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PRODUCTS OF RANDOM MATRICES: DIMENSION AND
GROWTH IN NORM

BY VLADISLAV KARGIN

Stanford University

Suppose that X1, . . . ,Xn, . . . are i.i.d. rotationally invariant N -by-N ma-
trices. Let �n = Xn · · ·X1. It is known that n−1 log |�n| converges to a non-
random limit. We prove that under certain additional assumptions on matrices
Xi the speed of convergence to this limit does not decrease when the size of
matrices, N , grows.

1. Introduction. Let Xi be a sequence of independent N × N random matri-
ces and �n = Xn · · ·X1. In a celebrated paper [3], Furstenberg and Kesten proved
that n−1 log‖�n‖ converges provided that E log+(‖Xi‖) < ∞. Later, Oseledec in
[7] proved convergence for other singular values of �n, and Cohen and Newman
in [1] studied the behavior of the limit in the situation when N approaches infinity.
This paper investigates the question of how the speed of convergence depends on
the dimension of matrices N .

Consider a dynamical system (a gas, an economy, an ecosystem, etc.). Its evo-
lution can be described by a mapping ψi → Xi(ψi), where ψi is a vector that
describes the state of the system at time i. We can often model the mapping as a
multiplication by a random matrix Xi. Stability and other long-run properties of
the system depend on the growth in the norm of the product �n = Xn · · ·X, which
we can measure by calculating the quantity n−1 log(‖�n‖).

The sub-multiplicativity property of the norm (‖X2X1‖ ≤ ‖X2‖‖X1‖) ensures
that n−1 log(‖�n‖) converges to E log‖X1u‖, where u is an arbitrary vector. In-
tuitively, this means that it is not important what was the starting vector of the
system. After some time, all products grow at the same rate independently of the
initial state.

It is of interest to investigate whether this erasure of memory about the initial
state occurs slower in more complex systems, that is, in systems, which are de-
scribed by matrices of larger size.

Of course, when we compare long-run properties of systems, we should only
look at the systems that are comparable in the short run, that is, the system that have
comparable one-step behavior. Roughly, the difference between one-step growth
of a specially-chosen and a random vector can be measured by the ratio of ‖X1‖2

to N−1tr(X∗
1X1), where N is the dimension of the matrix Xi. Indeed, ‖X1‖2 is
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the square of the maximal possible increase in the length of the state vector, and
N−1 tr(X∗

1X1) is the average of the squared singular values of X1, hence it can be
considered as a measure of the increase in the length of a random state vector.

Hence, if we want systems to be comparable in the short run, then we should
restrict this ratio by a constant that does not depend on the dimension of the system.
(Otherwise, some directions may become more and more unusual as the dimension
of the system grows.) We will call this property uniform boundedness of singular
values.

We also want to look at sufficiently symmetric systems, that is, systems without
preferential directions. We codify this by requiring that matrices Xi are rotationally
invariant, that is, the distribution of matrix elements does not depend on the choice
of basis.

The main result of this paper is that under these assumptions the speed with
which the memory of the initial state is erased does not decrease as the dimension
of the system grows.

Intuitively, the asymptotic behavior of n−1 log‖�n‖ depends on three factors.
First of all, for a fixed vector v,

n−1 log‖�nv‖ = n−1
n∑

i=1

log‖Xivi‖

for a certain sequence of vectors vi and this averaging is likely to concentrate
the distribution of n−1 log‖�nv‖. This factor does not depend on the dimension
N . On the other hand, we are interested in the convergence of the supremum
of n−1 log‖�nv‖ over all v ∈ SN, and to ensure the convergence of this supre-
mum we have to make sure that variables n−1 log‖�nv‖ are all close to the limit
E log‖X1u‖ for a sufficiently dense set of vectors v. The number of elements in
such a set is likely to grow exponentially in N, and this might make the conver-
gence of n−1 log‖�n‖ slower for large N.

The third factor appears because for every fixed vector v, the norm ‖Xiv‖ be-
comes concentrated around some particular value as N → ∞. This factor is likely
to speed up the convergence of n−1 log‖�nv‖ and therefore of n−1 log‖�n‖.

We will show in this paper that the third factor dominates and the speed of con-
vergence of n−1 log‖�n‖ is not slowed down by the growth in the dimension N .

Previously, the speed of convergence in the Furstenberg–Kesten theorem was in-
vestigated in [5, 8] and [4]. They proved a central limit theorem for n−1/2 log‖�n‖
and studied large deviations of n−1 log‖�n‖ for a large class of random matrices.
However, the results in these papers do not provide effectively computable bounds
on the rate of convergence in limit theorems, and, as a consequence, do not help us
to investigate how the speed of convergence changes as the dimension of matrices
grows. One of the contributions of this paper is deriving more explicit bounds on
the speed of convergence in limit theorems.

Let us describe the problem in a more formal fashion. Consider independent
identically-distributed N -by-N matrices X

(N)
i . We are interested in the behavior
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of the norm of the product �n = X
(N)
n · · ·X(N)

1 , and we will make the following

assumptions about matrices X
(N)
i . First of all, we assume that random matrices

X
(N)
i are rotationally invariant; that is, the distribution of their entries does not

depend on the choice of coordinates. Formally, we use the following definition.

DEFINITION 1. A random matrix X is rotationally invariant if for every in-
teger k ≥ 1, for every collection of vectors {vi,wi}, i = 1, . . . , k, and for every
orthogonal matrix U, the joint distributions of random vectors {〈wi,Xvi〉}ki=1 and
{〈Uwi,XUvi〉}ki=1 are the same.

ASSUMPTION A (“Rotational invariance”). Matrices X
(N)
i are rotationally in-

variant.

We also impose an assumption needed for the validity of the Furstenberg–
Kesten theorem.

ASSUMPTION B (“Furstenberg–Kesten”). For all N, E log+ ‖X(N)
i ‖ exists.

Second, we restrict our study to two important cases. The first one is the case
of (real) Gaussian matrices X

(N)
i , that is, independent random N -by-N matrices

with independent entries distributed according to the Gaussian distribution with
zero mean and variance σ 2/N, that is, as N (0, σ 2/N).

The second case is that of independent rotationally invariant N -by-N matri-
ces X

(N)
i that satisfy the following assumptions. Let s

(i,N)
k be the eigenvalues of

X
(N)∗
i X

(N)
i (i.e., squared singular values of X

(N)
i ), and let

s(i,N) = 1

N

N∑
k−1

s
(i,N)
k = 1

N
tr

(
X

(N)∗
i X

(N)
i

)
.

(We will sometimes omit superscripts to lighten the notation.)

ASSUMPTION C (“Uniformly bounded singular values”). With probability 1,
maxk s

(i,N)
k ≤ bs(i,N), where the constant b does not depend on N.

In other form, Assumption C says that∥∥X(N)
i

∥∥2 ≤ b
1

N
tr

(
X

(N)∗
i X

(N)
i

)
with probability 1.

ASSUMPTION D (“Comparability across N”). var[log s(i,N)] exists and bound-
ed by a constant which does not depend on N.
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One example of a matrix family that satisfies these assumptions is Hermitian
matrices X

(N)
i which are generated in the following way. Sample N independent

values from a distribution supported on [α,β], where β > α > 0, and construct a
diagonal matrix D(N) by putting these values on the main diagonal. Then take a
Haar-distributed random orthogonal matrix U

(N)
i and define X

(N)
i as D(N)U

(N)
i .

A sequence of these matrices (with independent U
(N)
i ) will satisfy all the assump-

tions.
The main result is as follows.

THEOREM 2. Let X
(N)
i be independent, identically distributed N × N ma-

trices, which satisfy Assumptions A and B and which are either Gaussian with
independent entries N (0, σ 2/N), or satisfy Assumptions C and D. Let �n =
X

(N)
n · · ·X(N)

1 and let v be an arbitrary unit vector. Then n−1 log‖�n‖ converges
in probability to E log‖X(N)

1 v‖ and the convergence is uniform in N. That is, for
each δ > 0, there exists an n0(δ) such that for all n ≥ n0 and all N ≥ 1,

Pr
{∣∣n−1 log‖�n‖ − E log

∥∥X(N)
1 v

∥∥∣∣ ≥ δ
} ≤ δ.(1)

The assumptions of the theorem are sufficient but not necessary. The assumption
that sk ≤ bs is used in the proof of Proposition 3 below, where it is used to estimate
the probability of large deviations of log‖X(N)

i v‖ and to show that the rate in the
corresponding exponential inequality is proportional to N. It is likely that this
assumption can be somewhat relaxed by requiring instead that Pr{sk/s > b + u} ≤
ce−c′Nu.

One particular implication of the assumption sk ≤ bs is that the bound on singu-
lar values does not depend on the dimension of the matrix. In order to understand
this assumption better, consider the following example. Let

X
(N)
i = √

N |yi〉〈xi |,
where 〈xi | is a Haar-distributed row N -dimensional vector, and |yi〉 is a Haar-
distributed column N -dimensional vector. (Vectors 〈xi | and |yi〉 are assumed to be
independent.) Then the squared singular values of Xi are all zero except one, which
equals N. Hence, s(i,N) = 1 and log s(i,N) = 0. We can conclude that Assumptions
A, B and D are satisfied, and Assumption C is not satisfied.

Next, consider

ξi := ∥∥X(N)
i v

∥∥2 = N〈xi |v〉2,

where v is an arbitrary vector. It is easy to see that ξi is distributed as the first
coordinate of a Haar-distributed vector u. In other words ξi is distributed as

Y 2
1

(Y 2
1 + · · · + Y 2

N)/N
,
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where Yi are independent standard Gaussian variables. Then it is clear that

lim
N→∞E log‖X1v‖2 = E log(Y1)

2 ∈ (−∞,0).

Next, let us compute n−1 log‖�n‖2. Note that

�n = Nn/2|yn〉〈xn| · · · |y2〉〈x2|y1〉〈x1|
and

�∗
n�n = Nn|x1〉〈xn|yn−1〉2 · · · 〈x2|y1〉2〈x1|

= N |x1〉N〈xn|yn−1〉2 · · ·N〈x2|y1〉2〈x1|.
Hence,

n−1 log‖�n‖2 = logN

n
+ n−1

n−1∑
i=1

log ξi,

where ξi are independent and distributed as ‖X(N)
i v‖2 above. Hence, ξi converges

in distribution to Y 2
1 as N → ∞. It is clear that

n−1
n−1∑
i=1

log ξi → E log‖X1v‖2

in probability as n → ∞. Therefore, for large N,

n−1 log‖�n‖2 − E log‖X1v‖2 ∼ logN

n
.

This bias term cannot be made small uniformly in N by an increase in n. This
means that the claim of Theorem 2 fails in this case.

Later, in Section 3, we will prove a necessary condition for the uniform conver-
gence by using the basic idea of this example.

In order to understand the role of the rotational invariance assumption, consider
the following example.

Let Xi be independent, identically distributed, diagonal matrices. The diagonal
elements of a matrix Xi are independent Bernoulli variables that take values a and
b. That is, a diagonal element takes the value b > 0 with probability p and the
value a > 0 with probability q = 1 − p. Assume that b > a.

It is easy to see that the norm of �n = X1 · · ·Xn is given by the following
expression:

‖�n‖ = max{aα1bβ1, . . . , aαN bβN },
where αi + βi = n, and βi are independent random variables with the binomial
distribution B(p,n).
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Taking the logarithm and dividing by n, we get

1

n
log‖�n‖ = loga + log(b/a)max{β̃1, . . . , β̃N },

where β̃i = βi/n. Note that as n grows, each β̃i approaches the Gaussian distribu-
tion N (p,pq/n).

If N is fixed, then limn−1 log‖�n‖ = loga +p log(b/a). However, if N grows
simultaneously with n, then the limit of n−1 log‖�n‖ may be nonexistent, or may
depend on the speed of growth in N relative to the speed of growth in n. Hence,
the conclusion of Theorem 2 is invalid in this case.

It is an interesting problem whether the assumption of rotational invariance can
be relaxed so that the result in Theorem 2 holds for a larger class of matrices,
for example, for matrices with i.i.d. non-Gaussian entries (i.e., Wigner matrices).
However, this problem appears to be hard since at this moment very little is known
about effective bounds on the rate of convergence in the Furstenberg–Kesten the-
orem.

Let me now explain two results which will be used as tools in the proof of
Theorem 2. The proofs of these results will be given in later sections.

Our main tool is the following proposition.

PROPOSITION 3. (i) Suppose that all Xi are Gaussian with independent en-
tries N (0, σ 2/N). Then for all sufficiently small t , all N ≥ N1(t) and all n ≥ 1,

Pr
{∣∣∣∣1

n
log‖�nv‖ − logσ

∣∣∣∣ > t

}
≤ 2 exp

(
−1

8
Nnt2

)
.

(ii) Suppose that i.i.d. N -by-N matrices Xi are rotationally invariant and satisfy
Assumption C with constant b. Let

s(i,N) = 1

N

N∑
k−1

s
(i,N)
k = 1

N
Tr(X∗

i Xi).

Then for all t ∈ (0,1/4), all N ≥ N1(t) and all n ≥ 1,

Pr

{∣∣∣∣∣1

n
log‖�nv‖ − 1

n

n∑
i=1

log s(i,N)

∣∣∣∣∣ > t

}
≤ 2 exp

(
− 1

32b2 Nnt2
)
.

In its essence, Proposition 3 is a large deviation result which quantifies the speed
of convergence of n−1 log‖�nv‖2 for a fixed vector v. Its main point is that the
rate in this large deviation estimate is proportional to the dimension N . The proof
of this proposition will be given in Section 2.

The other tool is as follows. Let a set of points on the unit sphere in R
N be called

an ε-net if the sphere is covered by spherical caps with centers at these points and
angular radius ε.
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PROPOSITION 4. Let A be an arbitrary N -by-N matrix. Suppose that the end-
points of vectors vi form an ε-net of the unit sphere in R

N . Then for all sufficiently
small ε,

log‖A‖ ≤ max
i

log‖Avi‖ + 2ε.

This proposition allows us to control the matrix norm ‖�n‖ by the norms of
vectors ‖�nvi‖, where vi runs through a finite set of values.

PROOF OF PROPOSITION 4. Let vi be a vector in the net which is closest to a
unit vector v. Then

‖Av‖ ≤ ‖Avi‖ + ‖A(v − vi)‖
≤ ‖Avi‖ + ε‖A‖.

Taking the supremum over v, we obtain that

(1 − ε)‖A‖ ≤ max
i

‖Avi‖.
Hence,

log‖A‖ ≤ max
i

log‖Avi‖ − log(1 − ε),

and the claim of the proposition follows. �

This proposition is useful in conjunction with the following result about the size
of sphere coverings. By Lemma 2.6 on page 7 of [6], for ε smaller than a certain
constant, there exists an ε-net with cardinality M ≤ exp(N log(3/ε)).

Now let us prove Theorem 2 by using Propositions 3 and 4.

PROOF OF THEOREM 2. We focus on the case when Assumptions C and D
hold. The proof for the case of Gaussian matrices goes along a similar route and it
is simpler.

First of all, note that is enough to prove that (1) holds for all sufficiently large
N, that is, for all N ≥ N0(δ). Indeed, for each N ≤ N0 we can apply results in [2]
and find that inequality (1) holds if n ≥ n(δ,N). Hence, inequality (1) holds for
all N ≤ N0, provided that

n ≥ n0(δ) = max
N≤N0(δ)

{n(δ,N)}.
We will choose an appropriate N0(δ) later.
We are going to prove that for all sufficiently large N and n [i.e., N ≥ N2(δ)

and all n ≥ n2(δ)], it is true that

Pr

{∣∣∣∣∣1

n
log‖�n‖2 − 1

n

n∑
i=1

log s(i,N)

∣∣∣∣∣ >
δ

10

}
<

δ

10
.(2)
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Let vectors vj , j = 1, . . . ,M, form a (δ/100)-net on the unit sphere. Then, by
using Propositions 4 and 3, the union bound and the estimate on the number of
elements in the net we obtain

Pr

{∣∣∣∣∣1

n
log‖�n‖2 − 1

n

n∑
i=1

log s(i,N)

∣∣∣∣∣ >
δ

10

}

≤ Pr

{
max

vi

∣∣∣∣∣1

n
log‖�nvi‖2 − 1

n

n∑
i=1

log s(i,N)

∣∣∣∣∣ >
δ

100

}

≤ 2 exp
{(

log
(

300

δ

)
− cn

(
δ

100

)2)
N

}
,

where c is a certain constant. Clearly, we can choose n2(δ) in such a way that for
all n ≥ n2(δ), it is true that

log
(

300

δ

)
− cn

(
δ

100

)2

< α < 0

for some α, and then choose N2(δ), such that for all N > N2(δ) it is true that

2 exp{αN} <
δ

10
.

This choice of n2(δ) and N2(δ) is sufficient to ensure that (2) holds.
Next, let dN = E log s(i,N). Since variance of log s

(N)
i is bounded above by a

finite constant which does not depend on N (Assumption D), therefore we can
find such n3(δ) that for all n ≥ n3(δ), it is true that

Pr

{∣∣∣∣∣1

n

n∑
i=1

log s
(N)
i − dN

∣∣∣∣∣ >
δ

100

}
<

δ

100
(3)

for all N.

It follows that for all n ≥ n4(δ) and N ≥ N2(δ), it is true that

Pr
{∣∣∣∣1

n
log‖�n‖2 − dN

∣∣∣∣ >
δ

5

}
<

δ

5
.(4)

Note that by the Furstenberg–Kesten theorem,

Pr
{∣∣∣∣1

n
log‖�n‖2 − E log

∥∥X(N)
i u

∥∥2
∣∣∣∣ >

δ

5

}
<

δ

5
(5)

for all n ≥ n5(δ,N). This implies that for all N ≥ N2(δ), there exists such n, that
both inequalities (4) and (5) hold. This implies that for all such N, and for all
δ < 1, the following inequality holds:∣∣∣∣dN − E log

∥∥X(N)
i u

∥∥2
∣∣∣∣ <

2δ

5
.(6)
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Otherwise, the sum of the events in (4) and (5) would cover all probability space
and hence the sum of probabilities in (4) and (5), 2δ/5, would have to be greater
then 1. This contradicts to the assumption that δ < 1.

Inequalities (2), (3) and (6) imply that

Pr
{∣∣∣∣1

n
log‖�n‖2 − E log‖Xiu‖2

∣∣∣∣ > δ

}
< δ

for all n > n0(δ) and N > N0(δ), where n0 and N0 are sufficiently large functions
of δ. �

It remains to complete the proof by proving Proposition 3. We will do this in
the next section.

The rest of the paper consists of Section 2, which is devoted to the proof of
Proposition 3, Section 3, which gives a necessary condition for uniform conver-
gence in Furstenberg–Kesten theorem, and Section 4, which concludes.

2. A large deviation bound for the dilation of a fixed vector. Everywhere
in this section, we assume that random matrices Xi are independent, identically
distributed and rotationally invariant, and that �i = XiXi−1 · · ·X1. Let us consider
the following random variables:

yi = log
(‖Xi�i−1v‖

‖�i−1v‖
)
.

It is known (e.g., [1]) that the random variables yi are independent and identically
distributed. Their distribution coincides with the distribution of log(‖X1v‖), where
v is an arbitrary unit vector.

2.1. Gaussian matrices. In this section, we consider an important case
when each matrix Xi has independent Gaussian entries distributed according to
N (0, σ 2/N). In this case, log‖X1v‖2 is distributed in the same way as the ran-
dom variable

y = log

(
σ 2

N

N∑
k=1

Y 2
k

)
,

where Yk are independent standard Gaussian variables. In order to prove Proposi-
tion 3 for this case, it is enough to show that the following result holds.

PROPOSITION 5. Let yi be independent copies of the variable

y = log

[
1

N

N∑
k=1

Y 2
k

]
.



PRODUCTS OF RANDOM MATRICES 899

If t ≤ 1, then there exists a function N0(t) such that for all N ≥ N0(t) and all n,

the following inequality holds:

Pr

{∣∣∣∣∣1

n

n∑
i=1

yi

∣∣∣∣∣ ≥ t

}
≤ 2e−t2nN/8.

PROOF. First of all, let us compute

Eeyz = E

(
1

N

N∑
k=1

Y 2
k

)z

,

where z is a real number. By explicit calculation,

E

(
N∑

i=1

Y 2
i

)z

= 2z
(N/2 + z)


(N/2)
,

where 
(z) is the Gamma function. This formula is valid for z > −N/2.

Let z = αN, where α > −1/2. Then using the Stirling formula for large N , we
can write

E(eyz) = E

(
N∑

i=1

Y 2
i

)z

(7)

∼ 1√
1 + 2α

NαN exp
{[(

1

2
+ α

)
log(1 + 2α) − α

]
N

}
.

Note that for all α ≥ 0, (1
2 + α) log(1 + 2α) − α ≤ α2, and for all α > −1/2,

(1
2 + α) log(1 + 2α) − α ≤ 2α2 with equalities only for α = 0.

If t > 0, we set α = t/2 and z = (t/2)N, and use the fact that for all sufficiently
large N, the asymptotic term in (7) dominates all other terms. Hence, we obtain
the estimate

e−tzEeyz ≤ exp(−t2N/4).

If t ∈ (−1,0), then we can take α = t/4 and z = (t/4)N, and we obtain

e−tzEeyz ≤ exp(−t2N/8).

By standard arguments, we can translate these inequalities into statements about
probabilities of large deviations. If 0 ≤ t < 1, then

Pr

{∣∣∣∣∣1

n

n∑
i=1

yi

∣∣∣∣∣ ≥ t

}
≤ 2e−t2Nn/8.

�
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2.2. Matrices with uniformly bounded singular values. In this section, we are
going to prove the second part of Proposition 3. Since Xi are i.i.d. and rotation-
ally invariant, therefore the distribution of yi = log(‖�iv‖2/‖�i−1v‖2) coincides
with the distribution of log(‖X1v‖2) and equals the distribution of the random
variable y = ∑N

k=1 sku
2
k. Here uk are components of the random vector u, which

is uniformly distributed on the unit sphere and which is independent of sk.

Let us start with considering large deviations of x = ∑N
k=1 sku

2
k . Let s(N) =:

N−1 ∑N
k=1 sk.

PROPOSITION 6. Suppose that with probability 1, |sk| ≤ B for all k. Then for
all t > 0,

max

[
Pr

{
N∑

k=1

sku
2
k ≤ s − t

}
,Pr

{
N∑

k=1

sku
2
k ≥ s + t

}]
≤ exp

{
− Nt2

4B(B + t)

}
.(8)

PROOF. Let x denote
∑N

k=1 sku
2
k and let us estimate Pr{x ≥ s(N) + t}. We will

estimate the conditional probability Pr{x ≥ s(N) + t |s1, . . . , sN }, which we denote
as Pr{x ≥ s + t} for simplicity. Note that

Pr{x ≥ s + t} ≤ e−z(s+t)Eezx

= e−z(s+t)(1 + M1z + 1
2!M2z

2 + · · ·),
where z > 0 and Mp = Exp.

Let us use von Neumann’s formulas from ([9], pages 373–375) for the uncen-
tered moments of the random variable x. Namely, let

αl = 1

2l

N∑
i=1

(si)
l,

and let

1 + β1z + β2z
2 + β3z

3 + · · · = eα1z+α2z
2+α3z

3+···.
Then, von Neumann’s result is that

Exk = 2kk!
N(N + 2) · · · (N + 2k − 2)

βk.

Using this result, we write

1 + M1z + 1

2!M2z
2 + · · · = 1 + 2

N
β1z + 22

N(N + 2)
β2z

2 + · · ·

≤ 1 + β1

(
2z

N

)
+ β2

(
2z

N

)2

+ · · ·

= exp
{
α1

(
2z

N

)
+ α2

(
2z

N

)2

+ · · ·
}
.
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Next, note that 2α1/N = s, and that αk ≤ k−1(N/2)Bk. This implies that

e−z(s+t)

(
1 + M1z + 1

2!M2z
2 + · · ·

)

≤ e−zt exp
{
N

4

[(
2Bz

N

)2

+
(

2Bz

N

)3

+ · · ·
]}

= e−zt exp
{
N

4

(2Bz/N)2

1 − 2Bz/N

}

= e−zt exp
{

B2z2

N − 2Bz

}
.

Let

z0 = Nt

2B(B + t)
.

Then

B2z2
0

N − 2Bz0
− z0t = − Nt2

4B(B + t)
.

Altogether, we get

Pr{x ≥ s + t} ≤ exp
{
− Nt2

4B(B + t)

}
.

The proof of the inequality for Pr{x ≤ s − t} is similar. �

COROLLARY 7. Suppose that with probability 1, sk ≤ bs for all k. Then for
all t > 0,

max

[
Pr

{
N∑

k=1

sku
2
k ≤ s(1 − t)

}
,Pr

{
N∑

k=1

sku
2
k ≥ s(1 + t)

}]

≤ exp
{
− Nt2

4b(b + t)

}
.(9)

COROLLARY 8. Let 0 ≤ sk ≤ b for each k, and t ∈ (0,1/2). Then:
(i)

Pr

{
log

N∑
k=1

sku
2
k ≥ log s + t

}
≤ exp

{
− Nt2

4b(b + t)

}
;(10)

(ii)

Pr

{
log

N∑
k=1

sku
2
k ≥ log s − (2 log 2)t

}
≤ exp

{
− Nt2

4b(b + t)

}
;(11)



902 V. KARGIN

(iii)

Pr

{∣∣∣∣∣log
N∑

k=1

sku
2
k − log s

∣∣∣∣∣ ≥ t

}
≤ 2 exp

{
− Nt2

4c(c + t)

}
,(12)

where c = (2 log 2)b.

PROOF. Let x denote
∑N

k=1 sku
2
k. Then

Pr{x ≥ s + t} = Pr
{

logx ≥ log s + log
(

1 + t

s

)}

≥ Pr
{

logx ≥ log s + t

s

}
.

This and (8) prove the first inequality. The second inequality is proved similarly,
and the third one is a consequence of the first two inequalities. �

LEMMA 9. Suppose that X is a random variable such that

Pr{|X| ≥ t} ≤ 2 exp
{
− Nt2

4c(c + t)

}
,

where c > 0. Let |z| < N/(16c). Then

EezX ≤ √
32π

√
c2z2

N
exp

(
2
c2z2

N

)
+ 3e|z|/√N + 2 exp

(
− N

16

)
.

PROOF. Consider the case when z ≥ 0. First, let us estimate
∫ ∞

1/
√

N
eztμ(dt),

where μ is the distribution measure of X. Let F(t) =: Pr{X ≥ t}. Then, by inte-
grating by parts and using the inequalities

F(t) ≤ 2 exp
{
− Nt2

4c(c + t)

}
and N ≥ 1, we get∫ ∞

1/
√

N
eztμ(dt) = F

(
1√
N

)
ez/

√
N + z

∫ ∞
1/

√
N

eztF (t) dt

≤ 2e−1/[4c(c+1)]ez/
√

N + 2z

∫ ∞
1/

√
N

ezt exp
{
− Nt2

4c(c + t)

}
dt.
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In order to estimate the integral in the last line, we divide it into two pieces,
∫ b

1/
√

N

and
∫ ∞
b . Then∫ b

1/
√

N
ezt exp

{
− Nt2

4c(c + t)

}
dt ≤

∫ ∞
−∞

ezt exp
{
−Nt2

8c2

}
dt

= exp
(

2c2

N
z2

)∫ ∞
−∞

exp
{
− N

8c2

(
t − 4c2

N
z

)2}
dt

=
√

8πc2

N
exp

(
2c2

N
z2

)
.

Next, for the second piece, we have∫ ∞
b

ezt exp
{
− Nt2

4c(c + t)

}
dt ≤

∫ ∞
b

ezt exp
{
−Nt

8c

}
dt

= 1

N/(8c) − z
exp

(
−

(
N

8c
− z

)
c

)

≤ 16c

N
exp

(
− N

16

)
,

where we used the assumption that z ≤ N/(16c).

Hence, combining the previous inequalities and using the assumption that z ≤
N/(16c) again, we get

∫ ∞
1/

√
N

eztμ(dt) ≤ 2e−1/[4c(c+1)]ez/
√

N + 2z

√
8πc2

N
exp

(
2c2

N
z2

)

+ 2 exp
(
− N

16

)
.

In addition, ∫ 1/
√

N

−∞
eztμ(dt) ≤ ez/

√
N.

Combining all the parts, we get

∫ ∞
−∞

eztμ(dt) ≤
√

32πc2z2

N
exp

(
2c2

N
z2

)
+ (

1 + 2e−1/[4c(c+1)])ez/
√

N

+ 2 exp
(
− N

16

)
,

from which the claim of the lemma follows for z ≥ 0. The case when z ≤ 0 is
similar. �
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COROLLARY 10. Let X = log(
∑N

k=1 sku
2
k) − log(s) and let |z| ≤ N/(16c),

where c = (2 log 2)b. Then

EezX ≤ √
32π

√
c2z2

N
exp

(
2
c2z2

N

)
+ 3e|z|/√N + 2 exp

(
− N

16

)
.

PROOF. This follows directly from Lemma 9 and inequality (10). �

PROOF OF THE SECOND PART OF PROPOSITION 3. Note that

log‖�nu‖2 =
n∑

i=1

log

[
N∑

k=1

s
(i,N)
k

(
u

(i,N)
k

)2
]
,

where u
(i,N)
k are components of independent Haar-distributed N -vectors u(i,N).

Let

Yi = log

(
N∑

k=1

s
(i,N)
k

(
u

(i,N)
k

)2
)

− log
(
s(i,N)).

We aim to estimate

Pr

{∣∣∣∣∣
n∑

i=1

Yi

∣∣∣∣∣ > nt

}
.

As usual,

Pr

{
n∑

i=1

Yi > nt

}
≤ e−nzt (EezYi )n,

where z > 0.

Note that by Assumption B,

s
(i,N)
k ≤ bs(i,N),

hence, our previous lemmas are applicable.
We set z = tN/(4c2) and assume that N ≥ 4/t2. (Note that the assumption that

t ∈ (0,1/4] implies that z ≤ N/(16c).) Then, by the previous lemma, we have

EezYi ≤ √
32π

√
c2z2

N
exp

(
2
c2z2

N

)
+ 3ez/

√
N + 2 exp

(
− N

16

)

≤ √
2π

√
t2N

c2 exp
(

1

8

t2N

c2

)
+ 3 exp

(
t
√

N

4c2

)
+ 2 exp

(
− N

16

)
.

Since N ≥ 4/t2, then the first term dominates the other two terms, and we can
write

EezYi ≤
(√

2π

√
t2N

c2 + 5

)
exp

(
t2N

8c2

)
.
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Hence,

e−nzt (EezYi )n ≤
(√

2π

√
t2N

c2 + 5

)n

exp
(
− t2N

8c2 n

)
= exp

{−n
[− log

(√
2π(t/c)

√
N + 5

) + (t2/8c2)N
]}

.

Clearly, we can find an N0(t) such that for all N > N0(t)

e−nzt (EezYi )n ≤ exp{−n(t2/16c2)N}.
Hence, for all N > N0(t)

Pr

{
1

n

n∑
i=1

[
y

(N)
i − log

(
s(i,N))] > t

}
≤ exp{−n(t2/16c2)N}.(13)

The case of the inequality

Pr

{
1

n

n∑
i=1

[
y

(N)
i − log

(
s(i,N))] < −t

}
≤ exp{−n(t2/16c2)N}(14)

is similar. Finally, note that 16c2 ≤ 32b2. �

3. Necessary condition. Let us introduce the following assumption.

ASSUMPTION D′ . E[log‖X(N)
i u‖]2 exists and bounded by a constant that

does not depend on N.

THEOREM 11. Let Assumptions A, B and D′ hold. Suppose that for every
δ > 0 there exists such an n0(δ) that

Pr
{∣∣n−1 log‖�n‖ − E log

∥∥X(N)
1 v

∥∥∣∣ ≥ δ
} ≤ δ(15)

for all N and all n ≥ n0(δ). Let b(N) is an arbitrary function of N such that
limN→∞ b(N) = +∞. Then

lim
N→∞ Pr

{∥∥X(N)
1

∥∥ ≥ b(N)
} = 0.

PROOF. Let v0 be such a unit vector that ‖X(N)
1 ‖ = ‖X(N)

1 v0‖. Note that

X
(N)
1 v0 has the Haar distribution by assumption of rotational invariance. By us-

ing the fact that ‖�n‖ ≥ ‖�nv0‖, we can write the inequality

n−1 log‖�n‖ ≥ log‖X(N)
1 ‖

n
+ 1

n

n∑
i=2

log
(
X

(N)
i ui

)
,

where ui are independent Haar-distributed vectors. By using Assumption D′,
we can conclude that n−1 ∑n

i=2 log(X
(N)
i ui) converges in probability to
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E log‖X(N)
1 v‖ and that the convergence is uniform in N. This fact and the sup-

position of the theorem imply that n−1 log‖X(N)
1 ‖ must converge in probability

to zero as n → ∞, and that the convergence must be uniform in N. If the con-
clusion of the theorem were invalid, then for some δ > 0 and all n, we could find
an N = N(n, δ) such that Pr{log‖X(N)

1 ‖ ≥ nδ} ≥ δ, and this would contradict the

uniform convergence of n−1 log‖X(N)
1 ‖ to zero. �

4. Conclusion. In this paper, we found sufficient conditions that ensure that
the convergence rate in the Furstenberg–Kesten theorem is uniform with respect to
the dimension of the space in which matrices operate. Let us call this phenomenon
dimensional uniformity of convergence.

Several interesting questions remain to be answered. First, is it possible to prove
the dimensional uniformity of convergence for random matrices which are not
rotationally invariant, for example, for Wigner matrices?

Second, assuming rotational invariance, what characterizes the laws of singular
values s

(i,N)
k , for which the dimensional uniformity of convergence holds? In other

words, what are necessary and sufficient conditions for dimensional uniformity of
convergence?
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