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Abstract. The aim of this paper is to build an estimate of an unknown density as a linear combination of functions of a dictionary.
Inspired by Candès and Tao’s approach, we propose a minimization of the �1-norm of the coefficients in the linear combination
under an adaptive Dantzig constraint coming from sharp concentration inequalities. This allows to consider a wide class of dictio-
naries. Under local or global structure assumptions, oracle inequalities are derived. These theoretical results are transposed to the
adaptive Lasso estimate naturally associated to our Dantzig procedure. Then, the issue of calibrating these procedures is studied
from both theoretical and practical points of view. Finally, a numerical study shows the significant improvement obtained by our
procedures when compared with other classical procedures.

Résumé. L’objectif de cet article est de construire un estimateur d’une densité inconnue comme combinaison linéaire de fonctions
d’un dictionnaire. Inspirés par l’approche de Candès et Tao, nous proposons une minimisation de la norme �1 des coefficients dans
la combinaison linéaire sous une contrainte de Dantzig adaptative issue d’inégalités de concentration précises. Ceci nous permet
de considérer une large classe de dictionnaires. Sous des hypothèses de structure locale ou globale, nous obtenons des inégalités
oracles. Ces résultats théoriques sont transposés à l’estimateur Lasso adaptatif naturellement associé à notre procédure de Dantzig.
Le problème de la calibration de ces procédures est alors étudié à la fois du point de vue théorique et du point de vue pratique.
Enfin, une étude numérique montre l’amélioration significative obtenue par notre procédure en comparaison d’autres procédures
plus classiques.
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1. Introduction

Various estimation procedures based on �1 penalization (exemplified by the Dantzig procedure in [13] and the LASSO
procedure in [28]) have extensively been studied recently. These procedures are computationally efficient as shown
in [17,24,25], and thus are adapted to high-dimensional data. They have been widely used in regression models, but
only the Lasso estimator has been studied in the density model (see [7,10,29]). Although we will mostly consider the
Dantzig estimator in the density model for which no result exists so far, we recall some of the classical results obtained
in different settings by procedures based on �1 penalization.
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The Dantzig selector has been introduced by Candès and Tao [13] in the linear regression model. More precisely,
given

Y = Aλ0 + ε,

where Y ∈ Rn, A is a n by M matrix, ε ∈ Rn is the noise vector and λ0 ∈ RM is the unknown regression parameter to
estimate, the Dantzig estimator is defined by

λ̂D = arg min
λ∈RM

‖λ‖�1 subject to
∥∥AT(Aλ − Y)

∥∥
�∞ ≤ η,

where ‖ · ‖�∞ is the sup-norm in RM , ‖ · ‖�1 is the �1 norm in RM , and η is a regularization parameter. A natural
companion of this estimator is the Lasso procedure or more precisely its relaxed form

λ̂L = arg min
λ∈RM

{
1

2
‖Aλ − Y‖2

�2
+ η‖λ‖�1

}
,

where η plays exactly the exact same role as for the Dantzig estimator. This �1 penalized method is also called basis
pursuit in signal processing (see [14,15]).

Candès and Tao [13] have obtained a bound for the �2 risk of the estimator λ̂D , with large probability, under a global
condition on the matrix A (the Restricted Isometry Property) and a sparsity assumption on λ0, even for M ≥ n. Bickel
et al. [3] have obtained oracle inequalities and bounds of the �p loss for both estimators under weaker assumptions.
Actually, Bickel et al. [3] deal with the nonparametric regression framework in which one observes

Yi = f (xi) + ei, i = 1, . . . , n,

where f is an unknown function while (xi)i=1,...,n are known design points and (ei)i=1,...,n is a noise vector. There
is no intrinsic matrix A in this problem but for any dictionary of functions Υ = (ϕm)m=1,...,M one can search f as a
weighted sum fλ of elements of Υ

fλ =
M∑

m=1

λmϕm

and introduce the matrix A = (ϕm(xi))i,m, which summarizes the information on the dictionary and on the design.
Notice that if there exists λ0 such that f = fλ0 then the model can be rewritten exactly as the classical linear model.
However, if it is not the case and if a model bias exists, the Dantzig and Lasso procedures can be after all applied
under similar assumptions on A. Oracle inequalities are obtained for which approximation theory plays an important
role in [3,8,9,29].

Let us also mention that in various settings, under various assumptions on the matrix A (or more precisely on
the associated Gram matrix G = ATA), properties of these estimators have been established for subset selection (see
[11,20,22,23,30,31]) and for prediction (see [3,19,20,23,32]).

1.1. Our goals and results

We consider in this paper the density estimation framework already studied for the Lasso estimate by Bunea et al. [7,
10] and van de Geer [29]. Namely, our goal is to estimate f0, an unknown density function, by using the observations of
an n-sample of variables X1, . . . ,Xn of density f0 with respect to a known measure dx on R. As in the nonparametric
regression setting, we introduce a dictionary of functions Υ = (ϕm)m=1,...,M , and search again estimates of f0 as
linear combinations fλ of the dictionary functions. We rely on the Gram matrix G associated with Υ , defined by
Gm,m′ = ∫

ϕm(x)ϕm′(x)dx, and on the empirical scalar products of f0 with ϕm

β̂m = 1

n

n∑
i=1

ϕm(Xi).
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The Dantzig estimate f̂ D is then obtained by minimizing ‖λ‖�1 over the set of parameters λ satisfying the adaptive
Dantzig constraint:

∀m ∈ {1, . . . ,M} ∣∣(Gλ)m − β̂m

∣∣ ≤ ηγ,m,

where for m ∈ {1, . . . ,M}, (Gλ)m is the scalar product of fλ with ϕm,

ηγ,m =
√

2σ̃ 2
mγ logM

n
+ 2‖ϕm‖∞γ logM

3n
,

σ̃ 2
m is a sharp estimate of the variance of β̂m and γ is a constant to be chosen. Section 2 gives precise definitions and

heuristics for using this constraint. We just mention here that ηγ,m comes from sharp concentration inequalities to give
tight constraints. Our idea is that if f0 can be decomposed on Υ as

f0 =
M∑

m=1

λ0,mϕm,

then we force the set of feasible parameters λ to contain λ0 with large probability and to be as small as possible.
Significant improvements in practice are expected.

Our goals in this paper are mainly twofold. First, we aim at establishing sharp oracle inequalities under very mild
assumptions on the dictionary. Our starting point is that most of the papers in the literature assume that the functions of
the dictionary are bounded by a constant independent of M and n, which constitutes a strong limitation, in particular
for dictionaries based on histograms or wavelets (see, for instance, [6–9,11,29]). Such assumptions on the functions
of Υ will not be considered in our paper. Likewise, our methodology does not rely on the knowledge of ‖f0‖∞
that can even be infinite (as noticed by Birgé [4] for the study of the integrated L2-risk, most of the papers in the
literature typically assume that the sup-norm of the unknown density is finite with a known or estimated bound for
this quantity). Finally, let us mention that, in contrast with what Bunea et al. [10] did, we obtain oracle inequalities
with leading constant 1, and furthermore these are established under much weaker assumptions on the dictionary than
in [10].

The second goal of this paper deals with the problem of calibrating the so-called Dantzig constant γ : how should
this constant be chosen to obtain good results in both theory and practice? Most of the time, for Lasso-type estimators,

the regularization parameter is of the form a

√
logM

n
with a a positive constant (see [3,6–8,12,20,23], for instance).

These results are obtained with large probability that depends on the tuning coefficient a. In practice, it is not simple
to calibrate the constant a. Unfortunately, most of the time, the theoretical choice of the regularization parameter is
not suitable for practical issues. This fact is true for Lasso-type estimates but also for many algorithms for which the
regularization parameter provided by the theory is often too conservative for practical purposes (see [18] who clearly
explains and illustrates this point for their thresholding procedure). So, one of the main goals of this paper is to fill
the gap between the optimal parameter choice provided by theoretical results on the one hand and by a simulation
study on the other hand. Only a few papers are devoted to this problem. In the model selection setting, the issue
of calibration has been addressed by Birgé and Massart [5] who considered �0-penalized estimators in a Gaussian
homoscedastic regression framework and showed that there exists a minimal penalty in the sense that taking smaller
penalties leads to inconsistent estimation procedures. Arlot and Massart [1] generalized these results for non-Gaussian
or heteroscedastic data and Reynaud-Bouret and Rivoirard [26] addressed this question for thresholding rules in the
Poisson intensity framework.

Now, let us describe our results. By using the previous data-driven Dantzig constraint, oracle inequalities are
derived under local conditions on the dictionary that are valid under classical assumptions on the structure of the
dictionary. We extensively discuss these assumptions and we show their own interest in the context of the paper. Each
term of these oracle inequalities is easily interpretable. Classical results are recovered when we further assume:

‖ϕm‖2∞ ≤ c1

(
n

logM

)
‖f0‖∞,
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where c1 is a constant. This assumption is very mild and, unlike in classical works, allows to consider dictionar-
ies based on wavelets. Then, relying on our Dantzig estimate, we build an adaptive Lasso procedure whose oracle
performances are similar. This illustrates the closeness between Lasso and Dantzig-type estimates.

Our results are proved for γ > 1. For the theoretical calibration issue, we study the performance of our procedure
when γ < 1. We show that in a simple framework, estimation of the straightforward signal f0 = 1[0,1] cannot be
performed at a convenient rate of convergence when γ < 1. This result proves that the assumption γ > 1 is thus not
too conservative.

Finally, a simulation study illustrates how dictionary-based methods outperform classical ones. More precisely, we
show that our Dantzig and Lasso procedures with γ > 1, but close to 1, outperform classical ones, such as simple
histogram procedures, wavelet thresholding or Dantzig procedures based on the knowledge of ‖f0‖∞ and less tight
Dantzig constraints.

1.2. Outlines

Section 2 introduces the density estimator of f0 whose theoretical performances are studied in Section 3. Section 4
studies the Lasso estimate proposed in this paper. The calibration issue is studied in Section 5.1 and numerical exper-
iments are performed in Section 5.2. Finally, Section 6 is devoted to the proofs of our results.

2. The Dantzig estimator of the density f0

As said in the Introduction, our goal is to build an estimate of the density f0 with respect to the measure dx as a linear
combination of functions of Υ = (ϕm)m=1,...,M , where we assume without any loss of generality that, for any m,
‖ϕm‖2 = 1:

fλ =
M∑

m=1

λmϕm.

For this purpose, we naturally rely on natural estimates of the L2-scalar products between f0 and the ϕm’s. So, for
m ∈ {1, . . . ,M}, we set

β0,m =
∫

ϕm(x)f0(x)dx, (1)

and we consider its empirical counterpart

β̂m = 1

n

n∑
i=1

ϕm(Xi) (2)

that is an unbiased estimate of β0,m. The variance of this estimate is Var(β̂m) = σ 2
0,m

n
where

σ 2
0,m =

∫
ϕ2

m(x)f0(x)dx − β2
0,m. (3)

Note also that for any λ and any m, the L2-scalar product between fλ and ϕm can be easily computed:

∫
ϕm(x)fλ(x)dx =

M∑
m′=1

λm′
∫

ϕm′(x)ϕm(x)dx = (Gλ)m,

where G is the Gram matrix associated to the dictionary Υ defined for any 1 ≤ m,m′ ≤ M by

Gm,m′ =
∫

ϕm(x)ϕm′(x)dx.
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Any reasonable choice of λ should ensure that the coefficients (Gλ)m are close to β̂m for all m. Therefore, using
Candès and Tao’s approach, we define the Dantzig constraint:

∀m ∈ {1, . . . ,M} ∣∣(Gλ)m − β̂m

∣∣ ≤ ηγ,m (4)

and the Dantzig estimate f̂ D by f̂ D = f
λ̂D,γ with

λ̂D,γ = arg min
λ∈RM

‖λ‖�1 such that λ satisfies the Dantzig constraint (4),

where for γ > 0 and m ∈ {1, . . . ,M},

ηγ,m =
√

2σ̃ 2
mγ logM

n
+ 2‖ϕm‖∞γ logM

3n
, (5)

with

σ̃ 2
m = σ̂ 2

m + 2‖ϕm‖∞

√
2σ̂ 2

mγ logM

n
+ 8‖ϕm‖2∞γ logM

n
(6)

and

σ̂ 2
m = 1

n(n − 1)

n∑
i=2

i−1∑
j=1

(
ϕm(Xi) − ϕm(Xj )

)2
. (7)

Note that ηγ,m depends on the data, so the constraint (4) will be referred as the adaptive Dantzig constraint in the
sequel. We now justify the introduction of the density estimate f̂ D .

The definition of ηλ,γ is based on the following heuristics. Given m, when there exists a constant c0 > 0 such
that f0(x) ≥ c0 for x in the support of ϕm satisfying ‖ϕm‖2∞ = on(n(logM)−1), then, with large probability, the

deterministic term of (5), 2‖ϕm‖∞γ logM
3n

, is negligible with respect to the random one,
√

2σ̃ 2
mγ logM

n
. In this case, the

random term is the main one and we asymptotically derive

ηγ,m ≈
√

2γ logM
σ̃ 2

m

n
. (8)

Having in mind that σ̃ 2
m/n is a convenient estimate for Var(β̂m) (see the proof of Theorem 1), the shape of the right

hand term of the formula (8) looks like the bound proposed by Candès and Tao [13] to define the Dantzig constraint in
the linear model. Actually, the deterministic term of (5) allows to get sharp concentration inequalities. As often done
in the literature, instead of estimating Var(β̂m), we could use the inequality

Var(β̂m) = σ 2
0,m

n
≤ ‖f0‖∞

n

and we could replace σ̃ 2
m with ‖f0‖∞ in the definition of the ηγ,m. But this requires a strong assumption: f0 is bounded

and ‖f0‖∞ is known. In our paper, Var(β̂m) is estimated, which allows not to impose these conditions. More precisely,
we slightly overestimate σ 2

0,m to control large deviation terms and this is the reason why we introduce σ̃ 2
m instead of

using σ̂ 2
m, an unbiased estimate of σ 2

0,m. Finally, γ is a constant that has to be suitably calibrated and plays a capital
role in practice.

The following result justifies previous heuristics by showing that, if γ > 1, with high probability, the quantity
|β̂m − β0,m| is smaller than ηγ,m for all m. The parameter ηγ,m with γ close to 1 can be viewed as the “smallest”
quantity that ensures this property.
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Theorem 1. Let us assume that M satisfies

n ≤ M ≤ exp
(
nδ

)
(9)

for δ < 1. Let γ > 1. Then, for any ε > 0, there exists a constant C1(ε, δ, γ ) depending on ε, δ and γ such that

P
(∃m ∈ {1, . . . ,M}, |β0,m − β̂m| ≥ ηγ,m

) ≤ C1(ε, δ, γ )M1−γ /(1+ε).

In addition, there exists a constant C2(δ, γ ) depending on δ and γ such that

P
(∀m ∈ {1, . . . ,M}, η(−)

γ,m ≤ ηγ,m ≤ η(+)
γ,m

) ≥ 1 − C2(δ, γ )M1−γ ,

where for m ∈ {1, . . . ,M},

η(−)
γ,m = σ0,m

√
8γ logM

7n
+ 2‖ϕm‖∞γ logM

3n

and

η(+)
γ,m = σ0,m

√
16γ logM

n
+ 10‖ϕm‖∞γ logM

n
.

This result is proved in Section 6.1. The first part is a sharp concentration inequality proved by using Bernstein type

controls. The second part of the theorem proves that, up to constants depending on γ , ηγ,m is of order σ0,m

√
logM

n
+

‖ϕm‖∞ logM
n

with high probability. Note that the assumption γ > 1 is essential to obtain probabilities going to 0.
Finally, let λ0 = (λ0,m)m=1,...,M ∈ RM such that

PΥ f0 =
M∑

m=1

λ0,mϕm,

where PΥ is the projection on the space spanned by Υ . We have

(Gλ0)m =
∫

(PΥ f0)ϕm =
∫

f0ϕm = β0,m.

So, Theorem 1 proves that λ0 satisfies the adaptive Dantzig constraint (4) with probability larger than 1 −
C1(ε, δ, γ )M1−γ /(1+ε) for any ε > 0. Actually, we force the set of parameters λ satisfying the adaptive Dantzig con-
straint to contain λ0 with large probability and to be as small as possible. Therefore, f̂ D = f

λ̂D,γ is a good candidate
among sparse estimates linearly decomposed on Υ for estimating f0.

We mention that assumption (9) can be relaxed and we can take M < n provided the definition of ηγ,m is modified.

3. Results for the Dantzig estimators

In the sequel, we will denote λ̂D = λ̂D,γ to simplify the notations, but the Dantzig estimator f̂ D still depends on γ .
Moreover, we assume that (9) is true and we denote the vector ηγ = (ηγ,m)m=1,...,M considered with the Dantzig
constant γ > 1.

3.1. The main result under local assumptions

Let us state the main result of this paper. For any J ⊂ {1, . . . ,M}, we set JC = {1, . . . ,M}\J and define λJ the vector
which has the same coordinates as λ on J and zero coordinates on JC . We introduce a local assumption indexed by a
subset J0.
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Local Assumption. Given J0 ⊂ {1, . . . ,M}, for some constants κJ0 > 0 and μJ0 ≥ 0 depending on J0, we have for
any λ,

‖fλ‖2 ≥ κJ0‖λJ0‖�2
− μJ0√|J0|

(‖λJC
0
‖�1 − ‖λJ0‖�1

)
+. (LA(J0, κJ0 ,μJ0))

We obtain the following oracle type inequality without any assumption on f0.

Theorem 2. With probability at least 1−C1(ε, δ, γ )M1−γ /(1+ε), for all J0 ⊂ {1, . . . ,M} such that there exist κJ0 > 0
and μJ0 ≥ 0 for which (LA(J0, κJ0 ,μJ0)) holds, we have, for any α > 0,

∥∥f̂ D − f0
∥∥2

2 ≤ inf
λ∈RM

{
‖fλ − f0‖2

2 + α

(
1 + 2μJ0

κJ0

)2 Λ(λ,J c
0 )2

|J0| + 16|J0|
(

1

α
+ 1

κ2
J0

)
‖ηγ ‖2

�∞

}
, (10)

with

Λ
(
λ,J c

0

) = ‖λJC
0
‖�1 + (‖λ̂D‖�1 − ‖λ‖�1)+

2
.

Let us comment each term of the right-hand side of (10). The first term is an approximation term which measures
the closeness between f0 and fλ. This term can vanish if f0 can be decomposed on the dictionary. The second term,
a bias term, is a price to pay when either λ is not supported by the subset J0 considered or it does not satisfy the
condition ‖λ̂D‖�1 ≤ ‖λ‖�1 which holds as soon as λ satisfies the adaptive Dantzig constraint. Finally, the last term,
which does not depend on λ, can be viewed as a variance term corresponding to the estimation on the subset J0.
The parameter α calibrates the weights given for the bias and variance terms in the oracle inequality. Concerning the
last term, remember that ηγ,m relies on an estimate of the variance of β̂m. Furthermore, we have with high probability:

‖ηγ ‖2
�∞ ≤ 2 sup

m

(16σ 2
0,mγ logM

n
+

(
10‖ϕm‖∞γ logM

n

)2)
.

So, if f0 is bounded then, σ 2
0,m ≤ ‖f0‖∞ and if there exists a constant c1 such that for any m,

‖ϕm‖2∞ ≤ c1

(
n

logM

)
‖f0‖∞ (11)

(which is true, for instance, for a bounded dictionary), then

‖ηγ ‖2
�∞ ≤ C‖f0‖∞

logM

n

(where C is a constant depending on γ and c1) and tends to 0 when n goes to ∞. We obtain thus the following result.

Corollary 1. With probability at least 1 − C1(ε, δ, γ )M1−γ /(1+ε), if (11) is satisfied, then, for all J0 ⊂ {1, . . . ,M}
such that there exist κJ0 > 0 and μJ0 ≥ 0 for which (LA(J0, κJ0 ,μJ0)) holds, we have, for any α > 0 and for any λ

that satisfies the adaptive Dantzig constraint,

∥∥f̂ D − f0
∥∥2

2 ≤ ‖fλ − f0‖2
2 + αc2

(
1 + κ−2

J0
μ2

J0

)‖λJC
0
‖2
�1

|J0| + c3
(
α−1 + κ−2

J0

)|J0|‖f0‖∞
logM

n
, (12)

where c2 is an absolute constant and c3 depends on c1 and γ .
If f0 = fλ0 and if (LA(J0, κJ0 ,μJ0)) holds with J0 the support of λ0 then, under (11), with probability at least

1 − C1(ε, δ, γ )M1−γ /(1+ε), we have

∥∥f̂ D − f0
∥∥2

2 ≤ C′|J0|‖f0‖∞
logM

n
,

where C′ = c3κ
−2
J0

.
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Note that the second part of Corollary 1 is, strictly speaking, not a consequence of Theorem 2 but only of its proof.
Assumption (LA(J0, κJ0,μJ0)) is local, in the sense that the constants κJ0 and μJ0 (or their mere existence) may

highly depend on the subset J0. For a given λ, the best choice for J0 in inequalities (10) and (12) depends thus on the
interaction between these constants and the value of λ itself. Note that the assumptions of Theorem 2 are reasonable
as the next section gives conditions for which assumption (LA(J0, κJ0 ,μJ0)) holds simultaneously with the same
constant κ and μ for all subsets J0 of the same size.

3.2. Results under global assumptions

As usual, when M > n, properties of the Dantzig estimate can be derived from assumptions on the structure of the
dictionary Υ . For l ∈ N, we denote

φmin(l) = min|J |≤l
min

λ∈RM

λJ 
=0

‖fλJ
‖2

2

‖λJ ‖2
�2

and φmax(l) = max|J |≤l
max
λ∈RM

λJ 
=0

‖fλJ
‖2

2

‖λJ ‖2
�2

.

These quantities correspond to the “restricted” eigenvalues of the Gram matrix G. Assuming that φmin(l) and φmax(l)

are close to 1 means that every set of columns of G with cardinality less than l behaves like an orthonormal system.
We also consider the restricted correlations

θl,l′ = max|J |≤l

|J ′|≤l′
J∩J ′=∅

max
λ,λ′∈RM

λJ 
=0,λ′
J ′ 
=0

〈fλJ
, fλ′

J ′ 〉
‖λJ ‖�2

‖λ′
J ′‖�2

.

Small values of θl,l′ mean that two disjoint sets of columns of G with cardinality less than l and l′ span nearly
orthogonal spaces. We will use one of the following assumptions considered in [3].

Assumption 1. For some integer 1 ≤ s ≤ M/2, we have

φmin(2s) > θs,2s . (A1(s))

Oracle inequalities of the Dantzig selector were established under this assumption in the parametric linear model
by Candès and Tao in [13]. It was also considered by Bickel et al. [3] for nonparametric regression and for the Lasso
estimate. The next assumption, proposed in [3], constitutes an alternative to Assumption 1.

Assumption 2. For some integers s and l such that

1 ≤ s ≤ M

2
, l ≥ s and s + l ≤ M, (13)

we have

lφmin(s + l) > sφmax(l). (A2(s, l))

If Assumption 2 holds for s and l such that l � s, then Assumption 2 means that φmin(l) cannot decrease at a rate
faster than l−1 and this condition is related to the “incoherent designs” condition stated in [23].

In the sequel, we set, under Assumption 1,

κ1,s = √
φmin(2s)

(
1 − θs,2s

φmin(2s)

)
> 0, μ1,s = θs,2s√

φmin(2s)

and under Assumption 2,

κ2,s,l = √
φmin(s + l)

(
1 −

√
φmax(l)

φmin(s + l)

√
s

l

)
> 0, μ2,s,l = √

φmax(l)

√
s

l
.
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Now, to apply Theorem 2, we need to check (LA(J0, κJ0,μJ0)) for some subset J0 of {1, . . . ,M}. Either Assumption 1
or 2 implies this assumption. Indeed, we have the following result.

Proposition 1. Let s and l two integers satisfying (13). We suppose that (A1(s)) or (A2(s, l)) holds. Let J0 ⊂
{1, . . . ,M} of size |J0| = s and λ ∈ RM , then assumption (LA(J0, κJ0 ,μJ0)), namely,

‖fλ‖2 ≥ κs,l‖λJ0‖�2
− μs,l√

s

(‖λJC
0
‖�1 − ‖λJ0‖�1

)
+,

holds with κs,l = κ1,s and μs,l = μ1,s under (A1(s)) (respectively, κs,l = κ2,s,l and μs,l = μ2,s,l under (A2(s, l)). If
(A1(s)) and (A2(s, l)) are both satisfied, κs,l = max(κ1,s , κ2,s,l) and μs,l = min(μ1,s ,μ2,s,l).

Proposition 1 proves that Theorem 2 can be applied under Assumption 1 or 2. In addition, the constants κs,l and μs,l

are the same for all subset J0 of size |J0| = s. From Theorem 2, we deduce the following result.

Theorem 3. With probability at least 1 − C1(ε, δ, γ )M1−γ /(1+ε), for any two integers s and l satisfying (13) such
that (A1(s)) or (A2(s, l)) holds, we have for any α > 0,

∥∥f̂ D − f0
∥∥2

2 ≤ inf
λ∈RM

inf
J0⊂{1,...,M}

|J0|=s

{
‖fλ − f0‖2

2 + α

(
1 + 2μs,l

κs,l

)2 Λ(λ,J c
0 )2

s
+ 16s

(
1

α
+ 1

κ2
s,l

)
‖ηγ ‖2

�∞

}
,

where

Λ
(
λ,J c

0

) = ‖λJC
0
‖�1 + (‖λ̂D‖�1 − ‖λ‖�1)+

2
,

and κs,l and μs,l are defined as in Proposition 1.

Remark that the best subset J0 of cardinal s in Theorem 3 can be easily chosen for a given λ: it is given by the set
of the s largest coordinates of λ. This was not necessarily the case in Theorem 2 for which a different subset may give
a better local condition and then may provide a smaller bound. If we further assume the mild assumption (11) on the
sup norm of the dictionary introduced in the previous section, we deduce the following result.

Corollary 2. With probability at least 1−C1(ε, δ, γ )M1−γ /(1+ε), if (11) is satisfied, for any integers s and l satisfying
(13) such that (A1(s)) or (A2(s, l)) holds, we have for any α > 0, any λ that satisfies the adaptive Dantzig constraint,
and for the best subset J0 of cardinal s (that corresponds to the s largest coordinates of λ in absolute value),

∥∥f̂ D − f0
∥∥2

2 ≤ ‖fλ − f0‖2
2 + αc2

(
1 + κ−2

s,l μ2
s,l

)‖λJC
0
‖2
�1

s
+ c3

(
α−1 + κ−2

s,l

)
s‖f0‖∞

logM

n
, (14)

where c2 is an absolute constant, c3 depends on c1 and γ , and κs,l and μs,l are defined as in Proposition 1.

Note that, when λ is s-sparse so that λJC
0

= 0, the oracle inequality (14) corresponds to the classical oracle inequal-
ity obtained in parametric frameworks (see [12] or [13], for instance) or in nonparametric settings. See, for instance,
[6–9,11,29] but in these works, the functions of the dictionary are assumed to be bounded by a constant independent
of M and n. So, the adaptive Dantzig estimate requires weaker conditions since under (11), ‖ϕm‖∞ can go to ∞ when
n grows. This point is capital for practical purposes, in particular when wavelet bases are considered.

4. Connections between the Dantzig and Lasso estimates

We show in this section the strong connections between Lasso and Dantzig estimates, which has already been il-
lustrated in [3] for nonparametric regression models. By choosing convenient random weights depending on ηγ for



52 K. Bertin, E. Le Pennec and V. Rivoirard

�1-minimization, the Lasso estimate satisfies the adaptive Dantzig constraint. More precisely, we consider the Lasso
estimator given by the solution of the following minimization problem

λ̂L,γ = arg min
λ∈RM

{
1

2
R(λ) +

M∑
m=1

ηγ,m|λm|
}

, (15)

where

R(λ) = ‖fλ‖2
2 − 2

n

n∑
i=1

fλ(Xi).

Note that R(·) is the quantity minimized in unbiased estimation of the risk. For simplifications, we write λ̂L = λ̂L,γ .
We denote f̂ L = f

λ̂L . As said in the Introduction, classical Lasso estimates are defined as the minimizer of expressions
of the form{

1

2
R(λ) + η

M∑
m=1

|λm|
}

,

where η is proportional to
√

logM
n

. So, λ̂L appears as a data-driven version of classical Lasso estimates.
The first-order condition for the minimization of the expression given in (15) corresponds exactly to the adaptive

Dantzig constraint and thus Theorem 3 always applies to λ̂L. Working along the lines of the proof of Theorem 3
(replace fλ by f̂ D and f̂ D by f̂ L in (26) and (27)), one can prove a slightly stronger result.

Theorem 4. With probability at least 1 − C1(ε, δ, γ )M1−γ /(1+ε), for any integers s and l satisfying (13) such that
(A1(s)) or (A2(s, l)) holds, we have, for any J0 of size s and for any α > 0,

∣∣∥∥f̂ D − f0
∥∥2

2 − ∥∥f̂ L − f0
∥∥2

2

∣∣ ≤ α

(
1 + 2μs,l

κs,l

)2 ‖λ̂L

JC
0
‖2
�1

s
+ 16s

(
1

α
+ 1

κ2
s,l

)
‖ηγ ‖2

�∞,

where κs,l and μs,l are defined as in Proposition 1.

To extend this theoretical result, numerical performances of the Dantzig and Lasso estimates will be compared in
Section 5.2.

5. Calibration and numerical experiments

5.1. The calibration issue

In this section, we consider the problem of calibrating previous estimates. In particular, we prove that the sufficient
condition γ > 1 is “almost” a necessary condition since we derive a special and very simple framework in which
Lasso and Dantzig estimates cannot achieve the optimal rate if γ < 1 (“almost” means that the case γ = 1 remains an
open question). Let us describe this simple framework. The dictionary Υ considered in this section is the orthonormal
Haar system:

Υ = {
φjk: −1 ≤ j ≤ j0, 0 ≤ k < 2j

}
,

with φ−10 = 1[0,1], 2j0+1 = n, and for 0 ≤ j ≤ j0, 0 ≤ k ≤ 2j − 1,

φjk = 2j/2(1[k/2j ,(k+0.5)/2j ] − 1[(k+0.5)/2j ,(k+1)/2j ]).
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Fig. 1. Graphs of γ �→ log2(Rn(γ )) for n = 2J with, from top to bottom, J = 4,5,6, . . . ,13.

In this case, M = n. In this setting, since functions of Υ are orthonormal, the Gram matrix G is the identity. Thus, the
Lasso and Dantzig estimates both correspond to the soft thresholding rule:

f̂ D = f̂ L =
M∑

m=1

sign(β̂m)
(|β̂m| − ηγ,m

)
1{|β̂m|>ηγ,m}ϕm.

Now, our goal is to estimate f0 = φ−10 = 1[0,1] by using f̂ D depending on γ and to show the influence of this constant.
Unlike previous results stated in probability, we consider the expectation of the L2-risk.

Theorem 5. On the one hand, if γ > 1, there exists a constant C such that

E
∥∥f̂ D − f0

∥∥2
2 ≤ C logn

n
. (16)

On the other hand, if γ < 1, there exist a constant c and δ < 1 such that

E
∥∥f̂ D − f0

∥∥2
2 ≥ c

nδ
. (17)

This result shows that choosing γ < 1 is a bad choice in our setting. Indeed, in this case, the Lasso and Dantzig
estimates cannot estimate a very simple signal (f0 = 1[0,1]) at a convenient rate of convergence.

A small simulation study is carried out to strengthen this theoretical asymptotic result. Performing our estimation
procedure 100 times, we compute the average risk Rn(γ ) for several values of the Dantzig constant γ and several
values of n. This computation is summarized in Fig. 1 which displays the logarithm of Rn(γ ) for n = 2J with, from
top to bottom, J = 4,5,6, . . . ,13 on a grid of γ ’s around 1. To discuss our results, we denote by γmin(n) the best γ :
γmin(n) = arg minγ>0 Rn(γ ). We note that 1/2 ≤ γmin(n) ≤ 1 for all values of n, with γmin(n) getting closer to 1 as n

increases. Taking γ too small strongly deteriorates the performance while a value close to 1 ensures a risk withing a
factor 2 of the optimal risk. The assumption γ > 1 giving a theoretical control on the quadratic error is thus not too
conservative. Following these results, we set γ = 1.01 in our numerical experiments in the next subsection.

5.2. Numerical experiments

In this section, we present our numerical experiments with the Dantzig density estimator and their results. We test
our estimator with a collection of 6 dictionaries, 4 densities described below and for 2 sample sizes. We compare our
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procedure with the adaptive Lasso introduced in Section 4 and with a nonadaptive Dantzig estimator. We also consider
a two-step estimation procedure, proposed by Candès and Tao [13], which improves the numerical results.

The numerical scheme for a given dictionary Υ = (ϕm)m=1,...,M and a sample (Xi)i=1,...,n is the following:

(1) Compute β̂m for all m.
(2) Compute σ̂ 2

m.
(3) Compute ηγ,m as defined in (5) by

ηγ,m =
√

2σ̃ 2
mγ logM

n
+ 2‖ϕm‖∞γ logM

3n
,

with

σ̃ 2
m = σ̂ 2

m + 2‖ϕm‖∞

√
2σ̂ 2

mγ logM

n
+ 8‖ϕm‖2∞γ logM

n

and γ = 1.01.
(4) Compute the coefficients λ̂D,γ of the Dantzig estimate, λ̂D,γ = arg minλ∈RM ‖λ‖�1 such that λ satisfies the

Dantzig constraint (4)

∀m ∈ {1, . . . ,M} ∣∣(Gλ)m − β̂m

∣∣ ≤ ηγ,m

with the homotopy-path-following method proposed by Asif and Romberg [2].
(5) Compute the Dantzig estimate f̂ D,γ = ∑M

m=1 λ̂
D,γ
m φm.

Note that we have implicitly assumed that the Gram matrix G used in the definition of the Dantzig constraint has been
precomputed.

For the Lasso estimator, the Dantzig minimization of step 4 is replaced by the Lasso minimization (15)

λ̂L,γ = arg min
λ∈RM

{
1

2
R(λ) +

M∑
m=1

ηγ,m|λm|
}

,

which is solved using the LARS algorithm. The nonadaptive Dantzig estimate is obtained by replacing σ̃ 2
m in step 3

by ‖f0‖∞. The two-step procedure of Candès and Tao adds a least-square step between steps 4 and 5. More precisely,
let Ĵ D,γ be the support of the estimate λ̂D,γ . This defines a subset of the dictionary on which the density is regressed(

λ̂D+LS,γ
)
Ĵ D,γ = G−1

Ĵ D,γ
(β̂m)

ĴD,γ ,

where G
ĴD,γ is the submatrix of G corresponding to the subset chosen. The values of λ̂D+LS,γ outside Ĵ D,γ are set

to 0 and f̂ D+LS,γ is set accordingly.
We describe now the dictionaries we consider. We focus numerically on densities defined on the interval [0,1] so

we use dictionaries adapted to this setting. The first four are orthonormal systems, which are used as a benchmark,
while the last two are “real” dictionaries. More precisely, our dictionaries are:

• the Fourier basis with M = n + 1 elements (denoted “Fou”);
• the histogram collection with the classical number

√
n/2 ≤ M = 2j0 <

√
n of bins (denoted “Hist”);

• the Haar wavelet basis with maximal resolution n/2 < M = 2j1 < n and thus M = 2j1 elements (denoted “Haar”);
• the more regular Daubechies 6 wavelet basis with maximal resolution n/2 ≤ M = 2j1 < n and thus M = 2j1

elements (denoted “Wav”);
• the dictionary made of the union of the Fourier basis and the histogram collection and thus comprising M =

n + 1 + 2j0 elements (denoted “Mix”);
• the dictionary which is the union of the Fourier basis, the histogram collection and the Haar wavelets of resolution

greater than 2j0 comprising M = n + 1 + 2j1 elements (denoted “Mix2”).
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The orthonormal families we have chosen are often used by practitioners. Our dictionaries combine very different
orthonormal families, sine and cosine with bins or Haar wavelets, which ensures a sufficiently incoherent design.

We test the estimators of the following 4 functions shown in Fig. 2 (with their Dantzig and Dantzig+Least Square
estimates with the “Mix2” dictionary):

• a very spiky density

f1(t) = 0.47 × (
4t × 1t≤0.5 + 4(1 − t) × 1t>0.5

) + 0.53 × (75 × 10.5≤t≤0.5+1/75);

Fig. 2. The different densities and their “Mix2” estimates. Densities are plotted in blue while their estimates are plotted in black. The full line
corresponds to the adaptive Dantzig studied in this paper while the dotted line corresponds to its least square variant.
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• a mix of Gaussian and Laplacian type densities

f2(t) = 0.45 ×
(

e−(t−0.45)2/(2(0.125)2)∫ 1
0 e−(u−0.45)2/(2(0.125)2) du

)
+ 0.55 ×

(
e20|t−0.67|∫ 1

0 e20|u−0.67| du

)
;

• a mix of uniform densities on subintervals

f3(t) = 0.25 ×
(

1

0.14
10.33≤t≤0.47

)
+ 0.75 ×

(
1

0.16
10.64≤t≤0.80

)
;

• a mix of a density easily described in the Fourier domain and a uniform density on a subinterval

f4(t) = 0.45 × (
1 + 0.9 cos(2πt)

) + 0.55 ×
(

1

0.16
10.64≤t≤0.80

)
.

Boxplots of Figs 3 and 4 summarize our numerical experiments for n = 500 and n = 2000 and 100 repetitions of
the procedures. The left column deals with the comparison between Dantzig and Lasso, the center column shows the
effectiveness of our data driven constraint and the right column illustrates the improvement of the two-step method.
As expected, Dantzig and Lasso estimators are strictly equivalent when the dictionary is orthonormal and very close
otherwise. For both algorithms and most of the densities, the best solution appears to be the “Mix2” dictionary, except
for the density f1 where the Haar wavelets are better for n = 500. This shows that the dictionary approach yields
an improvement over the classical basis approach. One observes also that the “Mix” dictionary is better than the
best of its constituent, namely the Fourier basis and the histogram family, which corroborates our theoretical results.
The adaptive constraints are much tighter than their nonadaptive counterparts and yield to much better numerical
results. Our last series of experiments shows the significant improvement obtained with the least square step. As
hinted by Candès and Tao [13], this can be explained by the bias common to �1 methods which is partially removed
by this final least square adjustment. Studying directly the performance of this estimator is a challenging task.

6. Proofs

6.1. Proof of Theorem 1

To prove the first part of Theorem 1, we fix m ∈ {1, . . . ,M} and we set for any i ∈ {1, . . . , n},

Wi = 1

n

(
ϕm(Xi) − β0,m

)
that satisfies almost surely

|Wi | ≤ 2‖ϕm‖∞
n

.

Then, we apply Bernstein’s inequality (see [21] on pages 24 and 26) with the variables Wi and −Wi : for any u > 0,

P

(
|β̂m − β0,m| ≥

√
2σ 2

0,mu

n
+ 2u‖ϕm‖∞

3n

)
≤ 2e−u. (18)

Now, let us decompose σ̂ 2
m in two terms:

σ̂ 2
m = 1

2n(n − 1)

∑
i 
=j

(
ϕm(Xi) − ϕm(Xj )

)2

= 1

2n

n∑
i=1

(
ϕm(Xi) − β0,m

)2 + 1

2n

n∑
j=1

(
ϕm(Xj ) − β0,m

)2
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Fig. 3. Boxplots for n = 500. Left column: Dantzig and Lasso estimates. Center column: Dantzig estimates associated with adaptive and nonadap-
tive constraints. Right column: Our estimate and the two-step estimate.

− 2

n(n − 1)

n∑
i=2

i−1∑
j=1

(
ϕm(Xi) − β0,m

)(
ϕm(Xj ) − β0,m

)

= sn − 2

n(n − 1)
un

with

sn = 1

n

n∑
i=1

(
ϕm(Xi) − β0,m

)2 and un =
n∑

i=2

i−1∑
j=1

(
ϕm(Xi) − β0,m

)(
ϕm(Xj ) − β0,m

)
. (19)
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Fig. 4. Boxplots for n = 2000. Left column: Dantzig and Lasso estimates. Center column: Dantzig estimates associated with adaptive and non-
adaptive constraints. Right column: Our estimate and the two-step estimate.

Let us first focus on sn that is the main term of σ̂ 2
m by applying again Bernstein’s inequality with

Yi = σ 2
0,m − (ϕm(Xi) − β0,m)2

n

which satisfies

Yi ≤ σ 2
0,m

n
.
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One has that for any u > 0

P

(
σ 2

0,m ≥ sn + √
2vmu + σ 2

0,mu

3n

)
≤ e−u

with

vm = 1

n
E

([
σ 2

0,m − (
ϕm(Xi) − β0,m

)2]2)
.

But we have

vm = 1

n

(
σ 4

0,m + E
[(

ϕm(Xi) − β0,m

)4] − 2σ 2
0,mE

[(
ϕm(Xi) − β0,m

)2])
= 1

n

(
E

[(
ϕm(Xi) − β0,m

)4] − σ 4
0,m

)

≤ σ 2
0,m

n

(‖ϕm‖∞ + |β0,m|)2

≤ 4σ 2
0,m

n
‖ϕm‖2∞.

Finally, with for any u > 0

S(u) = 2
√

2σ0,m‖ϕm‖∞
√

u

n
+ σ 2

0,mu

3n
,

we have

P
(
σ 2

0,m ≥ sn + S(u)
) ≤ e−u. (20)

The term un is a degenerate U -statistics that satisfies for any u > 0

P
(|un| ≥ U(u)

) ≤ 6e−u, (21)

with for any u > 0

U(u) = 4

3
Au2 +

(
4
√

2 + 2

3

)
Bu3/2 +

(
2D + 2

3
F

)
u + 2

√
2C

√
u,

where A, B , C, D and F are constants not depending on u that satisfy

A ≤ 4‖ϕm‖2∞,

B ≤ 2
√

n − 1‖ϕm‖2∞,

C ≤
√

n(n − 1)

2
σ 2

0,m,

D ≤
√

n(n − 1)

2
σ 2

0,m

and

F ≤ 2
√

2‖ϕm‖2∞
√

(n − 1) log(2n)
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(see [27]). Then, we have for any u > 0,

2

n(n − 1)
U(u) ≤ 32

3

‖ϕm‖2∞
n(n − 1)

u2 +
(

16
√

2 + 8

3

) ‖ϕm‖2∞
n
√

n − 1
u3/2

+
(

2
√

2
σ 2

0,m√
n(n − 1)

+ 8
√

2

3

√
log(2n)‖ϕm‖2∞

n
√

n − 1

)
u + 4σ 2

0,m√
n(n − 1)

√
u.

Now, we take u that satisfies

u = o(n) (22)

and √
log(2n) ≤ √

2u. (23)

Therefore, for any ε1 > 0, we have for n large enough,

2

n(n − 1)
U(u) ≤ ε1σ

2
0,m + (

16
√

2 + 8
) ‖ϕm‖2∞
n
√

n − 1
u3/2 + 32

3

‖ϕm‖2∞
n(n − 1)

u2.

So, for n large enough,

2

n(n − 1)
U(u) ≤ ε1σ

2
0,m + C1‖ϕm‖2∞

(
u

n

)3/2

, (24)

where C1 = 16
√

2 + 19. Using inequalities (20) and (21), we obtain

P

(
σ 2

0,m ≥ σ̂ 2
m + S(u) + 2

n(n − 1)
U(u)

)
= P

(
σ 2

0,m ≥ sn − 2

n(n − 1)
un + S(u) + 2

n(n − 1)
U(u)

)

≤ P
(
σ 2

0,m ≥ sn + S(u)
) + P

(
un ≥ U(u)

)
≤ 7e−u.

Now, using (24), for any 0 < ε2 < 1, we have for n large enough,

σ̂ 2
m + S(u) + 2

n(n − 1)
U(u) = σ̂ 2

m + 2
√

2σ0,m‖ϕm‖∞
√

u

n
+ σ 2

0,mu

3n
+ 2

n(n − 1)
U(u)

≤ σ̂ 2
m + 2

√
2σ0,m‖ϕm‖∞

√
u

n
+ σ 2

0,mu

3n
+ ε1σ

2
0,m + C1‖ϕm‖2∞

(
u

n

)3/2

≤ σ̂ 2
m + 2

√
2σ0,m‖ϕm‖∞

√
u

n
+ ε2σ

2
0,m + C1‖ϕm‖2∞

(
u

n

)3/2

.

Therefore,

P

(
(1 − ε2)σ

2
0,m ≥ σ̂ 2

m + 2
√

2σ0,m‖ϕm‖∞
√

u

n
+ C1‖ϕm‖2∞

(
u

n

)3/2)
≤ 7e−u. (25)

Now, let us set

a = 1 − ε2, b = √
2‖ϕm‖∞

√
u

n
, c = σ̂ 2

m + C1‖ϕm‖2∞
(

u

n

)3/2
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and consider the polynomial

P(x) = ax2 − 2bx − c,

with roots b±
√

b2+ac
a

. So, we have

P(σ0,m) ≥ 0 ⇐⇒ σ0,m ≥ b + √
b2 + ac

a

⇐⇒ σ 2
0,m ≥ c

a
+ 2b2

a2
+ 2b

√
b2 + ac

a2
.

It yields

P

(
σ 2

0,m ≥ c

a
+ 2b2

a2
+ 2b

√
b2 + ac

a2

)
≤ 7e−u,

so,

P

(
σ 2

0,m ≥ c

a
+ 4b2

a2
+ 2b

√
c

a
√

a

)
≤ 7e−u,

which means that for any 0 < ε3 < 1, we have for n large enough,

P

(
σ 2

0,m ≥ (1 + ε3)

(
σ̂ 2

m + C1‖ϕm‖2∞
(

u

n

)3/2

+ 8‖ϕm‖2∞
u

n
+ 2

√
2‖ϕm‖∞

√
u

n

√
σ̂ 2

m + C1‖ϕm‖2∞
(

u

n

)3/2
))

≤ 7e−u.

Finally, we can claim that for any 0 < ε4 < 1, we have for n large enough,

P

(
σ 2

0,m ≥ (1 + ε4)

(
σ̂ 2

m + 8‖ϕm‖2∞
u

n
+ 2‖ϕm‖∞

√
2σ̂ 2

m

u

n

))
≤ 7e−u.

Now, we take u = γ logM . Under assumptions of Theorem 1, conditions (22) and (23) are satisfied. The previous
concentration inequality means that

P
(
σ 2

0,m ≥ (1 + ε4)σ̃
2
m

) ≤ 7M−γ .

Now, using (18), we have for n large enough,

P
(|β0,m − β̂m| ≥ ηγ,m

) = P

(
|β0,m − β̂m| ≥

√
2σ̃ 2

mγ logM

n
+ 2‖ϕm‖∞γ logM

3n
,σ 2

0,m < (1 + ε4)σ̃
2
m

)

+ P
(|β0,m − β̂m| ≥ ηγ,m, σ 2

0,m ≥ (1 + ε4)σ̃
2
m

)

≤ P

(
|β0,m − β̂m| ≥

√
2σ 2

0,mγ (1 + ε4)−1 logM

n
+ 2‖ϕm‖∞γ (1 + ε4)

−1 logM

3n

)

+ P
(
σ 2

0,m ≥ (1 + ε4)σ̃
2)

≤ 2M−γ (1+ε4)
−1 + 7M−γ .
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Then, the first part of Theorem 1 is proved: for any ε > 0,

P
(|β0,m − β̂m| ≥ ηγ,m

) ≤ C(ε, δ, γ )M−γ /(1+ε),

where C(ε, δ, γ ) is a constant that depends on ε, δ and γ .
For the second part of the result, we apply again Bernstein’s inequality with

Zi = (ϕm(Xi) − β0,m)2 − σ 2
0,m

n

which satisfies

Zi ≤ (ϕm(Xi) − β0,m)2

n
≤ 4‖ϕm‖2∞

n
.

One has that for any u > 0

P

(
sn ≥ σ 2

0,m + √
2vmu + 4‖ϕm‖2∞u

3n

)
≤ e−u

with

vm = 1

n
E

([
σ 2

0,m − (
ϕm(Xi) − β0,m

)2]2) ≤ 4σ 2
0,m

n
‖ϕm‖2∞.

So, for any u > 0,

P

(
sn ≥ σ 2

0,m + 2
√

2σ0,m‖ϕm‖∞
√

u

n
+ 4‖ϕm‖2∞u

3n

)
≤ e−u.

Now, for any ε5 > 0, for any u > 0,

P

(
sn ≥ (1 + ε5)σ

2
0,m + ‖ϕm‖2∞u

n

(
4

3
+ 2

ε5

))
≤ e−u.

Using (21), with

S̃(u) = ‖ϕm‖2∞u

n

(
4

3
+ 2

ε5

)
,

P

(
σ̂ 2

m ≥ (1 + ε5)σ
2
0,m + S̃(u) + 2

n(n − 1)
U(u)

)

= P

(
sn − 2

n(n − 1)
un ≥ (1 + ε5)σ

2
0,m + S̃(u) + 2

n(n − 1)
U(u)

)

≤ P
(
sn ≥ (1 + ε5)σ

2
0,m + S̃(u)

) + P
(−un ≥ U(u)

)
≤ e−u + 6e−u = 7e−u.

Using (24),

P

(
σ̂ 2

m ≥ (1 + ε1 + ε5)σ
2
0,m + S̃(u) + C1‖ϕm‖2∞

(
u

n

)3/2)
≤ 7e−u.

Since

ηγ,m =
√

2σ̃ 2
mγ logM

n
+ 2‖ϕm‖∞γ logM

3n
,



Adaptive Dantzig density estimation 63

with

σ̃ 2
m = σ̂ 2

m + 2‖ϕm‖∞

√
2σ̂ 2

mγ logM

n
+ 8‖ϕm‖2∞γ logM

n
,

we have for any ε6 > 0,

η2
γ,m ≤ (1 + ε6)

(
2σ̃ 2

mγ logM

n

)
+ (

1 + ε−1
6

)(4‖ϕm‖2∞(γ logM)2

9n2

)

≤ (1 + ε6)

(
2γ logM

n

)(
σ̂ 2

m + 2‖ϕm‖∞

√
2σ̂ 2

mγ logM

n
+ 8‖ϕm‖2∞γ logM

n

)

+ 4

9

(
1 + ε−1

6

)(‖ϕm‖∞γ logM

n

)2

≤ (1 + ε6)
2σ̂ 2

m

(
2γ logM

n

)
+ 4ε−1

6 (1 + ε6)

(‖ϕm‖∞γ logM

n

)2

+ 16(1 + ε6)

(‖ϕm‖∞γ logM

n

)2

+ 4(1 + ε−1
6 )

9

(‖ϕm‖∞γ logM

n

)2

.

Finally, with u = γ logM , with probability larger than 1 − 7M−γ ,

σ̂ 2
m < (1 + ε1 + ε5)σ

2
0,m + S̃(γ logM) + C1‖ϕm‖2∞

(
γ logM

n

)3/2

and

η2
γ,m < (1 + ε6)

2(1 + ε5 + ε1)σ
2
0,m

(
2γ logM

n

)
+ (1 + ε6)

2
(

γ logM

n

)2

‖ϕm‖2∞
(

8

3
+ 4

ε5

)

+ 2C1(1 + ε6)
2‖ϕm‖2∞

(
γ logM

n

)5/2

+ ‖ϕm‖2∞
(

γ logM

n

)2(
4ε−1

6 (1 + ε6) + 16(1 + ε6) + 4(1 + ε−1
6 )

9

)
.

Finally, with ε6 = 1, ε1 = ε5 = 1
2 , for n large enough,

P

(
ηγ,m ≥ 4σ0,m

√
γ logM

n
+ 10‖ϕm‖∞γ logM

n

)
≤ 7M−γ .

Note that
√

32/3 + 32 + 8 + 32 + 8/9 = 9.1409.
For the last part, starting from (25) with u = γ logM and ε2 = 1

7 , we have for n large enough and with probability
larger than 1 − 7M−γ ,

6

7
σ 2

0,m ≤ σ̂ 2
m + 2

√
2σ0,m‖ϕm‖∞

√
γ logM

n
+ C1‖ϕm‖2∞

(
γ logM

n

)3/2

≤ σ̂ 2
m + 2

7
σ 2

0,m + 7‖ϕm‖2∞
γ logM

n
+ C1‖ϕm‖2∞

(
γ logM

n

)3/2

.
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So, for n large enough,

4

7
σ 2

0,m ≤ σ̂ 2
m + 8‖ϕm‖2∞

γ logM

n
≤ σ̃ 2

m

and

ηγ,m > σ0,m

√
8γ logM

7n
+ 2‖ϕm‖∞γ logM

3n
.

6.2. Proof of Theorem 2

Let λ = (λm)m=1,...,M and set � = λ − λ̂D . We have

‖fλ − f0‖2
2 = ∥∥f̂ D − f0

∥∥2
2 + ∥∥fλ − f̂ D

∥∥2
2 + 2

∫ (
f̂ D(x) − f0(x)

)(
fλ(x) − f̂ D(x)

)
dx. (26)

We have ‖fλ − f̂ D‖2
2 = ‖f�‖2

2. Moreover, with probability at least 1 − C1(ε, δ, γ )M1−γ /(1+ε), we have

∣∣∣∣
∫ (

f̂ D(x) − f0(x)
)(

fλ(x) − f̂ D(x)
)

dx

∣∣∣∣ =
∣∣∣∣∣

M∑
m=1

(
λm − λ̂D

m

)[(
Gλ̂D

)
m

− β0,m

]∣∣∣∣∣
≤ ‖�‖�12‖ηγ ‖�∞, (27)

where the last line is a consequence of the definition of the Dantzig estimator and of Theorem 1. Then, we have

∥∥f̂ D − f0
∥∥2

2 ≤ ‖fλ − f0‖2
2 + 4‖ηγ ‖�∞‖�‖�1 − ‖f�‖2

2.

We use then the following lemma.

Lemma 1. Let J ⊂ {1, . . . ,M}. For any λ ∈ RM

‖�JC ‖�1 ≤ ‖�J ‖�1 + 2‖λJC ‖�1 + (∥∥λ̂D
∥∥

�1
− ‖λ‖�1

)
+,

where � = λ − λ̂D .

Proof. This lemma is based on the fact that

∥∥λ̂D
∥∥

�1
≤ ‖λ‖�1 + (∥∥λ̂D

∥∥
�1

− ‖λ‖�1

)
+,

which implies that

‖�J − λJ ‖�1 + ‖�JC − λJC ‖�1 ≤ ‖λJ ‖�1 + ‖λJC ‖�1 + (∥∥λ̂D
∥∥

�1
− ‖λ‖�1

)
+

and thus

‖λJ ‖�1 − ‖�J ‖�1 + ‖�JC ‖�1 − ‖λJC ‖�1 ≤ ‖λJ ‖�1 + ‖λJC ‖�1 + (∥∥λ̂D
∥∥

�1
− ‖λ‖�1

)
+. �

Using the previous lemma, we have

(‖�JC
0
‖�1 − ‖�J0‖�1

)
+ ≤ 2‖λJC

0
‖�1 + (∥∥λ̂D

∥∥
�1

− ‖λ‖�1

)
+.
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We define Λ(λ,J c
0 ) = ‖λJC

0
‖�1 + (‖λ̂D‖�1 −‖λ‖�1 )+

2 (note that Λ(λ,J c
0 ) = ‖λJC

0
‖�1 as soon as λ satisfies the Dantzig

condition). We obtain then

‖f�‖2 ≥ κJ0‖�J0‖�2
− μJ0√|J0|

(‖�JC
0
‖�1 − ‖�J0‖�1

)
+

≥ κJ0‖�J0 ||�2
− 2

μJ0√|J0|Λ
(
λ,J c

0

)
and thus

‖�J0‖�2
≤ 1

κJ0

‖f�‖2 + 2
μJ0√|J0|κJ0

Λ
(
λ,J c

0

)
.

We deduce thus

‖�‖�1 ≤ 2‖�J0‖�1 + 2Λ
(
λ,J c

0

)
≤ 2

√|J0|‖�J0‖�2
+ 2Λ

(
λ,J c

0

)
≤ 2

√|J0|
κJ0

‖f�‖2 + 2Λ
(
λ,J c

0

)(
1 + 2μJ0

κJ0

)

and then since

4‖ηγ ‖�∞
2
√|J0|
κJ0

‖f�‖2 ≤ 16|J0|‖ηγ ‖2
�∞

κ2
J0

+ ‖f�‖2
2,

we have

4‖ηγ ‖�∞‖�‖�1 − ‖f�‖2
2 ≤ 16|J0|‖ηγ ‖2

�∞
κ2
J0

+ 8‖ηγ ‖�∞Λ
(
λ,J c

0

)(
1 + 2μJ0

κJ0

)

≤ 16|J0|
(

1

α
+ 1

κ2
J0

)
‖ηγ ‖2

�∞ + α
Λ(λ,J c

0 )2

|J0|
(

1 + 2μJ0

κJ0

)2

,

which is the result of the theorem.

6.3. Consequences of Assumptions 1 and 2

To prove Proposition 1, we establish Lemmas 2 and 3. In the sequel, we consider two integers s and l such that
1 ≤ s ≤ M/2, l ≥ s and s + l ≤ M . We first recall Assumptions 1 and 2. Assumption 1 is stated in a more general
form, which allows to unify the statement of the subsequent results.

Assumption 1.

φmin(s + l) > θl,s+l .

Assumption 2.

lφmin(s + l) > sφmax(l).

In the sequel, we assume that Assumptions 1 and 2 are both true.



66 K. Bertin, E. Le Pennec and V. Rivoirard

Lemma 2. Let J0 ⊂ {1, . . . ,M} with cardinality |J0| = s and � ∈ RM . We denote by J1 the subset of {1, . . . ,M}
corresponding to the l largest coordinates of � (in absolute value) outside J0 and we set J01 = J0 ∪ J1. We denote by
PJ01 the projector on the linear space spanned by (ϕm)m∈J01 . We have

‖PJ01f�‖2 ≥ √
φmin(s + l)‖�J01‖�2

− min(μ1,s,l ,μ2,s,l)√
s

‖�JC
0
‖�1,

with

μ1,s,l = θl,s+l√
φmin(s + l)

√
s

l
and μ2,s,l = √

φmax(l)

√
s

l
.

Proof. For k > 1, we denote by Jk the indices corresponding to the coordinates of � outside J0 whose absolute
values are between the ((k − 1) × l + 1)th and the (k × l)th largest ones (in absolute value). Note that this definition
is consistent with the definition of J1. Using this notation, we have

‖PJ01f�‖2 ≥ ‖PJ01f�J01
‖2 −

∥∥∥∥∑
k≥2

PJ01f�Jk

∥∥∥∥
2

≥ ‖f�J01
‖2 −

∑
k≥2

‖PJ01f�Jk
‖2.

Since J01 has s + l elements, we have

‖f�J01
‖2 ≥ √

φmin(s + l)‖�J01‖�2
.

Note that PJ01f�Jk
= fCJ01

for some vector C ∈ RM . Since,

〈PJ01f�Jk
− f�Jk

,PJ01f�Jk
〉 = 0,

one obtains that

‖PJ01f�Jk
‖2

2 = 〈f�Jk
, fCJ01

〉
and thus

‖PJ01f�Jk
‖2

2 ≤ θl,s+l‖�Jk
‖�2

‖CJ01‖�2
≤ θl,s+l‖�Jk

‖�2

‖fCJ01
‖2√

φmin(s + l)

≤ θl,s+l√
φmin(s + l)

‖�Jk
‖�2

‖PJ01f�Jk
‖2.

This implies that

‖PJ01f�Jk
‖2 ≤ θl,s+l√

φmin(s + l)
‖�Jk

‖�2
= μ1,s,l

√
l

s
‖�Jk

‖�2
.

Moreover, using that Jk has less than l elements, we obtain that

‖PJ01f�Jk
‖2 ≤ ‖f�Jk

‖2 ≤ √
φmax(l)‖�Jk

‖�2
= μ2,s,l

√
l

s
‖�Jk

‖�2
.

Now using that ‖�Jk+1‖�2
≤ ‖�Jk

‖�1/
√

l, we obtain

∑
k≥2

‖PJ01f�Jk
‖2 ≤ min(μ1,s,l ,μ2,s,l)√

s
‖�JC

0
‖�1
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and, finally,

‖PJ01f�‖2 ≥ √
φmin(s + l)‖�J01‖�2

− min(μ1,s,l ,μ2,s,l)√
s

‖�JC
0
‖�1 . �

Lemma 3. We use the same notations as in Lemma 2. For c ≥ 0, assume that

‖�JC
0
‖�1 ≤ ‖�J0‖�1 + c. (28)

Then we have

‖PJ01f�‖2 ≥ max(κ1,s,l , κ2,s,l)‖�J01‖�2
− min(μ1,s,l ,μ2,s,l)√

s
c,

with

κ1,s,l = √
φmin(s + l)

(
1 − θl,s+l

φmin(s + l)

√
s

l

)
and κ2,s,l = √

φmin(s + l)

(
1 −

√
sφmax(l)

lφmin(s + l)

)
.

Proof. Using Lemma 2 and (28), we obtain that

‖PJ01f�‖2 ≥ √
φmin(s + l)‖�J01‖�2

− min(μ1,s,l ,μ2,s,l)√
s

(‖�J0‖�1 + c
)
.

Using ‖�J0‖�1 ≤ √
s‖�J0‖�2

, we deduce that

‖PJ01f�‖2 ≥ (√
φmin(s + l) − min(μ1,s,l ,μ2,s,l)

)‖�J01‖�2
− c

min(μ1,s,l ,μ2,s,l)√
s

≥ max(κ1,s,l , κ2,s,l)‖�J01‖�2
− c

min(μ1,s,l ,μ2,s,l)√
s

. �

6.4. Proof of Theorem 5

The dictionary considered here is the Haar dictionary (φjk)j,k and is double-indexed. As a consequence, in the fol-
lowing, the quantity β0,jk , β̂jk , σ 2

0,jk ηγ,jk , σ̃ 2
jk and σ̂ 2

jk are defined as in (1)–(7) where ϕm is replaced by φjk . Note

that, since f0 = 1[0,1], we have, for j 
= −1, β0,jk = 0 and for any j , σ 2
0,jk = 1 if k ∈ {0, . . . ,2j − 1} and 0 otherwise.

The proof of (16) is provided by using the oracle inequality satisfied by hard thresholding given by Theorem 1 of
[27] and the rough control of the soft thresholding estimate by the hard one:∣∣|β̂jk| − ηγ,jk

∣∣1{|β̂jk |≥ηγ,jk} ≤ 2|β̂jk|1{|β̂jk |≥ηγ,jk}.

An alternative is directly obtained by adapting the oracle results derived for soft thresholding rules in the regression
model considered by Donoho and Johnstone [16].

To prove (17), we establish the following lemma.

Lemma 4. Let γ < 1. We consider j ∈ N such that

n

(logn)α
≤ 2j <

2n

(logn)α
(29)

for some α > 1. Then for all ε > 0 such that γ + 2ε < 1,

2j −1∑
k=0

E
(
β̂2

jk1|β̂jk |≥ηγ,jk

) ≥ 2γ (1 + ε)e−2

π
(logn)1−2αn−(γ+2ε)

(
1 + on(1)

)
.
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Then, we use the following inequality. For j that satisfies (29), we have for r > 0,

E
(∥∥f̂ D − f0

∥∥2
2

) ≥
2j −1∑
k=0

E
((|β̂jk| − ηγ,jk

)21|β̂jk |≥ηγ,jk

)

≥
2j −1∑
k=0

E
((|β̂jk| − ηγ,jk

)21|β̂jk |≥(1+r)ηγ,jk

)

≥
(

r

r + 1

)2 2j −1∑
k=0

E
(
β̂2

jk1|β̂jk |≥(1+r)ηγ,jk

)

≥
(

r

r + 1

)2 2j −1∑
k=0

E
(
β̂2

jk1|β̂jk |≥η
jk,(1+r)2γ

)
.

So, if r and ε are such that (1 + r)2γ + 2ε < 1, then applying Lemma 4, inequality (17) is proved for any δ such that
(1 + r)2γ + 2ε < δ < 1.

Proof of Lemma 4. Let j that satisfies (29) and 0 ≤ k ≤ 2j − 1. We have

σ̃ 2
jk = σ̂ 2

jk + 2‖φj,k‖∞
√

2γ σ̂ 2
jk

logn

n
+ 8γ ‖φj,k‖2∞

logn

n
.

So, for any 0 < ε <
1−γ

2 < 1
2 ,

σ̃ 2
jk ≤ (1 + ε)σ̂ 2

jk + 2γ ‖φj,k‖2∞
logn

n

(
ε−1 + 4

)
.

Now,

ηγ,jk =
√

2γ σ̃ 2
jk

logn

n
+ 2‖φj,k‖∞γ logn

3n

≤
√

2γ
logn

n

(
(1 + ε)σ̂ 2

jk + 2γ ‖φj,k‖2∞
logn

n

(
ε−1 + 4

)) + 2‖φj,k‖∞γ logn

3n

≤
√

2γ (1 + ε)σ̂ 2
jk

logn

n
+ 2‖φj,k‖∞γ logn

n

(
1

3
+

√
4 + ε−1

)
.

Furthermore, we have

σ̂ 2
jk = snjk − 2

n(n − 1)
unjk,

where snjk and unjk are defined as in (19) with ϕm replaced by φjk . This implies that

ηγ,jk ≤
√

2γ (1 + ε)
logn

n
snjk +

√
2γ (1 + ε)

logn

n
× 2

n(n − 1)
|unjk| + 2‖φj,k‖∞γ logn

n

(
1

3
+

√
4 + ε−1

)
.

Using (21), with probability larger than 1 − 6n−2, we have

|unjk| ≤ U(2 logn),
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and, since σ 2
0,jk = 1

2

n(n − 1)
U(2 logn) ≤ c1

n

√
logn + c2

n
logn + c3‖φj,k‖2∞

(
logn

n

)3/2

+ c4‖φj,k‖2∞
(

logn

n

)2

≤ C1
logn

n
+ C2‖φj,k‖2∞

(
logn

n

)3/2

,

where c1, c2, c3, c4, C1 and C2 are universal constants. Finally, with probability larger than 1 − 6n−2, we obtain that√
2γ (1 + ε)

logn

n
× 2

n(n − 1)
|unjk| ≤

√
2γ (1 + ε)C1

logn

n
+ √

2γ (1 + ε)C2‖φj,k‖∞
(

logn

n

)5/4

.

So, since γ < 1, there exists w(ε), only depending on ε such that with probability larger than 1 − 6n−2,

ηγ,jk ≤
√

2γ (1 + ε)
logn

n
snjk + w(ε)‖φjk‖∞

logn

n
.

We set

η̃γ,jk =
√

2γ (1 + ε)snjk

logn

n
+ w(ε)

2j/2 logn

n

so ηγ,jk ≤ η̃γ,jk. Then, we have

snjk = 1

n

n∑
i=1

(
φjk(Xi) − β0,jk

)2

= 2j

n

n∑
i=1

(1Xi∈[k2−j ,(k+0.5)2−j [ − 1Xi∈[(k+0.5)2−j ,(k+1)2−j [)2

= 2j

n

(
N+

jk + N−
jk

)
,

with

N+
jk =

n∑
i=1

1Xi∈[k2−j ,(k+0.5)2−j [, N−
jk =

n∑
i=1

1Xi∈[(k+0.5)2−j ,(k+1)2−j [.

We consider j such that

n

(logn)α
≤ 2j <

2n

(logn)α
, α > 1.

In particular, we have

(logn)α

2
< n2−j ≤ (logn)α.

Now, we can write

β̂jk = 1

n

n∑
i=1

φjk(Xi) = 2j/2

n

(
N+

jk − N−
jk

)
,
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that implies that

2j −1∑
k=0

E
(
β̂2

jk1|β̂jk |≥ηγ,jk

)

≥
2j −1∑
k=0

E
(
β̂2

jk1|β̂jk |≥η̃γ,jk
1|unjk |≤U(2 logn)

)

≥
2j −1∑
k=0

2j

n2
E

((
N+

jk − N−
jk

)21|β̂jk |≥
√

2γ (1+ε)snjk(logn/n)+w(ε)(2j/2 logn/n)
1|unjk |≤U(2 logn)

)

≥
2j −1∑
k=0

2j

n2
E

((
N+

jk − N−
jk

)21
(2(j/2)/n)|N+

jk−N−
jk |≥

√
2γ (1+ε)(2j /n)(N+

jk+N−
jk)(logn/n)+w(ε)(2j/2 logn/n)

× 1|unjk |≤U(2 logn)

)

≥
2j −1∑
k=0

2j

n2
E

((
N+

jk − N−
jk

)21|N+
jk−N−

jk |≥
√

2γ (1+ε)(N+
jk+N−

jk) logn+w(ε) logn
1|unjk |≤U(2 logn)

)

≥ 22j

n2
E

((
N+

j1 − N−
j1

)21|N+
j1−N−

j1|≥
√

2γ (1+ε)(N+
j1+N−

j1) logn+w(ε) logn
1|unjk |≤U(2 logn)

)
.

Now, we consider a bounded sequence (wn)n such that for any n, wn ≥ w(ε) and such that
√

vnj

2 is an integer with

vnj = (√
4γ (1 + ε)μ̃nj log(n) + wn log(n)

)2

and μ̃nj is the largest integer smaller or equal to n2−j−1. We have

vnj ∼ 4γ (1 + ε)μ̃nj logn

since

(logn)α

4
− 1 < n2−j−1 − 1 < μ̃nj ≤ n2−j−1 ≤ (logn)α

2
.

Now, set

lnj = μ̃nj + 1

2
√

vnj , mnj = μ̃nj − 1

2
√

vnj ,

that are positive for n large enough. If N+
j1 = lnj and N−

j1 = mnj then we have N+
j1 − N−

j1 = √
vnj . Finally, we obtain

that

2j −1∑
k=0

E
(
β̂2

jk1|β̂jk |≥ηγ,jk

) ≥ 22j

n2
vnjP

(
N+

j1 = lnj ,N
−
j1 = mnj , |unjk| ≤ U(2 logn)

)

≥ vnj (logn)−2α
[
P
(
N+

j1 = lnj ,N
−
j1 = mnj

) − P
(|unjk| > U(2 logn)

)]
≥ vnj (logn)−2α

[
n!

lnj !mnj !(n − lnj − mnj )!p
lnj +mnj

j (1 − 2pj )
n−(lnj +mnj ) − 6

n2

]

≥ vnj (logn)−2α

[
n!

lnj !mnj !(n − 2μ̃nj )!p
2μ̃nj

j (1 − 2pj )
n−2μ̃nj − 6

n2

]
, (30)
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where

pj =
∫

1[2−j ,(1+0.5)2−j [(x)f0(x)dx =
∫

1[(1+0.5)2−j ,2−j+1[(x)f0(x)dx = 2−j−1.

Now, let us study each term of (30). We have

p
2μ̃nj

j = exp
(
2μ̃nj log(pj )

)
= exp

(
2μ̃nj log

(
2−j−1)),

(1 − 2pj )
n−2μ̃nj = exp

(
(n − 2μ̃nj ) log(1 − 2pj )

)
= exp

(−(n − 2μ̃nj )2
−j + on(1)

)
= exp

(−n2−j
)(

1 + on(1)
)

and

(n − 2μ̃nj )
n−2μ̃nj = exp

(
(n − 2μ̃nj ) log(n − 2μ̃nj )

)
= exp

(
(n − 2μ̃nj )

(
logn + log

(
1 − 2μ̃nj

n

)))

= exp

(
(n − 2μ̃nj ) logn − 2μ̃nj (n − 2μ̃nj )

n

)(
1 + on(1)

)
= exp(n logn − 2μ̃nj − 2μ̃nj logn)

(
1 + on(1)

)
.

Then, using the Stirling relation, n! = nne−n
√

2πn(1 + on(1)), we deduce that

n!
(n − 2μ̃nj )!p

2μ̃nj

j (1 − 2pj )
n−2μ̃nj

= en−2μ̃nj

en
× nn

(n − 2μ̃nj )
n−2μ̃nj

× p
2μ̃nj

j (1 − 2pj )
n−2μ̃nj

(
1 + on(1)

)

= exp(−2μ̃nj ) × exp(n logn)

(n − 2μ̃nj )
n−2μ̃nj

× p
2μ̃nj

j (1 − 2pj )
n−2μ̃nj

(
1 + on(1)

)

= exp(−2μ̃nj ) × exp(n logn + 2μ̃nj log(2−j−1) − n2−j )

exp(n logn − 2μ̃nj − 2μ̃nj logn)

(
1 + on(1)

)
= exp

(
2μ̃nj logn + 2μ̃nj log

(
2−j−1) − n2−j

)(
1 + on(1)

)
.

It remains to evaluate lnj ! × mnj !:

lnj ! × mnj ! =
(

lnj

e

)lnj
(

mnj

e

)mnj √
2πlnj

√
2πmnj

(
1 + on(1)

)
= exp(lnj log lnj + mnj logmnj − 2μ̃nj ) × 2πμ̃nj

(
1 + on(1)

)
.

If we set

xnj =
√

vnj

2μ̃nj

= on(1),
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then

lnj = μ̃nj +
√

vnj

2
= μ̃nj (1 + xnj ),

mnj = μ̃nj −
√

vnj

2
= μ̃nj (1 − xnj ),

and using that

(1 + xnj ) log(1 + xnj ) = (1 + xnj )

(
xnj − x2

nj

2
+ x3

nj

3
+ O

(
x4
nj

))

= xnj − x2
nj

2
+ x3

nj

3
+ x2

nj − x3
nj

2
+ O

(
x4
nj

)

= xnj + x2
nj

2
− x3

nj

6
+ O

(
x4
nj

)
,

we obtain that

lnj log lnj = μ̃nj (1 + xnj ) log
(
μ̃nj (1 + xnj )

)
= μ̃nj (1 + xnj ) log(1 + xnj ) + μ̃nj (1 + xnj ) log(μ̃nj )

= μ̃nj

(
xnj + x2

nj

2
− x3

nj

6
+ O

(
x4
nj

)) + μ̃nj (1 + xnj ) log(μ̃nj ).

Similarly, we obtain that

mnj logmnj = μ̃nj

(
−xnj + x2

nj

2
+ x3

nj

6
+ O

(
x4
nj

)) + μ̃nj (1 − xnj ) log(μ̃nj ),

that implies that

lnj log lnj + mnj logmnj = μ̃nj

(
x2
nj + O

(
x4
nj

)) + 2μ̃nj log(μ̃nj )

≤ μ̃nj x
2
nj + 2μ̃nj log

(
n2−j−1) + O

(
μ̃nj x

4
nj

)
.

Since

μ̃nj x
2
nj = vnj

4μ̃nj

∼ γ (1 + ε) logn,

we have, for n large enough,

μ̃nj x
2
nj + O

(
μ̃nj x

4
nj

) ≤ (γ + 2ε) logn

and

lnj log lnj + mnj logmnj ≤ (γ + 2ε) logn + 2μ̃nj log
(
n2−j−1).

Finally, we have

lnj ! × mnj ! = exp(lnj log lnj + mnj logmnj − 2μ̃nj ) × 2πμ̃nj

(
1 + on(1)

)
≤ exp

(
(γ + 2ε) logn + 2μ̃nj log

(
n2−j−1) − 2μ̃nj

) × 2πμ̃nj

(
1 + on(1)

)
.
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Since 0 < ε <
1−γ

2 < 1
2 , we conclude that there exists δ < 1 such that

2j −1∑
k=0

E
(
β̂2

jk1|β̂jk |≥ηγ,jk

)

≥ vnj (logn)−2α

[
exp(2μ̃nj logn + 2μ̃nj log(2−j−1) − n2−j )

exp((γ + 2ε) logn + 2μ̃nj log(n2−j−1) − 2μ̃nj ) × 2πμ̃nj

− 6

n2

](
1 + on(1)

)

≥ vnj (logn)−2α

2πμ̃nj

[
exp

(−(γ + 2ε) logn − 2
) − 6

n2

](
1 + on(1)

)

≥ 2γ (1 + ε)e−2

π
(logn)1−2αn−(γ+2ε)

(
1 + on(1)

)
and Lemma 4 is proved. �
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