r"!

=rE[g (X,)hn-1(Y)].

The following two lemmas will be useful in Section 5.

LEMMA 2.11. Suppose g,h,g',h’ all have polynomial growth. If f(r) =
E[g(X,)h(Y))], then f'(r) = E[g'(X,)h'(Y,)] forall r € (=1, 1).

PROOF. By (2.23) and (2.22), f(r) =
(2.24), gives

(g, hn)(h, hy)r", which, by

nOn‘

1
— !

f(r) (g, hn) (h, hy)r" !

3
Il
—_

p”qg

1 _
e (&' hn—1) (' hy—1)r"™!

IIF”48

— E[g' (X' (X,)]. O

LEMMA 2.12. Suppose g,g',g", h,h', h" have polynomial growth. Let U =
aX,andV =bY,. Ifp(a,b,r) = E[g(U)h(V)], then

0
%(a, b,r)=aE[g"(U)h(V)]+ brE[g" (U)h'(V)]
forall real a,b and all v € (—1,1).

PROOF. By (2.23) and (2.22), ¢(a,b,r) =352, n,(g(a Y, hp)(h(b-), hy)r"
Fix ap € R. To justify differentiating under the summation at ag, we must show
that there exists an ¢ > 0 and a sequence C,, (b, r) such that

a1l
‘8—[—,<g(a->,hn><h<b-),hn>r”] = Cu(b,1)
afn.
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for all |[a — ap| < ¢, and Y 2, Cn(b, r) < oo. For this, we use (2.18) and (2.24) to
compute

d

! h, Y (b)), h,\r"
g[ﬁgm-), (), n>r]

1
= a(g/(a-), hn1)(h(B), hp)r"

(g'(a), hu—1)(h(b-), hn)r"

1
ta—n
= L(g" @), ha) (h(b). )"
n.

(g'(a), hn—1)(h'(b-), hy—1)r"

" b
(n —1)!
Since |(-, h;/ \/_ Y <1, we may take C, (b, r) = Mr" for an appropriately cho-

sen constant M, provided that |r| < 1. We may therefore differentiate under the
summation at ag. Since ag was arbitrary, we have

—(a b, r)—az (g" (@), hn) (h(b-), hy)r"

+b Z 1), (8 (@), hu—1)(h' (b2), hy—1)r"

= aE[g”(U)h(V)] +brE[g' (U)h' (V)]
foralla, b, r with [r| <1. O

2.4. Multi-indices and Taylor’s theorem. We recall here the standard multi-
index notation. A multi-index is a vector o € Zfﬁ, where Z = N U {0}. We use ¢’

to denote the multi-index with ¢} = 1 and ¢/ =0 fori # j. I« € Z4 and x € RY,
then

d d
|05|=Z(¥j, Ollznaj!,
j=1 j=1

d
0 o
L — o a1 . q%d o J
8]—8] 0° =0, 9, x_—llx]
Xj i
j=1

Note that by convention, 0° = 1. Also note that |x%| = y*, where y j = |x;| for
all j.
Taylor’s theorem with integral remainder states that if g € C**1(R), then

(b—a)
j!

2.26)  g(b)= Zg(])(a)

j=0

k‘/ (b —uw)*g® D w) du.
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Taylor’s theorem in higher dimensions is the following.

THEOREM 2.13. Ifg € CKT1(R?), then
w (b —a)"‘
gb)= Y 9*gla)————+R,
lo| <k
where
b—a)
=k+1) ) b=ar a) f (1—uw)*dg(a+u(b—a))du.
lot|=k+1
In particular,
IRI<(k+1) Y Melb—a)|,
la|=k+1
where My = sup{|0¥g(a +u(b —a))|:0 <u < 1}.

For integers a and b with @ > 0, we adopt the convention that

a!

a S if0<b<a,
p ) =1 bla—Db)
0, ifb<0orb > a.
14 d Vi
_ j
(a)‘ﬂ(og)

for any multi-indices y and «. Later in the paper, we shall need the following two
combinatorial lemmas.

We define

LEMMA 2.14. Let a, b and c be integers. If a > 0 and 0 < c < a, then
(75 (5)=()
o b—j j b

PROOF. The proof is by induction on a. For a = 0, the lemma is trivial. Sup-
pose the lemma holds for a — 1. Since the lemma clearly holds for c =0 or ¢ = a,
we may assume 0 < ¢ <a — 1. In that case,

(Z)=<“;1)+(Z:i>
=2[(5 )+ (GZZ)IC)
2(“)(,)- :

' M



CHANGE OF VARIABLE WITH ITO TERM 1831

Suppose o and y are multi-indices. We will write @ < y if aj < y; forall ;.

LEMMA 2.15. Ify is a multi-index in Z‘j_ and m > 0, then

'%m@):(%')'

PROOF. We shall prove this by induction on d. If d = 1, then the lemma is
trivial. Suppose the lemma is true for d — 1. Let y be a multi-index in Zi and
fix m with 0 <m < |y|. For multi-indices « and y, let @ = («y,...,aq—1) and
¥ =1,...,va-1)- Then,

A 7\ (7
_ d
C()=x ¥ (7))
la|=m ay=0 |@|=m—ay
a<y a<y

MmAN\Yd

- 2 (07 ()

ay=0

Vd
=S (|V|—Vd)<)’d>
m—ay og )’

ayg=0

Applying Lemma 2.14 completes the proof. [J
3. Fourth order integrals.

THEOREM 3.1. Suppose g:R x [0, 00) — R is continuous. For each n, let
{s;‘} and {t;‘} be collections of points with s;?, t;‘ €[tj_1,tj]. Then,

[nt] |nt]
,g&zgﬂﬂﬁxﬁAﬁ=ggoX&ﬂﬂﬁLmAﬁ
J= J=
j odd J even
(3.1)

3 t
=;AgW®JMa

where the convergence is ucp.

PROOF. We prove only the first limit. The proof for the other limit is nearly
identical. Let

Xn(t) = Z g(F(S;f), tﬂ'()l[tjq,lj)(t)
=1
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and
Lnt]
_ 4
Ay(t) =) AF;
j=1
j odd
so that

[nt] t
> s(FGHDAFE = [ X, dA,).
j=1

j odd
By (2.6), A, (t) — 3t/m ucp. Also, by the continuity of g and F, X,, — g(F(-), )
ucp. Finally, note that the expected total variation V;(A,) of A, on [0, ¢] is uni-
formly bounded in n. That is,

Lnt] Lnt]
E[Vi(A)]= ) EAF;<C) At=Ct.
j=1 j=1
J odd
By Theorem 2.7, (3.1) holds with the convergence being in probability in
Dr[0, 00). Since the limit is continuous, (3.1) holds ucp. [

If r and k are nonnegative integers with r < k, then we shall use the notation
g€ Cf’l (R x [0, 00)) to mean that

(3.2) g:R x[0,00) — Ris continuous,
3.3) 8){g exists and is continuous on R x [0, 00) forall 0 < j <k,
3.4) o 8){g exists and is continuous on R x (0, o0) forall0<j<r,

Tim sup 8,8/ g(x, 1)| dt < 00
t—>0x€K

(3.5)
for all compact K CRandall0<j <r.

Note that g € C f’l implies 3/ g € C f:]] ! whenever r > j. For functions of one spa-
tial dimension, we shall henceforth use standard prime notation to denote spatial
derivatives. For example, g’ = 32g and g = d?g.

Typically, we shall need (3.4) and (3.5) only when j = 0. There are a few places,
however, where j > 0 is needed. We need j = 3 in the derivation of (3.10), which
is used in the proofs of both Theorem 3.3 and Corollary 4.5; we need j =2 in the
proof of Lemma 5.8; we need j = 4 in the proof of Theorem 6.2. Note that 3,3{ g
need not be continuous at t = 0. In particular, 9d; o] g need not be bounded on sets
of the form K x (0, ].

Recall that X, (¢) = Y, (¢) means that X,, — ¥;, — 0 ucp.
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THEOREM 3.2. Ifg € Cy"' (R x [0, 00)), then

t
I(g', 1)~ g(F(t),1) — g(F(0),0) — /0 08 (F(s),s)ds

Lnt /2]
-5 Z] g"(F(t2j-1). 12j1)(AF5; — AF5;_))
J:
1 Lt/2]
—c Zl " (F(t2j—1). hj—1)(AF3; + AF3; ),
j:

where I,(g,t) is given by (1.4).

PROOF. By (2.26),

gx+hy,t)—gx+ho,t)

— §4 ! ) J J
j‘g (xvt)(hl _hz) R(x’hl’t)_R(-xah29t)’
j=17"

where
1 rh
R(x,h,t)zm/ (h—u)*g™ (x +u,1)du.
1Jo
Taking x = F(#2j-1), h1 = AF,j and h) = —AF,; 1, we have

g(F(t2j), rj—1) — g(F(t2j—2),12j—1)

4
L , o
=Y jg(’)(F(tzj—l), hj-(AF; = (=1)/ AFJ; )

j=17°

+ R(F(f2j-1), AF2j,0j-1)
— R(F(t2j-1), —AF2j-1,12j-1).

Let N(t) =2|nt/2]/n. Thatis, if t € [tzj_z, tzj), then N(t) = hj-2. Let F,,(¢t) =
F(N(t)). Then,

i

g(F(rzj),rzj)—g(F(rz,-),zz,q)=f " g (Fuls + A, 5)ds,

nj-1
i

g(F(t2j—2). 12j—1) — g(F(t2j—2). 1aj—2) = f g (Fals), s)ds

nj-2

j—1
= 0:g(Fu(s + At), s)ds.

nj-2
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Thus,

[nt/2]
gF (), 1) = g(F(0),0)+ Y {g(F(r2)). 1aj) — g(F(t2j-2). 12j-2)}
j=1

+ g(F(1),1) — g(Fu(1), N(2))
N@)
= g(F(0),0) +./0 0 g(Fu(s + At),s)ds + I,(g', 1)

| Lne/2] . .
+5 2 & (F(tj), - )(AF3; = AF3;_))
j=1
| /2]
+ 3 Z g" (F(nj-1), [2j71)(AF23j + AFfj,l)
j=1
+8n(g,t)7
where
| Lne/2]
en(g, ) =27 2 8V (Fj 1), ) )(AFy; — AFy; )
j=1
[nt/2]
+ Y {R(F(12j-1), AF2j,12j_1)
j=1
(3.6)
— R(F(t2j-1), —AF2j_1,2j-1)}

+ g(F (1), 1) — g(Fp(t), N(1)).
By (3.4), (3.5), the continuity of F and dominated convergence,

N(t) t
/ Btg(Fn(s+At),s)ds—>/ 0,8(F(s),s)ds
0 0

uniformly on compacts, with probability one. Therefore, it will suffice to show that
en(g, 1) — 0 ucp.

First, assume that g has compact support. By the continuity of g and the almost
sure continuity of F, g(F(t),t) — g(F,(t), N(t)) — 0 ucp. Since g(s) is bounded,
|R(x, h,t)| < C|h]. Thus,

[nt/2]
Z {R(F(t2j-1), AF2j,10j1) — R(F(t2j-1), —AF2j_1,02j-1)}
j=1

[nt/2]
<C > |AF;P
j=1
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and
Lnt /2] LnT /2] LnT /2]
E[ sup Y |AFj|5}: Y EIAF)P=C Y o}
O<t<T j=1 j=1 j=1

< CnTAP* =CT A4,

It follows that
nt /2]

Z {R(F(t2j-1), AF2j,12j—1) — R(F(t2j—-1), —AF2j_1,10j—1)} = 0
=1

ucp. An application of Theorem 3.1 to the first sum in (3.6) completes the proof
that ¢, (g, t) — 0 ucp, in the case where g has compact support.

To deal with the general case, we use the following truncation argument, which
we will make use of several times throughout this paper. Fix T > 0 and 1 > 0.
Choose L > T so large that

P( sup |F (1) zL) <.

0<t<T

Let ¢ € C*°(R) have compact support with ¢ = 1 on [—L, L]. Define h(x,t) =
g(x,e(x)p(t). Then, h € CS’I(R x [0, 00)), h has compact support and &7 = g
on [—L, L] x [0, T]. By the above, we may choose ng such that

P( sup len(h,0)] > 1) <n
0<t<T

for all n > ng. Hence,

P( sup len(g. 1)l > 1)
0<t<T

<P( sup IF@)|=L)+P( sup lenh, 1) >n)

0<r<T 0<t<T

<2n

for all n > ng, which shows that ¢, (g, ) — 0 ucp and completes the proof. []
THEOREM 3.3. If g€ C3"' (R x [0, 00)), then

t
Tu(g'. 1)~ g(F(1),1) — g(F(0),0) — /o 0 g(F(s),s)ds

[nt]
1
+ 53 28" (P t)(AF, + AF)),
j=1

where T, (g, t) is given by (1.7).
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PROOF. As in the proof of Theorem 3.2, we may assume g has compact sup-
port. Define
[n2/2]
Li(g. )= Y g(F(t2j). t2j)(F(t2j11) — F(12j-1)).
j=1
The proof of Theorem 3.2 can be easily adapted to show that

Y t
Ii(g', 1)~ g(F(1),1) — g(F(0),0) — /0 0 g(F(s),s)ds

Lnt /2]
3.7) -3 Zl g"(F(t2j). hj)(AF3; | — AF3)
iz
Lnt /2]
-2 ,Zl 8" (F(t2)). 12j)(AF3 | + AF3)).
Note that
Li(g',0) + 1,(g' 1)
2|nt /2] 2|nt/2]
= Y J(F). t)(AFj1 +AF)+ Y g(F(t)), 1)) (AFj1 + AF))
;’ZLB jjgz;n
2\nt /2]
= Z g,(F(tj),tj)(AFj+1+AFj).
j=1

Also, note that
lnt]—1 |nt]
7M$0=§<z:§WW%WAEH+§:ﬂF%%WAﬂ)
j=0 j=0
By the continuity of F and g’, this shows that

L D+

Tn(g/: t) 2

By (3.7) and Theorem 3.2, we have

t
To(g'. 1) ~ g(F(1).1) — g(F(0),0) — /O 0,g(F(s). 5)ds

|nt]
; 2
o T2 _2:1(8”(1’(5-), tj) — g"(F(tj-1),1j-1))AF;
J:
1 Lntj
_ E X; g///(F(lj), tijF;—i—l + AF;),
J:
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Since g € Cg’l(R x [0, 00)), we may use the Taylor expansion f(b) — f(a) =
%(f’(a) + f'(b))(b —a) + O(|b — a®) with f = g” to obtain

§'(F(tj),tj) — g " (F(tj—1),1j—1)
= [ 08" (Fp),5)ds

1

(3.9) g (F(tj—1),tj—1) + &"(F(tj),tj—1))AFj + R

5
t; 1 ti
— [’ 0g"(F(1)).5)ds — 5 AF; " og” (F(t)). s)ds

1 tj—1

5(8/”(F(tj—1), ti—1) + 8" (F(t)),1)))AF; + R,

where |R| < C|AF; 3. Since g has compact support, we may use (3.5) with K =R
and j =3 to conclude that the above integrals are bounded by C A¢. This yields

nt|
Z (8" (F(tj).tj) — g"(F(tj-1).1j-1))AF

3.10
(3.10) ot

Z

(8" (F(t)), 1))+ 8" (F(tj—1), ;-1)) AF; + R,

l\)l'—

where |§| < CZ(AtAFj2 + AtlAFJ~|3 + |AFj|5). We can combine this formula
with (3.8) to complete the proof. [

4. Third order integrals. To analyze the third order integrals, we will need
a Taylor expansion of a different kind. That is, we will need an expansion for the
expectation of functions of jointly Gaussian random variables. For this Gaussian
version of Taylor’s theorem, we first introduce some terminology. We shall say
that a function g : R? — R has polynomial growth if there exist positive constants
K and r such that

g0 < K1+ Ix]")

for all x € R?. If k is nonnegative integer, we shall say that a function g has poly-
nomial growth of order k if g € CK(R) and there exist positive constants K and r
such that

10%g ()| < K(1+|x|")

for all x € R and all |a| < k.
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THEOREM 4.1. Let k be a nonnegative integer. Suppose h:R — R is mea-
surable and has polynomial growth, and f € CK*Y(R?) has polynomial growth of
order k + 1, both with common constants K and r. Suppose, also, that 3% f has
polynomial growth with constants Ko and r for all || <k + 1. Let £ € R? and
Y € R be jointly normal with mean zero. Suppose that EY? = 1 and E éjz < for

some v > 0. Define p € R¢ by pj=E[§;Y]. Then,

1
E[fGhM]= ) —pE[3°f( — pDIE[Y*h()] + R,

le] <k ™"
where |R| < C 3y 1=k+1 Kalp®| and C depends only on K, r, v, k and d. In
particular, |R| < Cl,olk‘H.

PROOF. Let U = & — pY and define ¢:RY — R by ¢(x) = E[f(U +
xY)h(Y)]. Since h and f have polynomial growth and all derivatives of f up
to order k + 1 have polynomial growth, we may differentiate under the expectation
and conclude that ¢ € C k+1(R4). Hence, by Theorem 2.13 and the fact that U and
Y are independent,

1
E[f©hM]I=g(p)= ) —p*3%p(0) + R

o] <k ™"

1
= D — P E[" fWIE[Y*h(N)] + R,

le|<k ~"
where
IRI<(k+1) Y Mqlp®|

lor|=k+1
and M, = sup{|0®p(up)|:0 <u < 1}. Note that
0% p(up) = E[3° f (U +upY)Y* " h(¥)] = E[3° f (€ — p(1 —w)Y) YT R(Y)].
Hence,

0% (up)| < Ko KE[(1+1& — p(1 —w) Y)Y [FH A+ 7))
< Ko KE[(L+27|E1" +21pI 1Y )Y+ |y ).

Since | ,0|2 < vd, this shows that M, < C K, and completes the proof. []

COROLLARY 4.2. Recall the Hermite polynomials h,(x) from (2.16). Under
the hypotheses of Theorem 4.1,

1
E[f©hM]= ) —p"E[d" f(OIE[ha (VD] + R,

loe|<k ™
where |R| < C 34 1=k+1 Ka|p®| and C depends only on K, r, v, k and d. In
particular, |R| < C|p|F+1.
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PROOF. Recursively define the sequences {a(") }?ozo by aﬁ-o) = E[Y/h(Y)] and

J
al, if j <n,

“.1) a"th =

J al" — (,{l>a,(l")E[Yj_”], ifj>n+1.

We will show that forall0 <n <k +1,

1
ELf©hM]= Y —p“El° f()lal)
la|<n—1 """

4.2) |
+ X —PEL [ — pY)lajg) + R,
n<le|<k ="
where |R| < C Y 1y =k+1 Kulp®| and C depends only on K, r, v, k and d. The
proof is by induction on n. The case n = 0 is given by Theorem 4.1. Suppose (4.2)

holds for some n < k + 1. Fix « such that |a| = n. Let ¢; denote E[Y*]. Applying
Theorem 4.1 to 3% f with h(y) = 1 gives

1 ~
ERYf®1= Y. EpﬁE[an(s — pY)leip + Ra
|Bl<k—n "

X .
=EW*fE=pDI+ > o B f(E = pY)leyp + Ra,
1=<|B|<k—n

where |Ry| < C Y5zt +1_n Ka+plp?|. Hence, by (4.2),

1
E[f&h¥)]= > ap‘*E[a“f(S)]afo

loe| <n
1
(4.3) + > = p“E[0°fE - pY)lajy)
n+l<la|<k =
— S+ R,
where

IR | <|RI+C Y 1p%l|Ry|

|la|=n

<IRIAC D10 Y. Katpld®
lel=n  |Bl=k+1-n

<C Y Kalp%|

loe|=n
and

1
-y % + + )
S_| =n 1<|81=k a!,B!'Oa PE[3* TP £ (& — pY)]a™cip).

o|=n 1<|B|<k—n
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Making the change of index y = « 4+ 8 and using Lemma 2.15 gives
s= > ¥ (! ) Lo ELDY (& — pY)Na ey

n+l1=<|y|<kla|l=n
a<y

= x (M) re - ornaay .
n+1<ly|<k v
Substituting this into (4.3) and using (4.1) shows that
1
E[f@hW)]= Y —p*E[0* f(&)laj""
o!
loe|<n
4.4) .
+ Y pMECfGE—pDlag )+ R
n+l<la|<k ~°
which completes the induction.
By (4.2) with n = k + 1, it remains only to show that
(4.5) a§”> = E[h;j(Y)h(Y)]  forall j <n.

The proof is by induction on n. For n = 0, the claim is trivial. Suppose (4.5) holds
forall n < N. If j < N, then (4.1) implies a{"*" = a{" = E[h;(")h(¥)]. If
Jj =N +1, then

dNVAD ) N+1Y) @
Anyr =Aygg — < N )aN E[Y].

Using induction, this gives

N

(N+1) _(0) N+1Y\ () pryN+1—j

AN+1 —aN+1—§:< i)Y E[Y ]
j=0

= E[YN ()] Z(N jl) [ (V)R(YYE[Y N+

=0
Y N+1 :
= E“W“ -> ( ;r )E[YN“—J]hj(Y)}h(Y)]
j=0
By (2.21),
N+1 N+1
YN = 3 (NJT 1)E[)/J’]h;vﬂ_j(y): ) (N;F 1>E[YN+1_j]hj(Y).
j=0 j=0

Hence, aj(vi\ﬁl) = E[hn4+1(Y)h(Y)], completing the proof of (4.5). [
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THEOREM 4.3. If g € Cy'' (R x [0, 00)), then

[nt] |nt]
. 3. 3
Jim > &(F(tj-1),1j-1)AF; = lim_ > &(F(tj-1),1j-1)AF;

j=1 j=1
J odd J even
(4.6) 3
=" o g'(F(s),s)ds
and
[nt] |nt |
lim 3" g(F(t)),t)AF] = lim " g(F(t)), 1) AF}
Jj=1 j=1
Jj odd Jj even
“4.7)

3 t
= —/ g/(F(S), S) ds,
2w Jo
where the convergence is ucp.

REMARK 4.4. The nonzero limits result from the dependence between
F(tj—1) and AF; in (4.6), and F(z;) and AF; in (4.7). Note that

E[F(tj—1)AF;j]=Atd;p(tj-1,tj—1+¢€)

for some 0 < ¢ < At. Similarly, E[F(t;)AF;] = Ato;p(tj,t; — ). If X is a cen-
tered, quartic variation Gaussian process, then

p(s,0) = S(EX()* + EX(5)* — EIX () — X(s)|*)
~ WEXW)?+ EX(s)? — |t —s]'/?),

which means the leading term in d;p(s, 1) is —|t — s|~'/>sgn(¢ — 5). Hence, it is
not surprising that the limits in (4.6) and (4.7) are of equal magnitude and opposite
sign.

PROOF OF THEOREM 4.3. We prove only the case for odd indices. The proof
for even indices is nearly identical. To simplify notation, we will not explicitly
indicate that the indices are odd in the subscript of the summation symbol (this
convention applies only in this proof).

Using the truncation argument in the proof of Theorem 3.2, we may assume that
g has compact support. Fix T > 0. Let 0 < s <t < T be arbitrary. Recall o; and
0;j from Section 2.2. Let

[nt]
Zn(t) =) g(F(tj_1),tj-1)AF;,
j=1
Xn=Xn(s,0) =Zy(t) — Zn(s),
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[nt]
Yo=Ya(s.)=3 Y g(F(tj-1).tj-1)G;07.
j=lns]+1
We may write
E|Xy = Yal?
[nt]
=E| Y gF(j-1),1j-1)AF;
j=lns]+1
(4.8)
lnt) 2
-3 > g/(F(fjfl)atjfl)ajO’jz
j=lns]+1
= (81— 82) — (52— $3),
where

|nt] |nt]
Si= Y, Y Elg(F(ti—1).tii)AFg(F(tj—1).tj-1)AF;],
i=|ns|+1 j=|ns]+1

[n] [nt]
$=3 Y. Y Elg(F(ti—). i) AF g (F(tj—1).tj—116j07,
i=|ns]+1 j=|ns]+1
[nt] [nt]
S$3=9 Y > Elg(F@i).tii))g (Ftj-1).1j-116;07607;.
i=|ns|+1 j=|ns]+1
Let &1 = F(ti-1), =0 'AF;, & =F(tj_1), Y =0; 'AFj and p = E[&Y].
Define f € C3(R?) by f(x) = g(x1,ti—1)x5g(x3, ;1) and define h(x) = x>. By
Corollary 4.2 with k = 2,

1
E[f&)Y )= Y —p E[0* fEIE[h ()Y ]+ R

lo]<2 ™"

1
=3 ) P EDfE1+R,

laj=1 """
where |R| < C|p|3. Hence,

[nt] [nt]
ISi—=Sl=| Y Y 60 (ELfEY1-3pE[0:£(&)])
i=|ns]+1 j=|ns]+1
[nt] [nt]
<C > > gollpil+ 2l + 103
i=|ns|+1 j=|ns|+1
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Lnt] Lnt)
<c Y Y (APMEF(ti—1)AF;|
i=ns]+1 j=|ns]+1
+ At|EAF;AF;| + AP45 ).
By (2.8), (2.9), Lemma 2.9(i) with ¢ = 0 and Lemma 2.9(iii1),

Lt ] Lt ]
ISi—Si<Cc Y. > (AP(j—ilvDT?
i=|ns]+1 j=|ns]+1
+ AP =il v )T 4 A
Lt ]
SC Z AIS/4SC(M>AII/4.

i=|ns|+1 n

To estimate Sy — S3, let & = F(ti_1), & = F(tj—1), Y = o, 'AF; and p; =

E[£.Y]. Define f € C3(R?) by f(x) = g(x1,t;—1)g (x2,tj—1) and h(x) = x>. As
above,

1S5-831=3] Y > 600 (ELfE)Y 1 -3p1E[01f(§)])

i=|ns|+1 j=|ns|+1

Lnt] [nt]
<C > Y [Gjlojo}(pal+ o)
i=|ns]+1 j=|ns]+1

nt) L)
<Cc > 3 (AalQj-ilvD)Tr 4 ar?)
i=|ns]+1 j=|ns]+1

Lnt]
SC Z A13/2§C<M>All/2.
i=|ns|+1 n

Lnt] Lnt] ‘

Combining these results, we have

E|X, —Y,|* < C(—LmJ — ns] )At1/4 < C(LIJ — Lns) )5/4.

n n
Note that

n) L)
EY;<C Y Y [6i0/60;]
i=|ns]+1 j=|ns]|+1

Lt ] Lt ]

<c Y 3 Az2=c<M)2.

i=|ns|+1 j=lns ) +1 n
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Since t — s < T, this shows that

— 5/4
t

n
Taking s = 0 verifies condition (iii) of Theorem 2.1. Hence, by Corollary 2.2, {Z,}
is relatively compact. Since X,, — ¥, — 0 in L2, it will suffice, by Lemma 2.6, to

show that

[nz]
R 3
V0.0 =3 Y ¢ (F (. t;08,0F = == [ /(P ds
=1

in probability. For this, observe that by (2.4) and (2.9),
607+ A1 < (6 + @m) T Ar! 262

+ Q)" PAal /) P A — o7

<Cj™'2At.
Hence,
[nt] |nt]
28/ (Fltj-):1j-)8j0] + - Y & (F(tj-1),1j-) At < CAI'/? — 0.
j=1 =1
Since

[nz] 1 t
IFGORNTIVES OIS
j=1
j odd
almost surely, this completes the proof of (4.6).
For (4.7), note that we may use (3.5) with K =R and j = 0 to obtain

g(F(t)),tj) — g(F(tj—1),tj—1)
N

= [ 0g(F(t)).s)ds +g(F(t}).tj—1) — g(F(tj_1).tj_1)

tji—1
=g (F(tj—1).tj—1)AFj + R,
where |R| < C(At + AF}). Hence,

[nt] |nt]
Y g(F(p). tDAF;) =" g(F(tj_1).tj-)AF;]
4.9 o =
(4.9) .

+ Y G (F(tj—1).tj-DAF} + R,
j=1
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where |R| — 0 ucp. Applying (4.6) and Theorem 3.1 completes the proof. [J

As areminder, X, (¢) & Y, (t) means that X,, — Y,, — 0 ucp. Let

2|nt/2) '
(4.10) Jn(g. =Y g(F(tj-1).tj-DAF;(=1)/.

j=1

COROLLARY 4.5. Ifg € CJ' (R x [0, 00)), then

Li(g', 1) ~ g(F(1),1) — g(F(0),0) — /Ot 0 g(F(s),s)ds — %Jn(g”, 1,
where I,(g,t) and J, (g, t) are given by (1.4) and (4.10), respectively. Moreover,
TG0~ g(F 0.0~ g(F©),0 — [ 8g(FG),9)ds,
where TnF is given by (1.7).

PROOF. By Theorems 3.2, 3.3 and 4.3, it will suffice to show that

[nt/2]
Y & (Ftaj—1). aj- 1) (AF3; — AF5; )~ Ju(g".1).
j=1

As before, we may assume that g has compact support. Note that

Lnt/2]
> &' (F(taj-1). j—))(AF3; — AF3,_y)
j=1
2\nt/2] 2|nt/2]
= 3 GFU_).-)AFF = Y ¢ (F i), 1) AF?
j=1 j=1
j even J odd
2|nt/2)
=" )~ Y (g (F(t)). 1)) — §"(F(tj—1), 1j—1)}AF?.
j=1
j odd

The proof is completed by using (3.10) and applying Theorem 4.3. [
COROLLARY 4.6. Ifg € C7' (R x [0, 00)), then
t

T (g 1)~ g(X(1).1) — g(X(0),0) —/0 9 8(X(s),s)ds,

where TnX is given by (1.7). This result remains true even when X = cF + &, where
& satisfies only (1.3), and is not necessarily independent of F .
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PROOF. By passing to a subsequence, we may assume that Corollary 4.5 holds
almost surely. It will therefore suffice to prove Corollary 4.6 under the assumption
that £ is deterministic.

The claim is trivial when ¢ = 0. Suppose ¢ # 0. Let h = h¢ be givenby h(x, 1) =
g(cx + £(1),1). We claim that & € C]"'(R x [0, 00)). Note that 1)) (F(1),1) =
¢’ g(j )(X (1), 1) for all Jj <17. Itis straightforward to verify (3.2) and (3.3). Condi-
tions (3.4) and (3.5) follow from the fact that

0D (x, 1) = ¢/ gtV (cx + £(1), )& (1) + ¢/ 9,8 (cx + £(1). 1)

for all j <3.
Observe that

PR (F @t 1) ti1) + h (F (1)), 1))

7X@, )=TF (W, ) +c7! 5

AE;.
j=1

By our hypotheses on &, and the continuity of 4’ and F, the above summation
converges to fé W' (F(s),s)&'(s)ds, uniformly on compacts with probability one.
Thus, by Corollary 4.5, we have

T.X(g',t) ~ h(F (1), 1) — h(F(0),0)

— /t dh(F(s),s)ds +c ! ft W (F(s),s)& (s)ds
0 0

t
=g(X(1),1) —g(X(0),0) — /O 9 8(X(s),5)ds,

which completes the proof. [J

5. Relative compactness. The main result of this section is Theorem 5.1 be-
low, from which the relative compactness of {J, (g, -)} will follow as a corollary.
[Recall that {J,,(g, -)} is defined in (4.10).] Later in Section 6, we will again need
Theorem 5.1, when we show that J,, converges weakly to an ordinary Itd integral.

THEOREM 5.1. Let g € C;’l(R X [0, 00)) have compact support. Fix T >0
and let ¢ and d be integers such that 0 <t. <ty <T. Then,
d 2
Y {g(F(tj—1).tj—1) — §(F(te) t)}AFF (1) | < Clta — 1],
j=c+1

E

where C depends only on g and T .

Consider the simple case ¢ =0 and g(x, ¢) = x. In that case, the above expec-
tation is

d 2
Y Ft_DAF;(=1)/| = Z .

j=1 i=1j

d
E

E[F(ti—l)AFiZF(tj_l)AF],Z](_l)H—j‘
1
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Using Corollary 4.2, we can remove the A F? factors from inside the expectation.
The leading term in the resulting expansion would be roughly

d d
AtY N E[F (G- F(tj—)I(=1)"

i=1j=1

=At Y E[(F(ti-1) = F(ti-2))(F(tj-1) — F(1j-2))].

i,j even

We could now use (2.8) to analyze these expectations and prove the theorem in
this simple case.

If we are to follow this strategy, then we will need an estimate analogous to
(2.8) which applies to functions of F. The estimate in (2.8) was originally ar-
rived at through direct computations with the covariance function. Unfortunately,
such direct computations are not tractable for a general function of F. There
is, however, an alternative derivation of (2.8). Specifically, if we observe that
|05t (s, )| < Clt — s|_3/ 2 where 9, is the mixed second partial derivative, then
we may conclude that |[E[AF; AF;]| < CAt2|tj — 1;|73/2. Based on these heuris-
tics, we begin with the following.

LEMMA 5.2. Let X be a centered Gaussian process with continuous covari-
ance function p(s,t) and define V(t) = p(t,t). Suppose that p is a C 2 function
away from the set {s =0} U {t =0} U {s =t} and that V (t) is a positive c! func-
tion on {t > 0}. Suppose that ¢ € C*(R) has polynomial growth of order 2 with
constants K and r, and define V(1) = E[p(X (1))]. Then,

Vo0 =3V ElY" (X (1)].

In particular, |V(;7 )| <C|V'(t)| forall 0 <t < T, where C depends only on K, r
and T.

PROOE. Let o(7) = V()!/? and note that o is a positive C! function on
{t >0). Fix t >0 and let X = o (r)"' X (¢) so that X is a standard normal ran-
dom variable and V,, (1) = E[¢(o (1) X)]. Since ¢’ has polynomial growth, we may
differentiate under the expectation, giving

V(1)

o) Elg (o (1) X)h1(X)],

V() =0 (DE[X¢'(0()X)] =

where h;, is given by (2.16). By (2.25), we have

V(1)
20 (1)

1
V() = E[o(1)¢" (o () X)ho(X)] = EV/(I)E[W(X(I))]- O
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PROPOSITION 5.3. Let X, p, and V be as in Lemma 5.2. Let g, h € CZ(R)
have polynomial growth of order 2 with common constants K and r, and define
f (s, 1) = E[g(X(s)h(X(1))]. Then,

0 f(s,1) = 5V () E[g" (X (s)h(X (1))]
+d5p(s, DEIZ (X (N (X ()] and
(52) 0 f(s,1) =3V (OEIQX ()R (X )]+ 0p(s, NELZ (X (s)h' (X (1))]

(5.1)

whenever 0 < s,t <T and s # t. In particular,

105 f (s, ) < C(IV ()| + |95 0(s, 1))
and

19 f (s, ) = C(IV' (D] + 19, 0(s, D),

where C depends only on K, r and T.

PROOF. By symmetry, we only need to prove (5.1). Let o (¢) = V(6)Y/? and
note that o is a positive C! function on {t > 0}. Let r =r(s, 1) = o (s) lo()~! x
o(s,t) and define X, = o(s)"' X (s) and ¥, = o(t) "' X (¢). Note that X, and Y,
are jointly normal with mean zero, variance one and E[X, Y] =r.

Let ¢ be as in Lemma 2.12. Then f(s,t) = ¢(o(s),o(t),r(s,t)). Hence, by
Lemmas 2.11 and 2.12,

I f(s,1) =0"(s)a(s)E[g" (X (s))h(X (1))]
+0'(s)o(D)r(s, ) E[g' (X ()R (X ()]
+ 857 (s, 1)a (s)a (1) E[g' (X (s))h" (X (1))].
Note that o/ (s) = V'(s)/(20 (s)) and

8S10(S’t) _ ,O(S,t)
o(s)o(t) o(s)2o(t)

, Op(s,t) V' (s)r(s,t)
o'(s) =

051 (s, 1) = T o(s)o(t)  20(s)?

Thus,
s f(s.1) =3 V'()E[g" (X (5))h(X (1))]
+ 3V () o (t)r (s, ) E[g' (X (s)h' (X (1))]
+0sp(s, E[E (X () (X (1))]
—LV'(s)o(s) o (t)r (s, ) EL' (X (s))h' (X (1)]
= 3V () ELS" (X (sHh(X )]+ dsp(s, DE[Z (X (DA (X (1)]. O
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THEOREM 5.4. Let X, p and V be as in Lemma 52. Let g, h € C3(R)
have polynomial growth of order 3 with common constants K and r, and define
f(s, 1) = E[g(X(s)h(X(1))]. Then

|35 £ (s, )] = Cl3sep (s, D+ C(IV' ()] + 35005, D) (IV' O] + 18, (5, D)),

whenever O < s,t <T and s # t, where C depends only on K, r and T.

PrROOF. By (5.1),
Ot f (s,1) = 3V ()L EL" (X (sDh(X )]} + s p(s, 1) ELg' (X (s))h' (X (1)1}
+ 3y p (s, ELZ (X ()R (X (1)].
Applying (5.2), we have
s f(s,1) = V' ()V'()EL" (X ()R (X (1))]
+ 3V () 0(s, DE[Z" (X (s)h' (X (1))]
+ 3V (08;0(s, HE[' (X (s))h" (X (1))]
+850(s, )3 p(s, DE[" (X (s)R" (X (1))]
+ 350 (s, ) ELE (X ($))h" (X (1))]

and the theorem now follows. [J
From Theorem 5.4, we immediately obtain the following corollary.

COROLLARY 5.5. Let X, p and V be as in Lemma 5.2. Let g,h € C3(R)
have polynomial growth of order 3 with common constants K and r, and define

S (s, 1) = E[g(X(s)h(X ()] If
V(1) <Ct™ 12,
050 (s, D] + 1,005, )] < C(s7 >+ (1 —5)7'/?)
and
105 p(s,1)| < C(s /2 + (1 — 5)7?)
forall0 <s <t <T,where C depends on only T, then
18 f(5, )] < C(s /% 4 (1 —5)7/?)

for a (possibly different) constant C that depends only on K, r and T .

With this corollary in place, we can now begin proving Theorem 5.1.
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LEMMA 5.6. Suppose g € Cé’l(R X [0, 00)) has compact support. If p > 0,
then

E|g(F(1),1) — g(F(s),s)|P < Clt —s|P/*

forall0 <s,t <T,where C depends onlyon g, pand T.

PROOF. We write
gF (), 1) —g(F(s),s)

=/4@ga«andu

1
+(F@t) — F(s))'/0 g (F(s)+u(F (1) — F(s)),s)du.

Hence, |g(F(1),t) — g(F(s),s)| < C|t — s| + C|F(t) — F(s)|. Since F is a
Gaussian process, an application of (2.3) completes the proof. [
LEMMA 5.7. Recall that ojz = EAFJ-Z. Under the hypotheses of Theorem 5.1,

2
<Cltg —t.]>?,

d

E| > {g(F(tj—1).tj—1) — g(F(tc). t)}o} (—1)!
j=c+1

where C depends only on g and T .

PROOF. By (2.4),

d

Y (F (). tj-1) — g(F(te). t)}o (=1)) =S +e,
Jj=c+1

where
o\ 1/2 d ;
S:(;> A ST (g (Ftj-1), tj—1) — g(F (1), 1)} (= 1)
j=c+1

and, by Holder’s inequality,

d 2
el = CA’( 2. I8 (F(tj-0).tj-1) = 8(F(tc), rc>|j—3/2)

j=c+1

d d
5cm( > |g<F(t,,-_1>,z,-_1)—g(F(rc),zaF)( > 1‘3)-

j=c+1 j=c+1
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Hence, by Lemma 5.6,

d
Ele <CAP? Y |j—cl'? <CAPPd — PP = Cltg — 12
j=c+1
As for S, we assume, without loss of generality, that ¢ and d are both even. In that
case,

2\ 1/2 d
S=(;> A2 g (F(tjm1),tj-1) — §(F(1-2),1j-2))

j=c+1
1/2
()
T

J even
d -
) { [ a9 ds

j=c+1 712
J even

b g(F(tj_1)stj—2) — g(F(tj-2), zj_2>}.

Using (3.5) with j = 0, the integral is bounded by C At and we have E|S|> <
CAt(|tg — tc|* + Si + S»), where
d
Sy = Z E|g(F(tj—1),tj—2) — g(F(tj—2,t;-2))|*,
j=c+1
J even

d d
$5=2 > Y |EHg(F(ti—1).ti—2) — g(F(ti-2), ti—2)}
i=c+1 j=i+2
i even / even
x {g(F(tj—1),tj—2) — g(F(tj—2),tj—2)}|
d d ti—
=22 2
i=c+1 j=i+2
i even ] even
and f;;(s,1) = E[g(F(s),t;—2)g(F(t),1j—2)]. Note that F' is a Gaussian process
satisfying the conditions of Corollary 5.5. Hence,

d d i1 prlj—1
$<C Y Y / f] (s + @ -9 drds
i=c+1 j=i+2li-2 Jtj-2
i even j even

d d
<CA2 Y S (=) (i - )T

i=c+1 j=i+2
i even ] even

<CAt'"2(d —c)=CA |ty —t.).

1 flj-1
/ Ost fij (s, t)dtds
tji—2

li—2
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By Lemma 5.6, we also have S| < CAt_1/2|td — t.|. Hence,
E|S)? < CAt' )ty —t.|.

Combined with the estimate on E|g|?, this completes the proof. [J

LEMMA 5.8. Let 6. j = E[(F(tj—1) — F(t.))AF;]. Under the hypotheses of
Theorem 5.1,

d 2
E| > g"(F(tj—1).tj-1)62 j(=1)/| < CAtltg —te,
j=c+1

where C depends only on g and T .

PROOF. By Lemma 2.9(i) applied with ¢ =0, and (2.9), we have
Ge.j + Q) V2ALV2 = [6; — E[F (1) AF;1+ )~ 2 At/
<CAt'2(j —e)7V2,
Hence, by Lemma 2.9(i),
67, — @m) ' At| < CAr' P16, + @) T PAl P < car( — o7

Therefore,
d .
Y &' (F(tj-1).1j-1)8 (=) =S +e,
Jj=c+1
where
d .
S=@m) At Y G (Ftj-1). tj-)(=1)!
j=c+1
and

d 2

le|> < CAt2< > G- c)“ﬂ) < CA*(d —¢) = CAt|tg — t.|.
j=c+1

The proof that E|S |2 < CAt|ty — t.| is similar to that in the proof of Lemma 5.7,

except that we must use (3.5) with j =2.

LEMMA 5.9. Under the hypotheses of Theorem 5.1, we have
2

d
E| > {g(F(te), tj—1) — g(F(te), t)}YAFF (= 1)/ | < Cltg — 1],

Jj=c+1

where C depends only on g and T .



CHANGE OF VARIABLE WITH ITO TERM 1853

PROOF. LetY(t) =g(F(t.),t) — g(F(t.),t.) and note that

d 2
E| > Y- )AF;(—1)/
j=c+1
d d o
= > > EY(GDAFY (@t )AF;I(=1)".
i=c+1 j=c+1

For fixed i, j, define f:R? — R by
glx1,ti—1) — g(x, tc)) (g(xl, tj—1) — g(x1, tc))xz

2.
tj—l_tc

reo=(

i1 — 1

By (3.5) with j =2, f has polynomial growth of order 2 with constants K and r
that do not depend on i or j.

Let& = F(t,), & =0] 'AF;, Y = 0]-_1 AFj and h(y) = y?. By Corollary 4.2
with k = 1, E[f(§)h(Y)] = E[f(§)] + R1, where |R;| < C|p|*. Similarly, if
fx1) = f(x1, 1), then

E[f(®)]=E[f(EDhE)] = E[fED]+ Ra,
where |Ry| < C|E[£1&]|%. Therefore,
E[Y(ti-)AFY (tj-1)AF;1 =070 EIY (t-1)Y (tj-1)] + Rs,

where

|R3| =007 |ti1 —tlltj—1 — t||R1 + Rol < AP|i —c||j — cl| R + Ra.
Using Lemma 2.9(iii) and (2.8),

o1l = |E[£1 Y]] < CAtVH4j — |7V,

lp2l = [E[&Y] < C(j—ilv D72 |E[E&] < CAt'4i =72,
This gives

IR3| < CAt2(ji —c| +1j —c)+CAL(j —i|v D3 (i —c2+1j — ).

Observe that

d d
Yo IR DI CAT(d =) + CAP(d — ¢)* < Cltg — 1]
i=c+1 j=c+1

Hence, we are reduced to considering

d d d ?
> Y GPOTEIY (DY (D= =E| 3 Y(t-)oj (=] .

i=c+1 j=c+1 j=c+1
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Using (3.5) with j =0 and (2.4), we have

d
Y Y(t_noj(=1)/

j=c+1

d

Y (YD} =Y (127 )
j=c+1
Jj even

d

< 3 (IY@-Dllo? =02 |+ Y- = Y(tj-2)lo? )
Jj=c+1
J even

d
<C Y (tj—1 =1l j7PAr 2+ AP
j=c+1

d
j=c+1

which completes the proof. [J

PROOF OF THEOREM 5.1. By Lemma 5.9, it will suffice to show that
2
< Clia — 1.

d

Y {g(F(tj—1).tj—1) — §(F(te). tj-D}AF; (—1)
j=c+1

For brevity, let X (¢) = g(F(¢),t) — g(F(¢.), t) and write
2

E

d
Y X(t_)AFF(—1)
Jj=c+1

E

d d
= 2 ) EXG-DARX(-DAFD™.
i=c+l1 j=c+1
Recall that 0,2 = EAFJ.Z. Let 8.(t) = F(t) — F(t;). Let ac%j = E8.(tj)% Let

&1 =F(), & = O—ctil_IBC(ti_l)’ & = o-;}_lgc(tj_l), £y = U,'_lAFi and § =
(1,...,84). Forx e R*, define f=fijby

s =(

y <g(x1 + o0, j—1x3,tj—1) — g(x1, tj—1)>x2
4.
Oc,j—1

gx1 +oci—1x2,ti—1) — g(x1, lil))
Oc,i—1
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LetY = aj_lAFj and h(y) = y%.

Note that for 6 € (0, 1] and ; € [0, T], x Q_I(g(xl +0x2,t5) — g(x1,1}))
has polynomial growth of order 6 with constants K and r that do not depend on 6
or j. Hence, f has polynomial growth of order 6 with constants K and r. Thus,
by Corollary 4.2 with k =5, if 0 = acyi_lac,j_laiza-z, then

E[X(ti-)AF?X(tj-1)AF}]
=0 E[f(E)h(Y)]
1
=o( X Sl FOIE (Y] + Ry ),

l]<5 7"

where p; = E[§;Y] and |R;| < C|p|®. If p is a positive integer, then by (2.19),
(2.20) and (2.22) with r =1,

(5.3) E[hjy(Y)YP]=0 if p— |a|is odd or |a| > p.
Hence, since E[hy(Y)Y?] = E[Y* — Y2 =2,
E[X(ti ) AFX(tj_1)AF;1 =0 E[f(§)]+0p3 E[33 f (§)] + 0 Ry,

where R, incorporates all terms of the form p® E[0% f(§)] with |«| = 2, except
a=(0,0,2,0). It follows that

E[X(ti ) AFX(tj_1)AF;]
(5.4) =0 E[X (i) AF X (tj_1)]
+6, ELX (- ) AF7 8" (F(tj-1), tj-D] + o R,
where o, j = E[8:(¢j—1)AF;] and

IR2| < C(Ip11* + 121> + lpal + lo102] + 1031 + 02031 + 1031°).

The terms |1 p4l, |p2p4l, |p3p04] and |p4|? are not listed on the right-hand side of
the above estimate because |p1p4| + |p204] + |0304] + |04]? < C|p4|. Using (2.3)
and Lemma 2.9, we have

lo] < CA2 )i — V4 j — c|V4,

lp2l < Cli —c|7V4(j =il 7 24 | — el 713,

lp1] < CAYA|j — |12
<Cli—c| Y4 (j—ilm V24 1j =7V,

lp3| < Clj —c|™V4,

lpal < Clj —i| 72
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Note that the above factors of |j — i| are actually (]j — i| Vv 1), although we have
omitted this to simplify the notation. These estimates now yield

o Ral < CAPR (i = e 74 = e — i) !

1/4 |=3/4 |1/ 5/4

+ i —c|”
+li—cl”

tli—c
i|=3/2

lj—cl™
P72 41—V,

lj—c¢

1/4 |1/4

lj—cl7j— +1j—

Using |j —c| <|j—i|+|i —cland |i —c| <|j —i| 4+ |j — c|, we can show that
o Rl < CAPP(li — VA j = el 1j =il 7241 = el 71

and, therefore, that

d d d
Y Y IoR|=CAP? Y d—0o)' P <CArPd - )P =Cltg — 1.
i=c+1 j=c+1 i=c+1

By (5.4), we are now reduced to considering the sums

Z Z E[X(ti—)AFFX(t-)](— D'
i=c+1 j=c+1
(5.5)

+ Z Z S EIX (o) AF " (F(tj-1). 1j-D1(= D",

i=c+1 j=c+1

which will require two more applications of Corollary 4.2. We will be brief in our
presentation because the following estimates can be obtained in a way very similar
to the one presented above.

For x € R3 define fl(x) f(xl,xz,X3, 1) Let ¥ = &4, S = (&1, &,&3) and
pj=E[§; ] Note that f1 and f2 =0 _18 f both have polynomial growth of

c,

order 5 with constants K and r. Applylng Corollary 4.2 with k = 4 and using (5.3),
we have

oFE[X (1) AF7 X (1j-1)]
=0 E[fiE)h(V)]
(5.6) =0 E[fi®))+ 0B E3 fi()]+0Rs
=007 E[X(t;i-1)X (tj-1)]
+GC,GJE[g”(F(Iz D ti—)X(j—1)] + o R3,
where

(5.7) IR3| < CUB1 1> + 15312 + 151521 + 181531 + 152031 + 1521°).
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As before,
1531 < Clj —cl™4(i — jI7 Y2 4 1i = 713,
1p1] < CAtY4i —c|71/2
<Clj—cTV i = I P+l =TV,
P2l < Cli — |74,

which gives

lo R3] < CAL2(ji — Vi — jI4 4 i — jI7 V2 4 i — 7%
and shows that
d d
(5.8) Y > loRs| < Clta — 1>
i=c+1 j=c+1
Similarly, if 6 = 862, jaizac,i—l , then
62 E[X(ti-)AF?g"(F(tj-1).1j-1)]
=GE[HE)h()]
(5.9) =GE[f(E)+&prE[3 [2(E)] + 5 Ry

=076, JE[X(ti-1)g" (F(tj—1).tj-1)]
+62,60 Elg" (F(ti—1). ti-)g" (F(tj—1). ti-1)] + & Ra,

where Ry also satisfies (5.7). Note that |5| < C Ar7/#|i —c|!/*. Since this is a better
estimate than the one we use for ||, the estimates above also give

d d
(5.10) Yo > IFR4 = Clta— e

i=c+1 j=c+1
By (5. 5) (5. 6) (5.8), (5.9) and (5.10), we are reduced to considering the sums

Z Z 020 E[X (1) X (tj-1)](— 1)

i=c+1 j=c+1

+ Z Z 62,02 Elg" (F(ti—1), ti—D) X (tj—)](— 1)+

i=c+1 j=c+1

+ Z Z 0762 JELX (ti-)g" (F(tj-1), 1;-D1(= )"

i=c+1 j=c+1

+ Z Z 62,62 Elg"(F(ti—1), ti—)g" (F(tj—1), tj—D1(= 1)+,

i=c+1 j=c+1
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Note that this can be simplified to

d d 2
E| Y ojX@-0(=1) + Y 628" (F(tj-1), 1j-1)(=1)’
j=c+1 j=c+1
d 2
§C<E Y orX(t(=1)
j=c+1
d 2
+E| Y 828 (Ftj-1), 1j-1)(=1) )
j=c+1

By Lemmas 5.7 and 5.8, this completes the proof. [

COROLLARY 5.10. Recall J,(g,t) from (4.10). If g € C27’1(]R x [0, 00)) has
compact support, then {J,(g, -)} is relatively compact in Dg[0, 00).

PROOF. We shall apply Corollary 2.2 with 8 = 4. First, note that g (x + y)* <
C(x]?+|y|".Fix0<s <t <T.Letc=2|ns/2] and d = 2|nt/2]. Then,

E[q(J, (1) — Ju(s))"]
2

d
<CE| Y {g(F(tj—1),tj—1) — g(F(tc), te)} AFH(—1)
j=c+1
d 4
+CE|g(F(te).t) Y, AF;(=1)/| .
j=c+1

By Theorem 5.1 and (2.12),

n

_ 3/2
E[qr(Jn(o—Jn<s>)“]sC|zd—zc|3/2+c:|zd—zc|2sc(”’”/2J 2L’”/ZJ> .

This shows that one of the assumptions of Corollary 2.2 holds. The other assump-
tion follows from the same estimate applied with s = 0. By Corollary 2.2, {J,} is
relatively compact. [

6. Convergence to a Brownian integral. Recall that J,(g,t) is given by
(4.10) and B, (¢) is given by (2.11). Note that

t
Jn<g,r)=xf0 g(Fa(s—), N(s—)) dBy(s),

where N(t) = |nt]/n and F, (t) = F(N(t)). In light of Theorem 2.10, we would
like to apply Theorem 2.7. Unfortunately, though, {B,} cannot be decomposed in
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a way that satisfies (2.2). This is essentially due to the numerous local oscillations
of B,,. To overcome this difficulty, we consider a modified version of B,,.

The process B, has a jump after every A¢ units of time. To “smooth out” this
process, we shall restrict it so that it jumps only after every A¢!/* units of time.
Define

2m3 |mt/2)
6.1) By(ty=k"" Y AF; (1),
j=1

where m = [nl/4].

LEMMA 6.1. The sequence {B,} given by (6.1) satisfies (2.2) and B, — B, —
0 ucp.

PROOF. Given k, let d = d(k) = 2m3k and ¢ = c(k) = 2m3(k — 1). Write
B,(t) = k! Z,E":l/zJ &, where

d
o= ) AFj(=D).

j=c+l1

Forc < j <d,let AFj = AF; — E[AF;|F;,], where F; is given by (2.13). Let

d
Ex= Y AF;(-1)
Jj=c+1
so that {£,} is an i.i.d. sequence, by the remarks following (2.13). In particular,
M,(t) = P Z,Eﬁtlm gk is a martingale. Let A, = B, — M,,. We must now verify
(2.2). B
Since {AF;}72 has the same law as {AFJ-}?Ozl, (2.12) implies that

j=c+1
2m3 2
EE P =E|Y AF;(=1)/| =ElxB,2m?/n)|* <Cn™ /4.
j=1

It follows that E[M,], = k' S1"/*) E|E,|2 < C1 for all n. Also, by (2.15),

d
Elg —E 1 <CAlY? 3 (j—o 3 <car'?em)* < cn¥1e.
j=c+1
It follows that E'V; (A,) = k! Z/Erflm E|& — &l < Ctn='/1% and {B,,} satisfies

2.2).
By (2.12),

2m3\mt /2] — 2m3 | ms /2] )2

mﬁan—ﬁawﬁ50<
n
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By Corollary 2.2, {B,} is relatively compact. By Corollary 2.4 and Theorem 2.10,
{B, — B,)} is relatively compact. Hence, by Lemma 2.6, in order to show that
B,—B,—0 ucp, it will suffice to show that B, (t) — B,(t) — 0 in probability
for each fixed ¢.

For this, note that n'/* — 1 < m < n'/*. Hence, m>®|mt/2] < nt/2. Since
m3|mt/2] is an integer, m> |mt /2| < |nt/2]. By (2.12),

2\nt /2]

k! > AFF(=1)

j=2m3|mt/2|+1

_h,3 2
C<2Lnt/2j 2m Lmzm)

n

4
E|B,(t) — B,(O|*=E

IA

(6.2)
C(nt —m*t + 2m3)2
n

IA

<C

(m — V4= D% +2n3/4>2
" .
Letting n — oo completes the proof. [

With this lemma in place, we are finally ready to prove our main result.

THEOREM 6.2. Let I,(g,t) be given by (1.4) and k, B, by (2.10) and
(2.11), respectively. Let B be a standard Brownian motion, independent of F.

Ifge CE’I(R x [0, 00)), then (F, By, I,(g',")) — (F, B, 178(g', ) in law in
Dgs3[0, 00), where 1B (g, -) is given by (1.6).

REMARK 6.3. Suppose {W,} is another sequence of cadlag, R¢-valued
processes, adapted to a filtration of the form {F; v G!'}, where {F;} and {G]'}
are independent. If (W,, F,B,) — (W, F,B) in law in Dge+2[0, 00), then
(W, F, By, I,(g',)) — (W, F, B, 1""B(g’,)) in law in Dge+3[0, o0). This can
be seen by applying Remark 2.8 to (6.3) below.

PROOF OF THEOREM 6.2. By Lemma 6.1 and Theorem 2.10, B, — B
in law. Define N(f) = 2m3 lmt/2]/n and F,(t) = F(N(t)). By continuity,
g"(Fn(-), N(-)) converges to g"(F(-),-) a.s. Hence, by Corollary 2.4 and Lem-
ma 2.5,

(F’ g//(Fn(‘)’ N())vﬁn) — (F’ g,/(F(')v ')7 B)

in law in Dp3[0, oo). Therefore, by Lemma 6.1, Theorem 2.7 and Remark 2.8,
(F, g”(fn(-),N(-)),Fn,K/ g”(fn(s—),N(s—))dEn(S)>
0
(6.3) _
> (Fg OB [ P05 dB))
0
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in law in Dp4[0, 0o). By Corollary 4.5 and Lemma 6.1,

_ t
(F, By, In(g's 1)) ~ (F, By, g(F(),-) — g(F(0),0) — /0 9,9(F(s),5) ds
-2 /0 ¢ Fals—), N(s—))dEn<s>)

- %(0’ Ov gn([)),
where
t —_ —_
Lat) = Jn(". 1) — & fo ¢ (Fu(s—), N(s—)) dBn(s).

Hence, it will suffice to show that ¢, — 0 ucp.

By (6.1), B,, jumps only at times of the form s = 2k/m, where k is an integer.
At such a time, N(s—) = 2m3(k — 1)/n and F,(s—) = F(N(s—)). Using the
notation in the proof of Lemma 6.1, this gives

t — —_—
« / ¢ (Fu(s—). N(s—)) dBy(s)
0

=k Y §"(Fu(s—), N(s—)AB,(s)

O<s<t
Lmt /2] 2m3k
—1 2 j
=k Y &"(F(tadg—1) amd—1))K > AF;(—1)/
k=1 j=2m3(k—1)+1
lmt/2] d .
= Y Y g(Ft). ) AF;(=1) .
k=1 j=c+1
Hence, by (4.10), ¢, () = 2,&’1’/ 2l Si + &, where
d .
(6.4) Sk=Y A& (F(tj—1).tj—1) — &' (F(te), 1)} AFF (= 1)
Jj=c+1
and
2|nt /2] .
en= y  g'(F@-D,tj-DAF;(=1)).

j=2m3|mt/2]+1

By the truncation argument in the proof of Theorem 3.2, we may assume that g
has compact support. Hence, by Corollary 5.10, {J,(g”, -)} is relatively compact,
so by Corollary 2.4 and (6.3), {£,} is relatively compact. Therefore, by Lemma 2.6,
it will suffice to show that ¢, () — 0 in probability for fixed 7.
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If M =2m3|mt/2) and N = 2|nt/2], then

N

en= Y {&"(F(tj-1).tj—1) — 8" (F(tm). tm)}AFF (= 1)/
j=M+1

N
+¢"(Fo), i) Y AFF(=1).
j=M+1
Note that g’ is bounded and, by (2.11) and (2.12),

N 4
E| Y AFj(-1)

j=M+1

= E|B,(N/n) — B,(M/n)|* < Clty — tm*.

As in (6.2), this goes to zero as n — 00. Also, by Theorem 5.1,

2

N
Y A" (Ftj—n). tj—1) — &" (F(tm) t)}AFF (=1 | < Cley — tm /2.
j=M+1

E

Hence, ¢, — 0 in probability and it remains only to check that ,E’i’l/ 2l Sy — 0in
probability.
Still using the notation from the proof of Lemma 6.1, let

d
(6.5) Se=Y_ {g"(F(tj_1).tj-1) — &"(F(tc). 1)} AF5(—1)/,
j=c+1

mpy=E [Eklj’-',c] and Ny = Sy — mx. We claim that
(6.6) E|Sy — Ni|> < CcAP/B.

For the moment, let us grant that this claim is true. In that case,

Lmt/2) Lmt /2] B Lmum__2 1/2
E| Y Sl=< > E|Sk—Nk|+<E > N ) .
k=1 k=1 k=1

Since m < n'/* = Ar~1/4,(6.6) gives Z,Erflm E|Si — Ni| < CAt'/10 — 0. Also,
if k < €, then E[NyN¢] = E[N}E[N; | F;,,11=0. Hence,

Imt/2) 2 me/2] Lmt/2] Lmt/2]
E| Y N =Y EN;=<C Y ENy-SI*+C > ES;.
k=1 k=1 k=1 k=1

As above, the first summation goes to zero. For the second summation, note that
g’ e Cg IR x [0, 00)) has compact support. Thus, by (6.4), Theorem 5.1 and the
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fact that d — ¢ = 2m> < 2At 3/, we have

2

d
ES=E| Y {g"(F(tj-1).tj-1) — g"(F(tc). 1)} AF; (—1)!
j=c+1

<Cltg —t.’* =CAr’?d — )’ < cars.

Hence, ) ,E":”]/ 2] E S,% < CAtY/8 = 0, which completes the proof of the theorem.
It remains only to prove (6.6). By (6.4) and (6.5),

E|St — Sil?
2

d
=E| Y " (Fj-1),1j-1) = & (F(i), ) A F} — AF7)(=1)
Jj=c+1

d
<@d-0) Y EN"(F(tj—).tj—1) — §"(F(to), to) *(AF} — AF3)?].
j=c+1
By Holder’s inequality, Lemma 5.6 and (2.15),

d
ElS =S <Cd—c) Y (tj—1)' PAt(j — )72
j=c+1

d
=CArPd—o) > (j—o!
j=c+1
<CAP*d—-0o)® <car/d.

Hence, it will suffice to show that E|my|> < CAr>/8.

By (6.5),

d - ,

me= Y E[Z'(F(tj—1).tj-)AF; | F1(=1)/
j=c+1

d
— > §(F(te). te) EIAF31(—1)
Jj=c+1
d

= Y E[g"(G(tj—c—1) + Xjc.tjim1)AGT_ | 71 J(=1)/
j=c+1

d
— Y &'(F(o), 1) EIAG;_1(=1)/,
j=c+1
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where G(t) = F(t +1t.) — E[F(t + 1) | ;] and Xj = E[F(tj1c—1) | F7.]. As
noted in the discussion following (2.13), G is independent of F;_ and has the same
law as F'. Thus,

d—c d—c
me= Y (9j(X;) —@j—1(X;-1) —&"(Flte). 1) Y (07 — 7)),
j even j even

where
9j(x) = E[¢"(F(tj—1) + x,1j1c1) AF}].
Using (2.25), if 0 = EF(tj_1)?, then we have
0j(x) =0} E[g"(F(tj-1) +x.tj1c-1)]
—|—G]~2E[g”(a(a_1F(tj,1)) +x,t.,-+c,1)h2(aj_lAFj)]
=07 E[g"(F(tj-1) + X, tjtc-1)] —I—ajz(E[a_lF(tj_l)aj_lAFj])z
x E[0°¢W(a (67 F(tj-1)) + x, tj1c1)ho(o] AF))]
=<7,~2E[8”(F(lj—1) + X, tjye—1)]
+ (E[F(tj-DAF D E[gW(F(tj—1) 4%, tj4c-1)]
=07bj(x) +57c;(x),
where
bj(x)=E[g"(F(tj—1) +x,tjtc—1)],
cj(x) = E[gD(F(tj-1) + x, tj1c1)].

We may therefore write

(6.7)

E
Il
|| MA

jeven
where
. N N
& = (Uj _Gj—])b](Xj)’
522()‘]'2_1(bj(Xj)—bj—l(Xjfl))»
532(3-2—3}_1)01'(}(]'),
54—0 1(cj (X)) —cjm1(Xj-1)),
& =—g"(F(to), 1) (0} — o7_).
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For &1, (2.4) gives |c7j2 — 01.271| < Cj_3/2At1/2. Hence,

2
< CAt.

d—c
2. &
j=1
j even

E

The same estimate also applies to &s. For &, let us write

1bj(xj) —Dbj—1(xj—1)l
<1bj(xj) =bj(xj-DI+1bj(xj—1) = bj—1(xj-1)l
<Clxj —xj-1l
+|E[g"(F(tj—1) + xj—1.tjye1) — & (F(tj—2) + xj_1.tj1c2)]|
<Clxj —xj—1l
+|E[g"(F(tj—1) + xj—1,tj1c—1) — & (F(tj—2) + xj—1, tjse—1)]|
+|E[§"(F(tj—2) + xj—1,tj1c—1) — & (F(tj—2) + xj—1, tj4c—2)]|
<Clxj —xj_1l + 1Bt |At + CAt,
where By(t) = E[g"(F(t) + xj_1,tj4c—1)] and t* € (tj_2,j—1), and where we
have used (3.5) with j = 2. By Lemma 5.2, |B(t)| < Ct~1/2. Also, note that

X;j—Xj_1=E[AFj4c_1 | F]sothatby (2.14), E|X; — X ;1> < Cj 32 At1/2,
Thus,

d—c 2 d—c d—c
E[ Y &| < (Zo;‘_1><ZE|b,-<X,->—b,-_1<X,-_1>|2)
j=1 j=1 j=1
Jj even
d—c
(6.8) < CAVAS GTPANMN? + A
j=1

< C(AP* + AP d — ¢)*P) < C AP/,
For &, (2.9) gives |8j2 — 6‘1-2_1| < Cj_l/zAt. Hence,

2
<CAt*(d —c) < CAP/*,

d—c

Y &

j=1
J even

E

For &4, as above, we have

lej(xj) —cjm1(xj—D)| < Clxj — xj_1| + |B4(t™)| At + C At,
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where B4(t) = E[g(4)(F(t) +xj_1,tjyec—1)] and t* € (t;_2,tj_1), and where we
have used (3.5) with j = 4. It therefore follows, as in (6.8), that

d—c 2

Y &
j=1
J even

E < CA/A,

Applying these five estimates to (6.7) shows that E|mi|> < CAt3/* < CAt/8 and
completes the proof. [

COROLLARY 6.4. Let& be a continuous stochastic process, independent of F,
such that (1.3) holds. Let X = cF + &, where c € R. Let I,f( (g, 1) be given by (1.4)
and k, B, by (2.10) and (2.11), respectively. Let B be a standard Brownian mo-
tion, independent of (F,&§).If g € Cz’l(R X [0, o0)), then (F, &, B, InX(g’, ) —
(F,&,B, IX’CZB(g/, -)) in law in Dp4[0, 00), where I1%Y is given by (1.6).

REMARK 6.5. Recall QX from Section 1 and note that Q¥ = « B,,. Note that
Q,)f (1) =~ ¢? Q,f(t) because AX? = ¢>AF? + o(At). This, together with Corol-
lary 6.4, implies that (X, QX, IX(¢g',-)) — (X,kc?B, IX"'ZB(g/, -)) in law in
DRS [O, OO)

REMARK 6.6. Suppose {W,} is another sequence of cadlag, R-valued
processes, adapted to a filtration of the form {F; v G/'}, where {¥;} and {G}'}
are independent. As in Remark 6.3, if (W,, F,B;) — (W, F,B) in law in
Dge+2[0, 00), then (W, F. £, By, 1X(g',)) — (W, F,£, B, IX:B(g/ 1)) in law
in Dge+4[0, 00).

PROOF OF COROLLARY 6.4. The claim is trivial when ¢ = 0. Suppose
¢ # 0. We first assume & is deterministic. Let 7 = hg be given by h(x,t) =
g(cx + E(1),1). We claim that & € C;"'(R x [0, 00)). Note that 2 (F(r), 1) =
cjg(j)(X (t), 1) for all j <9. It is straightforward to verify (3.2) and (3.3). Condi-
tions (3.4) and (3.5) follow from the fact that

6.9)  8hY (x,1)=c/gUT D (ex +£@), 1) (1) + /8,8 (cx +£(1), 1)

for all j <4.
Observe that
[nt/2]
X )=LM )+ Y W (Faj-1), 0j-1)(E(t)) — E(t2j-2)).
j=1

By our hypotheses on &, and the continuity of 2’ and F, the above sum converges
uniformly on compacts, with probability one, to fé W (F(s), s)&'(s)ds. Thus, by
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Theorem 6.2 and Remark 6.3, (F, &, By, I,f( (g’,)) — (F,&,B,T), where

t © [t
Z':h(F(t),t)—h(F(O),O)—fO 8,h(F(s),s)ds—§/0 h"(F(s),s)dB(s)

t
+c7! /O W (F(s), $)€'(s)ds.

Using (6.9) with j = 0, this gives

t 2 ot
I=g<X<r>,r)—g<X(0>,0>—/0 atg<X(s),s>ds—%/0 ¢ (X(5),5)dB(s),

completing the proof.

Now, suppose £ is random and independent of F. Let H : D4[0, 00) — R be
bounded and continuous. Since we have proven the result for deterministic £, it
follows that

2
E[H(F.§ By I (s'.) |61~ E[H(F.§, B. 1" (g ) 6] as.
Applying the dominated convergence theorem completes the proof. [

We now give two examples of processes X satisfying the conditions of Corol-
lary 6.4.

EXAMPLE 6.7. Consider the stochastic heat equation d;u = %afu + W(x, 1)
with initial conditions u(x, 0) = f(x). Under suitable conditions on f, the unique

solution is
u(x,t):/ px —y,t —r)W(dy x dr) + v(t, x),
Rx[0,7]
where
v = [ pe=y.0f0)dy.

For example, if f has polynomial growth, then this is the unique solution and,
moreover, d;v is continuous on R x [0, co). This implies that ¢ — v(x, t) satisfies
(1.3). Hence, X(t) = u(x,t) = F(t) + v(x,t) satisfies the conditions of Corol-
lary 6.4. This remains true when f is allowed to be a stochastic process, indepen-
dent of W.

EXAMPLE 6.8. This example is based on a decomposition of bifractional
Brownian motion due to Lei and Nualart [8]. Let W be a standard Brownian mo-
tion, independent of F. Define

£(r) = (16m)~ /4 /000(1 — eSO T aw (s).
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By Proposition 1 and Theorem 1 in [8], we have § € C 1((0, 00)) a.s. Moreover,
if c = (71/2)1/4, then X = cF + £ has the same law as B'/4, fractional Brownian
motion with Hurst parameter H = 1/4. If ¢ € C*°[0, co) with ¢ =0 on [0, £/4]
and ¢ =1 on [¢/2, 00), then @& satisfies (1.3) and we may apply Corollary 6.4 to
X¢ = cF + @& to obtain that

(X (1), 0X(1), X (', 1) — (X (8), QX (e), X (&', )

[nt/2]
=<X(t)—X(s), Y (AX3 —AX3 ).
j=lne/2]+1
lnt/2]
Z g(X(tzj—l),tzj—l)(X(tzj)—X(lzj—z)))
j=lne/2j+1

converges in law in Dps[¢g, 00) as n — oo to

(1]

(2]

(3]

(4]

(7]
(8]

(9]

(X (1), k2B(1), 1B (g 1)) — (X (&), k2B(e), I¥B(g' . &)

_ (X(z) — X(), k2 (B(t) — Be)), g(X(0).1) — g(X(e). £)

2
— /t 0:g(X(s),s)ds — % /z 8§g(X(s),s)dB(s)).
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