
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2011, Vol. 47, No. 1, 75–79
DOI: 10.1214/09-AIHP352
© Association des Publications de l’Institut Henri Poincaré, 2011

The triangle and the open triangle
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Abstract. We show that for percolation on any transitive graph, the triangle condition implies the open triangle condition.

Résumé. Nous montrons que dans le cas de la percolation sur un graphe transitif la “condition du triangle” est équivalente à celle
du “triangle ouvert”.
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1. Introduction

Let G be a vertex-transitive1 connected graph, and let p be some number in [0,1]. We say that p-percolation on G

satisfies the triangle condition if for some v ∈ G∑
x,y∈G

P(v ↔ x)P(x ↔ y)P(y ↔ v) < ∞, (1)

where x ↔ y implies that there exists an open path between x and y. Here and below we abuse notations by denoting
“v is a vertex of G” by v ∈ G. Of course, by transitivity, the sum is in fact independent of v. This note is far too short
to explain the importance of the triangle condition. Suffices to say that it the triangle condition holds at the critical p,
then many exponents take their mean-field values. See [1,2,11,12] for corollaries of the triangle condition. On the
other hand, the triangle condition holds in many interesting cases, see [7,9] for the graphs Z

d with d sufficiently large,
and [10,13] for various other transitive graphs. See also the related [14]. See [5] or [3] for a general introduction to
percolation.

In many applications the triangle condition (1) is not so convenient to use. One instead uses the open triangle
condition, which states that

lim
w→∞

∑
x,y∈G

P(v ↔ x)P(x ↔ y)P(y ↔ w) = 0,

where here and below the limit means that d(v,w) → ∞ where d(v,w) is the graph (or shortest path) distance.
Clearly, the open triangle condition implies the (closed) triangle condition (recall that if y and y′ are neighbors in the
graph then P(x ↔ y) ≥ cP(x ↔ y′) for some constant c independent of x, y and y′). The contents of Lemma 2.1 of
Barsky and Aizenman [2] is the reverse implication. The proof in [2] is specific to the graph Z

d as it uses the Fourier

1A vertex-transitive graph, and any other notion not specifically defined, may be found in Wikipedia.
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transform of the function f (x) = P(�0 ↔ x). The purpose of this note is to generalize this to any transitive graph,
namely

Theorem. Let G be a vertex-transitive graph and let p ∈ [0,1]. Assume G satisfies the triangle condition at p.
Then G satisfies the open triangle condition at p.

This result is not particularly important. For example, in [13] the author simply circumvents the problem by work-
ing directly with the open triangle condition. The advantage of making the triangle condition “the” marker for mean-
field behavior is mostly aesthetic. The real reason for the existance of this note is to demonstrate an application of
operator theory, specifically of spectral theory, to percolation. Operator theory has enchanced the research of random
walk significantly ([8] is a personal favorite), and one might hope that by analogy it would do the same for percolation,
but this has yet to happen. I aim to remedy this situation, even if by very little.

I wish to thank Asaf Nachmias and Markus Heydenreich for pointing out some omissions in draft versions of the
paper, and Michael Aizenman for an intersting discussion of alternative proof approaches.

2. The proof

Before starting the proof proper, let us make a short heuristic argument. Define the infinite matrix

B(v,w) = P(v ↔ w), (2)

where in the notation we assume that v ↔ v always so B(v, v) = 1. By [1] B , considered as an (unbounded) operator
on l2(G) is a positive operator. Hence the same holds for

Q(v,w) =
∑
x,y

B(v, x)B(x, y)B(y,w) (3)

which is just B3 (as an infinite matrix or as an unbounded operator). It is possible to take the square root of any
positive operator, so denote S = √

Q. We get

Q(v,w) = 〈Q1v,1w〉 = 〈S1v, S1w〉,
where 1v is the element of l2(G) defined by

1v(x) =
{

1, v = x,
0, v �= x.

Hence the triangle condition Q(v,v) < ∞ implies that ‖Sv‖ < ∞. But S is invariant to the automorphisms of G

(as a root of Q which is invariant to them) so S1w is a map of S1v under an automorphism ϕ taking v to w. But
any vector in l2 is almost orthogonal to sufficiently far away “translations” (namely, the automorphisms of G), so
〈S1v, S1w〉 → 0 as the graph distance of v and w goes to ∞, as required.

Why is this even a heuristic and not a full proof? Because of the benign looking expression 〈Q1v,1w〉 which is
in fact meaningless. Q is an unbounded operator and hence it cannot be applied to any vector in l2(G), and there is
nothing guaranteeing that 1v will be in its domain. For example, in a sufficiently spread-out lattice in R

d one has that
P(x ↔ y) ≈ |x − y|2−d [6] which gives with a simple calculation that the triangle condition holds whenever d > 6
while Q1v ∈ l2 only when d > 12.

The proof below circumvents this problem by decomposing B into a sum of positive bounded operators using
specific properties of B . Somebody more versed in the theory of unbounded operators might have constructed a more
direct proof.

We start the proof proper with

Definition. Let ϕ be an automorphism of the graph G. We define the isometry Φ = Φϕ of l2(G) corresponding to ϕ

by (
Φ(f )

)
(v) = f

(
ϕ−1(v)

)
. (4)



The triangle and the open triangle 77

It is easy to check that Φ1v = 1ϕ(v) and that the support of Φf is ϕ(the support of f ).

Lemma. Let f ∈ l2(G), let v ∈ G and let δ > 0. Then there exists an R = R(f, δ, v) such that for any w such that
d(v,w) > R and any automorphism ϕ of G taking v to w one has∣∣〈Φϕf,f 〉∣∣ < δ. (5)

This lemma is standard and easy, but let us prove it nonetheless.

Proof of the Lemma. Let A ⊂ G be some finite set of vertices such that√∑
v /∈A

∣∣f (v)
∣∣2

<
1

3‖f ‖δ.

Write now

f = floc + fglob, where floc = f · 1A.

By the definition of A, ‖fglob‖ < 1
3‖f ‖δ, and so by Cauchy–Schwarz,

∣∣〈Φf,f 〉∣∣ ≤ ∣∣〈Φfloc, floc〉
∣∣ + 2‖fglob‖ · ‖floc‖ + ‖fglob‖2 <

∣∣〈Φfloc, floc〉
∣∣ + δ. (6)

Define now

R = 2 max
x∈A

d(v, x).

To see (5), let w and ϕ be as above. We get, for any x ∈ A,

d
(
ϕ(x), v

) ≥ d(v,w) − d
(
ϕ(x),w

)
.

Now, d(ϕ(x),w) = d(ϕ(x),ϕ(v)) = d(x, v) ≤ 1
2R because ϕ is an automorphism of G. Hence we get

d
(
ϕ(x), v

)
> R − 1

2
R

implying that ϕ(x) /∈ A as it is too far. In other words, A ∩ ϕ(A) = ∅ which implies that 〈Φϕfloc, floc〉 = 0. With (6),
the lemma is proved. �

Proof of the Theorem. We will not keep p in the notations as it does not change throughout the proof. For every
n ∈ N and every v,w ∈ G, let Bn(v,w) be defined by

Bn(v,w) = P
(
v ↔ w,

∣∣C(v)
∣∣ = n

)
,

where C(v) is the cluster of v i.e. the set of vertices connected to v by open paths, and |C(v)| is the number of vertices
in C(v). Clearly Bn(v,w) ≥ 0 and

B(v,w) =
∞∑

n=1

Bn(v,w), (7)

where B is as above (2). Therefore we may write

Q(v,w)
(3)=

∑
x,y

B(v, x)B(x, y)B(y,w)
(7)=

∑
x,y

B(v, x)

( ∞∑
n=1

Bn(x, y)

)
B(y,w)

=
∞∑

n=1

∑
x,y

B(v, x)Bn(x, y)B(y,w), (8)
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where the change of order of summation in the last equality is justified since all terms are positive. Now, the vector

B1w = (
B(y,w)

)
y∈G

is in l2(G) because∑
y

B(y,w)2 ≤
∑
y,x

B(w,y)B(y, x)B(x,w) < ∞.

Further, each Bn, considered as an operator on l2(G) is bounded, because the sum of the (absolute values of the)
entries in each row and each column is finite. From this we conclude that BnB1w ∈ l2(G) and we may present the
sum in (8) in an l2 notation as

Q(v,w) =
∞∑

n=1

〈BnB1v,B1w〉. (9)

Next we employ the argument of Aizenman and Newman [1] to show that Bn is a positive operator. This means that
Bn(v,w) = Bn(w,v) (which is obvious) and that 〈Bnf,f 〉 ≥ 0 for any (real-valued) f ∈ l2. It is enough to verify this
for f with finite support. But in this case we can write

〈Bnf,f 〉 =
∑
v,w

f (v)f (w)P
(
v ↔ w,

∣∣C(v)
∣∣ = n

) (∗)= E

(∑
v,w

f (v)f (w)1{v↔w,|C(v)|=n}
)

= E

( ∑
Cs.t.|C|=n

∑
v,w∈C

f (v)f (w)

)
= E

( ∑
Cs.t.|C|=n

(∑
v∈C

f (v)

)2)
≥ 0,

where (∗) is where we used the fact that f has finite support to justify taking the expectation out of the sum. The
notation 1E here is for the indicator of the event E. Thus Bn is positive.

We now apply the spectral theorem for bounded positive operators to take the square root of Bn. See [4],
Lemma 6.3.5 for the specific case of taking the root of a positive operator and Chapter 7 for general spectral the-
ory. Denote Sn = √

Bn. This implies, of course, that S2
n = Bn but also that Sn is positive and that it commutes with

any operator Φ that commutes with Bn.
Returning to (9) we now write

Q(v,w) =
∞∑

n=1

〈
S2

nB1v,B1w

〉 = ∞∑
n=1

〈SnB1v, SnB1w〉. (10)

The fact that Q(v,v) < ∞ therefore implies that

∞∑
n=1

‖SnB1v‖2 < ∞. (11)

Our only use of the triangle condition.
We now use the lemma, and we use it with

flemma = SnB1v, vlemma = v.

We get for every n,

lim
R→∞ max

{ϕ:d(v,ϕ(v))>R}
∣∣〈ΦϕSnB1v, SnB1v〉

∣∣ = 0. (12)
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Some standard abstract nonsense shows that the invariance of Bn to automorphisms of the graph i.e. the fact that
Bn(x, y) = Bn(ϕ(x),ϕ(y)) implies that BnΦ = ΦBn. Hence also SnΦ = ΦSn so

〈ΦSnB1v, SnB1v〉 = 〈SnBΦ1v, SnB1v〉 = 〈SnB1ϕ(v), SnB1v〉.
This allows to rewrite (12) as

lim
w→∞〈SnB1w,SnB1v〉 = 0.

This gives, using dominated convergence, that

lim
w→∞

∞∑
n=1

〈SnB1v, SnB1w〉 = 0.

We can use dominated convergence since

∞∑
n=1

∣∣〈SnB1v, SnB1w〉∣∣ ≤
∞∑

n=1

‖SnB1v‖ · ‖SnB1w‖ =
∞∑

n=1

‖SnB1v‖2 (11)
< ∞.

Since the sum is the same as Q(v,w) (recall (10)), the theorem is proved. �

Closing remark. Comparing the proof here to that of Barsky and Aizenman [2], it seems as if there is something
missing in their argument. This is not true. Justifying the change of order of summation in [2] is completely standard –
for example, by examining Cesàro sums – and does not deserve any special remark.
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