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Abstract. Let S = (Sg)r>0 be a random walk on Z and & = (§;); ¢z, a stationary random sequence of centered random variables,
independent of S. We consider a random walk in random scenery that is the sequence of random variables (Uy);>(, where

n
Up=) &s. neN.
k=0

Under a weak dependence assumption on the scenery & we prove a functional limit theorem generalizing Kesten and Spitzer’s
[Z. Wahrsch. Verw. Gebiete 50 (1979) 5-25] theorem.

Résumé. Soit S = (Si)r>0 une marche aléatoire sur Z et £ = (§;);cz une suite stationnaire de variables aléatoires centrées,
indépendante de S. Nous considérons une marche aléatoire en scéne al€atoire définie par la suite de variables al€atoires (Uy),>0 =
(ZZ:O &s,)n>0- Sous une hypothese de dépendance faible portant sur la scéne &, nous montrons un théoreme de la limite centrale
fonctionnel généralisant le théoreme de Kesten et Spitzer [Z. Wahrsch. Verw. Gebiete 50 (1979) 5-25].

MSC: Primary 60F05; 60G50; 62D05; secondary 37C30; 37E05
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1. Introduction

Let X = (X;);>1 be a sequence of independent and identically distributed random vectors with values in Z4 . We write
n
So=0.  Sy=» X; forn>1,
i=1

for the Z¢-random walk S = (S,),en generated by the family X. Let & = (&x)yeza be a family of real random
variables, independent of S. The sequence & plays the role of the random scenery. The random walk in random
scenery (RWRS) is the process defined by

n
Uy=) &, neN.
k=0
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RWRS was first introduced in dimension one by Kesten and Spitzer [19] and Borodin [5,6] in order to construct
new self-similar stochastic processes. Functional limit theorems for RWRS were obtained under the assumption that
the random variables &,, x € 74, are independent and identically distributed. For d = 1, Kesten and Spitzer [19]
proved that when X and & belong to the domains of attraction of different stable laws of indices 1 < o <2 and
0 < B <2, respectively, then there exists § > % such that (n=° Uini))i=0 converges weakly as n — oo to a self-similar
process with stationary increments, § being related to o and B by § =1 —a~! + (@f)~". The case 0 < « < 1 and
B arbitrary is easier; they showed then that (n’l/ B Upn))i=0 converges weakly, as n — oo, to a stable process with
index S. Bolthausen [4] gave a method to solve the case « = 1 and = 2 and especially, he proved that when (S;,),eN
is a recurrent Z2-random walk, ((n log n)~Y 2U[,,,]),Zo satisfies a functional central limit theorem. For an arbitrary
transient Z¢-random walk, n~'/2U,, is asymptotically normal (see Spitzer [27], p. 53). Maejima [23] generalized the
result of Kesten and Spitzer [19] to the case where (&) ez are i.i.d. R?-valued random variables which belong to the
domain of attraction of an operator stable random vector with exponent B. If we denote by D the linear operator on
R? defined by D=(1- é)[ + éB, he proved that (n=P Ulni1) >0 converges weakly to an operator self similar with
exponent D and having stationary increments.

One-dimensional random walks in random scenery recently arose in the study of random walks evolving on ori-
ented versions of Z? (see Guillotin-Plantard and Le Ny [15,16]) as well as in the context of charged polymers (see
Chen and Khoshnevisan [8]). The understanding of these models in the case where the orientations or the charges
are not independently distributed requires functional limit theorems for Z-random walk in correlated random scenery.
To our knowledge, only the case of strongly correlated stationary random sceneries has been studied by Lang and
Xanh [21]. In their paper, the increments of the random walk S are assumed to belong to the domain of attraction of a
non-degenerate stable law of index o, 0 < o < 2. They further suppose that the scenery & satisfies the non-central limit
theorem of Dobrushin and Major [12] with a scaling factor n=4+#%/2 Bk < d. Under the assumption Bk < o, it is
proved that (n~!TAk/ G0y, mt])r>0 converges weakly as n — 4-00 to a self-similar process with stationary increments,
which can be represented as a multiple Wiener—It6 integral of a random function. Our aim is to study the intermediary
case of a stationary random scenery & which satisfies a weak dependence condition introduced in Dedecker et al. [11]
and to prove Kesten and Spitzer’s theorem under this new assumption. In Guillotin-Plantard and Prieur [17] the case
of a transient Z-random walk was considered and a central limit theorem for the sequence (U,),en Was proved. In
this paper the one-dimensional random walk will be assumed to be recurrent.

Our paper is organized as follows: In Section 2, we introduce the dependence setting under which we work in the
sequel. In Section 3 we introduce in details our model and give the main result. In Section 4 properties of the local
time of the random walk are given as well as the ones of the intersection local time. Models for which we can compute
bounds for our dependence coefficients are presented in Section 5. Finally, the proof of our theorem is given in the
last section.

2. Weak dependence conditions

In this section, we recall the definition of the dependence coefficients which we will use in the sequel. They have first
been introduced in Dedecker et al. [11]. Our weak dependence condition will be less restrictive than the mixing one.
The reader interested in this question would find more details in Guillotin-Plantard and Prieur [17].

On the Euclidean space R, we define the metric

m
dy(x.y) = |xi — yil.

i=1
Let A = J, e+ Am» Where A, is the set of Lipschitz functions f:R™ — R with respect to the metric d;. If f €
A, we denote by Lip(f) := sup,, W the Lipschitz modulus of f. The set of functions f € A such that
Lip(f) < 1 is denoted by A.

Definition 2.1. Let & be a R™-valued random variable defined on a probability space (§2, A, P), assumed to be square
integrable. For any o -algebra M of A, we define the 0>-dependence coefficient

02(M., &) = sup{|E(f E)IM) —E(f(©)],. f € A}. 2.1
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Here, | X |2 = [E(X?)]"/2 denotes the norm in L*.
We now define the coefficient i » for a sequence of o -algebras and a sequence of R-valued random variables.

Definition 2.2. Let (§;)icz be a sequence of square integrable random variables valued in R. Let (M;);cz be a
sequence of o-algebras of A. For any k € N* U {oo} and n € N, we define

1 . .
Ok,2(n) = [max - sup{2(M, (§j,..... &) p+n<ji<--<ji}

and

02(n) = 0oo,2(n) = sup Or2(n).
keN*

Definition 2.3. Let (§;)icz be a sequence of square integrable random variables valued in R. Let (M;);cz be a
sequence of o-algebras of A. The sequence (§;)icz, is said to be 6y-weakly dependent with respect to (M;);cy, if
02 (n) —>p—+00 0.

Remark. Replacing the || - ||2 norm in (2.1) by the || - ||| norm, we get the 6 dependence coefficient first introduced
by Doukhan and Louhichi [14].

3. Model and results

Let S = (Sk)k>0 be a Z-random walk (So = 0) whose increments (X;);>; are centered and square integrable. We
denote by Py, the law of the random variable X;. For any ¢ € N* such that P(X; € [—¢, ¢]) is non zero, we define
the probability measure on Z

__ Pxiliqaq
17 P(X) €[—q,q))

The random walk S is said to satisfy the property (P) if there exists ¢ € N* such that
{x €Z;3n, PY™ (x) > 0} = Z.

In particular, if there exists some ¢ € N* such that the random walk associated to P, is centered and aperiodic then §
satisfies the property (P). For instance, the simple random walk on Z verifies (P). Let £ = (§;);<z be a sequence of
centered real random variables. The sequences S and & are defined on a same probability space denoted by (£2, F, P)
and are assumed to be independent. We are interested in the asymptotic behaviour of the following sum

n
U, = ZES/( .
k=0

The case where the &;’s are independent and identically distributed random variables with positive variance has been
considered by Kesten and Spitzer [19] and Borodin [5,6]. They studied the weak convergence of the sequence of
stochastic processes

n Uy, 120,n>1,
where U is defined as the linear interpolation

Us=U,+ (s —n)(Uy+1 —U,) whenn<s<n-+1.
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Consider a standard Brownian motion (B;);>0, denote by (L;(x));>o its corresponding local time at x € R and intro-
duce a pair of independent Brownian motions (Z4(x), Z_(x)), x > 0 defined on the same probability space as (B;);>0
and independent of him. The following process is well-defined for all ¢ > 0:

A= f Li(0)dZy () + f Li(—x)dZ_(x). 3.1
0 0

It was proved by Kesten and Spitzer [19] that this process has a self-similar continuous version of 1ndex =, with

stationary increments. We denote by :> the convergence in the space of continuous functions C([0, 00), R) endowed
with the uniform topology.

Theorem 3.1 (Kesten and Spitzer [19]). Assume that the &;’s are independent and identically distributed with posi-
tive variance o> > 0. Then,

1 c
(W Unt) = (0 A1)>0. (3.2)
n >0

A simple proof of this theorem was proposed by Cadre [7], Section 2.5.a., using a weak limit theorem for stochastic
integrals (Theorem 1.1. in Kurtz and Protter [20]). Applying Cadre’s method, Theorem 3.1 can be extended to any
scenery given by a stationary and ergodic sequence of square integrable martingale differences. Then, a natural idea
is to generalize the result to any stationary and ergodic sequence £ of square integrable random variables as it was
done for the central limit theorem. Under suitable assumptions on the sequence, for instance the convergence of the
series Z/?o:o E(&|Mp) in L2, the scenery £ is equal to a martingale differences sequence modulo a coboundary term
and satisfies a Donsker theorem. However, the RWRS associated to the coboundary term (if it is non zero) is not
negligible. It can be proved that the L.>-norm of this sum correctly normalized by n3/ converges to some positive
constant.

In order to weaken the assumptions on the field & we introduce a sequence (M;);cz of o-algebras of F defined by

Mi=0(§j,j§i), i €.
In the sequel, the dependence coefficients will be defined with respect to the sequence of o -algebras (M;);cz.

Theorem 3.2. Assume that the following conditions are satisfied:

(Ag) The random walk S satisfies the property (P).
(A1) & ={&}iez is a stationary sequence of square integrable random variables.
(A) 925 (+) is bounded above by a non-negative function g(-) such that:

o x> x3%g(x) is non-increasing,
e 0 <e<1,)2,2%2g(2%) < 0.

Then, as n tends to infinity,

1
(mum) 5 > Eo&)(Aniso. (3.3)
t>0

ieZ

Remark. Assumptions (A1) and (Az) imply that

VA€[0.1/2[. > |k|*|Eokr)| < +oo. (3.4)
keZ

Indeed, this sum is equal to

E(&) +2 ) kI*[EEo&)|

k=1
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and for any k > 1, from Cauchy—-Schwarz inequality, we get
|E(€0&0)| = [E(50E(E|Mo))|
< 5011265 (k)
=< llSoll2g (k).
The result (3.4) follows by remarking that
o o 1
D le) =g} 55y
k=1 k=1

which is finite for every A € [0, 1/2[.

Remark. If6‘§ (n) = O(m~?) for some positive a, condition (Ay) holds for a > 3/2.

4. Properties of the occupation times of the random walk

The random walk S = (Sk)x>0 is defined as in the previous section and is assumed to verify the property (P). The
local time of the random walk is defined for every i € Z by

n
Nal) =) 1s,=i).
k=0

The local time of self-intersection at point i of the random walk (S,),>0 is defined by

n
a(n,i)= Z 15, —s5,=i}-

k,1=0

The stochastic properties of the sequences (N, (i))neN.icz and («(n,i))yeN,icz are well-known when the random
walk § is strongly aperiodic. A random walk who satisfies the property (P) is not strongly aperiodic in general.
However, a local limit theorem for the random walks satisfing (P) was proved by Cadre [7] (see Lemma 2.4.5, p. 70),
then it is not difficult to adapt the proofs of the strongly aperiodic case to our setting: for assertion (i) see Lemma 4 in
Kesten and Spitzer [19], for (ii)(a) see Lemma 3.1 in Dombry and Guillotin-Plantard [13]. Result (ii)(b) is obtained
from Lemma 6 in Kesten and Spitzer [19]; details are omitted. Assertion (iii) is an adaptation to dimension one of
Lemma 2.3.2 of Cadre’s [7] thesis.

Proposition 4.1. (i) The sequence n=3* max; ez N, (i) converges in probability to 0.

(i) (a) Forany p €[1, 400), there exists some constant C such that for alln > 1,
E(a(n,0)") < CnP/2,
(b) Foranym > 1, for any real 01, ...,60,, forany 0 <t <--- <t,, the sequence

m 2
n=? Z (Z Ok Ning) (i))

ieZ \k=1

converges in distribution to

m 2
/ (ZekL,km) dx,
R\x=1

where (L;(x)):>0:xeR is the local time of the real Brownian motion (B;):>0.
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(iii) For every A €]0, 1[, there exists a constant C such that for any i, j € Z,

lecn, i)y —an, j)|, < CnCP72)i — j .

5. Examples

In this section, we present examples for which we can compute upper bounds for 8, (n) for any n > 1. We refer to
Chapter 3 in Dedecker et al. [11] and references therein for more details.

5.1. Example 1: Causal functions of stationary sequences

Let (E, £, Q) be a probability space. Let (¢;);cz be a stationary sequence of random variables with values in a
measurable space S. Assume that there exists a real valued function H defined on a subset of SV, such that
H(go,e-1,&-2,...) is defined almost surely. The stationary sequence (&,),cz defined by &, = H (¢, €n—1, En—2,...)
is called a causal function of (&;);cz.

Assume that there exists a stationary sequence (8;),-62 distributed as (&;);ez and independent of (g;);<o. Define
Ex=H(e,.€,_y,€,_,,...). Clearly, £ is independent of Mo = o (&, i < 0) and distributed as &,. Let (82(i))i~0 be
a non increasing sequence such that

|E(|& — & [IMo) |, < 8200 5.1)
Then the coefficient 6, of the sequence (&,),>0 satisfies
02(i) < 82(0). (5.2)

Let us consider the particular case where the sequence of innovations (&;);cz is absolutely regular in the sense of
Volkonskii and Rozanov [26]. Then, according to Theorem 4.4.7 in Berbee [2], if E is rich enough, there exists
(slf )iez distributed as (¢;);cz and independent of (g;); <o such that

, 1
Q(ei # & for some i > k|Fp) = 5 1Qe1 7 — Qe

where &, = (&, €k+1,---), Fo=0(gi,i <0) and || - ||, is the variation norm. In particular if the sequence (&;);cz is
idependent and identically distributed, it suffices to take &/ =¢; for i > 0 and &, — &/’ for i <0, where (¢/);cz is an
independent copy of (&;);cz.

Application to causal linear processes
In that case, §, = ) _ ;- a;én—j, Where (a;) j>0 is a sequence of real numbers. We can choose

i—1
826) = leo — gl D lajl+ Y lajl|ei-j —ei_; .

j=i j=0
From Proposition 2.3 in Merlevede and Peligrad [24], we obtain that

Blo(ex,k=0),0 (¢x.k=i—j))

1/2
Q?O(u)> du,

i—1
82(i) < ||80_86||2Z|aj|+Z|aj|<22/o
j=0

Jj=i

where Qg is the generalized inverse of the tail function x = Q(|gg| > x).
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5.2. Example 2: Iterated random functions

Let (£,),>0 be a real valued stationary Markov chain, such that &, = F(§,—1, &,) for some measurable function F
and some independent and identically distributed sequence (¢;);~ independent of &j. Let ff)k be a random variable
distributed as &y and independent of (&, (¢;);>0). Define & = F (5:_1,8,,). The sequence (£),>0 is distributed as
(62)n>0 and independent of &y. Let M; = o (£;,0 < j <i). As in Example 1, define the sequence (85(i));~0 by (5.1).
The coefficient 6, of the sequence (§,),>0 satisfies the bound (5.2) of Example 1.

Let 11 be the distribution of &y and (§;/),>0 be the chain starting from &7 = x. With these notations, we can choose
82 (i) such that

1/2
62(i>z||si—s,»*||2=< / f ||é;‘—sf||§u<dxm<dy>) :

For instance, if there exists a sequence (d2(i));>o of positive numbers such that
|6 =&, = d2)1x =y,

then we can take §>(i) = dr(i)||&0 — 55‘”2. For example, in the usual case where || F(x, €9) — F(y, €0)|l2 < «x|x — y|
for some k < 1, we can take da (i) = k.
An important example is &, = f(§,—1) + &, for some «-Lipschitz function f. If &y has a moment of order 2, then

82(1) < k" [1€0 — &7 ll2-
5.3. Example 3: Dynamical systems on [0, 1]

Let I =[0, 1], T be a map from [ to I and define X; = T!. If p is invariant by T, the sequence (X;);>o of random
variables from (7, i) to [ is strictly stationary.

For any finite measure v on /, we use the notations v(h) = f ; h(x)v(dx). For any finite signed measure v on /, let
[lv|l = |v|(I) be the total variation of v. Denote by || g||1, the LL'-norm with respect to the Lebesgue measure A on I.

Covariance inequalities
In many interesting cases, one can prove that, for any BV function & and any k in L' (1, 11),

|cov(h(X0), k(X))| < an||k(Xn) ||, (121112 + IdR]), (53)

for some nonincreasing sequence a, tending to zero as n tends to infinity.

Spectral gap
Define the operator £ from LY(I, ») to LY(1, ) via the equality

1 1
/ L) (x)k(x)dr(x) = / h(x)(koT)(x)dA(x), whereh e ILI(I, A)and k € L°°(1, A).
0 0

The operator L is called the Perron—Frobenius operator of 7. In many interesting cases, the spectral analysis of £ in
the Banach space of BV-functions equiped with the norm ||z||, = ||dh|| + || 2] 1., can be done by using the Theorem of
Ionescu-Tulcea and Marinescu (see Lasota and Yorke [22] and Hofbauer and Keller [18]). Assume that 1 is a simple
eigenvalue of £ and that the rest of the spectrum is contained in a closed disk of radius strictly smaller than one. Then
there exists a unique 7 -invariant absolutely continuous probability u whose density f, is BV, and

L"(h) = 1(h) fu +¥"(h)  with [¥" ()|, < Kp" 1Al (54)

for some 0 < p < 1 and K > 0. Assume moreover that

1

I, = {f,, # 0} is an interval, and there exists y > 0 such that f,, > y~" on I,. (5.9
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Without loss of generality assume that I, = I (otherwise, take the restriction to I, in what follows). Define now the
Markov kernel associated to 7' by

L fih)(x)
P(h)(x) = === (>6)
fu (x)
It is easy to check (see for instance Barbour, Gerrard and Reinert [1]) that (X, X1, ..., X,;) has the same distribution
as (Yu, Yn—1, ..., Yo) where (Y;);>0 is a stationary Markov chain with invariant distribution x and transition kernel
P.Since || fglloo < 1f8llv < 2| fllvllgllv, we infer that, taking C =2Ky (||df , || + 1),
P"(h) = u(h) +gn  Wwith |Igallcc < Co" |2l (5.7

This estimate implies (5.3) with a, = Cp" (see Dedecker and Prieur [10]).

Expanding maps
Let ([ai, ai+10)1<i<n be a finite partition of [0, I[. We make the same assumptions on T as in Collet, Martinez and
Schmitt [9]:

1. Foreach 1 < j < N, the restriction 7; of T to laj, a1 is strictly monotonic and can be extented to a function
T/ belonging to C2([aj, aj1]).

2. Let I, be the set where (T")’ is defined. There exists A > 0 and s > 1 such that infyej, [(T") (x)| > As".

3. The map T is topologically mixing: for any two nonempty open sets U, V, there exists nog > 1 such that 77" (U) N
V # @ for all n > ng.

If T satisfies 1., 2. and 3., then (5.4) holds. Assume furthermore that (5.5) holds (see Morita [25] for sufficient
conditions). Then, arguing as in Example 4 in Section 7 of Dedecker and Prieur [10], we can prove that for the Markov
chain (¥;);>0 and the o-algebras M; = o (¥}, j <i), there exists a positive constant C such that 6,(i) < Cp'.

6. Proof of Theorem 3.2
6.1. Notations and preliminary technical lemmas

For any n € N and any i € Z, we denote by X}, ; the random variable N, (i)&; where N, (i) denotes the local time of
the random walk at site i.

We denote by G = o (Sk, k > 0) the o-algebra generated by the random walk S. For any real random variables
X,Y,and any r € R, we define

di(X,Y) = [E(e"¥|G) —E(e"|G)].

Let 1 be a random variable with standard normal distribution, independent of the random walk S. Let (X;);=1, ..,
random variables such that for i =1, ...,3, E(X;|G) =0 and E(Xl.2|g) is bounded. Let Y1, Y, be random variables
such that E(Y;|G) =0 and E(Yﬂg) is bounded for i = 1, 2. They are assumed to be independent conditionally to the
random walk. Let X be a real random variable and let r € R, we define

A((X) =d, (X, n,/E(X2|G)).

The following properties of d; and A; hold.

Lemma 6.1 (Lemma 4.3 in Utev [28]).

2
A(X1) < g|z|3IE(|X1|3|g),

Ay (Y1 +12) <A (Y1) + A (Y2),
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r? 2 2 2101\ 1/2
di(X2+ X3,X2) < E(E(Xﬂg) + (E(X2|Q)E(X3|g)) ),
t2
Va,beR, d;(na,nb) < E|a2 —b?|.
The following lemma is a variation on Lemma 1.2. in Utev [28]; the proof is omitted.

Lemma 6.2. For every ¢ €10, 1[, denote 8, = (1 — £ + 2¢) /2. Let a non-decreasing sequence of non-negative num-
bers a(n) be specified, such that there exist non-increasing sequences of non-negative numbers ¢(k), y (k) and a
sequence of naturals T (k), satisfying conditions

T (k) <27 (k + [£*]),
a(k) < kfiilﬁk(a(ns)) +y(s))

or any k > ko with an arbitrary ky € N*. Then
for any ry

am) <amo)+2 Y y(2)

ko<2i<n

2-5,
=3, "

for any n > kg, where one can take ny = 2¢ with ¢ >

For any M > 0, we define the functions

JR—R,
PN s o () = (x A M)V (—M)
and
M . R—)R,
7  x oM ) =x — pm(x).

Let (¢,)n>1 be a sequence of positive numbers tending to 0 as n goes to infinity. For any n € N and any i € Z, we
denote by Z, ; the random variable

De,n3i4 (Xn.i) = B(@g, 34 (Xn.)|G).

The next lemma will be a key point in the proof of Theorem 3.2.

Lemma 6.3. Let O < & < 1. There exists some positive constant C(g) such that for all a € Z, for all v € N*,

a+v
A (n3/4 > z,,,,)

i=a+1
is bounded by
atv a+v
C(e)<|t|3h2/8n9/4 > E(|zn,,-|3|g)+r2<h<€”/2+ > 23]/2g(2]8)>n3/2 > Nn(i)z),
i=a+1 jishl/e i=a+1

where h is an arbitrary positive natural number and g is the function introduced in assumption (Az) of Theorem 3.2.

Proof. Let 7 € N*. Let 0 < ¢ < 1. In the following, C, C(¢) denote constants which may vary from line to line. Let
k¢ be a positive constant greater than 1 which will be precised further.
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Case 1: v < kchl/e.
By Lemma 6.1, we have

a+v 2|t|3 a+v 3
A, (n3/4 Z Zn,i) < 3n9/4E< Z Zn,i ’g>
i=a+1 i=a+1
a+v
< ok PR Y E(1Z0il16) 6.1)
i=a+l1

since |x|? is a convex function.
Case 2: v > Kk.h'/¢,
Without loss of generality, assume that a = 0. Let 8, = (1 — &2 4 2¢) /2. Define then

m = [v°], B:{ueN: 271(v—[v‘39])§um§271v},

(u+1)m v
A=3ueN: 0<u<v, Z Nn(i)zf(m/v)szf\]n(i)2 .
i=um+1 i=1

Following Utev [28] we prove that, for 0 < & < 1, AN B is not wide for v greater than k.. We have indeed

i i (1—¢%)/2 3
|ANB|=|B|—[ANB|>|B|— [A] > —— (1 — 4y~ (=9%2) _ 2
2 2

where A denotes the complementary of the set A. We can find «, large enough so that |A N B| be positive.
Let u € AN B. We start from the following simple identity

v
0=n"Y"7,,
i=1

um (u+1)m v
= n_3/4zzn,i +I’l_3/4 Z Zn,i +I’l_3/4 Z Zn,i
i=1 i=um+1 i=(u+1)m+1
=01+ 02+ 0s. (6.2)

For any fixed n > 0, and any i € Z such that N, (i) # 0, define

Wyi= (P.s,,n3/4/1vn(i)(§i) - E(%nn3/4/Nn(i)(§i)|g)~

If Ny(i) =0, let W, ; =0. As for any fixed n > 0, i € Z, the function

X Qo N (i) (%) — E(@,0, /N, ) (ED1G)

is 1-Lipschitz, we have for any fixed path of the random walk, for all/ > 1, for all k > 1,
Won
65" (1) < 6 5D,

where W. , = (W,,;)icz and § = (§;);cz. We now claim that for any fixed n, any a, b € N,

b 2 b
E((Z Zn,,) \g> <CY NG 63)
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with C = 2E(€§) + 2«/§]E(§§)1/ 2 Zfil 012(1) which is finite from assumptions (A1) and (A). Indeed, remark that
Zn,i =N, (i)Wn,i’ then

() ) -={ (o) )

b b
=Y NEWIG)+D . D Na@ONu(DEWoi Wy j1G)

i=a jela,...,b}; j#i
b b
<Y Na@DE(W;1G) + D Na()* D [E(WaiWaj19)]
i=a i=a jefa,....b}; j#i

by remarking that N, (i) N, (j) < 3(N2 (D)% + Ny (j)?).
Then for any j > i, using Cauchy—Schwarz inequality, we obtain that

[E (W, Wa 19| = [E(W,  E(W,, ;| M)IG)|
< E(W2,16) PE(EW,,;1M)219)"
<E(W119)"°0 ,(j = ).

By remarking that E(W}ii 1G) < ]E(éoz) (since |@pr(x)| < |x]| for any real x), we deduce inequality (6.3).
By Lemma 6.1,

2
d(Q, 014 03) =d(Q,0 — 02) < %(E(Qag) +E(0316) " E(0%16)'?). (6.4)
Using (6.4) and (6.3), we get
d(Q, Q1+ Q3) < CrroC V232N "N, (i), (6.5)

i=1
Now, given the random variables Q1 and Q3, we define two random variables g; and g3z which are assumed indepen-
dent conditionally to the random walk S such that conditionally to the random walk, the distribution of g; coincides
with that of Q;,i =1, 3. We have
di(Q1+ 03,81 +83)
= [B((E? = 1) - 1)i6) ~E(" - 1G)EE - 110)

<E(]e"? — 1*16) *E(|E(e" 2 — 1 — E(e"2* — 11G)| Mum; G)|'16)

um 2 12 v
> Zy \g) v|z|n—3/4< > Nn<i)>e§(m+1)

< 2|t|n_3/4IE<
i=1 i=(u+Dm+1

i=1

by (6.3), Definition 2.2 and assumption (A;) of Theorem 3.2. Hence,

di(Q1+ 03,81+ g3) < CL2f)n™ 2> N, (i)?, (6.6)

i=1
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where f(v) = v3/2g(v?) is non-increasing by assumption (A;) of Theorem 3.2.
We also have by Lemma 6.1

Ai(g1+83) < Ai(g1) + Ai(83). (6.7)

Finally, still by Lemma 6.1, and using Definition 2.2, we have

di (my/E(Q216). n\/E((s1 + £3)216))

2
< %IE(Qzlg) —E((¢1+£)°19)| 6.8)

2

< %|E(Q%|g) +2E(010210) + 2E(02031G) + 2E(Q1 03(0)]

<CrP R 4 f@)n Y TN (6.9)

i=1

Since we have
A (n‘”“ > Zn,,») = Ai(Q)
i=1

<di(Q, Q1+ Q3) +di(Q1+ 03, 81+ 83) + As(g1 + g3) + di (g1 + &3, 1,/ E(Q2IG))

by combining (6.5)-(6.8), we get the following recurrent inequality:

v um v
A,(n—»*/‘*zz,,,,»)sA,(n—3/4zzn,i)+A,(n—3/4 3 z)
i=1

i=1 i=(u+Dm+1

v
+CP V2 4 f @)Y N ()
i=l

for v > i h/8 > k..
We now apply Lemma 6.2 with:

o ko=uwch'/?,
o for k > ko, T (k) = max{ugmy, k — ugmy — my} where u; and my are defined from k as u and m from v (see the
proof of A N B not wide),

c< 111:1((’(28)) (we may need to enlarge k),

for s > ko, y(s) = Ct>(s¢€=1/2 1 £(s)),
o fors > ko,

At(”_3/4 le-:.l-;-l Zn,j)
a(s) =sup max iE :
lezkoflSS I’l73/2 Zj=l+1 Nn(.])z

Applying Lemma 6.2 yields the statement of Lemma 6.3. (]

6.2. Proof of Theorem 3.2

The proof of Theorem 3.2 is decomposed in two parts: first, we prove the convergence of the finite-dimensional
distributions of the process (n=3/2 Upn)) =0, then its tightness in the space C([0, 4+-o0]).
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Proof of the convergence of the finite-dimensional distributions
Since the random variable U,, can be rewritten as the sum

D Xui=Y Na(D&,

i€Z i€Z
it is enough to prove that for every m > 1, for any real 01, ...,0,,, forany 0 <t; <t <--- <t,, the sequence
1 & 1 m
573 20U = —3 ) (Z ekNmk(i)>si
k=1 ieZ \k=1

converges in distribution to the random variable

[D_EGos) ) be Ay
i€Z k=1

Remark that (U — Uppey| < 185,001 € L2, so it is enough to consider the convergence in distribution of the linear
combination n—3/4 Z',:’zl Ok Ulns,) for any real 6y, ...,0,, forany 0 <ty <t <--- <t,. We only prove the conver-
gence of one-dimensional distributions. The general case is obtained by replacing N, (i) by the linear combination
> 0k Nng, 1 (i) in the computations.

We first prove the following Lindeberg condition: for any ¢ > 0,

0323 B0 (X)) —> 0. (6.10)

n——+00
ieZ

Proof of the Lindeberg condition (6.10)
We have, for ¢ > 0 fixed, for n large enough,

w23 E((0 (X)) 16)
i€z

2 a(n,0)
< E (S0 L1 ensst/max, 5, 119) — 57 =2 Uieam).

Let n > 0. We decompose the expectation of Uj (e, n) as the sum of

) 2 a(n, 0)
Uri(e,n) = ]E<1{n3/4 max; N, (72 B (80 Lol en¥4/max; N, (50119) = 572

and

a(n,0)
Uia(e,n) = ]E<1{n3/4 max No (1)< B (60 110/ en3/4/ max; 3, (i1119) A )
Using (ii)(a) of Proposition 4.1, Uj 2 (¢, n) is bounded by

CE(&5 11jz0|>¢/m))-

From assumption (A;) of Theorem 3.2, for any « > 0, there exists 7y > 0 such that the above term is less than « /2
for any n < nyp.
We now fix n equal to 19. Using Cauchy—Schwarz inequality,

12 (a(n,0)2\"/?
Ul,l(e,msE(&&)P(n—”“m?an(j)zno) E( (n3)) :



Limit theorem for random walk 1191

From assumption (A1) of Theorem 3.2, (i) and (ii)(a) of Proposition 4.1, it follows that U; (e, n) < /2 for n large
enough, then (6.10) is proved.

Since ¢ — E(U| (¢, n)) is decreasing, we can find a sequence of positive numbers (&,),>1 such thate, — ;4 0,
and

E(U] (8n,n)) — 0. (6.11)

n——+o0o

Let us now prove that it implies

2
n3/2E<<Z¢8n"3“(xn,,~)—E(¢8"”3’4(Xn,i)|g)> ) — 0. (6.12)

n——+00
i€eZ

Proof of (6.12)
For any fixed n > 0, and any i € Z such that N, (i) # 0, define

Vi =90 (&) — (o7 M0 )[G).
If Ny(i) =0, let V,, ; = 0. As for any fixed n > 0 and any i € Z, the function

x > @fnm N (1)
is 1-Lipschitz, we have for any fixed path of the random walk, for all / > 1, for all k > 1,

Vin

6,5 (1) < 6; 5 (),

where V., = (Vyi)iez and § = (§)iez.
2
E((Z Nr,(j)w,j) \g)
JEL

=Y NaEWVIG) + Y D Na@Na(DEVp,i Vi, j1G)

JEL i€Z jeZ;j#i

<Y NGYE(VZIG) + Y Na)? Y [E(ViiVi j10)]

JEZ i€’ JEL; j#i

by remarking that N, ()N, (j) < 3(Nu (@) + Nu(j)?).
Then for any j > i, using Cauchy—Schwarz inequality, we obtain that

[E(Vi,i Vi, j19)| = [E(VaiE(V, ;IMDIG)|

<E(V2,16) PE(EV,,;IM)2IG) "

172 ..
= IE(V,%”Q) / 915,2(1 —0).

Moreover, as Ny, (i) Vi = " (X)) — E(@"" (X,,.))1G), we get

2
n—3/2]E<<Z (pEnn3/4 (Xn.i) — ]E((psnn3/4 (Xn,,-)|g)> ) < IE(C,, (%)), (6.13)

i€z

with C,, = supieZ(E(Vfi|g)) + 2\/supl-€Z(IE(Vn2i 1G)) Zfil 9152(1). It remains to prove that the right hand term in
(6.13) converges to 0 as n goes to infinity.
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We have, for n large enough,
2 2
E(V,ril9) <EE g 156,034 max; N, (0119)- (6.14)

so using Cauchy—Schwarz inequality,

P o 0 1/2
E(C(%» <E(Ui(en. n)) +2<29f,2a>>E(U1(smn))”zE(ar(g/z )> ’

=1

which tends to 0 from (ii)(a) of Proposition 4.1, assumption (A3) from Theorem 3.2 and (6.11). Then, (6.12) is proved.
From (6.12), we conclude that to prove the convergence of the finite-dimensional distributions, it is enough to prove
it for the truncated sequence (Z, ;),>0,icz, that is to show that

n3—1/4 %Z‘, Zni = ;E(i"OSk)AI- (6.15)
Let us decompose

(el 1/ Xien Zur) — (el D BRI A (6.16)
asthe sumof I;(n),i =1, ...,4, where

Ii(n) = E(ei’(l/”3/4) LienZni) — E(e—(lz/(2”3/2))]E((Z,'EZ Zn,,-)zwg))
L(n) = E(e—(fz/(2’13/2))E((ZiEZ zn.i>2|g>) _ E(e—<t2/<2n3/2))ﬂ<:((2,»€Z X,,,l-)2|g))
I(n) = E(e—(lz/(2n3/2))E((Ziez Xn.,-)2|g>) _ E(e—(t2/<2n3/2>) Yijez Nn<i>21E(s,-§/))

L(n)=F e*(zZ/(an/Z))Zi_jGZ Nn(i)ZJE(E,-Sj)) _ E(ei"/Zk E(Eoék)m).
To prove (6.15), it is enough to prove that forany i =1, ...,4, I;(n) goes to 0 as n — +o0.

Estimation of I (n). Let us denote by M,, the random variable maxx—o, ... , |Sx|. From Lemma 6.3, we have

M,
|Il(n)|§E(At(n_3/4 > Zn,,-))5C(t,e)<h2/€n—9/4ZE(|zn,,-|3)+5(h)>
i=—M,

i€z

with §(h) = (hC™D2 4 37 1 25928 (2T E(2%2).
Hence, using assumption (A,) from Theorem 3.2 and (ii)(a) from Proposition 4.1, we get §(h) —> 4+ O.
On the other hand, from assumption (A1) of Theorem 3.2, there exists a constant C > 0 such that

nY EB(1Zil) < CsnlE<M> (6.17)

3/2
n
i€z

which tends to zero as n tends to infinity, using (ii)(a) from Proposition 4.1 and the fact that &, —,_, 1 0. Conse-
quently,

inf <h2/8 > E(1ZuiP) + 6(h)> —>n—+00 0.

h>1 £
i€eZ
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Estimation of I(n). Using that for any x, y >0, [e™ —e™| < |x — y| and the fact that

Zoi = Xni — [0 (X00) = E(0""" (X,.0)16)],

we deduce that

2
|Ln)| < gog”n (an)— (8nn3/4(Xn,i)|g)
3/2

i€z

2\ 1/2 34 2\ 1/2
E((Z Xn,i) ) E((Z <Pg"n (Xn,i) - ( enn’ (Xn l)lg)> ) i|
i€l i€Z

Since we have

2
E((an,,) ) = Y E(Na()Na())EGEE))
i€Z

i,JEZL

=Y E(a(n,i) —an,0)E&E) + E(a, 0) Y Ek)
ieZ ieZ

< Cn3/2

by combining (ii)(a)—(iii) of Proposition 4.1 and (3.4). Then, from (6.12), we deduce that I,(n) converges to 0.

Estimation of I3(n). 'We have
2
|I3(m)| < 3372 ZE(|01(71, i) —a(n,0)|)|EE&)| =o(1)
i€Z
by combining (iii) of Proposition 4.1 and (3.4).
Estimation of 14(n). From (ii)(b) of Proposition 4.1, we know that the sequence

E(e—<z2/<2n3/2)> Yijez Nn(iﬂIE(sis,-))

onverges to E(e™ /2 Lier B0k [ Lz(x)dx) which is equal to the characteristic function of the random variable

V2 ier BGo&) A

Proof of the tightness
By Theorem 12.3 of Billingsley [3], it is enough to prove that there exists K > 0 such that for all #1,7, € [0, T], T <
00, s.t.t; <t, forallm>1,

E(|Uni, — Ui, 1?) < Kn*? |1 — 1132, (6.18)

Since ab < (a2 + bz)/2 for any real a, b, we have

E(|Unty, — Unty ?) < 3 [EGo&D| D" E((Nuty () — Naty ())°)

i€eZ JEZL
= CE(a(lnt] — [n111,0)) < Cn/2|ty — 11/

using (3.4), the Markov property for the random walk § and (ii)(a) of Proposition 4.1.
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