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High-dimensional classification has become an increasingly important
problem. In this paper we propose a “Multivariate Adaptive Stochastic
Search” (MASS) approach which first reduces the dimension of the data
space and then applies a standard classification method to the reduced space.
One key advantage of MASS is that it automatically adjusts to mimic vari-
able selection type methods, such as the Lasso, variable combination meth-
ods, such as PCA, or methods that combine these two approaches. The adap-
tivity of MASS allows it to perform well in situations where pure variable
selection or variable combination methods fail. Another major advantage of
our approach is that MASS can accurately project the data into very low-
dimensional non-linear, as well as linear, spaces. MASS uses a stochastic
search algorithm to select a handful of optimal projection directions from a
large number of random directions in each iteration. We provide some theo-
retical justification for MASS and demonstrate its strengths on an extensive
range of simulation studies and real world data sets by comparing it to many
classical and modern classification methods.

1. Introduction. An increasingly important topic is the classification of ob-
servations into two or more predefined groups when the number of predictors, d , is
larger than the number of observations, n. For example, one may need to identify
at what time a subject is performing a specific task based on hundreds of thousands
of brain voxel values in a functional Magnetic Resonance Imaging (fMRI) study,
where changes in blood flow and blood oxygenation are measured when brain neu-
rons are activated. In particular, the data set that motivated the development of the
methodology in this paper was an fMRI study based on vision research. We wish
to predict, at a given time, whether a subject is conducting a task or resting (base-
line), based on the activity level of the observed voxels in the subject’s brain. This
is a difficult task because the number of voxels, d , is much higher than the number
of observations, n. In this case, many conventional classification methods, such as
Fisher’s discriminant rule, are not applicable since n < d . Other methods, such as
classification trees, k-nearest neighbors and logistic discriminant analysis, do not
explicitly require n > d, but in practice provide poor classification accuracy in this
situation.
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A common solution is to first reduce the data into a lower, p � d dimensional
space and then perform classification on the transformed data. For example, Fan
and Lv (2008) provide significant theoretical and empirical evidence for the power
of such an approach. Generally, the dimension reduction is performed using a lin-
ear transformation of the form

Z = XA,(1)

where X is an n-by-d data matrix and A is a d-by-p transformation matrix which
projects X onto a p-dimensional subspace Z (p < d). However, there are many
possible approaches to choosing A. We divide the methods into supervised versus
unsupervised and variable selection versus variable combination.

Variable selection techniques select a subset of relevant variables that have good
predictive power, thus obtaining a subset of informative variables from a set of
more complex variables. In this setting, A is some row permutation of the identity
matrix and the zero matrix, that is, A = perm([Ip,0(d−p)×p]T ). If we define spar-
sity as the fraction of zero elements in a given matrix, then A would be considered
sparse because most of its components are zeros. Many variable selection methods
have been proposed and widely used in numerous areas. A great deal of atten-
tion is paid to the L1 penalized least squares estimator [i.e., the Lasso Tibshirani
(1996), Efron et al. (2004)]. Other methods include SCAD Fan and Li (2001),
nearest shrunken centroids Tibshirani et at. (2002), the Elastic Net Zou and Hastie
(2005), Dantzig selector Candes and Tao (2007), VISA Radchenko and James
(2008), FLASH Radchenko and James (2009) and Bayesian methods of variable
selection Mitchell and Beauchamp (1988), George and McCulloch (1993, 1997).
These methods all use supervised learning, where the response and predictors are
both utilized to obtain the subset of variables. In addition, because these methods
always select a subset of the original variables, they provide highly interpretable
results. However, because of the sparsity of A, for a given p, variable selection
methods are less efficient at compressing the observed data, X. For example, they
may discard potentially valuable variables which are not predictive individually
but provide significant improvement in conjunction with others.

In comparison, variable combination methods utilize a dense A which combines
correlated variables and hence does well on multicollinearities which often occur
in high-dimensional data. Probably the most commonly applied method in this
category is principal component analysis (PCA). Using this approach, A becomes
the first p eigenvectors of X, and Z is the associated PCA scores. PCA can deal
with an ultra large data scale and produces the most efficient representation of X
using p dimensions. However, PCA is an unsupervised learning technique which
does not make use of the response variable to construct A. It is well known that
the dimensions that best explain X will not necessarily be the best dimensions
for predicting the response Y . Other variable combination methods include partial
least squares regression and multidimensional scaling. All these approaches yield
linear combinations of variables which makes interpretation more difficult.
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In this paper we propose a new supervised learning method which we call “Mul-
tivariate Adaptive Stochastic Search” (MASS). Our approach works by projecting
a high dimensional data set into a lower dimensional space and then applying a
classifier to the projected data. However, MASS has two key advantages over these
other methods. First, when using a linear projection, such as given by (1), MASS
uses a stochastic search process that is capable of automatically adapting the spar-
sity of A to generate optimal prediction accuracy. Hence, in situations where a
subset of the original variables provides a good fit, MASS will utilize a sparse
model, while in situations where linear combinations of the variables work better,
MASS will produce a denser model. MASS has the same advantage as other su-
pervised methods in which A can be designed specifically to provide the best level
of prediction accuracy. However, it has the flexibility to adapt the sparsity of A
so as to gain the benefits of both the variable selection and variable combination
methods. The second major advantage of MASS is that, with only a small adaption
to the standard fitting procedure, it can project the original data into a nonlinear
space. This generalization of (1) potentially allows for a very accurate projection
into a low-dimensional space with little additional effort.

MASS starts by generating a large set of prospective columns for A with a
given sparsity level. A variable selection technique such as the Lasso is then ap-
plied to select a candidate subset of “good” columns or directions. Then, a new
set of columns with a new sparsity level are produced as candidates. The variable
selection method must choose among the current set of good columns and the new
candidates. Over time the same best columns are picked at each iteration and the
process converges. At each step in the algorithm, the sparsity level of the new
prospective columns is adjusted according to the sparsity level of the previously
chosen columns. We show through extensive simulations and real world examples
that MASS is highly robust in that it generally provides comparable performance
to variable selection and variable combination approaches in situations that favor
each of these methods. However, MASS can still perform well in situations where
one or another of these approaches fails.

This paper is organized as follows. In Section 2 we present the basic MASS
methodology. After outlining the linear fitting algorithm, we show how this can
easily be extended to the nonlinear generalization. Furthermore, we provide some
theoretical motivation for MASS and discuss a preliminary data reduction which
can be implemented before applying MASS. In Section 3 we demonstrate the per-
formance of MASS on an fMRI study and a gene microarray study. In Section 4
we further study the performance of MASS on different scenarios by compar-
ing MASS with several other modern potential classification techniques, such as
k-nearest neighbors, support vector machines, random forests and neural networks,
in extensive simulation studies. We briefly investigate some issues in implement-
ing MASS, such as solution variability, computational cost and the problem of
overfitting, in Section 5. A brief discussion summarizes the paper in Section 6.
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2. Projection selection with MASS.

2.1. General ideas and motivations. Given predictors, xi ∈ R
d , and corre-

sponding categorical responses, yi , we model the relationship between yi and xi

as

yi |xi ∼ g(yi |zi ), i = 1, . . . , n,(2)

zi,j = fj (xi ), j = 1, . . . , p,(3)

where zi = (zi,1, . . . , zi,p) for some p � d . Our general approach is to estimate
the fj ’s, project the data into a lower p-dimensional sub-space, zi , and then apply
a standard classification method to fit (2).

To make this problem tractable, we further assume that fj has an additive struc-
ture, fj (xi ) = ∑d

k=1 fj,k(xi,k), and, hence, (3) becomes

zi,j =
d∑

k=1

fj,k(xi,k).(4)

For any given zi,j and xi,k’s, there are many functions, fj,k , that satisfy (4). How-
ever, to solve Equation (4), we constrain the flexibility of these functions by im-
posing the constraints, fj,k(0) = 0, and∫

f ′′
j,k(x)2 dx ≤ λ, j = 1, . . . , p, k = 1, . . . , d, λ ≤ 0.(5)

It should be noted that Equation (5) can trivially be made to hold by rescaling fj,k .
To prevent this occurring, we impose a further constraint on the first derivative
of the fj,k’s, when fj,k’s are nonlinear; details are proved in Appendix B. Using
equation (5), small values of λ constrain fj,k to be close to a linear function. In
particular, setting λ = 0 implies fj,k(x) = aj,kx, in which case (3) reduces to the
linear projection given by (1). We first describe the linear MASS approach for
fitting (2) and (4) subject to λ = 0 and then in Section 2.4 show how the procedure
can easily be extended to the more general nonlinear case when λ > 0.

In the linear situation fitting our model given by (2) through (4) requires choos-
ing the fj,k’s, or equivalently estimating A in (1), and also selecting a classifier to
apply to the lower dimensional data. We place most attention on the former prob-
lem because there are many classification techniques that have been demonstrated
to perform well on low-to-medium dimensional data. A more difficult question in-
volves the best way to produce the lower dimensional data. Hence, we assume that
one of these classification methods has been chosen and concentrate our attention
on the choice of A. This choice can be formulated as the following optimization
problem:

A = arg min
A

EX,Y [e(MA(X), Y )](6)

subject to ‖aj‖ = 1,
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where MA is the classification method applied to the lower dimensional data,
X and Y are the predictors and response variables, and e is a loss function result-
ing from using MA to predict Y . The constraint is that each column of A should
be norm 1. A common choice for e is the 0–1 loss function which results in mini-
mizing the misclassification rate (MCR). Since A is high dimensional, solving (6)
is in general a difficult problem.

There are several possible approaches to optimize (6). One option is to assume
that A is a sparse 0,1 matrix and only attempt to estimate the locations of its non-
zero elements. This is the approach taken by variable selection methods. Another
option is to assume A is dense but, instead of choosing A to optimize (6), select
a matrix which provides a good representation for X. This is the approach taken
by PCA. One then hopes that the PCA solution will be close to that of (6).

Instead of making restrictive assumptions about A, as with the variable selection
approach, or failing to directly optimize (6), as with the PCA approach, we attempt
to directly fit (6) without placing restrictions on the form of A. In this type of high
dimensional nonlinear optimization problem, stochastic search methods, such as
genetic algorithms and simulated annealing, have been shown to provide supe-
rior results over more traditional deterministic procedures because they are often
able to more effectively search large parameter spaces, can be used for any class
of objective functions and yield an asymptotic guarantee of convergence Gosavi
(2003), Liberti and Kucherenko (2005). We explore a stochastic search process
and demonstrate that it is highly effective at searching the parameter space and
generally requires significantly fewer iterations than other possible stochastic ap-
proaches Tian, Wilcox and James (2009).

2.2. The MASS method. The linear MASS procedure works by successively
generating a large number, L, of potential random directions, that is, aj ’s. We
then use Equation (1) to compute the corresponding L dimensional data space,
z1, z2, . . . , zL, and use a variable selection method to select a “good” subset of
these directions to form an initial estimate, A∗. The sparsity level of this A∗ is
examined and a new random set of potential columns is generated with the same
average sparsity as the current A∗. The procedure iterates in this fashion for a fixed
number of steps. Formally, the MASS procedure consists of the following steps:

Step 1. Randomly generate the initial d-by-L transformation matrix A∗(0) (p <

L < d) with an expected sparsity of ξ̄ (0).
Step 2. At the lth iteration, use Equation (1) and A∗(l) to obtain a preliminary

reduced data space Z∗(l). Evaluate each variable of Z∗(l) by fitting a model
Y ∼ Z, and select the p most “important” variables in terms of the model.

Step 3. Keep the corresponding p columns of A∗(l) and calculate the average spar-
sity, ξ̄ (l), for these columns.

Step 4. Generate L − p new columns with an average sparsity of ξ̄ (l). Join these
columns with the p columns selected in Step 3 to form a new transforma-
tion matrix A∗(l+1).
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Step 5. Return to Step 2 for a fixed number of iterations.

Implementing this approach requires the choice of a variable selection proce-
dure for Step 2. Potentially any of a large range of standard methods can be chosen.
We discuss various options in Section 2.6.

A more crucial part of implementing MASS is the mechanism for generating
the potential columns for A∗. We define the current level of sparsity, ξ̄ (l), as the
fraction of zero elements in A(l). Then at each iteration of MASS we generate new
potential columns with the same average sparsity level as the columns selected in
the previous step. This allows ξ̄ (l) to automatically adjust to the data set. The idea
is that a data set requiring high ξ̄ (l) will tend to result in sparser columns being
selected and the current A will become sparser at each iteration. Alternatively, a
data set that requires a denser A will select dense columns at each iteration. While
at each step of the stochastic search the overall average sparsity is restricted to
equal ξ̄ (l), we desire some variability in the sparsity levels so that MASS is able
to select out columns with higher or lower sparsity and hence adjust ξ̄ (l) for the
next iteration. To achieve this goal, we allow for different average sparsity levels
between columns.

In particular, we generate the (k, j)th element of A∗ using

ak,j = uk,j vk,j , k = 1, . . . , d, j = p + 1, . . . ,L,(7)

uk,j ∼ N (0,1), vk,j ∼ B(1 − ξj ),(8)

where B(π) is the Bernoulli distribution with probability of 1 equal to π . In the
(l + 1)th iteration, we let

ξ
(l+1)
j ∼ Beta

(
α,

α(1 − ξ̄ (l))

ξ̄ (l)

)
, j = p + 1, . . . ,L,(9)

where ξ
(l+1)
j is the sparsity of the j th column of A∗(l+1). Note that E(ξ

(l+1)
j ) = ξ̄ (l)

for all values of α. We found α = 5 produced a reasonable amount of variance in
sparsity levels.

We then combine these L − p columns with the selected p columns from it-
eration l to form the new intermediate transformation matrix A∗(l+1). We select
ξ̄ (0) = 0.5 for the initial sparsity level, which seems to provide a reasonable com-
promise between the variable selection and variable combination paradigms.

The full MASS algorithm is explicitly described as follows:

1. Set ξ̄ (0) = 0.5 and generate an initial A∗(0) using (7) through (9). Calculate
Z∗(0) by Equation (1).

2. Select p variables from Z∗(0) and keep the corresponding p columns from A∗(0)

to obtain A(0).
3. Iterate until l = I .

(a) Generate L − p new directions A∗
new by using (7) through (9).

(b) Let A∗(l) = (A(l−1),A∗
new) and use Equation (1) to obtain Z∗(l).
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(c) Select p variables from Z∗(l).
(d) Keep the corresponding p columns from A∗(l) to obtain A(l).
(e) Calculate ξ̄ (l) for A(l).
(f) Go to (a).

4. Apply the selected classification technique to the final Z(I ).

2.3. Theoretical justification. Here we show that MASS will asymptotically
select the correct sub-space, provided a “reasonable” variable selection method is
utilized in Step 3(c). Assumption 1 below formally defines reasonable. Suppose
our variable selection method must choose among z1, . . . , zL potential variables.
Let Z0 ∈ R

n×p represent the p-dimensional set of true variables. Note Z0 is not
necessarily a subset of z1, . . . , zL. Define Z̃n ∈ R

n×p as the p variables among
z1, z2, . . . , zL that minimize ‖Z̃n − Z0‖2 for a sample of size n. Then we assume
that the variable selection method chosen for MASS satisfies the following prop-
erty:

ASSUMPTION 1. There exists some ε > 0 such that, provided

1

n
‖Z̃n − Z0‖2 ≤ ε,(10)

then Z̃n is chosen by the variable selection method almost surely as n → ∞.

Assumption 1 is a natural extension of the definition of consistency of a vari-
able selection method, namely, that it asymptotically selects the correct model.
Here we extend this idea slightly by assuming that, provided a set of candidate
predictors that is arbitrarily close to the true predictors is presented, the variable
selection method will asymptotically choose these variables. Theorem 1 provides
some theoretical justification for the MASS methodology.

THEOREM 1. Let Z̃(I )
n represent the p variables selected by MASS after per-

forming I iterations on a sample of size n. Then, under the linear subspace model
given by (1) and (2), provided a variable selection method is chosen such that
Assumption 1 holds, as n and I approach infinity,

1

n

∥∥Z̃(I )
n − Z0

∥∥2 → 0 a.s.

The proof of Theorem 1 is given in Appendix A. Theorem 1 guarantees that,
provided a reasonable variable selection method is chosen, then the sub-space cho-
sen by MASS will converge to the “true” sub-space, in terms of mean squared er-
ror, as n and I converge to infinity. Note, Theorem 1 does not assume that (10)
holds; Only that, if it does hold, then asymptotically Z̃n will be selected.
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2.4. The nonlinear generalization. Recently, nonlinear reduction work has
mostly concentrated on local neighborhood methods such as Isomap Tenenbaum,
de Silva and Langford (2000) and LLE Roweis and Saul (2000). One limitation
of these approaches is that they are clustering based and hence are unsupervised
methods. Another limitation is that these approaches only consider local feature
spaces. They perform well when the data belong to a single well sampled clus-
ter, but fail when the points are spread among multiple clusters. MASS can also
produce a nonlinear reduction without the aforementioned problems.

Recall that MASS attempts to compute the fj,k’s subject to (5) holding for some
λ ≥ 0. It is not hard to show that, among all functions that interpolate a given set of
points, the one that minimizes the integrated squared second derivative will always
be a natural cubic spline Reinsch (1967). Hence, since we wish to choose a set of
functions that reproduce the zi,j ’s subject to (5), it seems sensible to model each
fj,k using a q-dimensional natural cubic spline (NCS) basis, b(t).

Using this formulation, (4) becomes zi,j = ∑d
k=1 fj,k(xi,k) = ∑d

k=1 b(xi,k)
T ×

θ j,k , where θ j,k represents the basis coefficients for fj,k . Since the zi,j ’s are just
linear functions of the θ ’s, we can rewrite (4) in the simpler linear form, (1),

Z = X∗�,(11)

where X∗ = (B(x1)|B(x2)| · · · |B(xd)) ∈ R
n×(q×d), � = (θ1, . . . , θp) ∈ R

(q×d)×p,
θ j = (θT

j,1, . . . , θ
T
j,d)T , and B(xk) = (b(x1,k), . . . ,b(xn,k))

T .
The only complication in using the standard linear MASS methodology to fit

(11) is ensuring that (5) holds. However, in Appendix B we show that some minor
adaptations to (8) ensure that (5) holds for all candidate θ ’s that we generate. This
is one of the advantages of the stochastic search process—it is easy to search only
the feasible values of the � space. In all other respects, the MASS methodology
as outlined in Section 2.2 can be applied without any alterations to estimate a
non-linear sub-space of the data. It should also be noted that Theorem 1 can be
extended to the nonlinear setting, provided we assume that the true nonlinear sub-
space satisfies (5).

2.5. Preliminary reduction. MASS can, in general, be applied to any data.
However, Fan and Lv (2008) argue that a successful strategy to deal with ultra-high
dimensional data is to apply a series of dimension reductions. In our setting this
strategy would involve an initial reduction of the dimension to a “moderate” level
followed by applying MASS to the new lower dimensional data. This two stage ap-
proach potentially has two major advantages. First, Fan and Lv (2008) show that
prediction accuracy can be considerably improved by removing dimensions that
clearly appear to have no relationship to the response. Our own simulations rein-
force this notion. Second, stochastic search algorithms such as MASS can require
significant computational expense. Reducing the data dimension before applying
MASS provides a large increase in efficiency.
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In this paper we consider three methods for reducing the data into m (m > p) di-
mensions. The first approach is conventional PCA, which has the effect of selecting
the best m dimensional space in terms of minimizing the mean squared deviation
with the original d dimensional space. The second approach is the sure indepen-
dence screening (SIS) method based on correlation learning Fan and Lv (2008).
It computes the componentwise marginal correlations between each predictor and
the response vector. One then selects the variables corresponding to the m largest
correlations. PCA is an unsupervised variable combination approach, while SIS is
a supervised variable selection method. PCA may exclude important information
among variables with less variability, while SIS may tend to select a redundant
subset of predictors that have high correlations with the response individually but
are also highly correlated among themselves. Our third dimension reduction ap-
proach, which we call PCA-SIS, attempts to leverage the best of both PCA and
SIS by first using PCA to obtain n orthogonal components and then treating these
components as the predictors and using SIS to select the best m in terms of cor-
relation with the response. PCA-SIS can be thought of as a supervised version of
PCA. We compare these three types of preliminary reduction methods, along with
the effect of performing no initial dimension reduction, in our simulation studies.

Fan and Lv (2008) argue that the dimension of the intermediate space m should
be chosen as

m = 2n

log(n)
.(12)

As we have found that this approach generally works well, we have adopted Equa-
tion (12) for selecting m in this paper.

2.6. Implementation issues. MASS requires the choice of a variable selection
technique. In principle, any variable selection technique can be applied here. We
considered several possible methods. In the context of classification, a natural ap-
proach is to use a GLM version of the Lasso using a logistic regression framework.
We examined this approach using the GLMpath methodology of Park and Hastie
(2007). Interestingly, we found that simply using the standard Lasso procedure to
select the variables gave similar levels of accuracy to GLMpath and required con-
siderably less computational effort. Therefore, in our implementation of MASS we
use the first p variables selected by the Lars algorithm Efron et al. (2004). How-
ever, in practice, one could implement our methodology with any standard variable
selection method such as SCAD, Dantzig selector, etc. There is an extensive lit-
erature examining the circumstances under which the Lasso will asymptotically
select the correct model [see, e.g., Knight and Fu (2000), Tsybakov and van de
Geer (2005)]. Hence, it seems reasonable to suppose that Assumption 1 in Sec-
tion 2.3 will hold.

To implement MASS, one must choose values for the number of iterations, I ,
the number of random columns to generate, L, and the final number of columns
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chosen, p. In our experiments we used I = 500 iterations. We found this value
guaranteed a good result and often fewer iterations were required. In general, track-
ing the deviance of the Lasso at each iteration provided a reliable measure of con-
vergence. The value of L influences the convergence speed of the algorithm as well
as the execution time. We found that the best results were obtained by choosing
L to be a relatively large value for the early iterations but to have it decline over
iterations. In particular, we set L = n/2 for the first iteration and had it decline to
2p by the final iteration. This approach is similar in spirit to simulated annealing
where the temperature is lowered over time. It guarantees that the Lasso has more
variables to choose from at the early stages, but then as the search moves toward
the optimum, decreasing L will improve the reliability of the selected p variables
in addition to speeding up the algorithm.

The choice of p can obviously have an important impact on the results. In gen-
eral, p should be chosen as some balance of the classification accuracy and the
computational expense. One reasonable approach is to use an objective criterion
to choose p, such as cross-validation (CV). In other situations, some prior knowl-
edge can be applied to select p. For example, in the fMRI study that we examine
in Section 3, prior knowledge and assumptions on the regions of interest can be
used to decide on a reasonable value for p.

3. Applications. In this section we apply linear MASS to two data sets from
real studies: an fMRI data set and a gene microarray data set. As a comparison to
MASS, we also apply classic logistic regression (LR) or support vector machine
(SVM) to the lower dimensional data produced using a straight Lasso method
(Lars), a generalized Lasso method (GLMpath), SIS and PCA. They all utilize
equation (1) but compute A directly using their own methodologies. In both stud-
ies, we use 500 iterations for MASS.

3.1. fMRI brain imaging data. The fMRI data was obtained from the imaging
center at the University of Southern California. The raw data consisted of 200 3-D
brain images recording the blood oxygen level dependent (BOLD) response for a
subject who was conducting a visual task. After preprocessing, each image con-
tained 11,838 voxels. One research question was to divide the 200 images into task
(96) and baseline (104) images based on the 11,838 voxels. To answer this ques-
tion, we randomly divided the data to training (150) and test (50) samples. Since
d � n, a preliminary reduction was needed. The intermediate scale was m = 60
by Equation (12). We tested p = 10,20,30,40,50,60, which were considered to
be good balances of the execution time and the classification accuracy. SVM was
used as the base classifier.

Table 1 reports the minimum test MCR, MCR∗, and its corresponding p, p∗, for
each method. For each p, we applied MASS twenty times on the training data and
obtained the average MCR on the test data. We then reported the minimum average
test MCR, and its corresponding p. In this table as well as in the rest of the paper,
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TABLE 1
Test MCR∗ and p∗ on fMRI data using SVM

Methods Test MCR∗ Optimal p∗

Lars 0.20 50
GLMpath 0.22 50
SIS 0.40 30
PCA 0.26 40
SIS-Lars 0.36 30
PCA-Lars 0.22 40
PCA-SIS-Lars 0.12 50
SIS-GlMpath 0.38 30
PCA-GLMpath 0.22 40
PCA-SIS-GLMpath 0.10 50
SIS-MASS 0.373 (0.008) 50
PCA-MASS 0.155 (0.005) 40
PCA-SIS-MASS 0.042 (0.005) 50

SIS-MASS means that we first used SIS to reduce the data and then applied MASS.
Similarly, PCA-SIS-Lars means that PCA-SIS was the first reduction method and
then Lars was applied, etc.

Obviously, PCA-SIS-MASS dominates other methods. We show the training
deviance, the average test MCR and the average sparsity as some function of the
number of iterations in Figure 1. As we can see, the training deviance and the
average test MCR decline rapidly and then level off, indicating the model im-
proves quickly. The average ξ̄ path for PCA-SIS-MASS indicates MASS chose
a relatively sparse matrix as the optimal transformation matrix. We also exam-
ined the relative performance of MASS in comparison to a representative sam-
pling of some modern classification methods [Support Vector Machines (SVM),
k-Nearest Neighbors (kNN), Neural Networks (NN) and Random Forests (RF)]
on the m-dimensional preliminary reduced data. As shown in Table 2, all four
methods were inferior to MASS.

FIG. 1. Preliminary reduction by PCA-SIS-MASS on fMRI data (p = 30).
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TABLE 2
Test MCR on the preliminary reduced data by different classifiers

SVM kNN NN RF

SIS- 0.36 0.40 0.44 0.34
PCA- 0.26 0.26 0.38 0.22
PCA-SIS- 0.24 0.20 0.36 0.20

3.2. Leukemia cancer gene microarray data. The second real-world data set
was the leukemia cancer data from a gene microarray study by Golub et al. (1999).
This data set contained 72 tissue samples, each with 7129 gene expression mea-
surements and a cancer type label. Among the 72 tissues, 25 were samples of acute
myeloid leukemia (AML) and 47 were samples of acute lymphoblast leukemia
(ALL). Within the 38 training samples, 27 were ALL and 11 AML. Within the
34 test samples, 20 were ALL and 14 AML. In some previous studies Fan and
Fan (2008), Fan and Lv (2008), 16 genes were ultimately chosen. In this study,
we also picked p = 16 genes for MASS. However, for the other counterpart meth-
ods, we examined all possible p’s, that is, p = 1,2, . . . ,21, to obtain MCR∗ and
their corresponding p∗’s. This is considered to be an advantage for the counterpart
methods and a disadvantage for MASS. The intermediate dimension was chosen
to be m = 21 by Equation (12). A LR model was applied for classification. Similar
to the fMRI study, PCA-SIS-MASS provided the lowest MCR (see Table 3), and
it was better than the nearest shrunken centroids method mentioned in Tibshirani
et at. (2002), which obtained a MCR of 2/34 = 0.059 based on 21 selected genes
Fan and Lv (2008). Figure 2 shows the resulting graphs. The sparsity of the trans-
formation matrix leveled off at about 0.41.

4. Simulation studies. In this section we further investigate the performance
of MASS under different conditions. We give five simulation examples. The first
simulation investigates the nonlinear setting, while the remaining simulations con-
centrate on the linear case. In all simulations we show results with MASS applied
using the LR classifier and the SVM classifier. In addition, we also apply LR and

TABLE 3
Test MCR∗ and corresponding p∗ or standard errors (in the parentheses) on leukemia

cancer data using LR

Lars GLMpath MASS (p = 16)

m = 21
SIS- 0.147 (p∗ = 12,14–17,19,20) 0.088 (p∗ = 16,17,20,22–24) 0.176 (0.010)
PCA- 0.029 (p∗ = 13,15–17) 0.029 (p∗ = 9) 0.056 (0.008)
PCA-SIS- 0.029 (p∗ = 16) 0.029 (p∗ = 15) 0.004 (0.002)
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FIG. 2. PCA-SIS-MASS on leukemia cancer data.

SVM to the original full dimensional data (FD) and to lower dimensional data
produced using Lars, GLMpath, SIS and PCA.

4.1. Simulation study I: Nonlinear data. In this setting we simulated data us-
ing the nonlinear additive model assumed by MASS. We first selected an NCS
basis and then generated θj,k’s such that (5) holds for a given λ. We used the same
generation scheme as that used by the MASS algorithm. Details of the generation
process are provided in Appendix B.

We simulated 20 training samples, each containing 100 observations and 50 pre-
dictor variables generated from N (0, I). The binary response variable was associ-
ated with the true Z0 ∈ R

n×p0 using a standard logistic regression model. Here we
let p0 = 2. For each training data set a corresponding set of 1000 observations was
generated as a test sample. In order to demonstrate the importance of the sparsity of
the transformation matrix to the classification performance, we also implemented
a modified version of MASS where we fixed the sparsity of the transformation
matrix, ξ̄ , so that it did not change over iterations. We call this method the mul-
tivariate fixed stochastic search (MFSS) method. Presumably, MFSS with a good
value of sparsity will perform better than MASS, because MASS has to adaptively
search for ξ̄ . For MASS and MFSS, we let p = p0 = 2 dimensions.

We considered two scenarios, where the true curvatures were λ0 = 5 and
λ0 = 10. According to Equation (5), λ is one of the indicators of the model com-
plexity. With a larger λ, the model is more complex. The true sparsity for both
scenarios were ξ̄0 = 0.3. The counterpart methods are Lars and PCA with their
optimal p∗’s. We examined all possible values for p, that is, p = 1,2, . . . ,50, for
Lars and PCA and report their MCR∗ in each simulation run. Table 4 shows the
average test MCR using LR and SVM classifiers. When we let λ = λ0, MASS and
MFSS constantly produced good results. In particular, MFSS with λ0 was signifi-
cantly better than other methods. MFSS with incorrect λ’s were inferior to MFSS
with the correct λ, but were still superior to Lars and PCA. Lars and PCA each
suffered from an inability to match the nonlinear structure of the data even with
the optimal p∗. When the model is very complex (e.g., λ = 10), overfitting may
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TABLE 4
Average test MCR (standard errors) in Simulation I

λ0 = 5, ξ̄0 = 0.3 λ0 = 10, ξ̄0 = 0.3

LR SVM LR SVM

FD 0.424 (0.005) 0.414 (0.005) 0.412 (0.006) 0.389 (0.007)
Lars (with p∗) 0.398 (0.006) 0.391 (0.007) 0.407 (0.007) 0.405 (0.008)
PCA (with p∗) 0.424 (0.008) 0.426 (0.008) 0.487 (0.005) 0.489 (0.004)
MASS (λ = λ0) 0.234 (0.008) 0.239 (0.007) 0.302 (0.007) 0.300 (0.006)
MFSS (λ = 0, ξ̄ = 0.3) 0.289 (0.009) 0.284 (0.008) 0.352 (0.006) 0.351 (0.007)
MFSS (λ = 5, ξ̄ = 0.3) 0.222 (0.008) 0.230 (0.008) 0.315 (0.005) 0.309 (0.006)
MFSS (λ = 10, ξ̄ = 0.3) 0.378 (0.007) 0.392 (0.008) 0.279 (0.006) 0.275 (0.005)

occur in MASS even with a small number of iterations. We discuss the potential
problem of overfitting in Section 5.

4.2. Simulation study II: Sparse A case. This simulation was designed to ex-
amine the performance of MASS in a sparse model situation where the response
was only associated with a handful of predictors. The training and test samples
were generated from N (0,	), where the diagonal elements of 	 were 1 and the
off-diagonal elements were 0.5. We then rescaled the first p0 = 5 columns to have
a standard deviation of 10. We call these columns with the most variability the
major columns, and the rest the minor columns.

We tested two scenarios by creating two different true transformation matrices.
In the first scenario the true transformation matrix was A0 = perm1([Ip0,0]T ),
where perm1 was the row permutation that made the unit row vectors in A0 asso-
ciate with the major columns of the data matrix. In the second scenario the true
transformation matrix was A0 = perm2([Ip0,0]T ), where perm2 was the row per-
mutation that made the unit row vectors in A0 associate with any p0 of the minor
columns. In both scenarios, the true dimension of the subspace is p0 = 5. Again,
the group labels were generated by a standard logistic regression model:

Pr(yi = 1|Zi) = eZT
i β

1 + eZT
i β

,(13)

where Zi is the ith point in the reduced space and β is a p0-dimensional coeffi-
cients vector of the logistic regression. The elements of β are generated from some
uniform distributions, that is, U (−0.5,0.5) for scenario 1 and U (−2,2) for sce-
nario 2, in order to make the Bayes error rates for both scenarios remain roughly
around 0.1. We expect that PCA should perform best in scenario 1 because this
case matches the PCA working mechanism exactly; on the other hand, it should
perform poorly in scenario 2 because the first p eigenvectors tended to concentrate
on the major columns where no group information resides.
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TABLE 5
Bayes rates and average test MCR in Simulation II

Scenario Classifier Bayes FD Lars GLMpath SIS PCA MASS MFSS

1 LR 0.114 0.268 0.150 0.149 0.192 0.114 0.130 0.154
(0.007) (0.011) (0.012) (0.012) (0.021) (0.009) (0.007) (0.008)

SVM 0.254 0.166 0.166 0.213 0.139 0.136 0.157
(0.017) (0.013) (0.013) (0.022) (0.008) (0.006) (0.008)

2 LR 0.112 0.273 0.143 0.148 0.217 0.477 0.184 0.141
(0.006) (0.009) (0.009) (0.010) (0.017) (0.006) (0.012) (0.006)

SVM 0.255 0.164 0.169 0.242 0.485 0.189 0.152
(0.018) (0.010) (0.011) (0.019) (0.007) (0.012) (0.006)

We ran Lars, GLMpath, SIS and PCA for multiple values of p, and for Lars,
GLMpath and SIS, p = 5 is the best value, p∗. So we reported the average test
error when p = 5 for these methods. We mandatorily assigned p = 5 to MASS
and MFSS (with ξ̄ = ξ̄0 = 0.98). This was a disadvantage for these methods. We
also calculated the average Bayes rates. As is shown in Table 5, not surprisingly,
LR generally outperformed SVM on this data because the data were generated us-
ing a logistic regression model. As expected, PCA worked well in scenario 1 but
poorly in scenario 2. One of the reasons the performance of PCA is so poor in
scenario 2 is that we used p = 5, not the p∗. If the p∗ is used, the performance of
PCA in scenario 2 may be improved. The supervised methods had an advantage in
the latter scenario because they always looked for A’s with high predictive power.
MASS and MFSS performed well in both scenarios. Note that since the true model
was highly sparse, the variable selection methods (Lars and GLMpath) performed
well too. As we can see from Figure 3, the average test MCR and deviance in both
scenarios were decreasing, which means MASS tended to choose “good” direc-
tions from A∗ over iterations, and hence, the classification accuracy was improved
gradually.

It is interesting to see that the sparsity levels for the estimated projection ma-
trices of these two scenarios were different, although the sparsity for the true pro-
jection matrices were in fact the same: ξ̄0 = 0.98. One possible reason for the
difference is that while A’s may have elements close to zero which make little
contribution in extracting variables, these elements still contribute to its “dense-
ness” according to our sparsity definition. Another possible reason is that for sce-
nario 1, where all information was located in major columns, the noise level is low.
The inclusion of minor columns does not highly influence classification accuracy.
However, in scenario 2, since the noise level is high, the search must find the cor-
rect sparsity in order to improve accuracy. This explains why MFSS with ξ̄ = 0.98
performed worse than MASS in scenario 1 but better in scenario 2.
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FIG. 3. MASS performance graphs in Simulation II. Upper panels are scenario 1 and lower panels
scenario 2.

4.3. Simulation study III: Dense A case. In this simulation we investigated a
dense model. We simulated the input data X (the same size as in Simulation II)
from N (0,	), where the diagonal elements of 	 were 1 and the off-diagonal
elements were 0.5. Unlike the sparse case, the elements of the true 5-dimensional
A0 were generated from the standard normal distribution. Since the A0 matrix is
dense, the columns in Z will be linear combinations of columns in X. If we use a
linear LR model (13) to generate group labels as in Simulation II, the generated
group labels will depend on a linear combination of the columns of Z. Therefore,
the group labels are actually directly related to a linear combination of all the
columns of X, thus, removing the concept of a lower dimensional space. Hence, to
ensure the response was a function of the lower dimensional space, we generated
the group labels using a nonlinear logistic regression,

Pr(yi = 1|Zi) = eg(Zi)

1 + eg(Zi)
,(14)

where g(Zi) = sin(0.05πZi)
T β . This guarantees that most 0.05πZi values fall

into the range of (−π/2, π/2). Hence, the nonlinearity is produced by that partic-
ular part of a sine function.

Since the data scale was moderate and all the variables contain group informa-
tion, the optimal p∗ for different methods may be different and not always be p0.
We reported the average minimal MCR∗’s and its corresponding p∗’s for Lars,
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TABLE 6
Average minimum MCR from Simulation III

LR SVM

p∗ MCR∗ p∗ MCR∗

Bayes 0.082 (0.002)
FD — 0.339 (0.006) — 0.317 (0.007)
Lars 21 0.319 (0.006) 37 0.306 (0.006)
GLMpath 19 0.320 (0.006) 25 0.308 (0.005)
SIS 25 0.321 (0.005) 43 0.305 (0.006)
PCA 32 0.329 (0.005) 35 0.326 (0,006)

MASS(p = 5) 0.271 (0.010) 0.245 (0.008)
MFSS(p = 5) 0.239 (0.008) 0.212 (0.007)

GLMpath, SIS and PCA, respectively. As to MASS and MFSS, we still fix p = 5,
which is considered a disadvantage for these two but an advantage for other meth-
ods. Since A0 is dense, we assigned ξ̄ = 0 to MFSS. Table 6 lists the average
MCR∗ and p∗’s based on 20 pairs of training and test data. Figure 4 shows the
MASS performance graphs. As can be seen, MASS and MFSS are still superior
when all the methods use their optimal p∗’s, with MFSS providing the best re-
sults. Figure 5 shows the test MCR values by Lars, GLMpath, SIS and PCA with
different p’s. These methods all tend to use larger numbers of variables.

4.4. Simulation study IV: Contaminated data. In order to examine the robust-
ness of MASS against outliers, we created a situation where the distributional as-
sumptions were violated. We generated the input data from a multivariate g-and-h
distribution Field and Genton (2006) with g = h = (0.5, . . . ,0.5)T ∈ R

50. As with
Simulation III, we used Equation (14) to create the group labels, except that here
we used g(Zi) = sin(0.005πZi)

T β . Since this is a highly skewed and heavy-tailed
case, there are many extreme values. Hence, the data domain is rather large. We use

FIG. 4. MASS performance graphs in Simulation III with p = 5.
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FIG. 5. Average test MCR for all values of p in Simulation III. Upper panels: LR; lower panels:
SVM.

sin(0.005πZi) so that most 0.005πZi values fall into the range of (−π/2, π/2).
As with Simulation III, only half period of a sine curve is effective.

MASS and MFSS were performed with a fixed p = 5, while all other methods
used their p∗’s. MFSS was implemented with ξ̄ = 0. The results are listed in Ta-
ble 7. As with Simulation III, MASS and MFSS with a fixed p = 5 outperformed
other methods with their p∗’s. All other methods performed poorly on these data.
Compared to Simulation III, the performance of MASS and MFSS did not decline
as much as other methods. This demonstrates that the proposed method is not very
sensitive to outliers.

TABLE 7
Average minimum MCR from Simulation IV

LR SVM

p∗ MCR∗ p∗ MCR∗

Bayes 0.068 (0.002)
FD — 0.482 (0.006) — 0.490 (0.007)
Lars 29 0.403 (0.004) 20 0.391 (0.004)
GLMpath 37 0.401 (0.005) 48 0.389 (0.006)
SIS 39 0.410 (0.005) 31 0.392 (0.005)
PCA 35 0.412 (0.005) 31 0.399 (0.005)

MASS(p = 5) 0.294 (0.006) 0.285 (0.007)
MFSS(p = 5) 0.273 (0.005) 0.266 (0.007)
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4.5. Simulation study V: Ultra high dimensional data. In this section we sim-
ulated an ultra high dimensional situation where n = 100, d = 1000. Thus, a
preliminary dimension reduction was needed. Among the 1000 variables, only
50 contained the group information. These 50 informative variables were gener-
ated from a multivariate normal distribution with variance 1 and correlation 0.5.
The 950 noise variables were generated from N (0,0.5I) in order to achieve a
reasonable signal-to-noise ratio. Letting p0 = 5, the Z0 was generated from the
50 informative variables through a dense A0, with each element generated from
the standard normal distribution. The group labels were still generated by Equa-
tion (14).

We used the three aforementioned preliminary reduction methods, SIS, PCA
and PCA-SIS, to reduce the data into m = 50 dimensions. Presumably, if the pre-
liminary reduction can extract the m informative variables, MASS and MFSS (with
ξ̄ = 0) will perform well. We also implemented Lars and GLMpath on the prelim-
inary reduced data. For Lars and GLMpath, we reported their average test MCR∗
and p∗’s, while for MASS and MFSS we still fixed p = 5. Figure 6 shows the av-
erage test MCR from different values of p on the preliminarily reduced data using
Lars as the further reduction method. The test MCR for GLMpath looks similar
to Lars and thus is not shown. As we can see, no matter what preliminary reduc-
tion method is applied, Lars tends to choose larger values of p∗ than p0. However,
even with the p∗’s, the test MCR∗ are above 0.250. In particular, when PCA and

FIG. 6. Average test MCR for all values of p on the first reduced data by Lars in Simulation V.
Upper panels: using LR; lower panels: using SVM.
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TABLE 8
Average test MCR (standard errors) in Simulation V

Classifier Lars (with p∗) GLMpath (with p∗) MASS MFSS

SIS- LR 0.286 (0.012) 0.288 (0.012) 0.124 (0.007) 0.150 (0.009)
SVM 0.250 (0.015) 0.253 (0.015) 0.121 (0.008) 0.155 (0.008)

PCA- LR 0.348 (0.015) 0.347 (0.013) 0.165 (0.011) 0.182 (0.011)
SVM 0.353 (0.014) 0.356 (0.013) 0.157 (0.011) 0.179 (0.012)

PCA-SIS- LR 0.337 (0.013) 0.335 (0.012) 0.119 (0.010) 0.125 (0.011)
SVM 0.325 (0.011) 0.327 (0.010) 0.102 (0.011) 0.119 (0.010)

PCA-SIS are applied, MCR∗ are above 0.320. SIS seems to be a better preliminary
reduction method for Lars and GLMpath in this simulation.

The average test MCR, using LR and SVM classifiers, are shown in Table 8.
As we can see, all six implementations of MASS and MFSS were statistically
significantly better than Lars and GLMpath with their p∗’s. In particular, SIS-
MASS and PCA-SIS-MASS generally provided the best results. It is not surprising
that PCA or PCA-SIS as the preliminary reduction methods did not fail, because
the signal-to-noise ratio was not large enough in this study. This indicates that the
improvement of the classification accuracy by MASS is not only caused by the
preliminary reduction but more by the method itself.

In order to further demonstrate that the improvement of the classification accu-
racy was not due mainly to the preliminary reduction but to the MASS method, we
also applied SVM, kNN, NN and RF on the 50-dimensional reduced data without
performing any further reduction. The results are shown in Table 9. As can be seen,
MASS and MFSS performed extremely well relative to those approaches.

5. Computational issues. In this section we discuss several issues associated
with MASS, including the solution variability, the computational issue and the
potential problem of overfitting.

Regarding the randomized nature of MASS, one issue is the variability of the
solution, that is, the variability of the selected A for a fixed training and test pair

TABLE 9
Average test MCR on the 50-dimensional first reduced data using different classifiers

SVM kNN NN RF

SIS- 0.349 (0.017) 0.356 (0.015) 0.365 (0.016) 0.344 (0.017)
PCA- 0.358 (0.013) 0.377 (0.013) 0.323 (0.013) 0.350 (0.015)
PCA-SIS- 0.359 (0.012) 0.364 (0.014) 0.318 (0.012) 0.351 (0.015)
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from different simulation runs. Theoretically, a space is determined by its orthog-
onal basis. We presume two spaces are the same as long as they have the same
basis even though they can be rotated differently. Therefore, A’s can be treated the
same if the Z’s they produce have the same principal components (PC). Hence, we
examine the first PC of Z’s produced by different simulation runs.

We examine three different cases. The first two are the two scenarios in Simula-
tion II and the third is the fMRI data in Section 3.1. For each of the first two cases,
we generate a training data set of 100 observations paired with a test data set of
1000 observations. In each paired data set, we apply MASS 100 times and obtain
100 Z’s. We then extract the first PC for each Z on the test data and calculate the
average absolute pairwise correlations between MASS runs:

|ρPC1| = 1

4950

∑
s<t

|ρs,t |,

where ρs,t is the correlation of the first PC between the sth and the t th runs.
For the fMRI data, we fixed the training data (150 observations) and test data

(50 observations), and conducted a preliminary reduction using PCA-SIS to reduce
the data space to 60 dimensional. The |ρPC1| was also calculated. In the first two
cases, we set p = 5 and in the third, we set p = 50.

Table 10 shows |ρPC1|, the proportion of variance that the first PC contains, and
the standard errors of test MCR from 100 runs. In all cases, |ρPC1|’s are reasonably
high (all above 0.70). Particularly, in the first case, |ρPC1| = 0.968, which indicates
the first PC accounting for 89% of the data variance, are highly consistent based
on 100 simulation runs. PCs containing larger variance are more consistent than
PCs with less variance. In addition, the SE for MCR are fairly small for all the
cases (e.g., 0.006, 0.007 and 0.005, respectively). All these indicate the solution
produced by MASS is fairly stable.

We compared MASS on the fMRI data, in terms of both classification accuracy
and the computational time, to the SA-Sparse method by Tian, Wilcox and James
(2009), which is also a stochastic search procedure. The approach of Tian, Wilcox
and James (2009) provides a useful comparison because it also uses a stochastic
search but implements the search process using a simulated annealing approach.
The code was written in R and run on a Dell Precision workstation (CPU 3.00 GHz;

TABLE 10
Check of solution stability: |ρPC1|’s (standard errors), proportion of variance (standard errors)

and standard errors for MCR

PC1 Variance (%) SE for MCR

Simulation II (1) 0.968 (0.000) 89% (0.004) 0.006
Simulation II (2) 0.830 (0.001) 74% (0.012) 0.007
fMRI 0.732 (0.002) 42% (0.013) 0.005



MULTIVARIATE ADAPTIVE STOCHASTIC SEARCH 361

TABLE 11
Execution time for each run and the average test MCR on fMRI data using SVM

CPU Time/Run (sec.) MCR

MASS (500 iterations) 55.34 0.187 (0.010)
SA-Sparse (500 iterations) 44.70 0.301 (0.018)
SA-Sparse (5000 iterations) 444.9275 0.237 (0.012)

RAM 2.99 GHz, 16.0 GB). We recorded the total CPU time (in seconds) of the R
program for both methods. PCA was applied first to reduce the data dimension to
m = 80 and then both methods searched for a p = 30 dimensional subspace. Ta-
ble 11 reports the time consumed and the classification accuracy on the test data
when both methods use 500 iterations. Both MASS and SA-Sparse took a simi-
lar time period to run. The key difference was that MASS converged well before
500 iterations, while SA-Sparse did not. Hence, the error rate for SA-Sparse was
much higher. SA-Sparse took approximately 5000 iterations to converge, which re-
sulted in an order of magnitude more computational effort. In addition, even when
5000 iterations were chosen for SA-Sparse, the average test errors were still higher
than for the MASS method.

Since the parameter space for MASS is large (d × L dimensional), overfitting
may be a potential problem. In our nonlinear simulation study, we observed that
when the model was very flexible, that is, λ was large, MFSS produced poor accu-
racy. Figure 7 shows the average test MCR paths over 500 iterations in the same
setting as Simulation I except with λ0 = 1. As is displayed in the left panel of Fig-
ure 7, when we assign λ = 5, which is a more flexible model than the true model,
the MCR decreases rapidly at the beginning, then it starts increasing dramatically,
and it levels off at some point of time. This trend clearly indicates the presence
of overfitting. When we used the linear MASS (i.e., assigning λ = 0), which was

FIG. 7. Test MCR paths in Simulation I. Left panel: MFSS with λ = 5; right panel: MFSS with
λ = 0.
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a less flexible model than the true model, overfitting was less likely to occur. As
we can see from the right panel of Figure 7, the MCR decreases rapidly and levels
off. In addition, we used a small value for p (the same as the true p0). This made
the model less flexible. Presumably when p � p0, overfitting may also become an
issue.

6. Discussion. MASS was designed to implement a supervised learning clas-
sification method with the flexibility to mimic either a variable selection or a vari-
able combination method. It does this by adaptively adjusting the sparsity of the
transformation matrix used to lower the dimensionality of the original data space.
We use a stochastic search procedure to address the very high dimensional predic-
tor space. Our simulation results suggest that this approach can provide extremely
competitive results relative to a large range of classical and modern classification
techniques in both linear and nonlinear cases. We also examined three different
preliminary dimension reduction methods which appeared to both increase predic-
tion accuracy as well as improve computational efficiency. MASS seems to con-
verge quickly relative to other stochastic approaches, which makes it feasible to be
applied to large data sets. The MASS method for dimensionality reduction could
also be generalized to the context of regression where the response is a continuous
variable. Further studies are planned for this setting.

APPENDIX A: PROOF OF THEOREM 1

Suppose the theorem is not true. Then for some δ > 0 it must be the case that
as n and I converge to infinity, 1

n
‖Z̃(I )

n − Z0‖2 > δ happens infinitely often with a
probability greater than 0. Without loss of generality, we can assume δ < ε where
ε is defined in Assumption 1. But since MASS randomly searches the entire space
of Z, as I → ∞, we are guaranteed at some stage to generate a candidate set of
predictors, Z̃(I )

n , such that 1
n
‖Z̃(I )

n − Z0‖2 < δ < ε. The last point to prove is that
this candidate set is selected by MASS and does not then get rejected at a later
iteration.

By Assumption 1, there exists 
 with P(
) = 1 such that for any ω ∈ 
, for
all n > N(ω), Z̃n(ω) is guaranteed to be selected since 1

n
‖Z̃n(ω) − Z0‖2 < ε.

Once Z̃n(ω) is selected, at each future iteration the same set of predictors will be
presented to the variable selection method along with other possible candidates. By
Assumption 1, the only way that Z̃n(ω) would not be selected at the next iteration
would be if an even better set of predictors was generated with squared distance
from the true predictors even lower. Hence, as n and I approach infinity, it must
be the case that 1

n
‖Z̃(I )

n − Z0‖2 < δ. Thus, the theorem is proved.

APPENDIX B: DEDUCTION OF NONLINEAR REDUCTION

We write fj,k(t) = b(t)T θj,k = b1(t)θj,k,1 + · · · + bq(t)θj,k,q , where b(t) is a
NCS basis with q degrees of freedom and θj,k is the coefficient vector. We need
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to generate θj,k such that (5) holds. First note that f ′′2
j,k(t) = θT

j,kb′′(t)b′′(t)T θj,k .
Then the integral in (5) becomes

∫
f ′′

j,k(t)
2 dt ≈ 1

T

T∑
l=1

f ′′
j,k(tl)

2 = θT
j,k�θj,k,

where � = 1
T

∑T
l=1 b′′(tl)b′′(tl)T and t1, . . . , tT represent a fine grid of time points.

Applying the singular value decomposition, we can write � = UDUT , where U is
orthogonal and D = diag(d1, . . . , dq−1,0). Note the 0 in the singular value de-
composition comes from the slope term (set to zero when you take the second
derivative) since there are no intercept terms in the basis function.

We further write

θT
j,k�θj,k = θT

j,kUDUT θj,k = θ∗T
j,kDθ∗

j,k = θ−T
j,k D−θ−

j,k,

where θ∗
j,k = UT θj,k , θ−

j,k is the first q − 1 elements of θ∗
j,k , and D− = diag(d1,

. . . , dq−1). Hence, we need to constrain θ−T
j,k D−θ−

j,k ≤ λ. This is easily achieved
by first generating the θj,k’s as described in (7) and (8), and computing the corre-
sponding θ−

j,k . We then reset θ−
j,k via

θ−
j,k ← θ−

j,k

√√√√ λ

θ−T
j,k D−θ−

j,k

and let θjk = Uθ∗
j,k = U(θ−

j,k, θ
∗
j,k,q)

T .
We write

fj,k(t) = b(t)T U(θ−
j,k, θ

∗
j,k,q)

T = (b(t)T U)θ−
j,k + (b(t)T U)qθ∗

j,k,q .

In particular, if λ = 0, all elements in θ−
j,k are zero, in which case the integral is

also zero and a linear fit is produced, that is, fj,k(t) = (b(t)T U)qθ
∗
j,k,q .

Since θ∗
j,k,q indicates the slope term, standardizing fj,k is equivalent to stan-

dardize all the θ∗
j,k,q ’s. We let

f ∗
j,k(t) = (b(t)T U)qθ

∗
j,k,q = υtθ∗

j,k,q,

where υ2 = 1
t
(b(t)T U)q . Standardizing fj,k involves setting

d∑
k=1

υ2θ∗2
j,k,q = 1.

Hence, we reset θ∗
j,k,q by

θ∗
j,k,q ← θ∗

j,k,q

υk

√∑d
k=1 υ2θ∗2

j,k,q

.

This approach ensures that (5) holds for all candidate functions.
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