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IMPROVING THE PRECISION OF CLASSIFICATION TREES!

BY WEI-YIN LOH
University of Wisconsin

Besides serving as prediction models, classification trees are useful for
finding important predictor variables and identifying interesting subgroups in
the data. These functions can be compromised by weak split selection algo-
rithms that have variable selection biases or that fail to search beyond local
main effects at each node of the tree. The resulting models may include many
irrelevant variables or select too few of the important ones. Either eventuality
can lead to erroneous conclusions. Four techniques to improve the precision
of the models are proposed and their effectiveness compared with that of
other algorithms, including tree ensembles, on real and simulated data sets.

1. Introduction. Since the appearance of the AID and THAID algorithms
[27, 28], classification trees have offered a unique way to model and visualize
multi-dimensional data. As such, they are more intuitive to interpret than models
that can be described only with mathematical equations. Interpretability, however,
ensures neither predictive accuracy nor model parsimony. Predictive accuracy is
the probability that a model correctly classifies an independent observation not
used for model construction. Parsimony is always desirable in modeling—see, for
example, McCullagh and Nelder [26], page 7—but it takes on increased impor-
tance here. A tree that involves irrelevant variables is not only more cumbersome
to interpret but also potentially misleading.

Many of the early classification tree algorithms, including THAID, CART [5]
and C4.5 [31], search exhaustively for a split of a node by minimizing a measure
of node heterogeneity. As a result, if all other things are equal, variables that take
more values have a greater chance to be chosen. This selection bias can produce
overly large or overly small tree structures that obscure the importance of the vari-
ables. Doyle [9] seems to be the first to raise this issue, but solutions have begun
to appear only in the last decade or so. The QUEST [24] and CRUISE [16] algo-
rithms avoid the bias by first using F' and chi-squared tests at each node to select
the variable to split on. CTree [15] uses permutation tests. Other approaches are
proposed in [18, 29] and [33].
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TABLE 1
Variables in mammography data

Name Description Values
ME Mammography experience 1 (within 1 year), 2 (more
than 1 year), 3 (never)
SYMP You do not need a mammogram unless you 1 (strongly agree), 2
develop symptoms (agree), 3 (disagree), 4
(strongly disagree)
PB Perceived benefit of mammography 5-20 (lower values indicate
greater benefit)
HIST Mother or sister with history of breast cancer 0 (no), 1 (yes)
BSE Has anyone taught you how to examine your 0 (no), 1 (yes)
own breasts?
DETC How likely is it that a mammogram could find 1 (not likely), 2 (somewhat
a new case of breast cancer? likely), 3 (very likely)

Unbiasedness alone, however, guarantees neither predictive accuracy nor vari-
able selection efficiency. To see this, consider some data on the mammography ex-
perience (ME) of 412 women from Hosmer and Lemeshow [14], pages 264-287.
The class variable is ME, with 104 women having had a mammogram within
the last year (ME = 1), 74 having had one more than a year ago (ME = 2), and
234 women not having had any (ME = 3). [The ME codes here are different from
the source; they are chosen to reflect a natural ordering.] Table 1 lists the five
predictor variables and the values they take. Hosmer and Lemeshow fitted a poly-
tomous logistic regression model for predicting ME that includes all five predictor
variables, but with SYMP and DETC in the form of indicator variables I (SYMP < 2)
and I (DETC = 3).

Let C(i|j) denote the cost of misclassifying as class i an observation whose
true class is j. Because the ME values are ordered, we set C(i|j) = |i — j| for
i,j=1,2,3. Figure 1 shows the QUEST and CRUISE models. Each leaf node is
colored white, light gray or dark gray as the predicted value of ME is 1, 2 or 3,
respectively. The QUEST tree is too short; it splits only once and does not predict
class 1. Note that class 1 constitutes less than 18% of the sample and that the
Hosmer-Lemeshow model [14], page 277, Table 8.10, does not predict class 1 too.
Another reason that the QUEST tree is shorter than the CRUISE tree is because
the latter tests for pairwise interactions at each node, whereas the former does not.
Thus, CRUISE can uncover more structure than QUEST.

Figure 2 shows the corresponding RPART [2] and J48 [35] trees. RPART is an
implementation of CART in R and J48 is an implementation of C4.5 in JAVA.
The two trees have much more structure, but the J48 tree reminds us that the com-
prehensibility of a tree structure diminishes with increase in its size. Further, there
is a hint of over-fitting in the repeated and nonmonotonic splits on PB at the bottom
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F1G. 1. QUEST (left) and CRUISE (right) classification trees for mammography data. At each
intermediate node, an observation goes to the left branch if and only if the condition shown there
is satisfied. Leaf nodes classified as class 1, 2 and 3 are colored white, light gray, and dark gray,
respectively. The number on the left of each leaf node is the sample size.

of the J48 tree. It is difficult to tell which tree model has higher or lower predictive
accuracy than the Hosmer and Lemeshow model. Empirical studies have shown
that the predictive accuracy of logistic regression is often as good as that of clas-
sification trees for small sample sizes [22] but that C4.5 is more accurate as the

FI1G. 2. RPART (left) and JAS (right) classification trees for mammography data. At each interme-
diate node, an observation goes to the left branch if and only if the condition shown there is satisfied.
Leaf nodes classified as class 1, 2 and 3 are colored white, light gray and dark gray, respectively.
The number on the left of each leaf node is the sample size.
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sample size increases [30]. (Note: all the trees discussed in this article are pruned
according to their respective algorithms. Trees constructed by the new methods
to be described are pruned using CART’s cost-complexity method with ten-fold
cross-validation.)

Our goal here is to introduce and examine four techniques for constructing tree
models that are parsimonious and have high predictive accuracy. We do this by
controlling the search for local interactions, employing more effective variable
and split selection strategies, and fitting nontrivial models in the nodes. The first
technique limits the frequency of interaction tests, performing them only if no
main effect test is significant. Besides saving computation time, this reduces the
chance of selecting variables of lesser importance. The second technique utilizes a
two-level split search when a significant interaction is found. This allows greater
advantage to be taken of the information gained from interaction tests. The third
technique considers linear splits on pairs of variables, if no main effect or inter-
action test is significant at a node. This can sometimes produce large gains in
predictive accuracy as well as reduction in tree size. The fourth technique fits a
nearest-neighbor or a kernel discriminant model, using one or two variables, at
each node. This is useful in applications where neither univariate nor linear splits
are effective. The result of applying the first three techniques to the mammography
data is given in Figure 3. Its model complexity is in between that of CRUISE and
QUEST on one hand, and that of RPART and C4.5 on the other.

The rest of this article is organized as follows. Section 2 discusses why and how
we control the search for interactions and illustrates the solution with an artificial
example. Section 3 introduces linear splits on pairs of variables and motivates the
solution with a real example. Section 4 presents simulation results to show that
the selection bias of our method is well controlled. Section 5 describes the use of
kernel and nearest-neighbor models on pairs of variables to fit the data in each node

FI1G. 3. Tree for mammography data using the S method. At each intermediate node, an observation
goes to the left branch if and only if the condition shown there is satisfied. Leaf nodes classified as
class 1,2 and 3 are colored white, light gray and dark gray, respectively. The number on the left of
each leaf node is the sample size.
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and demonstrates their effectiveness with yet another example. Section 6 compares
the predictive accuracy, tree size and execution time of the algorithms on forty-six
data sets. Section 7 examines the effect of using tree ensembles and compares the
results with Random Forest [4]. Section 8 concludes the discussion.

2. Controlled search for local interactions. The brevity of the QUEST tree
in Figure 1 is attributable to its split selection strategy. At each node, QUEST
evaluates the within-node (i.e., local) main effect of each predictor variable by
computing an ANOVA p-value for each noncategorical variable and a Pearson
chi-squared p-value for each categorical variable. Then it selects the variable with
the smallest p-value to split the node. Although successful in avoiding selection
bias, QUEST is insensitive to (local) interaction effects within the node. If the
latter are strong and local main effects weak, the algorithm can select the wrong
variable. The weakness does not necessarily lead to reduced predictive accuracy,
however, because good splits may be found farther down the tree—this explains
why algorithms with selection biases can still yield models with good predictive
accuracy.

CRUISE searches over a larger number of splits at each node by including
tests of interactions between all pairs of predictors. If there are K predictor vari-
ables, CRUISE computes K main effect p-values and K (K — 1)/2 interaction
p-values and splits the node on the variable associated with the smallest p-value.
Because there are usually more interaction tests than main effect tests, the smallest
p-value often comes from the former. As a result, CRUISE may select a variable
with a weak main effect even though there are other variables with stronger ones.
Further, if the most significant p-value is from an interaction between two vari-
ables, CRUISE chooses the variable with the smaller main effect p-value and then
searches for a split on that variable alone.

To see that this can create difficulties, consider an extreme example where there
are two classes and two predictor variables, X| and X, distributed on a square
as in Figure 4. The square is divided equally into four sub-squares with one class
located in the two sub-squares on one diagonal and the other class in the other two
sub-squares. The optimal classification rule first splits the space into two equal
halves at the origin using either X or X, and then splits each half into two at the
origin of the other variable. Since this requires a two-level search, CRUISE will
likely require many more splits to accurately classify the data.

The above problems can be solved by making two adjustments. First, to prevent
the interaction tests from overwhelming the main effect tests, we carry out the
former only when no main effect test achieves a specified level of significance.
Second, we perform a two-level search for the split points whenever a significant
interaction is found. These steps are given in detail below, after the introduction of
some necessary notation.

Let J denote the number of classes in the training sample and J;, the number
of classes in node . Let N; denote the number of class j cases in the training
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FI1G. 4. Class 1 observations uniformly distributed in the white squares and class 2 observations
uniformly distributed in the gray squares.

sample and N =} ; N;. Let N;(r) and N(¢) denote the corresponding sample
sizes in ¢, and let 7t (j) be the prior probability for class j. The value of 7 (j) may
be specified by the user or it can be estimated from the data, in which case it is
N;/N. The estimated probability that a class j observation will land in node #
is p(j,1) =m(j)N;(t)/N;. Define p(t) =>_; p(j. 1) and p(jlt) = p(j, 1)/ p(?).
The Gini impurity at ¢ is defined as g(¢) = Zi# p|lHp(jle).

2.1. Variable selection. Following CRUISE, we use Pearson chi-squared tests
to assess the main effects of the predictor variables. For a noncategorical predic-
tor variable, we discretize its values into three or four intervals, depending on the
sample size and the number of classes in the node. But we do not convert the
chi-squared values to p-values as CRUISE does. Instead, for degrees of freedom
(d.f.) greater than one, we use the Wilson—Hilferty [34] approximation to trans-
form each chi-squared value to a standard normal deviate and then use its inverse
transformation to convert it to a chi-squared value with one d.f. This technique,
which is borrowed from GUIDE [23], avoids the difficulties of computing very
small p-values. The detailed procedure is as follows.

PROCEDURE 2.1. Main effect chi-squared statistic for X at node :

1. If X is a categorical variable:
(a) Form a contingency table with the class labels as rows and the categories of
X as columns.
(b) Let v be the degrees of freedom of the table after deleting any rows and
columns with no observations. Compute the chi-squared statistic Xf for test-
ing independence. If v > 1, use the Wilson—Hilferty approximation twice to
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convert x2 to the 1-d.f. chi-squared

(2.1) WM(X)=max(0, [g+ﬁ{<x—”2)l/3—1+3}]3>.

v 9v

2. If X is a noncategorical variable:

(a) Compute x and s, the mean and standard deviation, respectively, of the val-
ues of X in 7.

(b) If N(t) > 20J;, divide the range of X into four intervals with boundary val-
ues x and x £+ s«/§/2. Otherwise, if N(t) < 20J;, divide the range of X into
three intervals with boundary values X # s+/3/3. If X has a uniform distri-
bution, these boundaries will yield intervals with roughly equal numbers of
observations.

(c) Form a contingency table with the class labels as rows and the intervals as
columns.

(d) Follow step 1(b) to obtain Wy (X).

Discretization in step 2(b) is needed to permit application of the chi-squared
test. Although the boundaries are chosen for reasons of computational expediency,
our empirical experience indicates that the particular choice is not critical for its
purpose, namely, unbiasedness in variable selection. Note that the boundaries are
not used as split points; a search for the latter is carried out separately in Algo-
rithm 2.2 below.

We apply the same idea to assess the local interaction effects of each pair of
variables, using Cartesian products of sets of values for the columns of the chi-
squared table.

PROCEDURE 2.2. Interaction chi-squared statistic for a pair of variables X
and X, at node ¢:

1. If X; (i =1,2) is noncategorical, split its range into two intervals (A;1, A;2)
at the sample mean x if N(t) < 45J;, or three intervals (A;1, Aj2, A;3) at the
points x £ s\/§/3, if N(t) >45J,.If X; (i =1, 2) is categorical, let A;x denote
the singleton set containing its kth value.

2. Divide the (X1, X2)-space into sets By », = {(x1,Xx2) :x1 € A1k, X2 € Aoy}, for
kkm=1,2,....

3. Form a contingency table with the class labels as rows and {By ,,} as columns.
Compute its chi-squared statistic and use (2.1) to transform it to a 1-d.f. chi-
squared value Wj(X1, X»).

To control the frequency with which interaction tests are carried out, we put
a Bonferroni-corrected significance threshold on each set of tests and carry out
the interaction tests only if all main effects are not significant. Let Xf’a denote
the upper-a quantile of the chi-squared distribution with v d.f. The algorithm for
variable selection can now be stated as follows.
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ALGORITHM 2.1 (Variable selection). Let K > 1 be the number of non-
constant predictor variables in the node. Define o = 0.05/K and g = 0.05/
{K(K —1)}:

1. Use Procedure 2.1 to find Wy (X;) fori =1,2,..., K.

2. If max; Wy (X;) > Xlz, - Select the variable with the largest value of Wy, (X;)
and exit.

3. Otherwise, use Procedure 2.2 to find W;(X;, X;) for each pair of predictor
variables:
(a) If max;»«; Wi (X;, X;) > X127 L select the pair with the largest value of

Wi (X;, X;) and exit.

(b) Otherwise, select the X; with the largest value of Wy, (X;).

2.2. Split set selection. After Algorithm 2.1 selects a variable X at node ¢,
we need to find a set of X-values to form the split ¢t = 77 U tg, where ¢z and tg
denote the left and right subnodes of ¢. Let pr and pg denote the proportions of
samples in ¢ going into 7 and tg, respectively. We seek the split that minimizes
the weighted sum of Gini impurities

(2.2) pLg(tL) + prg(tr).

Let n be the number of distinct values of X in ¢. If X is noncategorical, there are
(n — 1) possible splits, with each split point the mean of two consecutive order
statistics. If X is categorical, the number of possible splits is (2"~ — 1), which
grows exponentially with n. If J =2, however, we use the following short-cut to
reduce the search on the categorical variable to (n — 1) splits. It is a special case
of a more general result proved in [5], Section 9.4.

THEOREM 2.1. Suppose that J =2 and that X is a categorical variable tak-
ing n distinct values. Let r (a) denote the proportion of class 1 observations among
those with X = a. Let ay < ay < --- < ay be an ordering of the X values such that
r(ar) <r(ap) <---<r(ay). Given any set A, let the observations be split into two
groups t;, ={X € A} and tg = {X ¢ A}. The set A that minimizes the function
prg(t) + prg(tr) is A; ={ai,as, ...,a;} forsomei =1,2,...,n— 1.

If X is noncategorical, we carry out an exhaustive search for the best split of
the form X < ¢, with ¢ being the midpoint of two consecutive order statistics. If
X is categorical, an exhaustive search is done only if n < 11 or if J/ =2 (using the
above shortcut). Otherwise, a restricted search is performed as follows:

1. If J <11 and n > 20, divide the observations in ¢ into n groups according to the
categorical values of X and find the class that minimizes the misclassification
cost in each group. Map X to a new categorical variable X’ whose values are
the minimizing class labels. Carry out an exhaustive search for a split on X’ and
re-express it in terms of X.
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2. If J > 11 or n < 20, transform the categorical values into 0—1 dummy vectors
and apply linear discriminant analysis (LDA) to them to find the largest dis-
criminant coordinate X”. Find the best split on X” and then re-express it in
terms of X. This technique is employed in Loh and Vanichsetakul [25].

The complete details are given as Procedure A.1 in the Appendix.

What to do if Algorithm 2.1 selects a pair of variables X and X», say? Then
the split search is more complicated, because the best split on X| may depend on
how X» is subsequently split. Similarly, the best split on X, should consider the
best subsequent splits on X. Suppose that ¢ is split first by one variable into 71
and rg, and that ¢ is split into 777 and f7g, and g into fgy and tgg, by the other
variable. Let py;, prr, prr and prr denote the proportions of samples in #77, 1 r,
trL and fRR, respectively. We select the split 77, that minimizes

(2.3) prrg(trr) + pLrg(tLr) + PRLE(IRL) + PRRE(IRR)

over frr, trr, tgr, and fgg.

Because this requires a two-level search, we restrict the number of candidate
splits to keep computation under control. Let mq be a user-specified number so that
only splits yielding at least m cases in each subnode are permitted. For splits on
noncategorical variables Xg, define f = min(100NV —1.1). Let | -] be the greatest
integer function and let

d =min{max(| fN()],9), N(t) —2mgy + 1}

be the number of split points to be evaluated. Clearly, d < 100. Let x (i) denote the
ith order statistic of X. The set of restricted split points on X are the members
of the set

(2.4) Sk = {xr (i), xk(i2), ..., xx(ia)},

where i; =mo+ | j(N(t) —2mg)/(d+1)] and j =1,2,...,d. Technical details
of the search, covering the cases where 0, 1 or 2 variables are categorical, are given
in Procedures A.2—A.4 in the Appendix. The entire split selection procedure can
be stated as follows:

ALGORITHM 2.2 (Split selection).

1. Apply Algorithm 2.1 to the data in ¢ to select the split variable(s).

2. If one variable is selected and it is categorical, use Procedure A.1 to split ¢ on
that variable.

3. If one variable is selected and it is noncategorical, search through all mid-
points, ¢, of the ordered data values for the split 17 = {X < ¢} that minimizes
(2.2).

4. If two variables are selected, apply Procedure A.2, A.3 or A.4 to split ¢, de-
pending on whether zero, one or two of the variables are categorical.
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F1G. 5. Data (left) and classification regions (right) for the S method.

The power of this algorithm is best demonstrated by an artificial example. We
simulate one thousand observations, each randomly assigned with probability 0.5
to one of two classes. Each class is uniformly distributed in the alternating squares
of a 4 x 4 chess board in the (X1, X3)-plane. The left side of Figure 5 shows one
realization, with 520 observations from class 1 and 480 from class 2. We add eight
independently and uniformly distributed noise variables. The ideal classification
tree should split on X1 and X, only and have 16 leaf nodes. C4.5 and CTree yield
trees with no splits and hence misclassify 480 observations each. RPART gives a
tree with 13 leaf nodes, but splits on X or X only three times and misclassifies
347 observations. QUEST misclassifies 27 with a 46-leaf tree. CRUISE splits on
X1 or X, most of the time and misclassifies 3, but because it does not perform two-
level searches, the tree is still large with 29 leaf nodes. Our algorithm splits on X
and X, exclusively and yields a 19-leaf tree that misclassifies 4 observations; its
classification regions are shown on the right side of Figure 5.

3. Linear splits. Although univariate splits (viz. splits on one variable at a
time) are best for interpretation, greater predictive accuracy can sometimes be
gained if splits on linear combinations of variables are allowed. CART uses ran-
dom search to find linear splits, while CRUISE and QUEST use LDA; see also [1,
7, 19, 36]. Nonlinear splits have been considered as well [10, 20].

To appreciate the necessity for linear splits, consider some data on fish
from Finland obtained from the Journal of Statistics Education data archive
(www.amstat.org/publications/jse/datasets/fishcatch.txt). See [8] and [17] for prior
usage of these data. There are seven species (classes) in the sample of 159 fish.
Their class labels (in parentheses), counts and names are as follows: (1) 35 Bream,
(2) 11 Parkki, (3) 56 Perch, (4) 17 Pike, (5) 20 Roach, (6) 14 Smelt and (7) 6
Whitefish. Table 2 lists the seven predictor variables. The data are challenging for
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TABLE 2
Predictor variables for fish data

weight Weight of the fish (in grams)

lengthl Length from the nose to the beginning of the tail (in cm)
length?2 Length from the nose to the notch of the tail (in cm)
length3 Length from the nose to the end of the tail (in cm)
height Maximal height as a percentage of 1length3

width Maximal width as a percentage of length3

sex Male or female

univariate splits because the three length variables are highly correlated. For ex-
ample, Figure 6 shows that it is hard to separate the classes using only univariate
splits on 1ength2 and length3. A split along the direction of the data points,
however, can separate class 1 (bream) cleanly from the rest.

The CRUISE 2V algorithm [17] does well here because it fits a linear discrimi-
nant model to a pair of noncategorical variables in each node. We propose instead
to keep the node models simple, but use LDA to find splits on two variables at a
time. The restriction to two variables permits each split to be presented graphically.
It also reduces the impact of missing values—the more variables are involved in a
split, the fewer the number of complete cases for its estimation. To prevent outliers
from having undue effects on the estimation of the split direction, we trim them be-
fore application of LDA in the following procedure. As before, we use chi-squared
tests to select the variables for each linear split.
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FI1G. 6. Plot of length?2 versus length3 for fish data.
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PROCEDURE 3.1. Discriminant chi-squared statistic. Let X and X» be two
noncategorical variables to be used in a linear split of node #:

1. Forclass j (j=1,2,...,J) and each X; (i =1, 2), compute the class mean
X;,j and class standard deviation s; ; of the samples in 7.
2. Let §; denote the set of class j samples in ¢ lying in the rectangle |X; — X; ;| <

2s; j fori=1,2.
3. Find the larger linear discriminant coordinate Z from the observations in S; U
U Sy,

4. Project the data in ¢ onto the Z-axis and compute their Z-values.
5. Apply Procedure 2.1 to the Z-values to find the one-d.f. chi-squared value
Wi(X1, X2).

Although linear splits are more powerful than univariate splits, it is unnecessary
to employ a linear split at every node. We see from Figure 6, for example, that
almost all the smelts (class 6) can be separated from the other species (except
for one misclassified perch) by a univariate split on length2 or on length3
at 14 cm. Therefore, we should invoke linear splits only if the main effect and
interaction chi-squared tests are not significant, and then only if the linear split
itself is significant. This differs from the linear split options in CART, CRUISE and
QUEST, which always split on linear combinations of all the predictors. The next
algorithm replaces Algorithms 2.1 and 2.2, if linear splits are desired.

ALGORITHM 3.1 (Split selection with the linear split option). Let K > 0 be
the number of nonconstant predictor variables in node ¢ and let K| be the number
among them that are noncategorical. Let « = 0.05/K and let 8 =0.05/{K (K —
1)} if K > 1; otherwise, let 8 = 0. Further, let y = 0.05/{K(K1 — D} if K1 > 1,
and let it be 0 otherwise:

1. If K =1, define Wj; = oo for the nonconstant variable. Otherwise, perform

Procedure 2.1 to find Wy (X;) fori =1,2,..., K.

2. If max; Wy (X;) > Xlz’a, let X’ be the variable with the largest value of

Wy (Xi):

(a) If X’ is categorical, split # on X" with Procedure A.1 and exit.

(b) Otherwise, split ¢ at the midpoint of the ordered X’ values that minimizes
the sum of Gini impurities (2.2) and exit.

3. If max; Wy (X;) < X12,a’ use Procedure 2.2 to find W, (X;, X ;) for each pair of
predictor variables:

(a) If max;+; W;(X;, X;) > X12, B select the pair with the largest value of
Wi (X;, X;) and use Procedure A.2, A.3 or A.4 to split ¢, depending on
whether 0, 1 or 2 variables are categorical, and exit.

(b) If K1 =1, go to step 3(c)ii below.

(c) If Ky > 1, use Procedure 3.1 to find W (X;, X;) for each pair of noncate-
gorical variables:
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FI1G. 7. Tree model using the S method for the fish data. At each intermediate node, a case goes to
the left child node if and only if the condition is satisfied. The predicted class and number of errors
divided by sample size are printed below and to the left of each leaf node.

i If max;»; Wp(X;, X;) > Xlz’y, select the pair of variables with the
largest W (X;, X;)-value, split ¢ on their larger discriminant coordi-
nate, and exit.

ii. Otherwise, let X’ be the variable with the largest value of Wy, (X;) and
go to step 2 above.

Figure 7 shows the pruned tree for the fish data using this algorithm. The tree
has univariate splits everywhere except at node 23, where it uses a linear split on
variables 1engthl and length?2, and misclassifies 12 observations. Figure 8
displays jittered plots of the data in the intermediate nodes with univariate splits.
Figure 9 shows two views of the data in the node with the linear split; the left
panel displays the data in terms of lengthl and length?2, and the right panel
shows them in terms of the linear discriminant coordinate. Obviously, it would
be impossible to show the left panel if the linear split involves more than two
variables.

If linear splits are disallowed, the tree has 12 leaf nodes and misclassifies 10
observations. The CRUISE, QUEST, CTree and RPART trees have 16, 5, 7 and 6
leaf nodes and misclassify 24, 26, 28 and 21 observations, respectively. CRUISE
2V, which employs bivariate linear discriminant leaf node models, yields a tree
with 5 leaf nodes and misclassifies 3.

The variable definitions in Table 2 are taken directly from the data source. If the
length, width and height variables are all expressed as percentages of length3,
the resulting tree has 6 leaf nodes with no linear splits and misclassifies 7 obser-
vations. Conversely, if all are expressed in cm instead of percentages, the tree has
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F1G. 8.  Plots of fish data in the intermediate nodes of the tree in Figure 7, with dashed lines marking
the splits. Points are vertically jittered.

15 leaf nodes, employs 4 linear splits and 1 interaction split, and misclassifies 17.
Thus, transformations of the variables can make a difference. We note, further, that

Q
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€ B 8 :
£ Q4 3 <] ‘
- @ 7 !
< . 7 1
o n _| 5 ]
5 339’*7 §—0©om@m o &
&4 & . |
# § |
243 o
T I I I I el I I I I I I I
20 25 30 35 40 45 -2.0 -1.6 -1.2 -0.8
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FI1G. 9. Plots of fish data in node 23 of the tree in Figure 7, with dashed lines marking the split.
The left panel shows the data in terms of variables 1engthl and length2; the right panel is a
Jjittered plot of the same data in the linear discriminant direction. The plot symbols in the left panel
are the same as those in Figure 6.
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the error rates are probably biased low, because they are estimated from the same
data set used to build the models. Cross-validation estimates are used to compare
algorithms in Section 6.

4. Selection bias. As mentioned earlier, it is important for an algorithm to be
without variable selection bias. Unbiasedness here refers to the property that the X
variables are selected with equal probability, when each is independent of the class
variable. To show that Algorithm 3.1 is practically unbiased, we report the results
of a simulation experiment with N = 500 and six X variables. The class variable
takes two values with equal probabilities and is independent of the X variables. We
consider two scenarios. In the independence scenario, the X variables are mutually
independent with the following distributions:

1. X is categorical with P(X1 =1)=P(X2=2)=1/2;

2. X» is categorical with P(Xo, =1)=1/6, P(X> =2)=1/3,and P(X, =3) =
1/2;

X3 is categorical taking six values with equal probability;

X4 is chi-squared with one degree of freedom;

X5 1s normal;

X is uniform on the unit interval.

SNk wWw

In the dependence scenario, X1 and X¢ are independent and distributed as before,
but X4 and X5 are bivariate normal with correlation 0.7 and X, and X3 have the
joint distribution shown in Table 3.

Table 4 shows the number of times each variable is chosen over 10,000 simula-
tion trials. Among univariate splits, there is a slightly lower probability that a non-
categorical variable is selected (most likely due to discretization of the continuous
variables or the Wilson—Hilferty approximation), but it is offset by the probabil-
ity that such variables are selected through linear splits. Because two X variables
are involved in a linear split, each one is double-counted in the three columns on
the right side of Table 4. Therefore, to estimate the overall selection probability
for each variable, we halve these counts before adding them to the corresponding
univariate split counts. The results, shown in Table 5, are all within two simulation
standard errors of 1/6 (the required value for unbiasedness).

TABLE 3
Joint distribution of Xo and X3 in the dependence scenario

X3
X, 1 2 3 4 5 6
1 1/12 1/12 1/24 1/24 1/24 1/24
1/24 1/24 1/12 1/12 1/24 1/24

3 1/24 1/24 1/24 1/24 1/12 1/12
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TABLE 4
Number of times (out of 10,000 simulation trials) that each variable is selected to split the root
node. Variables X1, Xo and X3 are categorical and can only appear in a univariate split; variables
X4, X5 and X¢ can appear in a univariate or a linear split

Univariate splits Linear splits

Scenario X1 X, X3 X4 X5 X6 X4 Xs X6

Independence 1713 1656 1620 1567 1492 1533 302 310 226
Dependence 1684 1643 1601 1544 1564 1503 356 342 224

5. Kernel and nearest-neighbor node models. So far, we have tried to make
the tree structure more parsimonious and precise by controlling selection bias and
improving the discriminatory power of the splits. Another way to reduce the size
of the tree structure is to fit nontrivial models to the nodes. Kim and Loh [17]
and Gama [11], for example, use linear discriminant models. Although effective
in improving predictive accuracy, linear discriminant models are not as flexible as
nonparametric ones and may not simplify the tree structure as much. We propose
to use kernel and nearest-neighbor models instead. To allow the fits to be depicted
graphically, we again restrict each model to use at most two variables. Further, to
save computation time, we use Algorithm 2.2 to find the split variables, skipping
the linear splits. Buttrey and Karo [6] also fit nearest-neighbor models, but they do
this only after a standard classification tree is constructed. As a result, their tree
structure is unchanged by model fitting. Since we fit a model to each node as the
tree is grown, we should get more compact trees.

First, consider kernel discrimination, which is basically maximum likelihood
with a kernel density estimate for each class in a node. If the selected X variable
is categorical, its class density estimate is just the sample class density function.
If X is noncategorical, we use a Gaussian kernel density estimate. Let s and r
denote the standard deviation and the inter-quartile range, respectively, of a sample
of observations, x1, x2, ..., x,, from X. The kernel density estimate is f (x) =
(nh)~! Y ¢{(x —x;)/ h}, where ¢ is the standard normal density function and

TABLE 5
Probabilities of variable selection for a null model estimated by simulation. The simulation
standard error is 0.0037. If the method is unbiased, the probabilities should be all equal to 0.1667

X; X, X3 Xy Xs X

Independent 0.1713 0.1656 0.1620 0.1718 0.1647 0.1646
Dependent 0.1684 0.1643 0.1601 0.1722 0.1735 0.1615




1726 W.-Y. LOH

h is the bandwidth. The following formula, adapted from Stata [32],

b {2.5 min(s, 0.7413r)n=1/3, ifr >0,

5.1
SR 2.5sn"1/5, otherwise,

is used in the calculations reported here. This bandwidth is more than twice as
wide as the asymptotically optimal value usually recommended for density esti-
mation; Ghosh and Chaudhuri [12] find that the best bandwidth for discrimination
is often much larger than that for density estimation. For our purposes, asymptotic
formulas cannot be taken too seriously, because the node sample size decreases
with splitting.

If a pair of noncategorical variables is selected, we fit a bivariate kernel density
to the pair for each class. If the split is due to one categorical and one noncategori-
cal variable, we fit a kernel density estimate to the noncategorical variable for each
class and each value of the categorical variable, using an average bandwidth that
depends only on the class. Averaging smoothes out the effects of small or highly
unbalanced sample sizes. The details are given in the next algorithm.

ALGORITHM 5.1 (Kernel models). Let Y denote the class variable and apply
Algorithm 2.2 to find one or two variables to split a node :

1. If the split is due to a main effect chi-squared statistic (Procedure 2.1), let X be
the selected variable. Fit a kernel density estimate to X for each class in ¢ using
bandwidth (5.1) with n = N (¢).

2. If the split is due to an interaction chi-squared statistic (Procedure 2.2), let X
and X, be the selected variables. Fit a bivariate density estimate to (X1, X») for
each class in ¢ as follows:

(a) If X7 and X, are categorical, use their sample class joint density.

(b) If X is categorical and X, is noncategorical, then for each combination
of (X1, Y) values present in ¢, find a bandwidth A(Y, X1) using (5.1). Let
h(Y) be the average of h(Y, X1). For each value of X and Y, find a kernel
density estimate for X, with h(Y) as bandwidth.

(c) If both variables are noncategorical, fit a bivariate Gaussian kernel density
estimate to each class with correlation equal to the class sample correlation
and n equal to the class sample size in (5.1).

The predicted class is the one with the largest estimated density.

We use the same idea for nearest-neighbor models. For noncategorical variables,
the number of nearest neighbors, k, is given by the formula
(5.2) k =max(3, [logn]),

where n is the number of observations and [x] denotes the smallest integer greater
than or equal to x. We require k to be no less than 3 to lessen the chance of ties.
The full details are given next.
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ALGORITHM 5.2 (Nearest neighbor models). Let Y denote the predicted
value of Y. Use Algorithm 2.2 to find one or two variables to split a node 7:

1. If the split is due to a main effect chi-squared statistic (Procedure 2.1), let X be
the selected variable:

(a) If X is categorical, then Y is the highest probability class among the obser-
vations in ¢ with the same X value as the one to be classified.

(b) If X is noncategorical, then Y is given by the k-nearest neighbor classifier
based on X with n = N(¢) in (5.2).

2. If the split is due to an interaction chi-squared statistic (Procedure 2.2), let X
and X be the selected variables:

(a) If both variables are categorical, then Y is the highest probability class
among the observations in ¢ with the same (X, X») values as the one to
be classified.

(b) If Xy is categorical and X, is noncategorical, then Y is given by the
k-nearest neighbor classifier based on X, applied to the set S of obser-
vations in ¢ that have the same X value as the one to be classified, with n
being the size of S in (5.2).

(c) If both variables are noncategorical, then Y is given by the bivariate
k-nearest neighbor classifier based on X; and X, with the Mahalanobis
distance and n = N (¢) in (5.2).

Figure 10 shows an artificial example that is very challenging for many al-
gorithms. There are 300 observations, with 100 from each of three classes and
eight predictor variables. Class 1 is uniformly distributed on the unit circle in the
(X1, X2)-plane. Class 2 is uniformly distributed on the line X; — X7 =0, and
class 3 on the line X| + X» =0, with |X1| < 1 and |X3| < 1. Variables X3, X4
and Xs are uniformly distributed on the unit interval and X¢, X7 and Xg are cat-

10 -05 00 05 10

F1G. 10. Three-class problem, with class 1 uniformly distributed on the circle and classes 2 and 3
each uniformly distributed on its own diagonal line.
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egorical, each taking 21 equi-probable values. The X variables are mutually inde-
pendent.

QUEST with linear splits gives a 38-leaf tree that misclassifies 3 samples.
CRUISE with LDA models gives a 17-leaf tree that misclassifies 10 samples.
RPART, QUEST with univariate splits and our simple node method are about
equal, misclassifying 85, 81 and 75 samples, respectively. C4.5 and CTree are
the worst, with 134 and 200 misclassified and 84 and 1 leaf nodes, respectively. In
contrast, our kernel and nearest-neighbor methods yield trees with no splits after
pruning and misclassify 2 and 8 training samples, respectively.

6. Comparison on forty-six datasets. The error rates discussed so far are
biased low because they are computed from the same data that are used to construct
the tree models. To obtain a better indication of relative predictive accuracy, we
compare the algorithms listed in Table 6 on forty-two real and four artificial data
sets using ten-fold cross-validation. Each data set is randomly divided into ten
roughly equal parts and one-tenth is set aside in turn as a test set to estimate the
predictive accuracy of the model constructed from the other nine-tenths of the data.
The cross-validation estimate of error is the average of the ten estimates. Equal
misclassification costs are used throughout. As elsewhere in this article, the trees
are pruned to have minimum cross-validation estimate of misclassification cost.
All other parameter values are set at their respective defaults.

The four artificial data sets are those in Figures 5 (int) and 10 (c13), and the
digit (Led) and waveform (wav) data in [5]. Sample size ranges from 97 to 45,222;
number of classes from 2 to 11; number of categorical variables from 0 to 60; num-
ber of noncategorical variables from 0 to 69; and maximum number of categories
among categorical variables from O to 41. We use the notations “S,” “K” and “N”
to refer to our proposed method with simple (i.e., constant), kernel and nearest-
neighbor node models, respectively. S employs linear splits, but K and N do not.

Eleven data sets have missing values. In the S, N and K algorithms, missing val-
ues in a categorical variable are assigned to their own separate “missing” category.

TABLE 6
Algorithms and plot symbols for the comparison experiment

c45 C4.5

c2d CRUISE with interaction detection and simple node models

c2v CRUISE with interaction detection and linear discriminant node models
Qu QUEST with univariate splits

01 QUEST with linear splits

Rp RPART

Ct CTree

S Proposed method with simple node models (Algorithm 3.1)

K Proposed method with kernel node models (Algorithm 5.1)

N Proposed method with nearest-neighbor node models (Algorithm 5.2)
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F1G. 11.  Error rates of algorithms by data set.

Observations with missing values in a noncategorical split variable are always
sent to the left node. If there are enough such cases, our algorithms will consider
a split on missingness as one of the candidate splits. Bandwidths are computed
from cases with nonmissing values in the selected variables. Kernel and nearest-
neighbor model classifications are applied only to observations with nonmissing
values in the selected variables. Observations with missing values in the selected
variables are classified with the majority rule.

Figure 11 graphs the errors rates of the ten algorithms for each data set. Despite
the large range of the error rates (from near O to about 0.7), the algorithms have
very similar accuracy for about half of the data sets. The most obvious exceptions
are the artificial data sets int and c13, where our K, N and S algorithms have a
superior edge; algorithms not designed to detect interactions pay a steep price here.
Two other examples showing interesting patterns are the fish (£is) data used in
Section 3 and the bod data set [13], where body measurements are used to classify
gender. For these two data sets, algorithms that employ LDA techniques (C2v, Q1
and S) are more accurate. Q1 seems to be either best or worst for a majority of the
data sets.

Figure 12 shows the corresponding results for the sizes of the trees in terms of
their numbers of leaf nodes. C45 tends to produce the largest trees, while C2v and
Rp often give the shortest.

Figure 13 shows arithmetic means (over the 46 data sets) of the error rates and
numbers of leaf nodes for each algorithm, with corresponding 95% Tukey simul-
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FI1G. 12.  Numbers of leaf nodes by data set.
taneous confidence intervals. The latter are obtained by fitting two-factor mixed

models to the error rates and number of leaf nodes separately, using algorithm as
fixed factor, data set as random factor, and their interaction as error term. S and

K Ql
SN Qu C45 C2d C2v Rp Ct
T T T T 1
0.24 0.25 0.26 0.27 0.28
Mean error rate
K
C2v S Qu

Rp NI Ct cad C4a5

0 20 40 60 80 100
Mean number of leaf nodes

K C2v Ql
C45 Ct S N Qu Cad Rp

0.1 05 1.0 50 10.0 50.0 100.0 500.0
Mean computational time (sec.)

FIG. 13.  Means of error rates, numbers of leaf nodes and computational times; for the top two
plots, dashed lines join algorithms that do not differ significantly at the 95% simultaneous level of
confidence.
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FIG. 14. Mean of error rates relative to the lowest (for each data set) versus mean of tree size
relative to that of the smallest tree; tree size is measured by the number of leaf nodes.

Ct have the smallest and largest, respectively, mean error rates. The confidence
intervals show that the mean error rate of Ct differs significantly from those of
S, N, K and Qu; other differences are not significant. As for mean number of leaf
nodes, C45 is significantly different from the others, as is Rp from C2d.

Figure 13 also shows the mean computational times, on a 2.66Ghz quad-core
Linux PC with 8Gb memory. Because the algorithms are implemented in different
computer languages (Rp and Ct in R, C45 in C and the others in Fortran), the re-
sults compare execution times rather than number of computer operations. Further,
the mean time for Rp is dominated by two data sets each having six classes and
categorical variables with many categorical levels. It is well known that the com-
putational time of CART, upon which Rp is based, increases exponentially with
the number of categorical levels when the number of classes exceeds two.

Another way to account for differences among data sets is to compare the ratio
of the error rate of each algorithm to the lowest error rate among the ten algorithms
within each data set. We call this ratio the “error rate relative to the lowest” for the
particular algorithm and data set. The mean of these ratios for an algorithm over
the data sets yields an overall measure of its relative inaccuracy. Applying the
same procedure to the number of leaf nodes gives an overall measure of relative
tree size for each algorithm. Figure 14 gives a plot of these two measures. The best
algorithms are those in the bottom left corner of the plot: K, N, S and C2v. They
are relatively most accurate and they yield relatively small trees.

7. Tree ensembles. A tree ensemble classifier uses the majority vote from
a collection of tree models to predict the class of an observation. Bagging [3]
creates the ensemble by using bootstrap samples of the training data to construct
the trees. Random Forest (RF), which is based on CART and employs 500 trees,
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goes beyond bagging by splitting each node on a random subset of ~/K variables
(K being the total number of variables) and not pruning the trees. Because it is
practically impossible to interpret so many trees, ensemble classifiers are typically
used for prediction only.

To see how much an ensemble can affect the predictive accuracy of the single-
tree models proposed here, we use the bagging and RF ideas to create two new
ensemble classifiers. The first, called bagged GUIDE (BG), is a collection of
100 pruned trees, each constructed using the S method from bootstrap samples.
The second ensemble classifier, called GUIDE forest (GF), consists of 500 un-
pruned trees constructed by the S method without interaction and linear splits. As
in RF, GF uses a random subset of «/E variables to split each node.

Figure 15 shows the error rates of BG, GF and RF compared with those of the S
and K methods for each data set. The R package of Liaw and Wiener [21], which
we use for RF, is not applicable if the data set has predictor variables with more
than 32 categorical levels or if the test sample contains class labels that are not
present among the training samples. The first condition occurs in the adu and
lak data sets, which have categorical variables with 41 and 35 levels, respectively,
and the second condition occurs with the eco data set, which has 8 classes and a
total sample size of 336. Table 7 gives the mean error rates with these three data
sets excluded. All three ensemble methods have lower means than the single-tree
methods, but the differences are fairly small on average. Figure 15 shows that
although RF is best for many data sets, it performs particularly poorly compared
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FI1G. 15. Single tree models (S and K) versus ensemble models (BG, GF and RF).
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TABLE 7
Mean error rates over the 46 data sets where RF is applicable. Differences are not
statistically significant

Algorithm s K BG GF RF

Error rate 0.228 0.231 0.212 0.212 0.206

to S and K for three data sets: ¢13 (Figure 10), £is (fish data in Section 3) and
int (Figure 5)—data sets that have strong linear or interaction effects. GF shares
the same difficulties with RF, but BG does not, because the latter allows linear and
interaction splits.

8. Conclusion. Improving the prediction accuracy of a tree and the precision
of its splits is a balancing act. On the one hand, we must refrain from searching too
greedily for splits, as the resulting selection bias can cause irrelevant variables to
be selected. On the other hand, we should search hard enough to avoid overlook-
ing good splits hidden behind interactions or linear relationships. We solve this
problem by using three groups of significance tests, with increasing complexity of
effects and decreasing order of priority. The first group of tests for main effects is
always carried out. The second group, which tests for interactions, is performed
only if no main effect test is significant. The third group, which tests for linear
structure, is performed only if no test in the first two groups is significant. A Bon-
ferroni correction controls the significance level of each group. In addition, if an
interaction test is significant, the split is found by a two-level search on the pair of
interacting variables.

If greater reduction in the size of the tree structure is desired, we can fit a kernel
or a nearest-neighbor model to each node. Owing to the flexibility of these mod-
els, we dispense with linear splits in such situations. We showed by an example
that when there are weak main effects but strong two-factor interaction effects,
classification trees constructed with these models can achieve substantial gains in
accuracy and tree compactness. They require more computation than trees with
simple node models, but the empirical evidence indicates that their prediction ac-
curacy remains high even for ordinary data sets.

We also investigated the effect of tree ensembles on predictive accuracy. Al-
though Random Forest quite often yields higher accuracy than the single-tree mod-
els S and K, the average increase is only about 10% for the 43 data sets in the study.
Much depends on the complexity of the data. If there are strong interaction or linear
effects, the single-tree algorithms proposed here can be substantially more accu-
rate than Random Forest. Further, the choice of the single-tree algorithm used in
the ensemble matters.

All the proposed algorithms are implemented in version 8 of GUIDE, which
may be obtained from www.stat.wisc.edu/~loh/guide.html for the Linux, Macin-
tosh and Windows operating systems.
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APPENDIX

PROCEDURE A.1. Split set selection for a categorical variable X. Let

{ai,an, ..., a,} be the set of distinct values of X in node ¢:

1.

2.

If J/ =2 orn <11, search all subsets S to find a split of the form 7;, = {X € S}
that minimizes (2.2).

Else if J <11 and n > 20, for each i = 1,2,...,n, let j; be the class that
minimizes the misclassification cost for the observations in r N {X = a;}. Define
the new categorical variable X' = Y"; j;I (X = a;) and search all subsets S’ to
find a split of the form {X’ € S’} that minimizes (2.2). Re-express the selected
splitin terms of X as t7 = {X € §}.

. Else use LDA as follows:

(a) Convert X into a vector of dummy variables (uy, uz, ..., u,), where u; = 1
if X =a; and u; = 0 otherwise.

(b) Obtain the covariance matrix of the u-vectors and find the eigenvectors as-
sociated with the positive eigenvalues. Project the u-vectors onto the space
spanned by these eigenvectors.

(c) Apply LDA to the projected u-vectors to find the largest discriminant coor-
dinate v =) _; cju;.

(d) Let vy < v < --- denote the (at most n) sorted v-values.

(e) Find the split #; = {v < v(,)} that minimizes (2.2).

(f) Re-express the split as 17 = {X € S}.

PROCEDURE A.2. Split selection between two noncategorical variables X

and X,. Let S; (k =1, 2) be defined as in (2.4):

1.

Split ¢ first on X and then on X, as follows. Given numbers ¢, d and e, let
ip={X1=chtg={X1>clipr=10N{Xo <d}, g =1t N{X2 > d}, trL. =
trN{Xy <e},and tgg =tg N {X, > e}. Search over all c € S; and d, e € S, to
find the best ¢ = ¢; that minimizes (2.3).

. Exchange the roles of X; and X» in the preceding step to find the best split

{X> <cp} withep € 55.

. If the minimum value of (2.3) from the split {X; < ¢} is less than that from

{X> < ¢y}, select the former. Otherwise, select the latter.

PROCEDURE A.3. Split selection between noncategorical X and categori-

cal X»:

1.

First find a split of # on X as f