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A CHANGE OF VARIABLE FORMULA WITH
ITÔ CORRECTION TERM

BY KRZYSZTOF BURDZY1 AND JASON SWANSON2
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We consider the solution u(x, t) to a stochastic heat equation. For fixed x,
the process F(t) = u(x, t) has a nontrivial quartic variation. It follows that F

is not a semimartingale, so a stochastic integral with respect to F cannot be
defined in the classical Itô sense. We show that for sufficiently differentiable
functions g(x, t), a stochastic integral

∫
g(F (t), t) dF (t) exists as a limit of

discrete, midpoint-style Riemann sums, where the limit is taken in distribu-
tion in the Skorokhod space of cadlag functions. Moreover, we show that this
integral satisfies a change of variable formula with a correction term that is an
ordinary Itô integral with respect to a Brownian motion that is independent
of F .

1. Introduction. Recall that the classical Itô formula (i.e., change of vari-
able formula) contains a “stochastic correction term” that is a Riemann integral.
A purely intuitive conjecture is that the Itô integral itself may appear as a stochas-
tic correction term in a change of variable formula when the underlying stochas-
tic process has fourth order scaling properties. The first formula of this type was
proven in [1]; however, the “fourth order scaling” process considered in that paper
was a highly abstract object with little intuitive appeal. The present article presents
a change of variable formula with Itô correction term for a family of processes
with fourth order local scaling properties; see (1.5) and Corollary 6.4.

The process which is our primary focus is the solution, u(x, t), to the stochastic
heat equation ∂tu = 1

2 ∂2
xu + Ẇ (x, t) with initial conditions u(x,0) ≡ 0, where Ẇ

is a space–time white noise on R × [0,∞). That is,

u(x, t) =
∫

R×[0,t]
p(x − y, t − r)W(dy × dr),(1.1)

where p(x, t) = (2πt)−1/2e−x2/2t is the heat kernel. Let F(t) = u(x, t), where
x ∈ R is fixed. In the prequel to this paper [15], it was shown that F is a continuous,
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centered Gaussian process with covariance function

ρ(s, t) = EF(s)F (t) = (2π)−1/2(|t + s|1/2 − |t − s|1/2)(1.2)

and that F has a nontrivial quartic variation. In particular,

n∑
j=1

∣∣F(j/n) − F
(
(j − 1)/n

)∣∣4 → 6

π

in L2. It follows that F is not a semimartingale, so a stochastic integral with respect
to F cannot be defined in the classical Itô sense. In this paper, we complete the
construction of a stochastic integral with respect to F which is a limit of discrete
Riemann sums.

More generally, we shall construct a stochastic integral with respect to any
process X of the form X = cF + ξ , where c ∈ R and ξ is a continuous stochastic
process, independent of F , satisfying

ξ ∈ C1((0,∞)) and lim
t→0

|ξ ′(t)| < ∞ a.s.(1.3)

This allows us, for example, to consider solutions to (1.1) with nonzero initial
conditions. Another example of such an X is fractional Brownian motion with
Hurst parameter 1/4; see Examples 6.7 and 6.8 for more details.

Note that ξ (and therefore X) need not be a Gaussian process. If it is Gaussian,
however, its mean function will be μX(t) = EX(t) = μξ(t) and its covariance
function will be ρX(s, t) = c2ρ(s, t) + ρξ (s, t). Conversely, the results in this pa-
per will apply to any Gaussian process X whose mean and covariance have the
respective forms μX = μ̃ and ρX = c2ρ + ρ̃, where μ̃ and ρ̃ are the mean and
covariance, respectively, of a Gaussian process satisfying (1.3).

We conjecture that the results in this paper hold when ξ is only required to be
of bounded variation. We require ξ to be C1, however, because of our particular
method of proof; see the proofs of Corollaries 4.6 and 6.4 for further details.

For simplicity, we consider only evenly spaced partitions. That is, given a posi-
tive integer n, let �t = n−1, tj = j�t and �Xj = X(tj )−X(tj−1). Let �x� denote
the greatest integer less than or equal to x. For g ∈ C(R × [0,∞)), we consider
the midpoint-style Riemann sums

IX
n (g, t) =

�nt/2�∑
j=1

g(X(t2j−1), t2j−1)
(
X(t2j ) − X(t2j−2)

)
.(1.4)

When X = F , we will simply write In, rather than IF
n .

In the construction of the classical Itô integral, the quadratic variation of the
integrator plays a crucial role. Although the quadratic variation of X is infinite, the
“alternating quadratic variation” of X is finite. That is, QX

n (t) =∑�nt/2�
j=1 (�X2

2j −
�X2

2j−1) converges in law. If we denote the limit process by {X}t , then it is a
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simple corollary of the main result in [15] that {X}t is a Brownian motion which is
independent of X. More specifically, (X,QX

n ) → (X,κc2B), where B is a standard
Brownian motion, independent of X, and κ ≈ 1.029 [see (2.10) for the precise
definition of κ]. The convergence here is in law in the Skorokhod space of cadlag
functions from [0,∞) to R

2, denoted by DR2[0,∞).
We shall show that IX

n (g, t) also converges in law. If
∫ t

0 g(X(s), s) dX(s) de-
notes a process with this limiting law, then our main result (Corollary 6.4) is the
following change of variable formula:

g(X(t), t) = g(X(0),0) +
∫ t

0
∂tg(X(s), s) ds +

∫ t

0
∂xg(X(s), s) dX(s)

+ 1

2

∫ t

0
∂2
xg(X(s), s) d{X}s,

where the equality is in law as processes. This can be rewritten as

g(X(t), t) = g(X(0),0) +
∫ t

0
∂tg(X(s), s) ds +

∫ t

0
∂xg(X(s), s) dX(s)

(1.5)

+ κc2

2

∫ t

0
∂2
xg(X(s), s) dB(s),

where this last integral is a classical Itô integral with respect to a standard Brown-
ian motion that is independent of X.

To state our results more completely, let Y be a semimartingale and define

IX,Y (∂xg, t) = g(X(t), t) − g(X(0),0) −
∫ t

0
∂tg(X(s), s) ds

(1.6)

− κ

2

∫ t

0
∂2
xg(X(s), s) dY (s).

We show that

(F,QF
n , IX

n (∂xg, ·)) → (F, κB, IX,c2B(∂xg, ·))
in law in DR3[0,∞) whenever g ∈ C

9,1
4 (R × [0,∞)). [See (3.2)–(3.5) for the

precise definition of the space Ck,1
r . Also see Remarks 6.5 and 6.6.]

The benefit of having the convergence of this triple, rather than just the Riemann
sums, can be seen if one considers two separate sequences of sums: {IX1

n (g1, ·)}
and {IX2

n (g2, ·)}. As n → ∞, these sequences will converge jointly in law. Sepa-
rately, each limit will satisfy (1.5); moreover, the Brownian motions which appear
in the two limits will be identical. In this sense, the Brownian motion in (1.5) de-
pends only on F and not on ξ , c or g. Clearly, this can be extended to any finite
collection of sequences of Riemann sums.
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In the course of our analysis, we will also obtain the asymptotic behavior of the
trapezoid-style sum

T X
n (g, t) =

�nt�∑
j=1

g(X(tj−1), tj−1) + g(X(tj ), tj )

2
�Xj .(1.7)

We shall see (Corollary 4.6) that T X
n (∂xg, t) → g(X(t), t) − g(X(0),0) −∫ t

0 ∂tg(X(s), s) ds uniformly on compacts in probability (ucp) whenever g ∈
C

7,1
3 (R × [0,∞)). This result remains true even when X = cF + ξ , where ξ satis-

fies only (1.3), and is not necessarily independent of F .
It is instructive to contrast these results with those of Russo, Vallois and coau-

thors [5, 6, 13, 14], who, in the context of fractional Brownian motion, use a regu-
larization procedure to transform these Riemann sums into integrals before passing
to the limit; see also [2]. For instance, if g does not depend on t , then the regular-
ized midpoint sum is

1

2ε

∫ t

0
g′(F (s))

(
F(s + ε) − F

(
(s − ε) ∨ 0

))
ds

and the regularized trapezoid sum is

1

2ε

∫ t

0

(
g′(F (s)) + g′(F(s + ε)

))(
F(s + ε) − F(s)

)
ds.

Using a change of variables, we can see that if g′ is locally integrable, then the dif-
ference between these two integrals goes to zero almost surely as ε → 0. Hence,
under the regularization procedure, the midpoint and trapezoid sums exhibit the
same limiting behavior: they converge ucp to integrals satisfying the classical
change of variable formula from ordinary calculus. Under the discrete approach
which we are following, however, we see new behavior for the midpoint sum: the
emergence of a correction term which is a classical Itô integral against an indepen-
dent Brownian motion.

It should be noted that all of our convergence results rely on the fact that F is a
quartic variation process. That is,

C1�t2H ≤ E�F 2
j ≤ C2�t2H ,(1.8)

where H = 1/4. For example, the convergence of QF
n to a Brownian motion is

made plausible by the fact that it is a sum of terms of the form �F 2
2j − �F 2

2j−1,
each of which is approximately mean zero with an approximate variance of �t .
If we replace F by a rougher process which satisfies (1.8) for some H < 1/4,
then the midpoint sums will evidently diverge. On the other hand, the ucp conver-
gence of the trapezoid sums Tn(∂xg, t) remains plausible for any H > 1/6. This is
consistent with the analogous results in [2, 5] for regularized sums.
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The critical case for the trapezoid sum is H = 1/6. At the time of writing, we
know of only one result in this case. If g(x, t) = x3, then

Tn(∂xg, t) ≈ F(t)3 − F(0)3 + 1

2

�nt�∑
j=1

�F 3
j .

[Here, and in what follows, Xn(t) ≈ Yn(t) shall mean that Xn − Yn → 0 ucp.] If
F is replaced by fractional Brownian motion with Hurst parameter H = 1/6, then
this last sum converges in law to a Brownian motion; see [12], for example. It is
natural to conjecture that a result analogous to (1.5) also holds in this case.

Our project is related to, and inspired by, several areas of stochastic analysis.
Recently, a new approach to integration was developed by T. Lyons (with coau-
thors, students and other researchers). The new method is known as “rough paths”;
an introduction can be found in [9]. Our approach is much more elementary since
it is based on a form of Riemann sums. We consider it of interest to see how far
the classical methods can be pushed and what they can yield. The Itô-type cor-
rection term in our change of variable formula has a certain elegance to it, and a
certain logic, if we recall that our underlying process has quartic variation. Finally,
our project can be considered a toy model for some numerical schemes. The fact
that the correction term in the change of variable formula involves an independent
Brownian motion may give some information about the form and size of errors in
numerical schemes.

After the first draft of this paper had been finished, we received a preprint [10]
from Nourdin and Réveillac, prepared independently of ours and using different
methods. That paper contains a number of results, one of which, Theorem 1.2,
is a special case of our Corollary 6.4. Namely, if X = B1/4 (fractional Brownian
motion with Hurst parameter H = 1/4), if g does not depend on t and if g satisfies
an additional moment condition (see Hq in Section 3 of [10]), then [10] gives
the convergence in distribution of the scalar-valued random variables IX

n (g′,1).
While [10] is devoted exclusively to fractional Brownian motion, it is mentioned
in a footnote that a Girsanov-type transformation can be used to extend the results
from B1/4 to F .

2. Preliminaries.

2.1. Tools for cadlag processes. Here, and in the remainder of this paper,
C shall denote a constant whose value may change from line to line.

Let DRd [0,∞) denote the space of cadlag functions from [0,∞) to R
d en-

dowed with the Skorokhod topology. We use the notation x(t−) = lims↑t x(s)

and �x(t) = x(t) − x(t−). Note that if Fn(t) = F(�nt�/n), then �Fn(tj ) =
F(tj ) − F(tj−1). As in Section 1, we shall typically use �Fj as a shorthand nota-
tion for �Fn(tj ).
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We note for future reference that if x is continuous, then xn → x in the Sko-
rokhod topology if and only if xn → x uniformly on compacts. For our conver-
gence results, we shall use the following moment condition for relative compact-
ness, which is a consequence of Theorem 3.8.8 in [4].

THEOREM 2.1. Let {Xn} be a sequence of processes in DRd [0,∞). Let
q(x) = |x| ∧ 1. Suppose that for each T > 0, there exist ν > 0, β > 0, C > 0
and θ > 1 such that:

(i) E[q(Xn(t +h)−Xn(t))
β/2q(Xn(t)−Xn(t −h))β/2] ≤ Chθ for all n and

all 0 ≤ t ≤ T + 1, 0 ≤ h ≤ t ;
(ii) limδ→0 supn E[q(Xn(δ) − Xn(0))β] = 0;

(iii) supn E[|Xn(T )|ν] < ∞.

Then {Xn} is relatively compact, that is, the distributions are relatively compact in
the topology of weak convergence.

COROLLARY 2.2. Let {Xn} be a sequence of processes in DRd [0,∞). Let
q(x) = |x|∧1. Let ϕ1, ϕ2 be nonnegative functions of n such that supn n−1ϕ1(n)×
ϕ2(n) < ∞. Suppose that for each T > 0, there exist ν > 0, β > 0, C > 0 and
θ > 1 such that supn E[|Xn(T )|ν] < ∞ and

E
[
q
(
Xn(t) − Xn(s)

)β]≤ C

(
ϕ2(n)�ϕ1(n)t� − ϕ2(n)�ϕ1(n)s�

n

)θ

(2.1)

for all n and all 0 ≤ s, t ≤ T . Then {Xn} is relatively compact.

PROOF. We apply Theorem 2.1. By hypothesis, condition (iii) holds. Taking
s = 0 and t = δ in (2.1) gives condition (ii). By Hölder’s inequality,

E
[
q
(
Xn(t + h) − Xn(t)

)β/2
q
(
Xn(t) − Xn(t − h)

)β/2]
≤ C

(
ϕ2(n)�ϕ1(n)(t + h)� − ϕ2(n)�ϕ1(n)t�

n

)θ/2

×
(

ϕ2(n)�ϕ1(n)t� − ϕ2(n)�ϕ1(n)(t − h)�
n

)θ/2

.

If ϕ1(n)h < 1/2, then the right-hand side of the above inequality is zero. Assume
that ϕ1(n)h ≥ 1/2. Then

E
[
q
(
Xn(t + h) − Xn(t)

)β/2
q
(
Xn(t) − Xn(t − h)

)β/2]
≤ C

(
ϕ2(n)ϕ1(n)h + ϕ2(n)

n

)θ

≤ C̃

(
h + 1

ϕ1(n)

)θ

≤ C̃(3h)θ ,

which verifies condition (i). �
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In general, the relative compactness in DR[0,∞) of {Xn} and {Yn} does not
imply the relative compactness of {Xn + Yn}. This is because addition is not a
continuous operation from DR[0,∞)2 to DR[0,∞). It is, however, a continuous
operation from DR2[0,∞) to DR[0,∞). To make use of this, we shall need the
following well-known result and its subsequent corollary.

LEMMA 2.3. Suppose that xn → x in DR[0,∞) and yn → y in DR[0,∞). If
�x(t)�y(t) = 0 for all t ≥ 0, then xn + yn → x + y in DR[0,∞).

COROLLARY 2.4. Suppose that the sequences {Xn} and {Yn} are relatively
compact in DR[0,∞). If every subsequential limit of {Yn} is continuous, then
{Xn + Yn} is relatively compact.

The following lemma is Problem 3.22(c) in [4].

LEMMA 2.5. For fixed d ≥ 2, {(X1
n, . . . ,X

d
n)} is relatively compact in

DRd [0,∞) if and only if {Xk
n} and {Xk

n + X�
n} are relatively compact in DR[0,∞)

for all k and �.

We will also need the following lemma, which connects relative compactness
and convergence in probability. This is Lemma A2.1 in [3].

LEMMA 2.6. Let {Xn},X be processes with sample paths in DRd [0,∞) de-
fined on the same probability space. Suppose that {Xn} is relatively compact in
DRd [0,∞) and that for a dense set H ⊂ [0,∞), Xn(t) → X(t) in probability
for all t ∈ H . Then Xn → X in probability in DRd [0,∞). In particular, if X is
continuous, then Xn → X ucp.

Our primary tool is the following theorem, which is a special case of Theo-
rem 2.2 in [7].

THEOREM 2.7. For each n, let Yn be a cadlag, R
m-valued semimartingale

with respect to a filtration {F n
t }. Suppose that Yn = Mn + An, where Mn is an

{F n
t }-local martingale and An is a finite variation process, and that

sup
n

E
[[Mn]t + Vt(An)

]
< ∞(2.2)

for each t ≥ 0, where Vt(An) is the total variation of An on [0, t] and [Mn] is
the quadratic variation of Mn. Let Xn be a cadlag, {F n

t }-adapted, R
k×m-valued

process and define

Zn(t) =
∫ t

0
Xn(s−) dYn(s).
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Suppose that (Xn,Yn) → (X,Y ) in law in DRk×m×Rm[0,∞). Then, Y is a semi-
martingale with respect to a filtration to which X and Y are adapted and
(Xn,Yn,Zn) → (X,Y,Z) in law in DRk×m×Rm×Rk [0,∞), where

Z(t) =
∫ t

0
X(s−) dY (s).

If (Xn,Yn) → (X,Y ) in probability, then Zn → Z in probability.

REMARK 2.8. In the setting of Theorem 2.7, if {Wn} is another sequence
of cadlag, {F n

t }-adapted, R
�-valued processes and (Wn,Xn,Yn) converges to

(W,X,Y ) in law in DR�×Rk×m×Rm[0,∞), then (Wn,Xn,Yn,Zn) converges to
(W,X,Y,Z) in law in DR�×Rk×m×Rm×Rk [0,∞). This can be seen by applying
Theorem 2.7 to (Xn,Y n), where Xn is the block diagonal (k + �) × (m + 1) ma-
trix with upper-left entry Wn and lower-right entry Xn, and Yn = (0, Y T

n )T .

2.2. Estimates from the prequel. We now recall some of the basic estimates
from [15].

By (2.6) in [15], for all s ≤ t ,∣∣E|F(t) − F(s)|2 − (2/π)1/2|t − s|1/2∣∣≤ π−1/2(1 + 21/2)−1t−3/2|t − s|2.
Hence,

π−1/2|t − s|1/2 ≤ E|F(t) − F(s)|2 ≤ 2|t − s|1/2.(2.3)

In particular, if σ 2
j = E�F 2

j , then

|σ 2
j − (2/π)1/2�t1/2| ≤ t

−3/2
j �t2 = j−3/2�t1/2(2.4)

and

π−1/2�t1/2 ≤ σ 2
j ≤ 2�t1/2.(2.5)

Theorem 2.3 in [15] shows that F has a nontrivial quartic variation. A special case
of this theorem is the fact that

∑�nt�
j=1 �F 4

j → 6t/π ucp. The proof can be easily
adapted to show that

�nt�∑
j=1
j odd

�F 4
j → 3

π
t and

�nt�∑
j=1

j even

�F 4
j → 3

π
t(2.6)

ucp.
Let

γj = 2j1/2 − (j − 1)1/2 − (j + 1)1/2(2.7)

and note that
∑∞

j=1 γj = 1. By (2.4) in [15], if i < j , then

|E[�Fi�Fj ] + (2π)−1/2γj−i�t1/2| ≤ (ti + tj )
−3/2�t2 = (i + j)−3/2�t1/2.
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Some related estimates are 0 < γj ≤ 2−1/2j−3/2, which is (2.8) in [15], and

−2(tj − ti)
−3/2�t2 = −2(j − i)−3/2�t1/2 ≤ E[�Fi�Fj ] < 0,(2.8)

which precedes (2.10) in [15].
Let σ̂j = E[F(tj−1)�Fj ]. Since

σ̂j + (2π)−1/2�t1/2 =
j−1∑
i=1

(
E[�Fi�Fj ] + (2π)−1/2γj−i�t1/2)

+ (2π)−1/2�t1/2
∞∑
i=j

γi,

it follows that

|σ̂j + (2π)−1/2�t1/2| ≤ Cj−1/2�t1/2.(2.9)

In particular, |σ̂j | ≤ C�t1/2 and |σ̂ 2
j − (2π)−1�t | ≤ Cj−1/2�t .

LEMMA 2.9. If integers c, i and j satisfy 0 ≤ c < i ≤ j , then:

(i) |E[(F (ti−1) − F(tc))�Fj ]| ≤ C�t1/2((j − i) ∨ 1)−1/2;
(ii) |E[(F (tj−1) − F(tc))�Fi]| ≤ C�t1/2[((j − i) ∨ 1)−1/2 + (i − c)−1/2];

(iii) |E[F(tj−1)�Fi]| ≤ C�t1/2((j − i) ∨ 1)−1/2.

PROOF. By (2.8),

∣∣E[(F(ti−1) − F(tc)
)
�Fj

]∣∣≤ i−1∑
k=c+1

|E[�Fk�Fj ]| ≤ C�t1/2
i−1∑

k=c+1

(j − k)−3/2.

Hence, ∣∣E[(F(ti−1) − F(tc)
)
�Fj

]∣∣≤ C�t1/2
∞∑

k=j−i+1

k−3/2,

which proves the first claim.
For the second and third claims, it is easy to see that they hold when i ≥ j − 1.

Assume i < j − 1. Note that

E[F(tj−1)�Fi] = ρ(ti, tj−1) − ρ(ti−1, tj−1)

= ρ(ti−1 + �t, tj−1) − ρ(ti−1, tj−1)

= �t∂sρ(ti−1 + θ�t, tj−1)

for some θ ∈ (0,1). Since j > i, ti−1 + θ�t < tj−1. In the regime s < t ,
∂sρ(s, t) = (8π)−1/2((t + s)−1/2 + (t − s)−1/2). Hence, 0 < ∂sρ(s, t) ≤ C(t −
s)−1/2. It follows that

0 < E[F(tj−1)�Fi] ≤ C�t |tj−1 − ti |−1/2 = C�t1/2(j − i − 1)−1/2.
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Since j − i ≥ 2, this implies that E[F(tj−1)�Fi] ≤ C�t1/2(j − i)−1/2, which
proves the third claim. Combining this with the first claim gives∣∣E[(F(tj−1) − F(tc)

)
�Fi

]∣∣
≤ |E[F(tj−1)�Fi]| + |E[F(tc)�Fi]|
≤ C�t1/2[(j − i)−1/2 + (i − c)−1/2],

which proves the second claim. �

Recall γj , defined by (2.7). Let

κ =
(

4

π
+ 2

π

∞∑
j=1

γ 2
j (−1)j

)1/2

> 0(2.10)

(the quantity in the brackets is strictly positive by Proposition 4.7 of [15]) and
define

Bn(t) = κ−1
2�nt/2�∑

j=1

�F 2
j (−1)j .(2.11)

(Note that this is simply κ−1QF
n , in the notation of Section 1.) By Propositions 3.5

and 4.7 in [15],

E|Bn(t) − Bn(s)|4 ≤ C

(
2�nt/2� − 2�ns/2�

n

)2

(2.12)

for all s and t . Recall that F(t) = u(x, t), where u is given by (1.1). Let m denote
Lebesgue measure and define the filtration

Ft = σ {W(A) :A ⊂ R × [0, t],m(A) < ∞}.(2.13)

Fix τ ≥ 0 and define G(t) = F(t + τ) − E[F(t + τ) | Fτ ]. In the proof of Lem-
ma 3.6 in [15], it was shown that G and F have the same law and that G is inde-
pendent of Fτ . In particular, if j > c and �Fj = �Fj − E[�Fj | Ftc ], then �Fj

is independent of Ftc and equal in law to �Fj−c.
According to the equation displayed above (3.32) in [15], if 0 ≤ τ ≤ s ≤ t , then

E|E[F(t) − F(s) | Fτ ]|2 ≤ 2|t − s|2|t − τ |−3/2.(2.14)

In particular, E|�Fj − �Fj |2 ≤ 2�t2(tj − tc)
−3/2 = 2�t1/2(j − c)−3/2, which,

together with (2.5) and Hölder’s inequality, implies that

E|�F 2
j − �F 2

j |k = E[|�Fj + �Fj |k|�Fj − �Fj |k]
≤ Ck�t5k/4(tj − tc)

−3k/4(2.15)

= Ck�tk/2(j − c)−3k/4.

Finally, we recall the main result of interest to us, which is Proposition 4.7 in [15].
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THEOREM 2.10. Let {Bn} be given by (2.11) and let B be a standard Brown-
ian motion, independent of F . Then, (F,Bn) → (F,B) in law in DR2[0,∞).

2.3. Tools for Gaussian random variables. Let

hn(x) = (−1)nex2/2 dn

dxn
(e−x2/2)(2.16)

be the nth Hermite polynomial so that {hn} is an orthogonal basis of L2(μ), where
μ(dx) = (2π)−1/2e−x2/2dx; see Section 1.1.1 of [11] for details. Let ‖ ·‖ and 〈·, ·〉
denote the norm and inner product, respectively, in L2(μ).

The first few Hermite polynomials are h0(x) = 1, h1(x) = x, h2(x) = x2 − 1
and h3(x) = x3 − 3x. We adopt the convention that h−1(x) = 0. The Hermite
polynomials satisfy the following identities for n ≥ 0:

h′
n(x) = nhn−1(x),(2.17)

xhn(x) = hn+1(x) + nhn−1(x),(2.18)

hn(−x) = (−1)nhn(x).(2.19)

Any polynomial can be written as a linear combination of Hermite polynomials by
using the formula

xn =
�n/2�∑
j=0

(
n

2j

)
(2j − 1)!!hn−2j (x),(2.20)

where (2j − 1)!! = (2j − 1)(2j − 3)(2j − 5) · · ·1. Note that this can be rewritten
as

xn =
n∑

j=0

(
n

j

)
E[Y j ]hn−j (x),(2.21)

where Y is a standard normal random variable.
In the remaining part of Section 2.3, X shall denote a standard normal random

variable. If r ∈ [−1,1], then Xr , Yr shall denote jointly normal random variables
with mean zero, variance one and E[XrYr ] = r . By Lemma 1.1.1 in [11],

E[hn(Xr)hm(Yr)] =
{

0, if n �= m,
n!rn, if n = m.

(2.22)

In particular, ‖hn‖2 = E[hn(X)2] = n!. Hence, if g ∈ L2(μ), then

g =
∞∑

n=0

1

n! 〈g,hn〉hn,(2.23)

where the convergence is in L2(μ).
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If g and g′ have polynomial growth and n ≥ 1, then integration by parts gives

〈g,hn〉 = 1√
2π

∫
g(x)hn(x)e−x2/2 dx = (−1)n√

2π

∫
g(x)

dn

dxn
(e−x2/2) dx

(2.24)

= (−1)n−1
√

2π

∫
g′(x)

dn−1

dxn−1 (e−x2/2) dx = 〈g′, hn−1〉.

That is, E[g(X)hn(X)] = E[g′(X)hn−1(X)]. Using (2.22) and (2.23), we can gen-
eralize this as follows:

E[g(Xr)hn(Yr)] =
∞∑

m=0

1

m! 〈g,hm〉E[hm(Xr)hn(Yr)]

= 〈g,hn〉rn = r〈g′, hn−1〉rn−1(2.25)

= rE[g′(Xr)hn−1(Yr)].
The following two lemmas will be useful in Section 5.

LEMMA 2.11. Suppose g,h, g′, h′ all have polynomial growth. If f (r) =
E[g(Xr)h(Yr)], then f ′(r) = E[g′(Xr)h

′(Yr)] for all r ∈ (−1,1).

PROOF. By (2.23) and (2.22), f (r) = ∑∞
n=0

1
n! 〈g,hn〉〈h,hn〉rn, which, by

(2.24), gives

f ′(r) =
∞∑

n=1

1

(n − 1)! 〈g,hn〉〈h,hn〉rn−1

=
∞∑

n=1

1

(n − 1)! 〈g
′, hn−1〉〈h′, hn−1〉rn−1

= E[g′(Xr)h
′(Xr)]. �

LEMMA 2.12. Suppose g,g′, g′′, h,h′, h′′ have polynomial growth. Let U =
aXr and V = bYr . If ϕ(a, b, r) = E[g(U)h(V )], then

∂ϕ

∂a
(a, b, r) = aE[g′′(U)h(V )] + brE[g′(U)h′(V )]

for all real a, b and all r ∈ (−1,1).

PROOF. By (2.23) and (2.22), ϕ(a, b, r) = ∑∞
n=0

1
n! 〈g(a·), hn〉〈h(b·), hn〉rn.

Fix a0 ∈ R. To justify differentiating under the summation at a0, we must show
that there exists an ε > 0 and a sequence Cn(b, r) such that∣∣∣∣ ∂

∂a

[
1

n! 〈g(a·), hn〉〈h(b·), hn〉rn

]∣∣∣∣≤ Cn(b, r)
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for all |a − a0| < ε, and
∑∞

n=0 Cn(b, r) < ∞. For this, we use (2.18) and (2.24) to
compute

∂

∂a

[
1

n! 〈g(a·), hn〉〈h(b·), hn〉rn

]
= 1

n! 〈g
′(a·), hn+1〉〈h(b·), hn〉rn

+ 1

(n − 1)! 〈g
′(a·), hn−1〉〈h(b·), hn〉rn

= a

n! 〈g
′′(a·), hn〉〈h(b·), hn〉rn

+ b

(n − 1)! 〈g
′(a·), hn−1〉〈h′(b·), hn−1〉rn.

Since |〈·, hn/
√

n!〉| ≤ ‖ · ‖, we may take Cn(b, r) = Mrn for an appropriately cho-
sen constant M , provided that |r| < 1. We may therefore differentiate under the
summation at a0. Since a0 was arbitrary, we have

∂ϕ

∂a
(a, b, r) = a

∞∑
n=0

1

n! 〈g
′′(a·), hn〉〈h(b·), hn〉rn

+ b

∞∑
n=1

1

(n − 1)! 〈g
′(a·), hn−1〉〈h′(b·), hn−1〉rn

= aE[g′′(U)h(V )] + brE[g′(U)h′(V )]
for all a, b, r with |r| < 1. �

2.4. Multi-indices and Taylor’s theorem. We recall here the standard multi-
index notation. A multi-index is a vector α ∈ Z

d+, where Z+ = N ∪ {0}. We use ej

to denote the multi-index with e
j
j = 1 and e

j
i = 0 for i �= j . If α ∈ Z

d+ and x ∈ R
d ,

then

|α| =
d∑

j=1

αj , α! =
d∏

j=1

αj !,

∂j = ∂

∂xj

, ∂α = ∂
α1
1 · · · ∂αd

d , xα =
d∏

j=1

x
αj

j .

Note that by convention, 00 = 1. Also note that |xα| = yα , where yj = |xj | for
all j .

Taylor’s theorem with integral remainder states that if g ∈ Ck+1(R), then

g(b) =
k∑

j=0

g(j)(a)
(b − a)j

j ! + 1

k!
∫ b

a
(b − u)kg(k+1)(u) du.(2.26)
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Taylor’s theorem in higher dimensions is the following.

THEOREM 2.13. If g ∈ Ck+1(Rd), then

g(b) = ∑
|α|≤k

∂αg(a)
(b − a)α

α! + R,

where

R = (k + 1)
∑

|α|=k+1

(b − a)α

α!
∫ 1

0
(1 − u)k∂αg

(
a + u(b − a)

)
du.

In particular,

|R| ≤ (k + 1)
∑

|α|=k+1

Mα|(b − a)α|,

where Mα = sup{|∂αg(a + u(b − a))| : 0 ≤ u ≤ 1}.
For integers a and b with a ≥ 0, we adopt the convention that(

a

b

)
=
⎧⎨⎩

a!
b!(a − b)! , if 0 ≤ b ≤ a,

0, if b < 0 or b > a.
We define (

γ

α

)
=

d∏
j=1

(
γj

αj

)
for any multi-indices γ and α. Later in the paper, we shall need the following two
combinatorial lemmas.

LEMMA 2.14. Let a, b and c be integers. If a ≥ 0 and 0 ≤ c ≤ a, then
c∑

j=0

(
a − c

b − j

)(
c

j

)
=
(

a

b

)
.

PROOF. The proof is by induction on a. For a = 0, the lemma is trivial. Sup-
pose the lemma holds for a − 1. Since the lemma clearly holds for c = 0 or c = a,
we may assume 0 < c ≤ a − 1. In that case,(

a

b

)
=
(

a − 1
b

)
+
(

a − 1
b − 1

)

=
c∑

j=0

[(
a − 1 − c

b − j

)
+
(

a − 1 − c

b − 1 − j

)](
c

j

)

=
c∑

j=0

(
a − c

b − j

)(
c

j

)
. �
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Suppose α and γ are multi-indices. We will write α ≤ γ if αj ≤ γj for all j .

LEMMA 2.15. If γ is a multi-index in Z
d+ and m ≥ 0, then∑

|α|=m
α≤γ

(
γ

α

)
=
( |γ |

m

)
.

PROOF. We shall prove this by induction on d . If d = 1, then the lemma is
trivial. Suppose the lemma is true for d − 1. Let γ be a multi-index in Z

d+ and
fix m with 0 ≤ m ≤ |γ |. For multi-indices α and γ , let α̂ = (α1, . . . , αd−1) and
γ̂ = (γ1, . . . , γd−1). Then,

∑
|α|=m
α≤γ

(
γ

α

)
=

m∧γd∑
αd=0

∑
|α̂|=m−αd

α̂≤γ̂

(
γ̂

α̂

)(
γd

αd

)

=
m∧γd∑
αd=0

( |γ̂ |
m − αd

)(
γd

αd

)

=
γd∑

αd=0

( |γ | − γd

m − αd

)(
γd

αd

)
.

Applying Lemma 2.14 completes the proof. �

3. Fourth order integrals.

THEOREM 3.1. Suppose g : R × [0,∞) → R is continuous. For each n, let
{s∗

j } and {t∗j } be collections of points with s∗
j , t∗j ∈ [tj−1, tj ]. Then,

lim
n→∞

�nt�∑
j=1
j odd

g(F (s∗
j ), t∗j )�F 4

j = lim
n→∞

�nt�∑
j=1

j even

g(F (s∗
j ), t∗j )�F 4

j

(3.1)

= 3

π

∫ t

0
g(F (s), s) ds,

where the convergence is ucp.

PROOF. We prove only the first limit. The proof for the other limit is nearly
identical. Let

Xn(t) =
∞∑

j=1

g(F (s∗
j ), t∗j )1[tj−1,tj )(t)
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and

An(t) =
�nt�∑
j=1
j odd

�F 4
j

so that
�nt�∑
j=1
j odd

g(F (s∗
j ), t∗j )�F 4

j =
∫ t

0
Xn(s−) dAn(s).

By (2.6), An(t) → 3t/π ucp. Also, by the continuity of g and F , Xn → g(F (·), ·)
ucp. Finally, note that the expected total variation Vt(An) of An on [0, t] is uni-
formly bounded in n. That is,

E[Vt(An)] =
�nt�∑
j=1
j odd

E�F 4
j ≤ C

�nt�∑
j=1

�t ≤ Ct.

By Theorem 2.7, (3.1) holds with the convergence being in probability in
DR[0,∞). Since the limit is continuous, (3.1) holds ucp. �

If r and k are nonnegative integers with r ≤ k, then we shall use the notation
g ∈ Ck,1

r (R × [0,∞)) to mean that

g : R × [0,∞) → R is continuous,(3.2)

∂j
x g exists and is continuous on R × [0,∞) for all 0 ≤ j ≤ k,(3.3)

∂t∂
j
x g exists and is continuous on R × (0,∞) for all 0 ≤ j ≤ r,(3.4)

lim
t→0

sup
x∈K

|∂t∂
j
x g(x, t)|dt < ∞

(3.5)
for all compact K ⊂ R and all 0 ≤ j ≤ r.

Note that g ∈ Ck,1
r implies ∂

j
x g ∈ C

k−j,1
r−j whenever r ≥ j . For functions of one spa-

tial dimension, we shall henceforth use standard prime notation to denote spatial
derivatives. For example, g′′ = ∂2

xg and g(4) = ∂4
xg.

Typically, we shall need (3.4) and (3.5) only when j = 0. There are a few places,
however, where j > 0 is needed. We need j = 3 in the derivation of (3.10), which
is used in the proofs of both Theorem 3.3 and Corollary 4.5; we need j = 2 in the
proof of Lemma 5.8; we need j = 4 in the proof of Theorem 6.2. Note that ∂t∂

j
x g

need not be continuous at t = 0. In particular, ∂t∂
j
x g need not be bounded on sets

of the form K × (0, ε].
Recall that Xn(t) ≈ Yn(t) means that Xn − Yn → 0 ucp.



CHANGE OF VARIABLE WITH ITÔ TERM 1833

THEOREM 3.2. If g ∈ C
5,1
0 (R × [0,∞)), then

In(g
′, t) ≈ g(F (t), t) − g(F (0),0) −

∫ t

0
∂tg(F (s), s) ds

− 1

2

�nt/2�∑
j=1

g′′(F (t2j−1), t2j−1)(�F 2
2j − �F 2

2j−1)

− 1

6

�nt/2�∑
j=1

g′′′(F (t2j−1), t2j−1)(�F 3
2j + �F 3

2j−1),

where In(g, t) is given by (1.4).

PROOF. By (2.26),

g(x + h1, t) − g(x + h2, t)

=
4∑

j=1

1

j !g
(j)(x, t)(h

j
1 − h

j
2) + R(x,h1, t) − R(x,h2, t),

where

R(x,h, t) = 1

4!
∫ h

0
(h − u)4g(5)(x + u, t) du.

Taking x = F(t2j−1), h1 = �F2j and h2 = −�F2j−1, we have

g(F (t2j ), t2j−1) − g(F (t2j−2), t2j−1)

=
4∑

j=1

1

j !g
(j)(F (t2j−1), t2j−1)

(
�F

j
2j − (−1)j�F

j
2j−1

)
+ R(F(t2j−1),�F2j , t2j−1)

− R(F(t2j−1),−�F2j−1, t2j−1).

Let N(t) = 2�nt/2�/n. That is, if t ∈ [t2j−2, t2j ), then N(t) = t2j−2. Let Fn(t) =
F(N(t)). Then,

g(F (t2j ), t2j ) − g(F (t2j ), t2j−1) =
∫ t2j

t2j−1

∂tg
(
Fn(s + �t), s

)
ds,

g(F (t2j−2), t2j−1) − g(F (t2j−2), t2j−2) =
∫ t2j−1

t2j−2

∂tg(Fn(s), s) ds

=
∫ t2j−1

t2j−2

∂tg
(
Fn(s + �t), s

)
ds.
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Thus,

g(F (t), t) = g(F (0),0) +
�nt/2�∑
j=1

{g(F (t2j ), t2j ) − g(F (t2j−2), t2j−2)}

+ g(F (t), t) − g(Fn(t),N(t))

= g(F (0),0) +
∫ N(t)

0
∂tg

(
Fn(s + �t), s

)
ds + In(g

′, t)

+ 1

2

�nt/2�∑
j=1

g′′(F (t2j−1), t2j−1)(�F 2
2j − �F 2

2j−1)

+ 1

6

�nt/2�∑
j=1

g′′′(F (t2j−1), t2j−1)(�F 3
2j + �F 3

2j−1)

+ εn(g, t),

where

εn(g, t) = 1

24

�nt/2�∑
j=1

g(4)(F (t2j−1), t2j−1)(�F 4
2j − �F 4

2j−1)

+
�nt/2�∑
j=1

{R(F(t2j−1),�F2j , t2j−1)

(3.6)
− R(F(t2j−1),−�F2j−1, t2j−1)}

+ g(F (t), t) − g(Fn(t),N(t)).

By (3.4), (3.5), the continuity of F and dominated convergence,∫ N(t)

0
∂tg

(
Fn(s + �t), s

)
ds →

∫ t

0
∂tg(F (s), s) ds

uniformly on compacts, with probability one. Therefore, it will suffice to show that
εn(g, t) → 0 ucp.

First, assume that g has compact support. By the continuity of g and the almost
sure continuity of F , g(F (t), t) − g(Fn(t),N(t)) → 0 ucp. Since g(5) is bounded,
|R(x,h, t)| ≤ C|h|5. Thus,∣∣∣∣∣

�nt/2�∑
j=1

{R(F(t2j−1),�F2j , t2j−1) − R(F(t2j−1),−�F2j−1, t2j−1)}
∣∣∣∣∣

≤ C

�nt/2�∑
j=1

|�Fj |5
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and

E

[
sup

0≤t≤T

�nt/2�∑
j=1

|�Fj |5
]

=
�nT/2�∑
j=1

E|�Fj |5 = C

�nT/2�∑
j=1

σ 5
j

≤ CnT �t5/4 = CT �t1/4.

It follows that
�nt/2�∑
j=1

{
R(F(t2j−1),�F2j , t2j−1) − R(F(t2j−1),−�F2j−1, t2j−1)

}→ 0

ucp. An application of Theorem 3.1 to the first sum in (3.6) completes the proof
that εn(g, t) → 0 ucp, in the case where g has compact support.

To deal with the general case, we use the following truncation argument, which
we will make use of several times throughout this paper. Fix T > 0 and η > 0.
Choose L > T so large that

P
(

sup
0≤t≤T

|F(t)| ≥ L
)

< η.

Let ϕ ∈ C∞(R) have compact support with ϕ ≡ 1 on [−L,L]. Define h(x, t) =
g(x, t)ϕ(x)ϕ(t). Then, h ∈ C

5,1
0 (R × [0,∞)), h has compact support and h = g

on [−L,L] × [0, T ]. By the above, we may choose n0 such that

P
(

sup
0≤t≤T

|εn(h, t)| > η
)

< η

for all n ≥ n0. Hence,

P
(

sup
0≤t≤T

|εn(g, t)| > η
)

≤ P
(

sup
0≤t≤T

|F(t)| ≥ L
)

+ P
(

sup
0≤t≤T

|εn(h, t)| > η
)

< 2η

for all n ≥ n0, which shows that εn(g, t) → 0 ucp and completes the proof. �

THEOREM 3.3. If g ∈ C
5,1
3 (R × [0,∞)), then

Tn(g
′, t) ≈ g(F (t), t) − g(F (0),0) −

∫ t

0
∂tg(F (s), s) ds

+ 1

24

�nt�∑
j=1

g′′′(F (tj ), tj )(�F 3
j+1 + �F 3

j ),

where Tn(g, t) is given by (1.7).
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PROOF. As in the proof of Theorem 3.2, we may assume g has compact sup-
port. Define

În(g, t) =
�nt/2�∑
j=1

g(F (t2j ), t2j )
(
F(t2j+1) − F(t2j−1)

)
.

The proof of Theorem 3.2 can be easily adapted to show that

În(g
′, t) ≈ g(F (t), t) − g(F (0),0) −

∫ t

0
∂tg(F (s), s) ds

− 1

2

�nt/2�∑
j=1

g′′(F (t2j ), t2j )(�F 2
2j+1 − �F 2

2j )(3.7)

− 1

6

�nt/2�∑
j=1

g′′′(F (t2j ), t2j )(�F 3
2j+1 + �F 3

2j ).

Note that

In(g
′, t) + În(g

′, t)

=
2�nt/2�∑

j=1
j odd

g′(F (tj ), tj )(�Fj+1 + �Fj) +
2�nt/2�∑

j=1
j even

g′(F (tj ), tj )(�Fj+1 + �Fj)

=
2�nt/2�∑

j=1

g′(F (tj ), tj )(�Fj+1 + �Fj).

Also, note that

Tn(g
′, t) = 1

2

(�nt�−1∑
j=0

g′(F (tj ), tj )�Fj+1 +
�nt�∑
j=0

g′(F (tj ), tj )�Fj

)
.

By the continuity of F and g′, this shows that

Tn(g
′, t) ≈ In(g

′, t) + În(g
′, t)

2
.

By (3.7) and Theorem 3.2, we have

Tn(g
′, t) ≈ g(F (t), t) − g(F (0),0) −

∫ t

0
∂tg(F (s), s) ds

+ 1

4

�nt�∑
j=1

(
g′′(F (tj ), tj ) − g′′(F (tj−1), tj−1)

)
�F 2

j(3.8)

− 1

12

�nt�∑
j=1

g′′′(F (tj ), tj )(�F 3
j+1 + �F 3

j ).
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Since g ∈ C
5,1
3 (R × [0,∞)), we may use the Taylor expansion f (b) − f (a) =

1
2(f ′(a) + f ′(b))(b − a) + O(|b − a|3) with f = g′′ to obtain

g′′(F (tj ), tj ) − g′′(F (tj−1), tj−1)

=
∫ tj

tj−1

∂tg
′′(F (tj ), s) ds

+ 1

2

(
g′′′(F (tj−1), tj−1) + g′′′(F (tj ), tj−1)

)
�Fj + R(3.9)

=
∫ tj

tj−1

∂tg
′′(F (tj ), s) ds − 1

2
�Fj

∫ tj

tj−1

∂tg
′′′(F (tj ), s) ds

+ 1

2

(
g′′′(F (tj−1), tj−1) + g′′′(F (tj ), tj )

)
�Fj + R,

where |R| ≤ C|�Fj |3. Since g has compact support, we may use (3.5) with K = R

and j = 3 to conclude that the above integrals are bounded by C�t . This yields

�nt�∑
j=1

(
g′′(F (tj ), tj ) − g′′(F (tj−1), tj−1)

)
�F 2

j

(3.10)

=
�nt�∑
j=1

1

2

(
g′′′(F (tj ), tj ) + g′′′(F (tj−1), tj−1)

)
�F 3

j + R̃,

where |R̃| ≤ C
∑

(�t�F 2
j + �t |�Fj |3 + |�Fj |5). We can combine this formula

with (3.8) to complete the proof. �

4. Third order integrals. To analyze the third order integrals, we will need
a Taylor expansion of a different kind. That is, we will need an expansion for the
expectation of functions of jointly Gaussian random variables. For this Gaussian
version of Taylor’s theorem, we first introduce some terminology. We shall say
that a function g : Rd → R has polynomial growth if there exist positive constants
K and r such that

|g(x)| ≤ K(1 + |x|r )
for all x ∈ R

d . If k is nonnegative integer, we shall say that a function g has poly-
nomial growth of order k if g ∈ Ck(Rd) and there exist positive constants K and r

such that

|∂αg(x)| ≤ K(1 + |x|r )
for all x ∈ R

d and all |α| ≤ k.
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THEOREM 4.1. Let k be a nonnegative integer. Suppose h : R → R is mea-
surable and has polynomial growth, and f ∈ Ck+1(Rd) has polynomial growth of
order k + 1, both with common constants K and r . Suppose, also, that ∂αf has
polynomial growth with constants Kα and r for all |α| ≤ k + 1. Let ξ ∈ R

d and
Y ∈ R be jointly normal with mean zero. Suppose that EY 2 = 1 and Eξ2

j ≤ ν for

some ν > 0. Define ρ ∈ R
d by ρj = E[ξjY ]. Then,

E[f (ξ)h(Y )] = ∑
|α|≤k

1

α!ρ
αE[∂αf (ξ − ρY )]E[Y |α|h(Y )

]+ R,

where |R| ≤ C
∑

|α|=k+1 Kα|ρα| and C depends only on K , r , ν, k and d . In
particular, |R| ≤ C|ρ|k+1.

PROOF. Let U = ξ − ρY and define ϕ : Rd → R by ϕ(x) = E[f (U +
xY )h(Y )]. Since h and f have polynomial growth and all derivatives of f up
to order k +1 have polynomial growth, we may differentiate under the expectation
and conclude that ϕ ∈ Ck+1(Rd). Hence, by Theorem 2.13 and the fact that U and
Y are independent,

E[f (ξ)h(Y )] = ϕ(ρ) = ∑
|α|≤k

1

α!ρ
α∂αϕ(0) + R

= ∑
|α|≤k

1

α!ρ
αE[∂αf (U)]E[Y |α|h(Y )

]+ R,

where

|R| ≤ (k + 1)
∑

|α|=k+1

Mα|ρα|

and Mα = sup{|∂αϕ(uρ)| : 0 ≤ u ≤ 1}. Note that

∂αϕ(uρ) = E[∂αf (U + uρY )Y k+1h(Y )] = E
[
∂αf

(
ξ − ρ(1 − u)Y

)
Y k+1h(Y )

]
.

Hence,

|∂αϕ(uρ)| ≤ KαKE
[(

1 + |ξ − ρ(1 − u)Y |r)|Y |k+1(1 + |Y |r )]
≤ KαKE[(1 + 2r |ξ |r + 2r |ρ|r |Y |r )(|Y |k+1 + |Y |k+1+r )].

Since |ρ|2 ≤ νd , this shows that Mα ≤ CKα and completes the proof. �

COROLLARY 4.2. Recall the Hermite polynomials hn(x) from (2.16). Under
the hypotheses of Theorem 4.1,

E[f (ξ)h(Y )] = ∑
|α|≤k

1

α!ρ
αE[∂αf (ξ)]E[h|α|(Y )h(Y )

]+ R,

where |R| ≤ C
∑

|α|=k+1 Kα|ρα| and C depends only on K , r , ν, k and d . In
particular, |R| ≤ C|ρ|k+1.



CHANGE OF VARIABLE WITH ITÔ TERM 1839

PROOF. Recursively define the sequences {a(n)
j }∞j=0 by a

(0)
j = E[Y jh(Y )] and

a
(n+1)
j =

⎧⎪⎨⎪⎩
a

(n)
j , if j ≤ n,

a
(n)
j −

(
j

n

)
a

(n)
n E[Y j−n], if j ≥ n + 1.

(4.1)

We will show that for all 0 ≤ n ≤ k + 1,

E[f (ξ)h(Y )] = ∑
|α|≤n−1

1

α!ρ
αE[∂αf (ξ)]a(n)

|α|
(4.2)

+ ∑
n≤|α|≤k

1

α!ρ
αE[∂αf (ξ − ρY )]a(n)

|α| + R,

where |R| ≤ C
∑

|α|=k+1 Kα|ρα| and C depends only on K , r , ν, k and d . The
proof is by induction on n. The case n = 0 is given by Theorem 4.1. Suppose (4.2)
holds for some n < k + 1. Fix α such that |α| = n. Let ck denote E[Y k]. Applying
Theorem 4.1 to ∂αf with h(y) = 1 gives

E[∂αf (ξ)] = ∑
|β|≤k−n

1

β!ρ
βE[∂α+βf (ξ − ρY )]c|β| + R̂α

= E[∂αf (ξ − ρY )] + ∑
1≤|β|≤k−n

1

β!ρ
βE[∂α+βf (ξ − ρY )]c|β| + R̂α,

where |R̂α| ≤ C
∑

|β|=k+1−n Kα+β |ρβ |. Hence, by (4.2),

E[f (ξ)h(Y )] = ∑
|α|≤n

1

α!ρ
αE[∂αf (ξ)]a(n)

|α|

+ ∑
n+1≤|α|≤k

1

α!ρ
αE[∂αf (ξ − ρY )]a(n)

|α|(4.3)

− S + R∗,
where

|R∗| ≤ |R| + C
∑

|α|=n

|ρα||R̂α|

≤ |R| + C
∑

|α|=n

|ρα| ∑
|β|=k+1−n

Kα+β |ρβ |

≤ C
∑

|α|=n

Kα|ρα|

and

S = ∑
|α|=n

∑
1≤|β|≤k−n

1

α!β!ρ
α+βE[∂α+βf (ξ − ρY )]a(n)

n c|β|.
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Making the change of index γ = α + β and using Lemma 2.15 gives

S = ∑
n+1≤|γ |≤k

∑
|α|=n
α≤γ

(
γ

α

)
1

γ !ρ
γ E[∂γ f (ξ − ρY )]a(n)

n c|γ |−n

= ∑
n+1≤|γ |≤k

( |γ |
n

)
1

γ !ρ
γ E[∂γ f (ξ − ρY )]a(n)

n c|γ |−n.

Substituting this into (4.3) and using (4.1) shows that

E[f (ξ)h(Y )] = ∑
|α|≤n

1

α!ρ
αE[∂αf (ξ)]a(n+1)

|α|
(4.4)

+ ∑
n+1≤|α|≤k

1

α!ρ
αE[∂αf (ξ − ρY )]a(n+1)

|α| + R∗,

which completes the induction.
By (4.2) with n = k + 1, it remains only to show that

a
(n)
j = E[hj (Y )h(Y )] for all j ≤ n.(4.5)

The proof is by induction on n. For n = 0, the claim is trivial. Suppose (4.5) holds
for all n ≤ N . If j ≤ N , then (4.1) implies a

(N+1)
j = a

(N)
j = E[hj (Y )h(Y )]. If

j = N + 1, then

a
(N+1)
N+1 = a

(N)
N+1 −

(
N + 1

N

)
a

(N)
N E[Y ].

Using induction, this gives

a
(N+1)
N+1 = a

(0)
N+1 −

N∑
j=0

(
N + 1

j

)
a

(j)
j E[YN+1−j ]

= E[YN+1h(Y )] −
N∑

j=0

(
N + 1

j

)
E[hj (Y )h(Y )]E[YN+1−j ]

= E

[{
YN+1 −

N∑
j=0

(
N + 1

j

)
E[YN+1−j ]hj (Y )

}
h(Y )

]
.

By (2.21),

YN+1 =
N+1∑
j=0

(
N + 1

j

)
E[Y j ]hN+1−j (Y ) =

N+1∑
j=0

(
N + 1

j

)
E[YN+1−j ]hj (Y ).

Hence, a
(N+1)
N+1 = E[hN+1(Y )h(Y )], completing the proof of (4.5). �
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THEOREM 4.3. If g ∈ C
4,1
0 (R × [0,∞)), then

lim
n→∞

�nt�∑
j=1
j odd

g(F (tj−1), tj−1)�F 3
j = lim

n→∞
�nt�∑
j=1

j even

g(F (tj−1), tj−1)�F 3
j

(4.6)

= − 3

2π

∫ t

0
g′(F (s), s) ds

and

lim
n→∞

�nt�∑
j=1
j odd

g(F (tj ), tj )�F 3
j = lim

n→∞
�nt�∑
j=1

j even

g(F (tj ), tj )�F 3
j

(4.7)

= 3

2π

∫ t

0
g′(F (s), s) ds,

where the convergence is ucp.

REMARK 4.4. The nonzero limits result from the dependence between
F(tj−1) and �Fj in (4.6), and F(tj ) and �Fj in (4.7). Note that

E[F(tj−1)�Fj ] = �t∂tρ(tj−1, tj−1 + ε)

for some 0 < ε < �t . Similarly, E[F(tj )�Fj ] = �t∂tρ(tj , tj − ε). If X is a cen-
tered, quartic variation Gaussian process, then

ρ(s, t) = 1
2

(
EX(t)2 + EX(s)2 − E|X(t) − X(s)|2)

≈ 1
2

(
EX(t)2 + EX(s)2 − |t − s|1/2),

which means the leading term in ∂tρ(s, t) is −|t − s|−1/2 sgn(t − s). Hence, it is
not surprising that the limits in (4.6) and (4.7) are of equal magnitude and opposite
sign.

PROOF OF THEOREM 4.3. We prove only the case for odd indices. The proof
for even indices is nearly identical. To simplify notation, we will not explicitly
indicate that the indices are odd in the subscript of the summation symbol (this
convention applies only in this proof).

Using the truncation argument in the proof of Theorem 3.2, we may assume that
g has compact support. Fix T > 0. Let 0 ≤ s ≤ t ≤ T be arbitrary. Recall σj and
σ̂j from Section 2.2. Let

Zn(t) =
�nt�∑
j=1

g(F (tj−1), tj−1)�F 3
j ,

Xn = Xn(s, t) = Zn(t) − Zn(s),
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Yn = Yn(s, t) = 3
�nt�∑

j=�ns�+1

g′(F (tj−1), tj−1)σ̂j σ
2
j .

We may write

E|Xn − Yn|2

= E

∣∣∣∣∣
�nt�∑

j=�ns�+1

g(F (tj−1), tj−1)�F 3
j

(4.8)

− 3
�nt�∑

j=�ns�+1

g′(F (tj−1), tj−1)σ̂j σ
2
j

∣∣∣∣∣
2

= (S1 − S2) − (S2 − S3),

where

S1 =
�nt�∑

i=�ns�+1

�nt�∑
j=�ns�+1

E[g(F (ti−1), ti−1)�F 3
i g(F (tj−1), tj−1)�F 3

j ],

S2 = 3
�nt�∑

i=�ns�+1

�nt�∑
j=�ns�+1

E[g(F (ti−1), ti−1)�F 3
i g′(F (tj−1), tj−1)]σ̂j σ

2
j ,

S3 = 9
�nt�∑

i=�ns�+1

�nt�∑
j=�ns�+1

E[g′(F (ti−1), ti−1)g
′(F (tj−1), tj−1)]σ̂iσ

2
i σ̂j σ

2
j .

Let ξ1 = F(ti−1), ξ2 = σ−1
i �Fi , ξ3 = F(tj−1), Y = σ−1

j �Fj and ρk = E[ξkY ].
Define f ∈ C3(R3) by f (x) = g(x1, ti−1)x

3
2g(x3, tj−1) and define h(x) = x3. By

Corollary 4.2 with k = 2,

E[f (ξ)Y 3] = ∑
|α|≤2

1

α!ρ
αE[∂αf (ξ)]E[h|α|(Y )Y 3]+ R

= 3
∑

|α|=1

1

α!ρ
αE[∂αf (ξ)] + R,

where |R| ≤ C|ρ|3. Hence,

|S1 − S2| =
∣∣∣∣∣

�nt�∑
i=�ns�+1

�nt�∑
j=�ns�+1

σ 3
i σ 3

j

(
E[f (ξ)Y 3] − 3ρ3E[∂3f (ξ)])∣∣∣∣∣

≤ C

�nt�∑
i=�ns�+1

�nt�∑
j=�ns�+1

σ 3
i σ 3

j (|ρ1| + |ρ2| + |ρ3|3)
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≤ C

�nt�∑
i=�ns�+1

�nt�∑
j=�ns�+1

(
�t5/4|EF(ti−1)�Fj |

+ �t |E�Fi�Fj | + �t3/4|σ̂j |3).
By (2.8), (2.9), Lemma 2.9(i) with c = 0 and Lemma 2.9(iii),

|S1 − S2| ≤ C

�nt�∑
i=�ns�+1

�nt�∑
j=�ns�+1

(
�t7/4(|j − i| ∨ 1)−1/2

+ �t3/2(|j − i| ∨ 1)−3/2 + �t9/4)
≤ C

�nt�∑
i=�ns�+1

�t5/4 ≤ C

(�nt� − �ns�
n

)
�t1/4.

To estimate S2 − S3, let ξ1 = F(ti−1), ξ2 = F(tj−1), Y = σ−1
i �Fi and ρk =

E[ξkY ]. Define f ∈ C3(R2) by f (x) = g(x1, tj−1)g
′(x2, tj−1) and h(x) = x3. As

above,

|S2 − S3| = 3

∣∣∣∣∣
�nt�∑

i=�ns�+1

�nt�∑
j=�ns�+1

σ̂j σ
2
j σ 3

i

(
E[f (ξ)Y 3] − 3ρ1E[∂1f (ξ)])∣∣∣∣∣

≤ C

�nt�∑
i=�ns�+1

�nt�∑
j=�ns�+1

|σ̂j |σ 2
j σ 3

i (|ρ2| + |ρ1|3)

≤ C

�nt�∑
i=�ns�+1

�nt�∑
j=�ns�+1

(
�t2(|j − i| ∨ 1)−1/2 + �t5/2)

≤ C

�nt�∑
i=�ns�+1

�t3/2 ≤ C

(�nt� − �ns�
n

)
�t1/2.

Combining these results, we have

E|Xn − Yn|2 ≤ C

(�nt� − �ns�
n

)
�t1/4 ≤ C

(�nt� − �ns�
n

)5/4

.

Note that

EY 2
n ≤ C

�nt�∑
i=�ns�+1

�nt�∑
j=�ns�+1

|σ̂iσ
2
i σ̂j σ

2
j |

≤ C

�nt�∑
i=�ns�+1

�nt�∑
j=�ns�+1

�t2 = C

(�nt� − �ns�
n

)2

.
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Since t − s ≤ T , this shows that

E|Zn(t) − Zn(s)|2 = EX2
n ≤ C

(�nt� − �ns�
n

)5/4

.

Taking s = 0 verifies condition (iii) of Theorem 2.1. Hence, by Corollary 2.2, {Zn}
is relatively compact. Since Xn − Yn → 0 in L2, it will suffice, by Lemma 2.6, to
show that

Yn(0, t) = 3
�nt�∑
j=1

g′(F (tj−1), tj−1)σ̂jσ
2
j → − 3

2π

∫ t

0
g′(F (s), s) ds

in probability. For this, observe that by (2.4) and (2.9),

|σ̂j σ
2
j + π−1�t | ≤ |σ̂j + (2π)−1/2�t1/2|σ 2

j

+ (2π)−1/2�t1/2|(2/π)1/2�t1/2 − σ 2
j |

≤ Cj−1/2�t.

Hence,∣∣∣∣∣
�nt�∑
j=1

g′(F (tj−1), tj−1)σ̂j σ
2
j + 1

π

�nt�∑
j=1

g′(F (tj−1), tj−1)�t

∣∣∣∣∣≤ C�t1/2 → 0.

Since
�nt�∑
j=1
j odd

g′(F (tj−1), tj−1)�t → 1

2

∫ t

0
g′(F (s), s) ds

almost surely, this completes the proof of (4.6).
For (4.7), note that we may use (3.5) with K = R and j = 0 to obtain

g(F (tj ), tj ) − g(F (tj−1), tj−1)

=
∫ tj

tj−1

∂tg(F (tj ), s) ds + g(F (tj ), tj−1) − g(F (tj−1), tj−1)

= g′(F (tj−1), tj−1)�Fj + R,

where |R| ≤ C(�t + �F 2
j ). Hence,

�nt�∑
j=1

g(F (tj ), tj )�F 3
j =

�nt�∑
j=1

g(F (tj−1), tj−1)�F 3
j

(4.9)

+
�nt�∑
j=1

g′(F (tj−1), tj−1)�F 4
j + R̃,
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where |R̃| → 0 ucp. Applying (4.6) and Theorem 3.1 completes the proof. �

As a reminder, Xn(t) ≈ Yn(t) means that Xn − Yn → 0 ucp. Let

Jn(g, t) =
2�nt/2�∑

j=1

g(F (tj−1), tj−1)�F 2
j (−1)j .(4.10)

COROLLARY 4.5. If g ∈ C
7,1
3 (R × [0,∞)), then

In(g
′, t) ≈ g(F (t), t) − g(F (0),0) −

∫ t

0
∂tg(F (s), s) ds − 1

2
Jn(g

′′, t),

where In(g, t) and Jn(g, t) are given by (1.4) and (4.10), respectively. Moreover,

T F
n (g′, t) ≈ g(F (t), t) − g(F (0),0) −

∫ t

0
∂tg(F (s), s) ds,

where T F
n is given by (1.7).

PROOF. By Theorems 3.2, 3.3 and 4.3, it will suffice to show that

�nt/2�∑
j=1

g′′(F (t2j−1), t2j−1)(�F 2
2j − �F 2

2j−1) ≈ Jn(g
′′, t).

As before, we may assume that g has compact support. Note that

�nt/2�∑
j=1

g′′(F (t2j−1), t2j−1)(�F 2
2j − �F 2

2j−1)

=
2�nt/2�∑

j=1
j even

g′′(F (tj−1), tj−1)�F 2
j −

2�nt/2�∑
j=1
j odd

g′′(F (tj ), tj )�F 2
j

= Jn(g
′′, t) −

2�nt/2�∑
j=1
j odd

{g′′(F (tj ), tj ) − g′′(F (tj−1), tj−1)}�F 2
j .

The proof is completed by using (3.10) and applying Theorem 4.3. �

COROLLARY 4.6. If g ∈ C
7,1
3 (R × [0,∞)), then

T X
n (g′, t) ≈ g(X(t), t) − g(X(0),0) −

∫ t

0
∂tg(X(s), s) ds,

where T X
n is given by (1.7). This result remains true even when X = cF + ξ , where

ξ satisfies only (1.3), and is not necessarily independent of F .
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PROOF. By passing to a subsequence, we may assume that Corollary 4.5 holds
almost surely. It will therefore suffice to prove Corollary 4.6 under the assumption
that ξ is deterministic.

The claim is trivial when c = 0. Suppose c �= 0. Let h = hξ be given by h(x, t) =
g(cx + ξ(t), t). We claim that h ∈ C

7,1
3 (R × [0,∞)). Note that h(j)(F (t), t) =

cjg(j)(X(t), t) for all j ≤ 7. It is straightforward to verify (3.2) and (3.3). Condi-
tions (3.4) and (3.5) follow from the fact that

∂th
(j)(x, t) = cjg(j+1)(cx + ξ(t), t

)
ξ ′(t) + cj ∂tg

(j)(cx + ξ(t), t
)

for all j ≤ 3.
Observe that

T X
n (g′, t) = T F

n (h′, t) + c−1
�nt�∑
j=1

h′(F (tj−1), tj−1) + h′(F (tj ), tj )

2
�ξj .

By our hypotheses on ξ , and the continuity of h′ and F , the above summation
converges to

∫ t
0 h′(F (s), s)ξ ′(s) ds, uniformly on compacts with probability one.

Thus, by Corollary 4.5, we have

T X
n (g′, t) ≈ h(F (t), t) − h(F (0),0)

−
∫ t

0
∂th(F (s), s) ds + c−1

∫ t

0
h′(F (s), s)ξ ′(s) ds

= g(X(t), t) − g(X(0),0) −
∫ t

0
∂tg(X(s), s) ds,

which completes the proof. �

5. Relative compactness. The main result of this section is Theorem 5.1 be-
low, from which the relative compactness of {Jn(g, ·)} will follow as a corollary.
[Recall that {Jn(g, ·)} is defined in (4.10).] Later in Section 6, we will again need
Theorem 5.1, when we show that Jn converges weakly to an ordinary Itô integral.

THEOREM 5.1. Let g ∈ C
7,1
2 (R × [0,∞)) have compact support. Fix T > 0

and let c and d be integers such that 0 ≤ tc < td ≤ T . Then,

E

∣∣∣∣∣
d∑

j=c+1

{g(F (tj−1), tj−1) − g(F (tc), tc)}�F 2
j (−1)j

∣∣∣∣∣
2

≤ C|td − tc|3/2,

where C depends only on g and T .

Consider the simple case c = 0 and g(x, t) = x. In that case, the above expec-
tation is

E

∣∣∣∣∣
d∑

j=1

F(tj−1)�F 2
j (−1)j

∣∣∣∣∣
2

=
d∑

i=1

d∑
j=1

E[F(ti−1)�F 2
i F (tj−1)�F 2

j ](−1)i+j .
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Using Corollary 4.2, we can remove the �F 2 factors from inside the expectation.
The leading term in the resulting expansion would be roughly

�t

d∑
i=1

d∑
j=1

E[F(ti−1)F (tj−1)](−1)i+j

= �t
∑

i,j even

E
[(

F(ti−1) − F(ti−2)
)(

F(tj−1) − F(tj−2)
)]

.

We could now use (2.8) to analyze these expectations and prove the theorem in
this simple case.

If we are to follow this strategy, then we will need an estimate analogous to
(2.8) which applies to functions of F . The estimate in (2.8) was originally ar-
rived at through direct computations with the covariance function. Unfortunately,
such direct computations are not tractable for a general function of F . There
is, however, an alternative derivation of (2.8). Specifically, if we observe that
|∂stρ(s, t)| ≤ C|t − s|−3/2, where ∂st is the mixed second partial derivative, then
we may conclude that |E[�Fi�Fj ]| ≤ C�t2|tj − ti |−3/2. Based on these heuris-
tics, we begin with the following.

LEMMA 5.2. Let X be a centered Gaussian process with continuous covari-
ance function ρ(s, t) and define V (t) = ρ(t, t). Suppose that ρ is a C2 function
away from the set {s = 0} ∪ {t = 0} ∪ {s = t} and that V (t) is a positive C1 func-
tion on {t > 0}. Suppose that ϕ ∈ C2(R) has polynomial growth of order 2 with
constants K and r , and define Vϕ(t) = E[ϕ(X(t))]. Then,

V ′
ϕ(t) = 1

2V ′(t)E[ϕ′′(X(t))].
In particular, |V ′

ϕ(t)| ≤ C|V ′(t)| for all 0 < t ≤ T , where C depends only on K , r

and T .

PROOF. Let σ(t) = V (t)1/2 and note that σ is a positive C1 function on
{t > 0}. Fix t > 0 and let X = σ(t)−1X(t) so that X is a standard normal ran-
dom variable and Vϕ(t) = E[ϕ(σ(t)X)]. Since ϕ′ has polynomial growth, we may
differentiate under the expectation, giving

V ′
ϕ(t) = σ ′(t)E[Xϕ′(σ (t)X)] = V ′(t)

2σ(t)
E[ϕ′(σ (t)X)h1(X)],

where hn is given by (2.16). By (2.25), we have

V ′
ϕ(t) = V ′(t)

2σ(t)
E[σ(t)ϕ′′(σ (t)X)h0(X)] = 1

2
V ′(t)E[ϕ′′(X(t))]. �
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PROPOSITION 5.3. Let X, ρ, and V be as in Lemma 5.2. Let g,h ∈ C2(R)

have polynomial growth of order 2 with common constants K and r , and define
f (s, t) = E[g(X(s))h(X(t))]. Then,

∂sf (s, t) = 1
2V ′(s)E[g′′(X(s))h(X(t))]

(5.1)
+ ∂sρ(s, t)E[g′(X(s))h′(X(t))] and

∂tf (s, t) = 1
2V ′(t)E[g(X(s))h′′(X(t))] + ∂tρ(s, t)E[g′(X(s))h′(X(t))](5.2)

whenever 0 < s, t ≤ T and s �= t . In particular,

|∂sf (s, t)| ≤ C
(|V ′(s)| + |∂sρ(s, t)|)

and

|∂tf (s, t)| ≤ C
(|V ′(t)| + |∂tρ(s, t)|),

where C depends only on K , r and T .

PROOF. By symmetry, we only need to prove (5.1). Let σ(t) = V (t)1/2 and
note that σ is a positive C1 function on {t > 0}. Let r = r(s, t) = σ(s)−1σ(t)−1 ×
ρ(s, t) and define Xr = σ(s)−1X(s) and Yr = σ(t)−1X(t). Note that Xr and Yr

are jointly normal with mean zero, variance one and E[XrYr ] = r .
Let ϕ be as in Lemma 2.12. Then f (s, t) = ϕ(σ(s), σ (t), r(s, t)). Hence, by

Lemmas 2.11 and 2.12,

∂sf (s, t) = σ ′(s)σ (s)E[g′′(X(s))h(X(t))]
+ σ ′(s)σ (t)r(s, t)E[g′(X(s))h′(X(t))]
+ ∂sr(s, t)σ (s)σ (t)E[g′(X(s))h′(X(t))].

Note that σ ′(s) = V ′(s)/(2σ(s)) and

∂sr(s, t) = ∂sρ(s, t)

σ (s)σ (t)
− ρ(s, t)

σ (s)2σ(t)
σ ′(s) = ∂sρ(s, t)

σ (s)σ (t)
− V ′(s)r(s, t)

2σ(s)2 .

Thus,

∂sf (s, t) = 1
2V ′(s)E[g′′(X(s))h(X(t))]
+ 1

2V ′(s)σ (s)−1σ(t)r(s, t)E[g′(X(s))h′(X(t))]
+ ∂sρ(s, t)E[g′(X(s))h′(X(t))]
− 1

2V ′(s)σ (s)−1σ(t)r(s, t)E[g′(X(s))h′(X(t))]
= 1

2V ′(s)E[g′′(X(s))h(X(t))] + ∂sρ(s, t)E[g′(X(s))h′(X(t))]. �
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THEOREM 5.4. Let X, ρ and V be as in Lemma 5.2. Let g,h ∈ C3(R)

have polynomial growth of order 3 with common constants K and r , and define
f (s, t) = E[g(X(s))h(X(t))]. Then

|∂stf (s, t)| ≤ C|∂stρ(s, t)| + C
(|V ′(s)| + |∂sρ(s, t)|)(|V ′(t)| + |∂tρ(s, t)|),

whenever 0 < s, t ≤ T and s �= t , where C depends only on K , r and T .

PROOF. By (5.1),

∂stf (s, t) = 1
2V ′(s)∂t {E[g′′(X(s))h(X(t))]} + ∂sρ(s, t)∂t {E[g′(X(s))h′(X(t))]}
+ ∂stρ(s, t)E[g′(X(s))h′(X(t))].

Applying (5.2), we have

∂stf (s, t) = 1
4V ′(s)V ′(t)E[g′′(X(s))h′′(X(t))]
+ 1

2V ′(s)∂tρ(s, t)E[g′′′(X(s))h′(X(t))]
+ 1

2V ′(t)∂sρ(s, t)E[g′(X(s))h′′′(X(t))]
+ ∂sρ(s, t)∂tρ(s, t)E[g′′(X(s))h′′(X(t))]
+ ∂stρ(s, t)E[g′(X(s))h′(X(t))]

and the theorem now follows. �

From Theorem 5.4, we immediately obtain the following corollary.

COROLLARY 5.5. Let X, ρ and V be as in Lemma 5.2. Let g,h ∈ C3(R)

have polynomial growth of order 3 with common constants K and r , and define
f (s, t) = E[g(X(s))h(X(t))]. If

|V ′(t)| ≤ Ct−1/2,

|∂sρ(s, t)| + |∂tρ(s, t)| ≤ C
(
s−1/2 + (t − s)−1/2)

and

|∂stρ(s, t)| ≤ C
(
s−3/2 + (t − s)−3/2)

for all 0 < s < t ≤ T , where C depends on only T , then

|∂stf (s, t)| ≤ C
(
s−3/2 + (t − s)−3/2)

for a (possibly different) constant C that depends only on K , r and T .

With this corollary in place, we can now begin proving Theorem 5.1.
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LEMMA 5.6. Suppose g ∈ C
1,1
0 (R × [0,∞)) has compact support. If p > 0,

then

E|g(F (t), t) − g(F (s), s)|p ≤ C|t − s|p/4

for all 0 ≤ s, t ≤ T , where C depends only on g, p and T .

PROOF. We write

g(F (t), t) − g(F (s), s)

=
∫ t

s
∂tg(F (t), u) du

+ (
F(t) − F(s)

) ∫ 1

0
g′(F(s) + u

(
F(t) − F(s)

)
, s
)
du.

Hence, |g(F (t), t) − g(F (s), s)| ≤ C|t − s| + C|F(t) − F(s)|. Since F is a
Gaussian process, an application of (2.3) completes the proof. �

LEMMA 5.7. Recall that σ 2
j = E�F 2

j . Under the hypotheses of Theorem 5.1,

E

∣∣∣∣∣
d∑

j=c+1

{g(F (tj−1), tj−1) − g(F (tc), tc)}σ 2
j (−1)j

∣∣∣∣∣
2

≤ C|td − tc|3/2,

where C depends only on g and T .

PROOF. By (2.4),

d∑
j=c+1

{g(F (tj−1), tj−1) − g(F (tc), tc)}σ 2
j (−1)j = S + ε,

where

S =
(

2

π

)1/2

�t1/2
d∑

j=c+1

{g(F (tj−1), tj−1) − g(F (tc), tc)}(−1)j

and, by Hölder’s inequality,

|ε|2 ≤ C�t

(
d∑

j=c+1

|g(F (tj−1), tj−1) − g(F (tc), tc)|j−3/2

)2

≤ C�t

(
d∑

j=c+1

|g(F (tj−1), tj−1) − g(F (tc), tc)|2
)(

d∑
j=c+1

j−3

)
.
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Hence, by Lemma 5.6,

E|ε|2 ≤ C�t3/2
d∑

j=c+1

|j − c|1/2 ≤ C�t3/2|d − c|3/2 = C|td − tc|3/2.

As for S, we assume, without loss of generality, that c and d are both even. In that
case,

S =
(

2

π

)1/2

�t1/2
d∑

j=c+1
j even

{g(F (tj−1), tj−1) − g(F (tj−2), tj−2)}

=
(

2

π

)1/2

�t1/2
d∑

j=c+1
j even

{∫ tj−1

tj−2

∂tg(F (tj−1), s) ds

+ g(F (tj−1), tj−2) − g(F (tj−2), tj−2)

}
.

Using (3.5) with j = 0, the integral is bounded by C�t and we have E|S|2 ≤
C�t(|td − tc|2 + S1 + S2), where

S1 =
d∑

j=c+1
j even

E|g(F (tj−1), tj−2) − g(F (tj−2, tj−2))|2,

S2 = 2
d∑

i=c+1
i even

d∑
j=i+2
j even

|E[{g(F (ti−1), ti−2) − g(F (ti−2), ti−2)}

× {g(F (tj−1), tj−2) − g(F (tj−2), tj−2)}]|

= 2
d∑

i=c+1
i even

d∑
j=i+2
j even

∣∣∣∣∫ ti−1

ti−2

∫ tj−1

tj−2

∂stfij (s, t) dt ds

∣∣∣∣
and fij (s, t) = E[g(F (s), ti−2)g(F (t), tj−2)]. Note that F is a Gaussian process
satisfying the conditions of Corollary 5.5. Hence,

S2 ≤ C

d∑
i=c+1
i even

d∑
j=i+2
j even

∫ ti−1

ti−2

∫ tj−1

tj−2

(
s−3/2 + (t − s)−3/2)dt ds

≤ C�t1/2
d∑

i=c+1
i even

d∑
j=i+2
j even

(
(i − 2)−3/2 + (j − i − 1)−3/2)

≤ C�t1/2(d − c) = C�t−1/2|td − tc|.
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By Lemma 5.6, we also have S1 ≤ C�t−1/2|td − tc|. Hence,

E|S|2 ≤ C�t1/2|td − tc|.
Combined with the estimate on E|ε|2, this completes the proof. �

LEMMA 5.8. Let σ̂c,j = E[(F (tj−1) − F(tc))�Fj ]. Under the hypotheses of
Theorem 5.1,

E

∣∣∣∣∣
d∑

j=c+1

g′′(F (tj−1), tj−1)σ̂
2
c,j (−1)j

∣∣∣∣∣
2

≤ C�t |td − tc|,

where C depends only on g and T .

PROOF. By Lemma 2.9(i) applied with c = 0, and (2.9), we have

|σ̂c,j + (2π)−1/2�t1/2| = |σ̂j − E[F(tc)�Fj ] + (2π)−1/2�t1/2|
≤ C�t1/2(j − c)−1/2.

Hence, by Lemma 2.9(i),

|σ̂ 2
c,j − (2π)−1�t | ≤ C�t1/2|σ̂c,j + (2π)−1/2�t1/2| ≤ C�t(j − c)−1/2.

Therefore,

d∑
j=c+1

g′′(F (tj−1), tj−1)σ̂
2
c,j (−1)j = S + ε,

where

S = (2π)−1�t

d∑
j=c+1

g′′(F (tj−1), tj−1)(−1)j

and

|ε|2 ≤ C�t2

(
d∑

j=c+1

(j − c)−1/2

)2

≤ C�t2(d − c) = C�t |td − tc|.

The proof that E|S|2 ≤ C�t |td − tc| is similar to that in the proof of Lemma 5.7,
except that we must use (3.5) with j = 2. �

LEMMA 5.9. Under the hypotheses of Theorem 5.1, we have

E

∣∣∣∣∣
d∑

j=c+1

{g(F (tc), tj−1) − g(F (tc), tc)}�F 2
j (−1)j

∣∣∣∣∣
2

≤ C|td − tc|3,

where C depends only on g and T .
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PROOF. Let Y(t) = g(F (tc), t) − g(F (tc), tc) and note that

E

∣∣∣∣∣
d∑

j=c+1

Y(tj−1)�F 2
j (−1)j

∣∣∣∣∣
2

=
d∑

i=c+1

d∑
j=c+1

E[Y(ti−1)�F 2
i Y (tj−1)�F 2

j ](−1)i+j .

For fixed i, j , define f : R2 → R by

f (x) =
(

g(x1, ti−1) − g(x1, tc)

ti−1 − tc

)(
g(x1, tj−1) − g(x1, tc)

tj−1 − tc

)
x2

2 .

By (3.5) with j = 2, f has polynomial growth of order 2 with constants K and r

that do not depend on i or j .
Let ξ1 = F(tc), ξ2 = σ−1

i �Fi , Y = σ−1
j �Fj and h(y) = y2. By Corollary 4.2

with k = 1, E[f (ξ)h(Y )] = E[f (ξ)] + R1, where |R1| ≤ C|ρ|2. Similarly, if
f̃ (x1) = f (x1,1), then

E[f (ξ)] = E[f̃ (ξ1)h(ξ2)] = E[f̃ (ξ1)] + R2,

where |R2| ≤ C|E[ξ1ξ2]|2. Therefore,

E[Y(ti−1)�F 2
i Y (tj−1)�F 2

j ] = σ 2
i σ 2

j E[Y(ti−1)Y (tj−1)] + R3,

where

|R3| = σ 2
i σ 2

j |ti−1 − tc||tj−1 − tc||R1 + R2| ≤ �t3|i − c||j − c||R1 + R2|.
Using Lemma 2.9(iii) and (2.8),

|ρ1| = |E[ξ1Y ]| ≤ C�t1/4|j − c|−1/2,

|ρ2| = |E[ξ2Y ]| ≤ C(|j − i| ∨ 1)−3/2, |E[ξ1ξ2]| ≤ C�t1/4|i − c|−1/2.

This gives

|R3| ≤ C�t7/2(|i − c| + |j − c|) + C�t3(|j − i| ∨ 1)−3(|i − c|2 + |j − c|2).
Observe that

d∑
i=c+1

d∑
j=c+1

|R3(i, j)| ≤ C�t7/2(d − c)3 + C�t3(d − c)3 ≤ C|td − tc|3.

Hence, we are reduced to considering

d∑
i=c+1

d∑
j=c+1

σ 2
i σ 2

j E[Y(ti−1)Y (tj−1)](−1)i+j = E

∣∣∣∣∣
d∑

j=c+1

Y(tj−1)σ
2
j (−1)j

∣∣∣∣∣
2

.



1854 K. BURDZY AND J. SWANSON

Using (3.5) with j = 0 and (2.4), we have∣∣∣∣∣
d∑

j=c+1

Y(tj−1)σ
2
j (−1)j

∣∣∣∣∣
=
∣∣∣∣∣

d∑
j=c+1
j even

(
Y(tj−1)σ

2
j − Y(tj−2)σ

2
j−1

)∣∣∣∣∣
≤

d∑
j=c+1
j even

(|Y(tj−1)||σ 2
j − σ 2

j−1| + |Y(tj−1) − Y(tj−2)|σ 2
j−1

)

≤ C

d∑
j=c+1

(|tj−1 − tc|j−3/2�t1/2 + �t3/2)

≤ C�t3/2
d∑

j=c+1

|j − c|−1/2 ≤ C|td − tc|3/2,

which completes the proof. �

PROOF OF THEOREM 5.1. By Lemma 5.9, it will suffice to show that

E

∣∣∣∣∣
d∑

j=c+1

{g(F (tj−1), tj−1) − g(F (tc), tj−1)}�F 2
j (−1)j

∣∣∣∣∣
2

≤ C|td − tc|3/2.

For brevity, let X (t) = g(F (t), t) − g(F (tc), t) and write

E

∣∣∣∣∣
d∑

j=c+1

X (tj−1)�F 2
j (−1)j

∣∣∣∣∣
2

=
d∑

i=c+1

d∑
j=c+1

E[X (ti−1)�F 2
i X (tj−1)�F 2

j ](−1)i+j .

Recall that σ 2
j = E�F 2

j . Let δc(t) = F(t) − F(tc). Let σ 2
c,j = Eδc(tj )

2. Let

ξ1 = F(tc), ξ2 = σ−1
c,i−1δc(ti−1), ξ3 = σ−1

c,j−1δc(tj−1), ξ4 = σ−1
i �Fi and ξ =

(ξ1, . . . , ξ4). For x ∈ R
4, define f = fij by

f (x) =
(

g(x1 + σc,i−1x2, ti−1) − g(x1, ti−1)

σc,i−1

)

×
(

g(x1 + σc,j−1x3, tj−1) − g(x1, tj−1)

σc,j−1

)
x2

4 .
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Let Y = σ−1
j �Fj and h(y) = y2.

Note that for θ ∈ (0,1] and tj ∈ [0, T ], x �→ θ−1(g(x1 + θx2, tj ) − g(x1, tj ))

has polynomial growth of order 6 with constants K and r that do not depend on θ

or j . Hence, f has polynomial growth of order 6 with constants K and r . Thus,
by Corollary 4.2 with k = 5, if σ = σc,i−1σc,j−1σ

2
i σ 2

j , then

E[X (ti−1)�F 2
i X (tj−1)�F 2

j ]
= σE[f (ξ)h(Y )]
= σ

( ∑
|α|≤5

1

α!ρ
αE[∂αf (ξ)]E[h|α|(Y )Y 2]+ R1

)
,

where ρj = E[ξjY ] and |R1| ≤ C|ρ|6. If p is a positive integer, then by (2.19),
(2.20) and (2.22) with r = 1,

E
[
h|α|(Y )Yp]= 0 if p − |α| is odd or |α| > p.(5.3)

Hence, since E[h2(Y )Y 2] = E[Y 4 − Y 2] = 2,

E[X (ti−1)�F 2
i X (tj−1)�F 2

j ] = σE[f (ξ)] + σρ2
3E[∂2

3f (ξ)] + σR2,

where R2 incorporates all terms of the form ραE[∂αf (ξ)] with |α| = 2, except
α = (0,0,2,0). It follows that

E[X (ti−1)�F 2
i X (tj−1)�F 2

j ]
= σ 2

j E[X (ti−1)�F 2
i X (tj−1)](5.4)

+ σ̂ 2
c,jE[X (ti−1)�F 2

i g′′(F (tj−1), tj−1)] + σR2,

where σ̂c,j = E[δc(tj−1)�Fj ] and

|R2| ≤ C(|ρ1|2 + |ρ2|2 + |ρ4| + |ρ1ρ2| + |ρ1ρ3| + |ρ2ρ3| + |ρ3|6).
The terms |ρ1ρ4|, |ρ2ρ4|, |ρ3ρ4| and |ρ4|2 are not listed on the right-hand side of
the above estimate because |ρ1ρ4| + |ρ2ρ4| + |ρ3ρ4| + |ρ4|2 ≤ C|ρ4|. Using (2.3)
and Lemma 2.9, we have

|σ | ≤ C�t3/2|i − c|1/4|j − c|1/4,

|ρ2| ≤ C|i − c|−1/4(|j − i|−1/2 + |j − c|−1/2),

|ρ1| ≤ C�t1/4|j − c|−1/2

≤ C|i − c|−1/4(|j − i|−1/2 + |j − c|−1/2),

|ρ3| ≤ C|j − c|−1/4,

|ρ4| ≤ C|j − i|−3/2.
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Note that the above factors of |j − i| are actually (|j − i| ∨ 1), although we have
omitted this to simplify the notation. These estimates now yield

|σR2| ≤ C�t3/2(|i − c|−1/4|j − c|1/4|j − i|−1

+ |i − c|−1/4|j − c|−3/4 + |i − c|1/4|j − c|−5/4

+ |i − c|−1/4|j − c|1/4|j − i|−3/2 + |j − i|−1/2 + |j − c|−1/2).

Using |j − c| ≤ |j − i| + |i − c| and |i − c| ≤ |j − i| + |j − c|, we can show that

|σR2| ≤ C�t3/2(|i − c|1/4|j − c|−5/4 + |j − i|−1/2 + |j − c|−1/2)

and, therefore, that

d∑
i=c+1

d∑
j=c+1

|σR2| ≤ C�t3/2
d∑

i=c+1

(d − c)1/2 ≤ C�t3/2(d − c)3/2 = C|td − tc|3/2.

By (5.4), we are now reduced to considering the sums

d∑
i=c+1

d∑
j=c+1

σ 2
j E[X (ti−1)�F 2

i X (tj−1)](−1)i+j

(5.5)

+
d∑

i=c+1

d∑
j=c+1

σ̂ 2
c,jE[X (ti−1)�F 2

i g′′(F (tj−1), tj−1)](−1)i+j ,

which will require two more applications of Corollary 4.2. We will be brief in our
presentation because the following estimates can be obtained in a way very similar
to the one presented above.

For x ∈ R
3, define f̃1(x) = f (x1, x2, x3,1). Let Ỹ = ξ4, ξ̃ = (ξ1, ξ2, ξ3) and

ρ̃j = E[ξj Ỹ ]. Note that f̃1 and f̃2 = σ−1
c,j−1∂

2
3 f̃ both have polynomial growth of

order 5 with constants K and r . Applying Corollary 4.2 with k = 4 and using (5.3),
we have

σ 2
j E[X (ti−1)�F 2

i X (tj−1)]
= σE[f̃1(̃ξ )h(Ỹ )]
= σE[f̃1(̃ξ )] + σ ρ̃2

2E[∂2
2 f̃1(̃ξ )] + σR3(5.6)

= σ 2
i σ 2

j E[X (ti−1)X (tj−1)]
+ σ̂ 2

c,iσ
2
j E[g′′(F (ti−1), ti−1)X (tj−1)] + σR3,

where

|R3| ≤ C(|ρ̃1|2 + |ρ̃3|2 + |ρ̃1ρ̃2| + |ρ̃1ρ̃3| + |ρ̃2ρ̃3| + |ρ̃2|5).(5.7)
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As before,

|ρ̃3| ≤ C|j − c|−1/4(|i − j |−1/2 + |i − c|−1/2),

|ρ̃1| ≤ C�t1/4|i − c|−1/2

≤ C|j − c|−1/4(|i − j |−1/2 + |i − c|−1/2),

|ρ̃2| ≤ C|i − c|−1/4,

which gives

|σR3| ≤ C�t3/2(|i − c|1/4|i − j |−5/4 + |i − j |−1/2 + |i − c|−1/2)

and shows that
d∑

i=c+1

d∑
j=c+1

|σR3| ≤ C|td − tc|3/2.(5.8)

Similarly, if σ̃ = σ̂ 2
c,j σ

2
i σc,i−1, then

σ̂ 2
c,jE[X (ti−1)�F 2

i g′′(F (tj−1), tj−1)]
= σ̃E[f̃2(̃ξ )h(Ỹ )]
= σ̃E[f̃2(̃ξ )] + σ̃ ρ̃2

2E[∂2
2 f̃2(̃ξ )] + σ̃R4(5.9)

= σ 2
i σ̂ 2

c,jE[X (ti−1)g
′′(F (tj−1), tj−1)]

+ σ̂ 2
c,i σ̂

2
c,jE[g′′(F (ti−1), ti−1)g

′′(F (tj−1), ti−1)] + σ̃R4,

where R4 also satisfies (5.7). Note that |σ̃ | ≤ C�t7/4|i−c|1/4. Since this is a better
estimate than the one we use for |σ |, the estimates above also give

d∑
i=c+1

d∑
j=c+1

|σ̃R4| ≤ C|td − tc|3/2.(5.10)

By (5.5), (5.6), (5.8), (5.9) and (5.10), we are reduced to considering the sums
d∑

i=c+1

d∑
j=c+1

σ 2
i σ 2

j E[X (ti−1)X (tj−1)](−1)i+j

+
d∑

i=c+1

d∑
j=c+1

σ̂ 2
c,iσ

2
j E[g′′(F (ti−1), ti−1)X (tj−1)](−1)i+j

+
d∑

i=c+1

d∑
j=c+1

σ 2
i σ̂ 2

c,jE[X (ti−1)g
′′(F (tj−1), tj−1)](−1)i+j

+
d∑

i=c+1

d∑
j=c+1

σ̂ 2
c,i σ̂

2
c,jE[g′′(F (ti−1), ti−1)g

′′(F (tj−1), tj−1)](−1)i+j .
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Note that this can be simplified to

E

∣∣∣∣∣
d∑

j=c+1

σ 2
j X (tj−1)(−1)j +

d∑
j=c+1

σ̂ 2
c,j g

′′(F (tj−1), tj−1)(−1)j

∣∣∣∣∣
2

≤ C

(
E

∣∣∣∣∣
d∑

j=c+1

σ 2
j X (tj−1)(−1)j

∣∣∣∣∣
2

+ E

∣∣∣∣∣
d∑

j=c+1

σ̂ 2
c,j g

′′(F (tj−1), tj−1)(−1)j

∣∣∣∣∣
2)

.

By Lemmas 5.7 and 5.8, this completes the proof. �

COROLLARY 5.10. Recall Jn(g, t) from (4.10). If g ∈ C
7,1
2 (R × [0,∞)) has

compact support, then {Jn(g, ·)} is relatively compact in DR[0,∞).

PROOF. We shall apply Corollary 2.2 with β = 4. First, note that q(x + y)4 ≤
C(|x|2 + |y|4). Fix 0 ≤ s ≤ t ≤ T . Let c = 2�ns/2� and d = 2�nt/2�. Then,

E
[
q
(
Jn(t) − Jn(s)

)4]
≤ CE

∣∣∣∣∣
d∑

j=c+1

{g(F (tj−1), tj−1) − g(F (tc), tc)}�F 2
j (−1)j

∣∣∣∣∣
2

+ CE

∣∣∣∣∣g(F (tc), tc)

d∑
j=c+1

�F 2
j (−1)j

∣∣∣∣∣
4

.

By Theorem 5.1 and (2.12),

E
[
q
(
Jn(t)− Jn(s)

)4]≤ C|td − tc|3/2 +C|td − tc|2 ≤ C

(
2�nt/2� − 2�ns/2�

n

)3/2

.

This shows that one of the assumptions of Corollary 2.2 holds. The other assump-
tion follows from the same estimate applied with s = 0. By Corollary 2.2, {Jn} is
relatively compact. �

6. Convergence to a Brownian integral. Recall that Jn(g, t) is given by
(4.10) and Bn(t) is given by (2.11). Note that

Jn(g, t) = κ

∫ t

0
g(Fn(s−),N(s−)) dBn(s),

where N(t) = �nt�/n and Fn(t) = F(N(t)). In light of Theorem 2.10, we would
like to apply Theorem 2.7. Unfortunately, though, {Bn} cannot be decomposed in
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a way that satisfies (2.2). This is essentially due to the numerous local oscillations
of Bn. To overcome this difficulty, we consider a modified version of Bn.

The process Bn has a jump after every �t units of time. To “smooth out” this
process, we shall restrict it so that it jumps only after every �t1/4 units of time.
Define

Bn(t) = κ−1
2m3�mt/2�∑

j=1

�F 2
j (−1)j ,(6.1)

where m = �n1/4�.

LEMMA 6.1. The sequence {Bn} given by (6.1) satisfies (2.2) and Bn −Bn →
0 ucp.

PROOF. Given k, let d = d(k) = 2m3k and c = c(k) = 2m3(k − 1). Write
Bn(t) = κ−1∑�mt/2�

k=1 ξk , where

ξk =
d∑

j=c+1

�F 2
j (−1)j .

For c < j ≤ d , let �Fj = �Fj − E[�Fj |Ftc ], where Ft is given by (2.13). Let

ξk =
d∑

j=c+1

�F 2
j (−1)j

so that {ξk} is an i.i.d. sequence, by the remarks following (2.13). In particular,
Mn(t) = κ−1∑�mt/2�

k=1 ξk is a martingale. Let An = Bn − Mn. We must now verify
(2.2).

Since {�Fj }∞j=c+1 has the same law as {�Fj }∞j=1, (2.12) implies that

E|ξk|2 = E

∣∣∣∣∣
2m3∑
j=1

�F 2
j (−1)j

∣∣∣∣∣
2

= E|κBn(2m3/n)|2 ≤ Cn−1/4.

It follows that E[Mn]t = κ−1∑�mt/2�
k=1 E|ξk|2 ≤ Ct for all n. Also, by (2.15),

E|ξk − ξk| ≤ C�t1/2
d∑

j=c+1

(j − c)−3/4 ≤ C�t1/2(2m3)1/4 ≤ Cn−5/16.

It follows that EVt(An) = κ−1∑�mt/2�
k=1 E|ξk − ξk| ≤ Ctn−1/16 and {Bn} satisfies

(2.2).
By (2.12),

E|Bn(t) − Bn(s)|4 ≤ C

(
2m3�mt/2� − 2m3�ms/2�

n

)2

.
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By Corollary 2.2, {Bn} is relatively compact. By Corollary 2.4 and Theorem 2.10,
{Bn − Bn} is relatively compact. Hence, by Lemma 2.6, in order to show that
Bn − Bn → 0 ucp, it will suffice to show that Bn(t) − Bn(t) → 0 in probability
for each fixed t .

For this, note that n1/4 − 1 < m ≤ n1/4. Hence, m3�mt/2� ≤ nt/2. Since
m3�mt/2� is an integer, m3�mt/2� ≤ �nt/2�. By (2.12),

E|Bn(t) − Bn(t)|4 = E

∣∣∣∣∣κ−1
2�nt/2�∑

j=2m3�mt/2�+1

�F 2
j (−1)j

∣∣∣∣∣
4

≤ C

(
2�nt/2� − 2m3�mt/2�

n

)2

(6.2)

≤ C

(
nt − m4t + 2m3

n

)2

≤ C

(
nt − (n1/4 − 1)4t + 2n3/4

n

)2

.

Letting n → ∞ completes the proof. �

With this lemma in place, we are finally ready to prove our main result.

THEOREM 6.2. Let In(g, t) be given by (1.4) and κ , Bn by (2.10) and
(2.11), respectively. Let B be a standard Brownian motion, independent of F .
If g ∈ C

9,1
4 (R × [0,∞)), then (F,Bn, In(g

′, ·)) → (F,B, IF,B(g′, ·)) in law in
DR3[0,∞), where IF,B(g′, ·) is given by (1.6).

REMARK 6.3. Suppose {Wn} is another sequence of cadlag, R
�-valued

processes, adapted to a filtration of the form {Ft ∨ Gn
t }, where {Ft } and {Gn

t }
are independent. If (Wn,F,Bn) → (W,F,B) in law in DR�+2[0,∞), then
(Wn,F,Bn, In(g

′, ·)) → (W,F,B, IF,B(g′, ·)) in law in DR�+3[0,∞). This can
be seen by applying Remark 2.8 to (6.3) below.

PROOF OF THEOREM 6.2. By Lemma 6.1 and Theorem 2.10, Bn → B

in law. Define N(t) = 2m3�mt/2�/n and Fn(t) = F(N(t)). By continuity,
g′′(F n(·),N(·)) converges to g′′(F (·), ·) a.s. Hence, by Corollary 2.4 and Lem-
ma 2.5,

(F, g′′(F n(·),N(·)),Bn) → (F, g′′(F (·), ·),B)

in law in DR3[0,∞). Therefore, by Lemma 6.1, Theorem 2.7 and Remark 2.8,(
F,g′′(F n(·),N(·)),Bn, κ

∫ ·
0

g′′(F n(s−),N(s−)) dBn(s)

)
(6.3)

→
(
F,g′′(F (·), ·),B, κ

∫ ·
0

g′′(F (s), s) dB(s)

)
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in law in DR4[0,∞). By Corollary 4.5 and Lemma 6.1,

(F,Bn, In(g
′, t)) ≈

(
F,Bn, g(F (·), ·) − g(F (0),0) −

∫ t

0
∂tg(F (s), s) ds

− κ

2

∫ ·
0

g′′(F n(s−),N(s−)) dBn(s)

)
− 1

2
(0,0, ζn(t)),

where

ζn(t) = Jn(g
′′, t) − κ

∫ t

0
g′′(F n(s−),N(s−)) dBn(s).

Hence, it will suffice to show that ζn → 0 ucp.
By (6.1), Bn jumps only at times of the form s = 2k/m, where k is an integer.

At such a time, N(s−) = 2m3(k − 1)/n and Fn(s−) = F(N(s−)). Using the
notation in the proof of Lemma 6.1, this gives

κ

∫ t

0
g′′(F n(s−),N(s−)) dBn(s)

= κ
∑

0<s≤t

g′′(F n(s−),N(s−))�Bn(s)

= κ

�mt/2�∑
k=1

g′′(F (t2m3(k−1)

)
, t2m3(k−1)

)
κ−1

2m3k∑
j=2m3(k−1)+1

�F 2
j (−1)j

=
�mt/2�∑
k=1

d∑
j=c+1

g′′(F (tc), tc)�F 2
j (−1)j .

Hence, by (4.10), ζn(t) =∑�mt/2�
k=1 Sk + εn, where

Sk =
d∑

j=c+1

{g′′(F (tj−1), tj−1) − g′′(F (tc), tc)}�F 2
j (−1)j(6.4)

and

εn =
2�nt/2�∑

j=2m3�mt/2�+1

g′′(F (tj−1), tj−1)�F 2
j (−1)j .

By the truncation argument in the proof of Theorem 3.2, we may assume that g

has compact support. Hence, by Corollary 5.10, {Jn(g
′′, ·)} is relatively compact,

so by Corollary 2.4 and (6.3), {ζn} is relatively compact. Therefore, by Lemma 2.6,
it will suffice to show that ζn(t) → 0 in probability for fixed t .
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If M = 2m3�mt/2� and N = 2�nt/2�, then

εn =
N∑

j=M+1

{g′′(F (tj−1), tj−1) − g′′(F (tM), tM)}�F 2
j (−1)j

+ g′′(F (tM), tM)

N∑
j=M+1

�F 2
j (−1)j .

Note that g′′ is bounded and, by (2.11) and (2.12),

E

∣∣∣∣∣
N∑

j=M+1

�F 2
j (−1)j

∣∣∣∣∣
4

= E|Bn(N/n) − Bn(M/n)|4 ≤ C|tN − tM |2.

As in (6.2), this goes to zero as n → ∞. Also, by Theorem 5.1,

E

∣∣∣∣∣
N∑

j=M+1

{g′′(F (tj−1), tj−1) − g′′(F (tM), tM)}�F 2
j (−1)j

∣∣∣∣∣
2

≤ C|tN − tM |3/2.

Hence, εn → 0 in probability and it remains only to check that
∑�mt/2�

k=1 Sk → 0 in
probability.

Still using the notation from the proof of Lemma 6.1, let

Sk =
d∑

j=c+1

{g′′(F (tj−1), tj−1) − g′′(F (tc), tc)}�F 2
j (−1)j ,(6.5)

mk = E[Sk|Ftc ] and Nk = Sk − mk . We claim that

E|Sk − Nk|2 ≤ C�t5/8.(6.6)

For the moment, let us grant that this claim is true. In that case,

E

∣∣∣∣∣
�mt/2�∑
k=1

Sk

∣∣∣∣∣≤
�mt/2�∑
k=1

E|Sk − Nk| +
(
E

∣∣∣∣∣
�mt/2�∑
k=1

Nk

∣∣∣∣∣
2)1/2

.

Since m ≤ n1/4 = �t−1/4, (6.6) gives
∑�mt/2�

k=1 E|Sk − Nk| ≤ C�t1/16 → 0. Also,
if k < �, then E[NkN�] = E[NkE[N� | Ftc(�)]] = 0. Hence,

E

∣∣∣∣∣
�mt/2�∑
k=1

Nk

∣∣∣∣∣
2

=
�mt/2�∑
k=1

EN2
k ≤ C

�mt/2�∑
k=1

E|Nk − Sk|2 + C

�mt/2�∑
k=1

ES2
k .

As above, the first summation goes to zero. For the second summation, note that
g′′ ∈ C

7,1
2 (R × [0,∞)) has compact support. Thus, by (6.4), Theorem 5.1 and the
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fact that d − c = 2m3 ≤ 2�t−3/4, we have

ES2
k = E

∣∣∣∣∣
d∑

j=c+1

{g′′(F (tj−1), tj−1) − g′′(F (tc), tc)}�F 2
j (−1)j

∣∣∣∣∣
2

≤ C|td − tc|3/2 = C�t3/2(d − c)3/2 ≤ C�t3/8.

Hence,
∑�mt/2�

k=1 ES2
k ≤ C�t1/8 → 0, which completes the proof of the theorem.

It remains only to prove (6.6). By (6.4) and (6.5),

E|Sk − Sk|2

= E

∣∣∣∣∣
d∑

j=c+1

{g′′(F (tj−1), tj−1) − g′′(F (tc), tc)}(�F 2
j − �F 2

j )(−1)j

∣∣∣∣∣
2

≤ (d − c)

d∑
j=c+1

E[|g′′(F (tj−1), tj−1) − g′′(F (tc), tc)|2(�F 2
j − �F 2

j )
2].

By Hölder’s inequality, Lemma 5.6 and (2.15),

E|Sk − Sk|2 ≤ C(d − c)

d∑
j=c+1

(tj − tc)
1/2�t(j − c)−3/2

= C�t3/2(d − c)

d∑
j=c+1

(j − c)−1

≤ C�t3/2(d − c)7/6 ≤ C�t5/8.

Hence, it will suffice to show that E|mk|2 ≤ C�t5/8.
By (6.5),

mk =
d∑

j=c+1

E[g′′(F (tj−1), tj−1)�F 2
j | Ftc ](−1)j

−
d∑

j=c+1

g′′(F (tc), tc)E[�F 2
j ](−1)j

=
d∑

j=c+1

E
[
g′′(G(tj−c−1) + Xj−c, tj−1

)
�G2

j−c | Ftc

]
(−1)j

−
d∑

j=c+1

g′′(F (tc), tc)E[�G2
j−c](−1)j ,
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where G(t) = F(t + tc) − E[F(t + tc) | Ftc ] and Xj = E[F(tj+c−1) | Ftc ]. As
noted in the discussion following (2.13), G is independent of Ftc and has the same
law as F . Thus,

mk =
d−c∑
j=1

j even

(
ϕj (Xj ) − ϕj−1(Xj−1)

)− g′′(F (tc), tc)

d−c∑
j=1

j even

(σ 2
j − σ 2

j−1),

where

ϕj (x) = E
[
g′′(F(tj−1) + x, tj+c−1

)
�F 2

j

]
.

Using (2.25), if σ 2 = EF(tj−1)
2, then we have

ϕj (x) = σ 2
j E

[
g′′(F(tj−1) + x, tj+c−1

)]
+ σ 2

j E
[
g′′(σ(σ−1F(tj−1)) + x, tj+c−1

)
h2(σ

−1
j �Fj )

]
= σ 2

j E
[
g′′(F(tj−1) + x, tj+c−1

)]+ σ 2
j (E[σ−1F(tj−1)σ

−1
j �Fj ])2

× E
[
σ 2g(4)(σ(σ−1F(tj−1)) + x, tj+c−1

)
h0(σ

−1
j �Fj )

]
= σ 2

j E
[
g′′(F(tj−1) + x, tj+c−1

)]
+ (E[F(tj−1)�Fj ])2E

[
g(4)(F(tj−1) + x, tj+c−1

)]
= σ 2

j bj (x) + σ̂ 2
j cj (x),

where

bj (x) = E
[
g′′(F(tj−1) + x, tj+c−1

)]
,

cj (x) = E
[
g(4)(F(tj−1) + x, tj+c−1

)]
.

We may therefore write

mk =
d−c∑
j=1

j even

5∑
i=1

Ei ,(6.7)

where

E1 = (σ 2
j − σ 2

j−1)bj (Xj ),

E2 = σ 2
j−1

(
bj (Xj ) − bj−1(Xj−1)

)
,

E3 = (σ̂ 2
j − σ̂ 2

j−1)cj (Xj ),

E4 = σ̂ 2
j−1

(
cj (Xj ) − cj−1(Xj−1)

)
,

E5 = −g′′(F (tc), tc)(σ
2
j − σ 2

j−1).
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For E1, (2.4) gives |σ 2
j − σ 2

j−1| ≤ Cj−3/2�t1/2. Hence,

E

∣∣∣∣∣
d−c∑
j=1

j even

E1

∣∣∣∣∣
2

≤ C�t.

The same estimate also applies to E5. For E2, let us write

|bj (xj ) − bj−1(xj−1)|
≤ |bj (xj ) − bj (xj−1)| + |bj (xj−1) − bj−1(xj−1)|
≤ C|xj − xj−1|

+ ∣∣E[g′′(F(tj−1) + xj−1, tj+c−1
)− g′′(F(tj−2) + xj−1, tj+c−2

)]∣∣
≤ C|xj − xj−1|

+ ∣∣E[g′′(F(tj−1) + xj−1, tj+c−1
)− g′′(F(tj−2) + xj−1, tj+c−1

)]∣∣
+ ∣∣E[g′′(F(tj−2) + xj−1, tj+c−1

)− g′′(F(tj−2) + xj−1, tj+c−2
)]∣∣

≤ C|xj − xj−1| + |β ′
2(t

∗)|�t + C�t,

where β2(t) = E[g′′(F (t) + xj−1, tj+c−1)] and t∗ ∈ (tj−2, tj−1), and where we
have used (3.5) with j = 2. By Lemma 5.2, |β ′

2(t)| ≤ Ct−1/2. Also, note that
Xj −Xj−1 = E[�Fj+c−1 | Ftc ] so that by (2.14), E|Xj −Xj−1|2 ≤ Cj−3/2�t1/2.
Thus,

E

∣∣∣∣∣
d−c∑
j=1

j even

E2

∣∣∣∣∣
2

≤
(

d−c∑
j=1

σ 4
j−1

)(
d−c∑
j=1

E|bj (Xj ) − bj−1(Xj−1)|2
)

≤ C�t1/4
d−c∑
j=1

(j−3/2�t1/2 + j−1�t)(6.8)

≤ C
(
�t3/4 + �t5/4(d − c)2/3)≤ C�t3/4.

For E3, (2.9) gives |σ̂ 2
j − σ̂ 2

j−1| ≤ Cj−1/2�t . Hence,

E

∣∣∣∣∣
d−c∑
j=1

j even

E3

∣∣∣∣∣
2

≤ C�t2(d − c) ≤ C�t5/4.

For E4, as above, we have

|cj (xj ) − cj−1(xj−1)| ≤ C|xj − xj−1| + |β ′
4(t

∗)|�t + C�t,
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where β4(t) = E[g(4)(F (t) + xj−1, tj+c−1)] and t∗ ∈ (tj−2, tj−1), and where we
have used (3.5) with j = 4. It therefore follows, as in (6.8), that

E

∣∣∣∣∣
d−c∑
j=1

j even

E4

∣∣∣∣∣
2

≤ C�t3/4.

Applying these five estimates to (6.7) shows that E|mk|2 ≤ C�t3/4 ≤ C�t5/8 and
completes the proof. �

COROLLARY 6.4. Let ξ be a continuous stochastic process, independent of F ,
such that (1.3) holds. Let X = cF + ξ , where c ∈ R. Let IX

n (g, t) be given by (1.4)
and κ , Bn by (2.10) and (2.11), respectively. Let B be a standard Brownian mo-
tion, independent of (F, ξ). If g ∈ C

9,1
4 (R × [0,∞)), then (F, ξ,Bn, I

X
n (g′, ·)) →

(F, ξ,B, IX,c2B(g′, ·)) in law in DR4[0,∞), where IX,Y is given by (1.6).

REMARK 6.5. Recall QX
n from Section 1 and note that QF

n = κBn. Note that
QX

n (t) ≈ c2QF
n (t) because �X2 = c2�F 2 + o(�t). This, together with Corol-

lary 6.4, implies that (X,QX
n , IX

n (g′, ·)) → (X,κc2B, IX,c2B(g′, ·)) in law in
DR3[0,∞).

REMARK 6.6. Suppose {Wn} is another sequence of cadlag, R
�-valued

processes, adapted to a filtration of the form {Ft ∨ Gn
t }, where {Ft } and {Gn

t }
are independent. As in Remark 6.3, if (Wn,F,Bn) → (W,F,B) in law in
DR�+2[0,∞), then (Wn,F, ξ,Bn, I

X
n (g′, ·)) → (W,F, ξ,B, IX,c2B(g′, ·)) in law

in DR�+4[0,∞).

PROOF OF COROLLARY 6.4. The claim is trivial when c = 0. Suppose
c �= 0. We first assume ξ is deterministic. Let h = hξ be given by h(x, t) =
g(cx + ξ(t), t). We claim that h ∈ C

9,1
4 (R × [0,∞)). Note that h(j)(F (t), t) =

cjg(j)(X(t), t) for all j ≤ 9. It is straightforward to verify (3.2) and (3.3). Condi-
tions (3.4) and (3.5) follow from the fact that

∂th
(j)(x, t) = cjg(j+1)(cx + ξ(t), t

)
ξ ′(t) + cj ∂tg

(j)(cx + ξ(t), t
)

(6.9)

for all j ≤ 4.
Observe that

IX
n (g′, t) = In(h

′, t) + c−1
�nt/2�∑
j=1

h′(F (t2j−1), t2j−1)
(
ξ(t2j ) − ξ(t2j−2)

)
.

By our hypotheses on ξ , and the continuity of h′ and F , the above sum converges
uniformly on compacts, with probability one, to

∫ t
0 h′(F (s), s)ξ ′(s) ds. Thus, by
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Theorem 6.2 and Remark 6.3, (F, ξ,Bn, I
X
n (g′, ·)) → (F, ξ,B, I), where

I = h(F (t), t) − h(F (0),0) −
∫ t

0
∂th(F (s), s) ds − κ

2

∫ t

0
h′′(F (s), s) dB(s)

+ c−1
∫ t

0
h′(F (s), s)ξ ′(s) ds.

Using (6.9) with j = 0, this gives

I = g(X(t), t) − g(X(0),0) −
∫ t

0
∂tg(X(s), s) ds − κc2

2

∫ t

0
g′′(X(s), s) dB(s),

completing the proof.
Now, suppose ξ is random and independent of F . Let H :DR4[0,∞) → R be

bounded and continuous. Since we have proven the result for deterministic ξ , it
follows that

E[H(F, ξ,Bn, I
X
n (g′, ·)) | ξ ] → E[H(F, ξ,B, IX,c2B(g′, ·)) | ξ ] a.s.

Applying the dominated convergence theorem completes the proof. �

We now give two examples of processes X satisfying the conditions of Corol-
lary 6.4.

EXAMPLE 6.7. Consider the stochastic heat equation ∂tu = 1
2∂2

xu + Ẇ (x, t)

with initial conditions u(x,0) = f (x). Under suitable conditions on f , the unique
solution is

u(x, t) =
∫

R×[0,t]
p(x − y, t − r)W(dy × dr) + v(t, x),

where

v(x, t) =
∫

R

p(x − y, t)f (y) dy.

For example, if f has polynomial growth, then this is the unique solution and,
moreover, ∂tv is continuous on R × [0,∞). This implies that t �→ v(x, t) satisfies
(1.3). Hence, X(t) = u(x, t) = F(t) + v(x, t) satisfies the conditions of Corol-
lary 6.4. This remains true when f is allowed to be a stochastic process, indepen-
dent of W .

EXAMPLE 6.8. This example is based on a decomposition of bifractional
Brownian motion due to Lei and Nualart [8]. Let W be a standard Brownian mo-
tion, independent of F . Define

ξ(t) = (16π)−1/4
∫ ∞

0
(1 − e−st )s−3/4 dW(s).
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By Proposition 1 and Theorem 1 in [8], we have ξ ∈ C1((0,∞)) a.s. Moreover,
if c = (π/2)1/4, then X = cF + ξ has the same law as B1/4, fractional Brownian
motion with Hurst parameter H = 1/4. If ϕ ∈ C∞[0,∞) with ϕ = 0 on [0, ε/4]
and ϕ = 1 on [ε/2,∞), then ϕξ satisfies (1.3) and we may apply Corollary 6.4 to
Xε = cF + ϕξ to obtain that

(X(t),QX
n (t), IX

n (g′, t)) − (X(ε),QX
n (ε), IX

n (g′, ε))

=
(
X(t) − X(ε),

�nt/2�∑
j=�nε/2�+1

(�X2
2j − �X2

2j−1),

�nt/2�∑
j=�nε/2�+1

g(X(t2j−1), t2j−1)
(
X(t2j ) − X(t2j−2)

))

converges in law in DR3[ε,∞) as n → ∞ to

(X(t), κc2B(t), IX,c2B(g′, t)) − (X(ε), κc2B(ε), IX,c2B(g′, ε))

=
(
X(t) − X(ε), κc2(B(t) − B(ε)

)
, g(X(t), t) − g(X(ε), ε)

−
∫ t

ε
∂tg(X(s), s) ds − κc2

2

∫ t

ε
∂2
xg(X(s), s) dB(s)

)
.
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